
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

COMPUTER SCIENCE GRADUATE PROGRAM

A LIGHTWEIGHT
VIRTUALIZATION LAYER WITH
HARDWARE-ASSISTANCE FOR

EMBEDDED SYSTEMS

CARLOS ROBERTO MORATELLI

Dissertation submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fullfillment of the requirements
for the degree of Ph. D. in Computer
Science.

Advisor: Prof. Fabiano Hessel

Porto Alegre
2016

To my family and friends.

“I’m doing a (free) operating system (just a

hobby, won’t be big and professional like gnu)

for 386(486) AT clones.”

(Linus Torvalds)

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to those who helped me throughout all

my Ph.D. years and made this dissertation possible. First of all, I would like to thank my

advisor, Prof. Fabiano Passuelo Hessel, who has given me the opportunity to undertake a

Ph.D. and provided me invaluable guidance and support in my Ph.D. and in my academic life

in general. Thank you to all the Ph.D. committee members – Prof. Carlos Eduardo Pereira

(dissertation proposal), Prof. Rodolfo Jardim de Azevedo, Prof. Rômulo Silva de Oliveira

and Prof. Tiago Ferreto - for the time invested and for the valuable feedback provided.Thank

you Dr. Luca Carloni and the other SLD team members at the Columbia University in the

City of New York for receiving me and giving me the opportunity to work with them during

my ‘sandwich’ research internship.

Eu gostaria de agraceder minha esposa, Ana Claudia, por ter estado ao meu lado

durante todo o meu período de doutorado. O seu apoio e compreensão foram e continuam

sendo muito importantes para mim. Obrigado pela paciência, amor e carinho durante todos

esses anos. Também gostaria de agradecer aos meus pais e irmão pelo apoio durante toda

a minha vida. Agradeço aos colegas e amigos do laboratório GSE/PUCRS, especialmente

ao amigo Sergio Johann Filho pelas importantes discusões durante a execução do trabalho.

UMA CAMADA LEVE DE VIRTUALIZAÇÃO ASSISTIDA POR

HARDWARE PARA SISTEMAS EMBARCADOS

RESUMO

O poder de processamento presente nos sistemas embarcados modernos permite

a adoção de técnicas de virtualização. Juntamente com os ganhos em redução de custo

e melhor utilização dos recursos, como por exemplo uma melhor utilização do processa-

dor, a virtualização possibilita a co-execução de diferentes sistemas operacionais em um

processador, sejam eles sistemas operacionais de tempo real (RTOS) e/ou de propósito

geral (GPOS). A implementação da técnica de virtualização esta baseada em um módulo

de software denominado hypervisor.

Devido a complexidade de se desenvolver uma nova camada de virtualização es-

pecialmente projetada para sistemas embarcados, muitos autores propuseram modifica-

ções em sistemas de virtualização que são largamente empregados em servidores na nu-

vem para melhor adapta-los às necessidades dos sistemas embarcados. Contudo, a utili-

zação de memória e os requisitos temporais de alguns dispositivos embarcados requerem

abordagens diferentes daquelas utilizadas em servidores. Além disso, a atual tendência de

utilização de virtualização nos dispositivos projetados para a internet das coisas (do inglês

Internet of Things - IoT) aumentou o desafio por hypervisors mais eficientes, em termos de

memória e processamento. Estes fatores motivaram o surgimento de diversos hypervisors

especialmente projetados para atender os requisitos dos atuais sistemas embarcados.

Nesta tese, investigou-se como a virtualização embarcada pode ser melhorada a

partir de seu estado atual de desenvolvimento para atender as necessidades dos sistemas

embarcados atuais. Como resultado, propõe-se um modelo de virtualização capaz de agre-

gar os diferentes aspectos exigidos pelos sistemas embarcados. O modelo combina virtu-

alização completa e para-virtualização em uma camada de virtualização híbrida, além da

utilização de virtualização assistida por hardware. Uma implementação baseada neste mo-

delo é apresentada e avaliada. Os resultados mostram que o hypervisor resultante possui

requisitos de memória compatíveis com os dipositivos projetados para IoT. Ainda, GPOSs

and RTOS podem ser executados mantendo-se o isolamento temporal entre eles e com o

baixo impacto no desempenho.

Palavras-Chave: Virtualização, Sistemas Embarcados, Hypervisor, Tempo-real.

A LIGHTWEIGHT VIRTUALIZATION LAYER WITH

HARDWARE-ASSISTANCE FOR EMBEDDED SYSTEMS

ABSTRACT

The current processing power of modern embedded systems enable the adoption

of virtualization techniques. In addition to the direct relationship with cost reduction and bet-

ter resource utilization, virtualization permits the integration of real-time operating systems

(RTOS) and general-purpose operating systems (GPOS) on the same hardware system.

The resulting system may inherit deterministic time response from the RTOS and a large

software base from the GPOS. However, the hypervisor must be carefully designed.

Due to the complexity of developing a virtualization layer designed specially for em-

bedded systems from scratch, many authors have proposed modifications of the widely used

server virtualization software to better adapt it to the particular needs of embedded system.

However, footprint and temporal requisites of some embedded devices require different ap-

proaches than those used in server farms. Also, currently virtualization is being adapted for

the field of the Internet of Things (IoT), which has increased the challenge for more efficient

hypervisors. Thus, a generation of hypervisors focused on the needs of embedded systems

have emerged .

This dissertation investigated how embedded virtualization can be improved, start-

ing from the current stage of its development. As a result, it is proposed a virtualization

model to aggregate different aspects required by embedded systems. The model combines

full and para-virtualization in a hybrid virtualization layer. In addition, it explores the newer

features of embedded processors that have recently adopted hardware-assisted virtualiza-

tion. A hypervisor implementation based on this model is presented and evaluated. The

results show that the implemented hypervisor has memory requirements compatible with

devices designed for IoT. Moreover, general-purpose operating systems and real-time tasks

can be combined while keeping them temporally isolated. Finally, the overall virtualization

overhead is for most part lower than in other embedded hypervisors.

Keywords: Virtualization, Embedded Systems, Hypervisor, Real-time.

LIST OF FIGURES

2.1 A taxonomy of Virtual Machines. Classic-system VMs are the subject of

study of this dissertation. Adapted from [70]. 34

2.2 Types of hypervisors. 36

2.3 Illustrating Popek and Goldbergs’s Theorem. Adapted from [70]. 38

2.4 Relation between hypercalls on a virtualized system and syscalls on a typi-

cal operating system. 39

2.5 Supervisor privileged level for hypervisor execution. 42

2.6 Memory virtualization approaches in non-virtualized versus virtualized sys-

tems. 43

2.7 Comparison of the IOMMU to the MMU. 45

3.1 Xen’s Architecture. Adapted from [9]. 52

3.2 KVM’s Architecture. 59

3.3 SPUMONE’s single-core Architecture. Adapted from [39]. 66

3.4 SPUMONE’s multicore Architecture. Adapted from [51]. 66

3.5 XtratuM’s architecture. It is a type 1 hypervisor designed for safety critical

systems. Adapted from [19]. 68

3.6 Summarized L4 microkernel family tree that resulted in embedded hypervi-

sors. Adapted from [25]. 69

3.7 OKL4’s architecture. It was developed targeting mobile devices supporting

several mobile OSs, and it powered the first commercial virtualized phone

in 2009. 70

3.8 Fiasco’s architecture. The L4/Fiasco maps the L4Linux kernel threads di-

rectly to VCPUs. 71

3.9 PikeOS’s architecture. It is a proprietary microkernel with support for virtu-

alization designed to attend safety-critical systems. 72

3.10 Xvisor’s architecture. The Xvisor hypervisor uses the third privileged level

from ARM’s architecture. 74

3.11 RT-Linux is a kernel patch that adds a software layer with a real-time sched-

uler and it makes the Linux kernel to share the processor with real-time

tasks. 77

4.1 Overall view of the proposed virtualization model. 83

4.2 Flexible mapping for multiprocessor embedded systems with real-time sup-

port. 85

4.3 Virtual Hellfire Hypervisor’s virtualization model. 89

5.1 MIPS32 memory map. 95

5.2 Hypervisor’s software block diagram. 95

5.3 Example of the scheduling strategy to combine the EDF and best-effort

schedulers. 100

5.4 Virtual memory organization view of our hypervisor. 102

5.5 Quantum scheduler scheme for interrupt delivery. 104

5.6 Example of inter-VM communication involving two guests. 106

6.1 Performance overhead for user-land applications relative to non-virtualized

performance. 118

6.2 Performance overhead for syscall applications relative to non-virtualized

performance. 118

6.3 Iperf bandwidth results for TCP protocol comparing native versus virtualized

execution with different hypervisor’s scheduler quantum. 119

6.4 Performance overhead for CPU intensive applications relative to non-virtualized

performance. 120

6.5 Histogram for RTT of the messages for native execution of the Linux/MIPS. . 123

6.6 Histogram for RTT of the messages without policy. 123

6.7 Histogram for RTT of the messages with fast interrupt policy and quantum

recycling. 124

6.8 Histogram for RTT of the messages with fast interrupt policy and quantum

reset. 124

6.9 Histogram for RTT of the messages with fast interrupt policy and quantum

recycling with non-preemptable VCPUs. 125

6.10 Histogram for RTT of the messages with fast interrupt policy and quantum

reset with non-preemptable VMs. 125

6.11 RTT’s histograms for inter-VM communication using the Hellfire Hypervisor

communication mechanism. 127

6.12 Histogram of the execution delay for RT-VCPUs in microseconds. 128

6.13 System configuration for the ADPCM execution. 129

6.14 Histogram of encoding and decoding execution time for the ADPCM algo-

rithm without external interferences. 129

6.15 System response time without the fast interrupt deliver policy and a pre-

emptable RT-VM. 131

6.16 System response time with the fast interrupt deliver policy and a preempt-

able RT-VM. 131

6.17 System response time with the fast interrupt deliver policy and a non-preemptable

RT-VM. 132

LIST OF TABLES

2.1 Example of embedded systems market and devices. Adapted from [55]. . . . 32

3.1 Embedded hypervisors’ comparative table. 75

3.2 Footprint requirements for Xen and KVM. 76

3.3 Footprint requirements of the hypervisors when available. 76

4.1 Hypercalls as extended services. 86

5.1 GuestClt0 register fields. These bits are used to control the hardware ac-

cessibility by the guest OS. 98

5.2 Example of a set of interrupt rules for a system configured with three guest

OSs. 105

5.3 Example of memory mapping for a Linux and a HellfireOS guests. 108

6.1 Size of the hypervisor’s segments. The sum of all segments is the footprint

of the hypervisor during its execution. 114

6.2 Number of guest exceptions in the original and the modified Linux/MIPS

guest during the boot. 116

6.3 Average (x), standard deviation (s), median (m) and 95th percentile (pth) for

RTT of the messages in milliseconds for Linux native execution. 122

6.4 Average (x), standard deviation (s), median (m) and 95th percentile (pth) for

RTT of the messages in milliseconds for virtualized Linux execution. 122

6.5 Average (x), standard deviation (s), median (m) and 95th percentile (pth) for

the execution delay on the EDF scheduler in microseconds. 128

6.6 Average (x), standard deviation (s), median (m), 95th percentile (pth), worst

execution case (WEC) and best execution case (BEC) to ADPCM encoding

and decoding and the RTT of the messages for different system configura-

tions in milliseconds. 130

LIST OF ACRONYMS

ABI – Application Binary Interface

ADPCM – Adaptive Differential Pulse-code Modulation

ADU – Application Domain Unit

API – Application Programming Interface

BEC – Best Execution Case

BE-VCPU – Best-effort Virtual Central Processing Unit

BVT – Borrowed Virtual Time

CBS – Constant Bandwidth Server

CE – Costumer Electronic

CPU – Central Processing Unit

CP0 – Coprocessor 0

CSA – Compositional Scheduling Architecture

DMA – Dynamic Memory Access

DPR – Dynamic Partial Reconfiguration

DRAM – Dynamic Random-Access Memory

EDF – Earliest Deadline First

ES – Embedded System

FP – Fixed Priority

FV – Full-Virtualization

GCP0 – Guest Cooprocessor 0

GPOS – General Purpose Operating System

GSE – Embedded Systems Group

GSM – Global System for Mobile Communications

GuestCtl0 – Guest Control Register 0

HAL – Hardware Abstraction Layer

HLL – High Level Languages

HVM – Hardware-assisted Virtualization

IASim – MIPS Instruction Accurate Simulator

IoT – Internet of Things

IPA – Intermediate Physical Address

ISA – Instruction Set Architecture

I/O – Input/Output

IOMMU – Input–output Memory Management Unit

JVM – Java Virtual Machine

NVRAM – Non-Volatile Random Access Memory

OS – Operating System

OVP – Open Virtual Platforms

PA – Physical Address

PID – Processor Identification

PV – Para-Virtualization

RTM – Real-time Manager

RTOS – Real-time Operating System

RT-VCPU – Real-time Virtual Central Processing Unit

SEDF – Simple Earliest Deadline First

USB – Universal Serial Bus

VA – Virtual Address

VCPU – Virtual Central Processing Unit

VHH – Virtual Hellfire Hypervisor

VM – Virtual Machine

VMM – Virtual Machine Manager

WEC – Worst Execution Case

CONTENTS

1 INTRODUCTION . 25

1.1 Hypothesis and Research Questions . 27

1.2 Organization of This Dissertation . 28

2 BACKGROUND IN EMBEDDED SYSTEMS AND VIRTUALIZATION 31

2.1 Embedded Systems . 31

2.2 What Means Virtualization? . 33

2.2.1 Types of Hypervisors . 35

2.2.2 Requirements for Processor’s Virtualization . 37

2.3 Enabling Techniques and Technologies for Virtualization 38

2.3.1 Para-virtualization . 38

2.3.2 Full-virtualization . 40

2.3.3 Hardware-assisted Virtualization . 41

2.3.4 I/O Virtualization . 44

2.4 Problems Caused by Virtualization . 45

2.4.1 The Hierarchical Scheduling Problem . 46

2.4.2 Lock Holder Preemption Problem . 46

2.5 Virtualization for Embedded Systems . 47

2.6 Past, Present and Future of Embedded Virtualization . 48

3 STATE-OF-THE-ART IN EMBEDDED VIRTUALIZATION 51

3.1 The Xen Hypervisor . 51

3.1.1 Xen’s Architecture . 52

3.1.2 The Xen Scheduling Algorithm . 53

3.1.3 Xen-Based Proposals . 54

3.2 KVM Hypervisor . 59

3.2.1 KVM’s Architecture . 59

3.2.2 The Linux Scheduling Algorithm . 60

3.2.3 KVM-based proposals . 62

3.3 SPUMONE . 65

3.4 XtratuM . 67

3.5 L4 Microkernel Family based hypervisors . 69

3.5.1 OKL4 Microvisor . 70

3.5.2 L4/Fiasco . 71

3.5.3 PikeOS . 72

3.5.4 Mini-Nova . 73

3.6 M-Hypervisor . 73

3.7 Xvisor . 74

3.8 Embedded Hypervisors Comparison . 75

3.9 RT-Linux . 77

3.10 Final Considerations . 78

4 A VIRTUALIZATION MODEL FOR EMBEDDED SYSTEMS 79

4.1 Desirable Features for an Embedded Virtualization Model 79

4.2 Model Overview . 82

4.2.1 The Flexible Scheduling Mapping . 84

4.2.2 Extended Services . 84

4.2.3 Real-time Aspects . 86

4.2.4 Communication Model . 88

4.3 Comparison with the Virtual Hellfire Hypervisor (VHH) 88

4.4 Final Considerations . 90

5 HELLFIRE HYPERVISOR - AN IMPLEMENTATION USING MIPS HARDWARE-

ASSISTANCE . 93

5.1 The M5150 processor . 93

5.1.1 MIPS32’s Memory Model . 94

5.2 Software Architecture . 94

5.2.1 Virtual Machine and Virtual CPU Software Abstraction 96

5.3 CPU Virtualization Strategy . 97

5.3.1 Best-effort and real-time scheduler algorithms 99

5.3.2 Timer Virtualization . 100

5.4 Virtual Memory Management . 101

5.5 Interrupt Virtualization . 103

5.5.1 Virtual Interrupt . 106

5.6 Inter-VM Communication . 106

5.7 Engineering Effort to Support a Guest OS . 107

5.7.1 Linux and Hellfire OSs as Guests . 108

5.8 Current Hypervisor Restrictions . 109

5.9 Final Considerations . 110

6 HYPERVISOR EVALUATION AND PRACTICAL RESULTS 113

6.1 SEAD-3 Development Board . 113

6.2 Hypervisor Memory Footprint . 113

6.3 Linux Port Experience . 115

6.4 Overhead Impact on Linux . 117

6.4.1 CPU-bound Benchmarks . 117

6.4.2 IO-bound Benchmark . 119

6.5 Overhead Impact on HellfireOS . 119

6.6 Interrupt Delivery Delay . 121

6.7 Inter-VM Communication Response Time . 126

6.8 Real-time Services Performance . 126

6.8.1 RT-VCPUs Execution Delay . 127

6.8.2 Interrupt Handling Interference on RT-VCPUs . 128

6.9 Final Considerations . 133

7 CONCLUSIONS . 135

7.1 Concluding Remarks . 136

7.2 Future Research . 137

7.3 List of Publications . 138

REFERENCES . 139

APPENDIX A – Virtual Machine and Virtual CPU Data Structures 149

A.1 Virtual Machine Data Structure . 149

A.2 VCPU Data Structure . 150

29

1. INTRODUCTION

Embedded systems are being widely adopted in all areas of human activity. Their

increased performance during recent years has enabled a wide range of new applications.

However, more processing power implies more functionalities and increased software com-

plexity, which directly impacts the design constraints and goals of embedded systems [85].

For example, the possibility for the final user to develop and download new applications,

before exclusively found in general-purpose systems, can now be found in many modern

embedded devices [31]. This scenario has forced designers and companies to adopt new

strategies, such as increased use of software layers allowing for more flexible platforms

capable of meeting timing, energy consumption, and time-to-market constraints. Although

embedded systems are assuming many of the features of general-purpose systems, some

differences remain. They present critical real-time constraints and frequently have resource

constraints such as, limited battery, memory and processing power.

The appearance of server farms in the 1990s and the increasing performance of

the computer systems stimulated the adoption of virtualization. Virtualization allows for the

possibility of decoupling the one-to-one correspondence between hardware and software.

Thus, keeping several different operating systems on the same computer system, can dras-

tically reduce the maintenance and energy costs [54]. Different operating systems reside in

a shared memory and are combined on a single or multi-core processor through a software

stack called a virtual machine monitor or hypervisor. In recent years, virtualization technol-

ogy has quickly moved towards embedded systems motivated by the increasing processing

power of the embedded processors and the increasing challenges to comply with their re-

quirements. Although server virtualization is a well-known and mature technology widely

applied for commercial use, embedded system virtualization is still being studied and devel-

oped. The main restriction to broader use of virtualization for embedded systems is that their

requirements differ from server and enterprise systems [65]. Most notably, timing constraints

and limited resources, like CPU and memory, are the main concerns around embedded sys-

tems virtualization. Thus, virtualization as deployed in the enterprise environment cannot be

directly used in embedded systems.

There are many studies proposing different techniques for embedded system virtu-

alization. A common approach is to adapt hypervisors widely used in server virtualization to

30

embedded systems. The main concern about general purpose hypervisors is the absence

of suitable support for real-time and memory requirements incompatible with some embed-

ded devices. Despite these limitations, researchers are continually working to improve the

embedded support of open-source hypervisors for server virtualization, like XEN and KVM,

as seen in [22], [92], [89] and [8]. On the other hand, the distinguished characteristics of the

embedded systems have motivated the appearance of hypervisors specially designed for

embedded virtualization. Among the goals for embedded hypervisors development, two of

them are frequently addressed: to keep low memory requirements and some level of support

for real-time applications. Additionally, the diversity of embedded systems and their applica-

tions encourages the development of many different embedded hypervisors, like SPUMONE

[39], Xtratum [80], M-Hypervisor [93], Xvisor [59] and the L4 hypervisors family [86], [32],

[38], [88].

Intel and AMD manufactures provided hardware support for virtualization on the

x86 architecture to address the continuous adoption of server virtualization. This was aimed

to simplify the virtualization software layer and to improve performance. Before hardware-

assisted virtualization, hypervisors needed to implement a technique called para-virtualization

that consists of modifying the operating system to be virtualized. These operating system

modifications break the software compatibility and require additional engineering work along

with licence and source-code access for proprietary software. With dedicated hardware for

virtualization, the hypervisors could implement a technique called full-virtualization where

no modifications are required on the target operating system. Thus, making it easier to

support new operating systems, especially proprietary ones. Similar to the x86 architec-

ture, the late adoption of hardware-assisted virtualization for embedded processors made

para-virtualization rule the development of embedded virtualization. Nowadays, the main

embedded processor manufacturers had already designed virtualization extensions for their

processor families, like PowerPC [26], ARM [6] and MIPS [36]. These gave hypervisor devel-

opers more design choices. Modern hardware-assisted virtualization now makes it possible

to virtualize an operating system without any modification and keeps performance close to

the level of non-virtualized systems. This is important to support legacy software. However,

advanced hypervisor features like communication among virtual machines or shared devices

may still require para-virtualization technique.

This dissertation starts by addressing the different embedded virtualization ap-

proaches and discussing their drawbacks and advantages. It points to several features

31

required for embedded virtualization that the current hypervisor approaches fail to sup-

port. Thus, it is proposed the hybrid virtualization model concept that combines full and

para-virtualization in the same hypervisor. To support full-virtualization, the model considers

the recent hardware-assisted virtualization adopted in some embedded processors. Para-

virtualization is used for extended services, such as communication among virtual machines,

and real-time services. A hypervisor implementation based on the proposed model was de-

veloped for the MIPS M5150 processor and evaluated in the SEAD-3 development board.

The contribution of this Ph.D. research is to show how design choices based on hardware-

assisted virtualization associated with embedded system characteristics result in a simpler

hypervisor, while still improving overall performance of the whole system.

1.1 Hypothesis and Research Questions

The aim of this work is to investigate the hypothesis that is possible to have an

embedded lightweight hypervisor capable of supporting the major embedded virtualization

requisites. Moreover, if considered that this hypothesis can be true, how important is the

new hardware-assisted virtualization to accomplish it? Fundamental research questions

associated with the hypothesis that guided this research are defined as follows:

1. What is the state-of-the-art in embedded virtualization and how does it accomplish

the needs of embedded systems? This research question’s main objective is to study

embedded virtualization in detail and identify where the current virtualization models

fail to support virtualization for embedded systems. Answering this research question

will make it possible to understand the approaches that have already been tested,

identify their limitations, and point out opportunities for improvements.

2. Can a virtualization model embrace the major embedded systems’ needs and what

features does it need to support to accomplish this goal? The objective of this re-

search question is to determine the required embedded virtualization features and to

propose a virtualization model capable of supporting these features. It is important to

understand how different features, some of them contradictory, can be combined in the

same model. The resulting virtualization model will guide the development of a new

embedded hypervisor.

32

3. Can an implementation from a virtualization model be trustworthy and how can hardware-

assisted virtualization be used to achieve this goal? This research question addresses

whether a practical implementation can be constructed from the proposed virtualiza-

tion model. Theoretical models can be hard to implement or an implementation may

not achieve the expected results.

1.2 Organization of This Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 explains the basic concepts for the best understanding of the remainder of

the text. It starts by defining embedded systems and their applications. Virtualization

is defined along with a taxonomy of virtual machines. The different types of hypervi-

sors are shown and the requirements for virtualizing a processor are explained. The

technologies that make virtualization possible are also discussed. Moreover, two criti-

cal problems resulting from virtualization usage are presented. Then, the relationship

between virtualization and embedded systems is explained. Finally, it discusses the

past, present and future possibilities for virtualization in embedded systems.

• Chapter 3 describes the state-of-the-art in embedded virtualization. The chapter starts

by showing hypervisors designed for server virtualization. Then it presents several

different authors’ proposals to adapt these hypervisors for embedded systems. Sub-

sequently, different hypervisors developed specially for embedded systems are de-

scribed. A comparative study about the hypervisors is then presented. Finally, a Linux

approach to improve real-time responsiveness is explained and compared to virtual-

ization. Chapter 3 addresses research question (1).

• Chapter 4 presents the virtualization model proposed in this dissertation. First, it

discusses the required features for a virtualization model for embedded systems. Then,

the proposed embedded virtualization model is presented, and its different aspects are

discussed. Finally, the model is compared to the Virtual Hellfire Hypervisor’s model

(VHH is a hypervisor previously developed in the Embedded Systems Group at PUC-

RS). Chapter 4 addresses research question (2).

33

• Chapter 5 describes the hypervisor implementation based on the virtualization model

proposed. First, the processor supported by the hypervisor is briefly presented. The

software architecture is discussed and the CPU virtualization strategy is explained.

Then the memory virtualization approach is exposed and the strategy for interrupt han-

dling is described. The mechanism to allow communication among virtual machines is

explained. Finally, the engineering effort to support a new guest and the implementa-

tion restrictions are discussed. Chapter 5 partially addresses research question (3).

• Chapter 6 shows the hypervisor evaluation and practical results. The hypervisor mem-

ory requirements are determined and compared to other hypervisors. Next, the experi-

ence to port Linux and minor modifications to the Linux kernel to improve performance

is described. The overall hypervisor overhead impact is then analyzed. The interrupt

delivery strategy and the communication mechanism among virtual machines are also

evaluated. Moreover, the real-time capabilities are measured. Lastly the overall results

are discussed. Chapter 6 concludes research question (3).

• Chapter 7 summarizes the dissertation and presents the concluding remarks. It re-

states the answers to the research questions, the main contributions, and presents

possible directions for future work.

34

35

2. BACKGROUND IN EMBEDDED SYSTEMS AND

VIRTUALIZATION

This chapter explains basic concepts to better understand the remainder of the text.

Virtualization is a complex subject that involves several different topics and a wide range of

solutions. This dissertation focuses on virtualization for the embedded systems. Thus, Sec-

tion 2.1 starts by explaining the concept of embedded systems. If the reader is familiar with

the definition of embedded systems, it is suggested that you read this chapter from Section

2.3. Section 2.2 introduces virtualization and its taxonomy, the different types of hypervisors

and the requirements for virtualization. Section 2.3 explains different technologies that make

virtualization possible. Section 2.4 describes two different problems caused by the use of

virtualization. Section 2.5 shows the advantages of virtualization for embedded systems.

Finally, Section 2.6 discusses the past, present and future of virtualization for embedded

systems. If you are familiar with virtualization and embedded virtualization concepts, it is

suggested to read this work from Chapter 3.

2.1 Embedded Systems

The use of microprocessors in equipment and consumer applications rather than

laptop or personal computers (PCs) is wide spread. Actually, PCs are only one application

of microprocessors. Embedded microprocessors are deeply integrated into everyday life,

i.e., cars, microwaves oven, TVs, cell phones, and many other electronics are powered by

microprocessors. Additionally, the increasing adoption of Internet of Things (IoT) [28] is

accelerating the use of embedded applications. It is expected that there will be 24 billion

interconnected devices by the year 2020 [28].

An embedded system (ES) is a computer system designed for a specific purpose,

which distinguishes it from PCs or supercomputers. However, it is difficult to find a unique

definition for ESs as they constantly evolve with advances in technology and as costs de-

crease. The following definition from [29] says: An embedded system is a microprocessor-

based system that is built to control a function or range of functions and is not designed to

be programmed by the end user in the same way that a PC is. Most embedded devices are

36

designed for a specific function. However, this definition sounds outdated as modern ESs

may allow the final user to develop and download new applications, e.g., smartphones and

smartTVs. Additionally, another definition highlights their reliability [55]: An ES is a computer

system with higher quality and reliability requirements than other types of computer systems.

This definition covers systems such as avionics or medical equipment where a malfunction

is life-threatening. Due to the wide range of ES purposes, there is not a single definition.

Table 2.1 shows examples of the embedded system markets and devices.

Table 2.1: Example of embedded systems market and devices. Adapted from [55].

Market Embedded Device

Automotive
Ignition system
Air bag sensors
Engine control

Consumer electronics

Smart phones
Smart TVs
Games
Toys
Laptops

Industrial control Robotics

Medical Cardiac monitors
Dialysis machines

Networking Routers
Switches

Office automation Printers
Scanners

A recent trend in ESs is about their software complexity. Noergaard [55] defined

ES software and application layers as optional. Thus, an ES could be composed of only a

hardware layer. However, the performance improvement in functionalities, processing power

and storage capacity over the last years has enabled a wide range of new complex appli-

cations and functionalities for ESs. Thus, the designers tend to adopt complex software

layers to accomplish their goals. As mentioned early in this section, the possibility for the

final user to develop and download new applications, before exclusively found in general-

purpose systems, can now be found in many embedded devices. This has forced designers

and companies to adopt new strategies, resulting in the increased use of software layers.

Although ESs are incorporating general-purpose features, many constraints re-

main. Because they are designed for specific functions, engineers can reduce the size

and cost of the final product resulting in relatively simple and cheap devices. Thus, ES may

suffer from hardware constraints, like reduced processing power, memory, weight and bat-

37

tery life. This added to the increasing complexity of embedded software is a challenge for

designers that still need to meet timing, energy consumption, and time-to-market constraints

for their products. In this scenario, virtualization can be a useful tool to deal with software

complexity while increasing reuse, security and software quality.

2.2 What Means Virtualization?

Virtualization means the creation of an environment or, the creation of a virtual

machine (VM), that acts like the real target hardware from the software or user point of view.

The VM is implemented as a combination of real hardware and software aiming to execute

applications [70]. Figure 2.1 depicts the taxonomy of VMs suggested by [70]. There are two

kinds of VMs: process VMs and system VMs. Typically, a process VM is implemented on

top of the operating system’s (OS) application binary interface (ABI) and is able to emulate

both user-level instructions and OS system calls for an individual process. A system VM

provides a complete system environment capable of supporting an entire OS. Thus, a single

computer can support multiple guest OSs environments simultaneously. A guest OS is an

OS executing inside of a VM, i.e., a virtualized OS. In this dissertation, the term guest OS will

be used to distinguish between virtualized and non-virtualized OSs. The second taxonomy

level is based on whether the guest and host execute the same instruction set architecture

(ISA). Multiprogrammed OSs are a typical example of process VMs that execute the same

ISA. Process VMs for different ISA needs to emulate program binaries compiled to a different

ISA. Two techniques can be applied to perform emulation:

• Interpretation: Fetches, decodes and emulates the execution of individual source in-

structions. This technique results in a huge performance impact because each instruc-

tion requires many native instructions to be emulated.

• Dynamic Binary Translation: Blocks of source instructions are translated into native

instructions. This technique increases the performance because the translated blocks

can be cached and repeatedly executed without requiring new translation.

Interpretation and binary translation have different performance profiles [70]. In-

terpretation has lower startup overhead but greater overhead for overall execution. On the

other hand, binary translation has high initial overhead in order to translate the instructions

38

Process VMs System VMs

Same ISA Different ISA Same ISA Different ISA

Multiprogrammed
Systems

Dynamic
Translators

Classic-System
VMs

Whole-System
VMs

Subject
of

this
dissertation

Figure 2.1: A taxonomy of Virtual Machines. Classic-system VMs are the subject of study of
this dissertation. Adapted from [70].

for the first time. Thus, some VMs use both techniques combined with a heuristic to deter-

mine which source instruction blocks will be interpreted or translated. The best example of

a process virtual machine is the Java Virtual Machine [46]. Java is a high-level language

(HLL) designed for portability. The Java compiler generates a portable intermediate ISA that

can be emulated by the Java Virtual Machine (JVM) for different host ISAs.

In system VMs, the virtualization software is often called a virtual machine moni-

tor (VMM) or simply hypervisor. System VMs designed to support different ISAs need to

emulate all software (OSs and applications). Thus, they are also called whole-system VMs.

There are important applications for this kind of VM. For example, an ARM platform including

the processor, memory and peripherals can be fully emulated on an Intel IA-32 processor.

Thus, the designers can test their software without the target hardware. Additionally, a legacy

software can be supported by newer platforms without requiring engineering work to port.

An example of a system VM for different ISAs is the QEMU [11]. QEMU is an open source

application that can be used either as an emulator or virtualizer. As an emulator, it can run

OSs and programs compiled for different ISAs. When used as a virtualizer, it can execute the

guest OS code directly on the host CPU. Another example is Open Virtual Platforms (OVP)1

designed to accelerate embedded software development allowing hardware platforms to be

described in C language. Thus, the designers can describe their custom platform, testing

and debug their software without the real target.

1http://www.ovpworld.org/

39

System VMs to the same ISA, also called classic-system VMs, were developed

during the 1960s and they were the first application of virtual machines. At that time, main-

frame computer systems were large and expensive. Thus, computers needed to be shared

among users. Different users sometimes required different OSs creating the first practi-

cal application for virtualization. With the popularization of PCs, interest in classic-system

VMs was lost. However, during the 1990s with the appearance of server farms, the classic-

system virtualization became popular once again. In this case servers are shared among

several users and VMs are a secure way of partitioning the user’s software. Classic-system

VMs have a lower performance impact when compared to whole-system VMs because the

hardware directly executes the VM’s instructions.

Recently, the interest in classic-system VMs for embedded systems has increased.

However, classic-system VM as applied to server virtualization does not fit directly with ESs.

Their intrinsic characteristics as discussed in Section 2.1 motivated the study of new ap-

proaches for virtualization on ESs. Thus, the subject of this dissertation is classic-system

VMs for embedded systems. Hereafter, the term virtual machine refers to classic-system

VMs, unless otherwise noted.

2.2.1 Types of Hypervisors

Virtualizing software (VMM or hypervisor) can be divided into two different kinds

called type 1 and type 2. Figure 2.2 depicts both. Type 1 hypervisors are also called native

or bare-metal hypervisors. The virtualization layer is implemented between the hardware

and the guest OSs, i.e., there is no native OS executing in a system that adopts type 1

virtualization as shown in Figure 2.2(a). A representative type 1 hypervisor is Xen (see

Section 3.1). A type 2 hypervisor is implemented as a distinct software layer on top of an

existing OS (see Figure 2.2(b)). From the point of view of the underlying OS, it is treated as

a normal process and is subject to the same scheduler policies as other user and system

processes. In this kind of virtualization, a guest OS can coexist along with the non-virtualized

user processes. A representative type 2 hypervisor is KVM (see Section 3.2).

When a home/office user desires to utilize virtualization for some purpose, type 2

hypervisors are most popular. The type 2 hypervisor is installed as a user’s application on

the existing OS. This technique allows the user to execute a guest OS along with other user

40

applications. Thus, the guest OS is competing with user applications for system resources,

and it is submitted to the same host OS policies as any other process. In terms of mem-

ory requirements, type 1 hypervisors are more efficient than type 2 since there is not the

overhead of the host OS. Additionally, the hypervisor has the freedom to control all system

resources. The main application for type 1 hypervisors is to execute multiple OSs on the

same computer, which makes it the perfect choice for server consolidation.

a

Hardware

Hypervisor

VM 1

App App App

guest OS

a

VM 2

App App App

guest OS

a

VM n

App App App

guest OS

...

(a) Type 1 hypervisor.

Host Operating System

a

Hardware

Hypervisor

VM 1

App App App

guest OS

a

VM 2

App App App

guest OS

a

VM n

App App App

guest OS

... User
process

1

User
process

2

User
process

n
...

(b) Type 2 hypervisor.

Figure 2.2: Types of hypervisors.

Type 1 and type 2 hypervisors are available for embedded virtualization. However,

most type 2 hypervisors used in embedded virtualization were designed for desktop virtu-

alization and adapted for embedded systems. As presented in the Chapter 3, hypervisors

designed specifically for embedded systems tend to implement the type 1 approach. Due to

restrictions such as memory footprint and real-time constraints, the type 1 model fits embed-

ded systems better. The virtualization model for ESs proposed in this dissertation depicts a

type 1 hypervisor.

41

2.2.2 Requirements for Processor’s Virtualization

The classic paper written by Popek and Goldberg [60] formalizes the conditions for

a processor architecture to be efficiently virtualized. Efficient virtualization means that a VM

can be constructed over the processor’s architecture without the necessity of modifying the

guest OS. In order to understand their theorem, it is necessary to define the difference be-

tween control-sensitive, behavior-sensitive and privileged instructions. Control-sensitive in-

structions can change the configuration of the system’s resources, while, behavior-sensitive

instructions depend on the configuration of the resources. Instructions that are neither

control-sensitive nor behavior-sensitive are termed innocuous [70]. Moreover, instructions

that trap the OS when executed in user mode are called privileged instructions. In a hyper-

visor, any instruction that attempts to change the configuration of the system’s resources

must be intercepted and emulated accordingly. This is possible when two requirements are

accomplished:

• The instruction was executed in user-mode and;

• The control-sensitive and behavior-sensitive instructions are privileged instructions too.

The first requirement is easily accomplished executing the hypervisor in kernel-

mode and the guest OS in user-mode. However, the second requirement relies on the

processor’s architecture. Thus, Popek and Goldberg stated their theorem:

Theorem 1. "For any conventional processor a virtual hypervisor may be constructed if the

set of sensitive instructions for that computer is a subset of the set of privileged instructions.

Figure 2.3 depicts the theorem. In Figure 2.3(a) the control-sensitive instructions

are not a subset of the privileged instructions, i.e., some of them can be executed in user-

mode without trapping the hypervisor. This case violates Popek-Goldberg’s theorem and

cannot be efficiently virtualized. On the other hand, Figure 2.3(b) shows the control-sensitive

instructions as a subset of the privileged instructions resulting in a processor that can be

efficiently virtualized.

Para-virtualization (see Subsection 2.3.1) can be applied when the processor’s ar-

chitecture is not compatible with the Popek-Goldberg theorem. Thus, allowing a hyper-

visor implementation for that architecture. Alternatively, processors that support Popek-

42

non-privileged

privileged

sensitive

(a) Not efficiently virtualizable.

non-privileged

privileged

sensitive

(b) Efficiently virtualizable.

Figure 2.3: Illustrating Popek and Goldbergs’s Theorem. Adapted from [70].

Goldberg’s theorem can be fully-virtualized (see Subsection 2.3.2). Section 2.3 explains

the difference between para-virtualization, full-virtualization and hardware-assisted virtual-

ization.

2.3 Enabling Techniques and Technologies for Virtualization

The evolution of virtualization technology has resulted in several different approach-

es. The variety of processor architectures and the appearance of new applications with

different needs, has driven techniques that can deliver virtualization on almost all devices.

This section describes the three main techniques adopted for hypervisor implementation:

para-virtualization (Subsection: 2.3.1), full-virtualization (Subsection 2.3.2) and hardware-

assisted virtualization (Subsection 2.3.3). These techniques can be adopted separately or

through a hybrid approach, combining two or more of them. The virtualization model and

the resulting hypervisor implementation, which is the subject of this work, are a combination

of these three techniques.

2.3.1 Para-virtualization

Hypervisors for processor architectures that do not fit Popek and Goldberg’s the-

orem, as explained in Subsection 2.2.2, require different approaches. These architectures

43

have control-sensitive instructions that do not trap the hypervisor. Therefore, the hypervisor

cannot avoid an application changing the processor’s behavior. There are two ways to avoid

this problem: dynamic binary translation or para-virtualization (PV). Hypervisors that perform

dynamic binary translation need to read the VM’s instruction prior to their execution in order

to emulate the control-sensitive instructions that do not trap the hypervisor. Thus, causing

a significant performance penalty when compared to PV. Para-virtualization is a technique

that requires modifying and recompiling the guest OS prior to its installation in a VM. These

modifications consist of substituting control-sensitive instructions or other OS parts, like the

I/O subsystem, by hypercalls. However, for proprietary software or other situations where

the source code is not available, the only alternative is dynamic binary translation.

Hypercalls are services provided by the hypervisor and invoked from the guest

OS. They are equivalent to system calls (syscalls) in an OS and Figure 2.4 describes their

relationship. In operating systems, functions that can only be performed by the OS, like

memory allocation or access to the file-system, result in calls to the OS. Similarly, functions

that can only be performed by the hypervisor, such as the execution of control-sensitive

instructions, can be converted to hypercalls.

Hardware

Hypervisor

VM 0

hypercalls

Operating System

app

syscalls

app

VM 1

Operating System

app app

Figure 2.4: Relation between hypercalls on a virtualized system and syscalls on a typical
operating system.

PV is not limited to processor architectures that cannot support Popek and Gold-

berg’s theorem. In fact, it can extend hypervisor capabilities. For example, PV can be used

to implement communication between the VM and the hypervisor or inter-VM communica-

tion. Another application for PV is to improve performance, since fully-virtualized hypervisors

have a performance issue. If the VM executes control-sensitive instructions constantly, it will

44

result in an excessive number of traps to the hypervisor, impacting performance. Thus, the

OS can be modified to substitute these instructions with hypercalls.

The main limitation of para-virtualization is the engineering work needed to modify

the OS to execute in a specific hypervisor. When utilized as a method to extend the capabili-

ties of a virtualized platform, e.g., to support inter-VM communication, PV can be applied as

a loadable module. Usually modern operating systems support kernel modules [17], i.e., ex-

ecutable code that can be dynamically loaded into an OS’s kernel to add new functionalities.

For example, an inter-VM communication module can be added without modifying the OS’s

source code. VirtIO [64] is a effort to standardize the I/O interfaces for Linux hypervisors

consisting of a set of Linux modules. However, para-virtualization used as a method to pro-

vide CPU virtualization, i.e., to avoid control-sensitive instructions, requires modifications to

the OS’s kernel. These modifications must be compatible with the hypervisor’s requirements

making them unique.

2.3.2 Full-virtualization

The full-virtualization technique requires that the processor architecture fits with

the Popek-Goldberg’s theorem to implement a virtual machine able to execute a guest OS

without any modification. All privileged instructions must be emulated by the hypervisor.

Full-virtualization allows the guest OS to be completely decoupled from the virtualization

layer. Hence, the guest OS does not need to be modified to be virtualized. Unmodified

guests are advantageous because they avoid additional engineering work. However, if the

number of emulated privileged instructions are excessive, a fully-virtualized system can suf-

fer from performance penalties. Due to this, para-virtualization was widely adopted in the

first generation of embedded hypervisors.

Para-virtualization and full-virtualization can coexist in a combined approach. This

approach consists of fully-virtualizing the CPU and uses para-virtualization for certain pe-

ripherals or hypercalls for special services. For example, a network device may be para-

virtualized to be shared among guest OSs or the hypervisor may implement a hypercall for

a guest OS to change its execution priority. Additionally, the designers can implement hy-

percalls to substitute only instructions that generate an excessive number of traps and to

45

use emulation for the remaining instructions. However, this requires prior study to determine

what instructions must be substituted.

2.3.3 Hardware-assisted Virtualization

This section offers a brief description of typical virtualization extensions. Dedi-

cated hardware for virtualization can simplify hypervisor design and to improve performance

and security. However, these advantages require additional hardware support increasing

the processor complexity, cost and power consumption. These factors are critical for the ES

market. Usually, the specification of virtualization extensions describes a full set of hardware

features. However, this set of features must be flexible enough to allow for partial implemen-

tation. Thus, the processor’s manufacturer can determine the level of hardware-assisted

support based on the necessity of the market. For example, limited hardware support may

still allow for full-virtualization, but offers poor performance speed-up. In this scenario, the

hypervisor must deal with the absence of features to support different processor models.

Following is describe three important hardware features typically available in virtualization

extensions sets.

Additional Privilege Levels

The typical para-virtualization approach on processors without proper virtualization

support suffers from the inability to isolate the guest OSs’ kernel and user-space. The hyper-

visor is typically executed in kernel-mode and the entire guest OS is executed in user-mode.

As a result, there is no memory isolation between the guest kernel and applications. Thus,

a misbehavior or malicious application can disrupt the entire guest OS. A secondary effect

is the excessive number of traps generated by the guest OS executing in user-space. This

effect can be reduced with PV.

Adding new privilege levels to the processor allows the guest OS to be executed

in both kernel and user-modes, since the hypervisor is located in a higher privileged level.

Figure 2.5 shows the model of a processor implementing a third privilege level called super-

visor. Beyond allowing memory isolation inside the guest OS, the additional privilege level

allows one to distinguish between user, kernel and supervisor exceptions. User exceptions,

46

like system calls, can be handled directly by the guest OS kernel without the necessity to

trap the hypervisor. Also, the hypervisor may control the accessibility of some hardware fea-

tures, like configuration register or instructions, to the guest OS. Thus, the hypervisor may

choose a policy of less intervention or a more controlled guest OS.

Supervisor-mode

kernel-mode

user-mode

guest
exception

?

guest kernel handler

yes

no

kernel-modesupervisor-mode

supervisor
handler

Interrupt or exception

unprivileged level

intermediate privileged level

highest privileged level

Figure 2.5: Supervisor privileged level for hypervisor execution.

2-Stage TLB Translation

Processors targeting GPOSs rich in features must support a memory management

unit (MMU) to provide a virtual memory mechanism. Thus, the OS can implement memory

isolation between processes increasing software reliability and security. Translation look-

aside buffer (TLB) is a common hardware construction to assist MMU, which works like a

page table cache. High performance processors can automatically performs page walks in

the page table when a TLB miss occurs, i.e., the target address is not found in TLB. How-

ever, simpler processors will trap the OS in this situation. Thus, the OS must handle a TLB

exception to reconfigure the TLB cache. In a virtualized system, the hypervisor must virtu-

alize the MMU keeping the guest OSes isolated from each other, which requires a second

stage of address translation. Figure 2.6(a) shows the difference between virtual memory

translation in a non-virtualized versus a virtualized system. In a non-virtualized system, the

OS translates virtual addresses (VAs) to physical addresses (PAs) using its page table to

configure the TLB. In a virtualized system, VAs are translated to intermediate physical ad-

dresses (IPAs), which must be managed by the hypervisor. Processors without the proper

virtualization support require the hypervisor to implement a technique called shadow page

tables that keeps the correct translation from IPA to PA. Figure 2.6(b) represents the differ-

ence between an OS page table and a hypervisor shadow page tables. When using this

47

technique, the guest OS still manages its page tables, but it cannot configure the proces-

sor’s TLB directly. The hypervisor handles the page faults reading the address mapping

from the guest OS and creating its shadow page table. This second-stage address transla-

tion performed by software generates an excessive number of hypervisor exceptions, since,

the TLB configuration involves privileged instructions. Again, the number of exceptions can

be reduced using hypercalls.

user-space

kernel-space

Hardware

Virtual Address (VA)

Physical Address (PA)

guest-kernel

hypervisor

Hardware

user-space

Virtual Address (VA)

Physical Address (PA)

Intermediate Physical Address (IPA)

Non-virtualized Virtualized

(a) Non-virtualized versus virtualized virtual memory address translation.

OS

Page table

PA

Hypervisor

Shadow Page Tables

IPA

VA

VA

PA

(b) OS page table versus hypervisor shadow page ta-
bles.

Figure 2.6: Memory virtualization approaches in non-virtualized versus virtualized systems.

Current virtualization extensions for embedded processor families, like MIPS and

ARM, implement a second-stage TLB translation in hardware. Essentially, the hardware

performs the translation from IPA to PA without software intervention. The hypervisor still

manages its page table mapping IPA to PA. However, the guest OS is allowed to configure

directly the TLB. This is possible because the two TLB stages are configured from different

processor modes. For example, the hypervisor (supervisor-mode) configures the second-

48

stage TLB while the guest OS (kernel-mode) configures the first-stage TLB. The resulting

PA is generated by the hardware combining both TLBs. This mechanism decreases the

number of hypervisor exceptions drastically, since the guest OS directly manages its TLB

while decreasing the hypervisor complexity.

Directly Mapped I/O

In some cases, it is desirable to map a hardware device directly to a guest OS, e.g.,

a serial port or a USB device could be directly handled by a guest OS. However, in proces-

sors without proper virtualization support, all interrupts are handled in kernel-mode forcing

the hypervisor to handle all interrupt sources. This prevents an efficient implementation of a

directly mapped I/O.

One desired feature of a virtualization extension module is the capability of a hy-

pervisor to map an interrupt source to a designed guest OS. For example, an interrupt used

as system timer for guest OS scheduling purposes could be directly mapped, avoiding hy-

pervisor intervention during the guest context-switch. Directly mapped devices require the

hypervisor to configure an entry in its page table mapping the physical device address to the

intermediate physical address (see Subsection 2.3.3) expected by the guest OS. Still, it must

map the associated interrupts to the guest OS. Thus, the guest OS will receive interrupts and

read or write to the device without any hypervisor intervention.

2.3.4 I/O Virtualization

There are different ways to manage I/O on a virtualized platform. On a platform

without hardware-assisted virtualization, the hypervisor must implement device drivers for

all peripherals in use, dealing directly with the system’s I/O. This technique is used in para-

virtualized hypervisors. Thus, the device drivers at the operating system level are substituted

by para-virtualized device drivers. Beyond to the disadvantage of modifying the OS’s I/O

subsystem to support para-virtualization, hypervisor intervention in I/O increases the virtu-

alization overhead [83]. A directly mapped I/O can be used to improve the I/O performance

on guest OSs, as explained in the Subsection 2.3.3. However, it lacks correct support for dy-

namic memory access (DMA) technique. DMA allows a peripheral to have direct access to

49

the main memory. In a virtualized platform, the hypervisor re-maps the guest OS’s memory

addresses causing DMA devices to fail. Additionally, this is a security hole since a guest OS

can use the DMA to transfer data to another guest OS’s memory. Thus, the hypervisor must

deny access to the guest OSs from the DMA controller, and to implement a para-virtualized

mechanism to allow DMA to such systems.

Modern processors with proper hardware support for virtualization implement a

input–output memory management unit (IOMMU), as supported by the x86 family. IOMMU

works similar to the processor’s MMU (see Subsection 2.3.3). However, it translates memory

accesses performed by devices instead of by the processor. Figure 2.7 compares IOMMU

to the MMU. The IOMMU can solve the problem of memory re-mapping on virtualized plat-

forms since the hypervisor can map the DMA addresses to the correct physical address.

Additionally, it can avoid the security hole on DMA since it provides memory protection from

peripheral read/write in a similar way that MMU provides spatial isolation.

Main
Memory

Physical
Address

IOMMU

MMUCPU

Peripheral

Virtual

Addresses

DMA

Addresses

Figure 2.7: Comparison of the IOMMU to the MMU.

Unfortunately, IOMMU is not present on all architectures of the current generation

of hardware-assisted virtualization for embedded processors. For more details, Section 2.6

discusses the evolution of virtualization on embedded systems.

2.4 Problems Caused by Virtualization

This section gives a brief introduction of two important problems faced in virtualized

platforms: the hierarchical scheduling problem (Subsection 2.4.1) and the lock the holder

preemption problem (Subsection 2.4.2). Chapter 4 explains how the virtualization model

proposed by this dissertation avoids this problems.

50

2.4.1 The Hierarchical Scheduling Problem

As mentioned in the Subsection 2.1, real-time is a key feature in many ESs. En-

abling real-time support on virtualized platforms causes the hierarchical scheduling problem,

also known as two layers scheduling problem. A hypervisor schedules Virtual CPUs (VC-

PUs), and a guest RTOS executing in a VCPU schedules its processes or tasks. Even en-

suring real-time characteristics at the VCPU level, it is difficult to ensure real-time execution

to the tasks over the RTOS. However, if VM and hypervisor use proper real-time algorithms,

the system can be modeled as a hierarchy of schedulers, and its real-time performance can

be evaluated by using hierarchical scheduling analysis techniques [20].

One reason to use virtualization is to allow for the coexistence of different guest

OSs designed for different purposes executing in the same system. For example, a general-

purpose OS (GPOS) executing along with a legacy RTOS. However, different OSs have

different characteristics, e.g., RTOSs privileges real-time over throughput performance. A

hypervisor for ESs must be flexible enough to deal with these conflicting characteristics.

Thus, more effective approaches should be taken to deal with the two layer scheduling prob-

lem.

Some authors, e.g., Kiszka et al. [41], propose the implementation of hypercalls to

allow the guest OS to inform to the hypervisor of its time constraints. Other approach is the

use of compositional scheduling as proposed by Lee et al. [42]. Additionally, an alternative

adopted by this dissertation is to perform the scheduling of real-time tasks directly by the

hypervisor, i.e., avoiding the two layer scheduling problem and performing a strong temporal

separation between general-purpose guest OSs and real-time entities.

2.4.2 Lock Holder Preemption Problem

The Lock Holder Preemption (LHP) problem in a virtualized environment happens

if a guest OS executing in a SMP configuration is preempted while its kernel is holding

a spinlock. Spinlocks are a synchronization primitive widely used in OS’s kernels. With

spinlocks, a thread waiting to acquire a lock will wait actively monitoring the lock [52]. As

this lock remains, any other VCPU from the same guest trying to acquire this lock will have

51

to wait. Spinlocks imply active waiting, thus, the CPU time is wasted resulting in serious

performance and real-time degradation. The LHP problem is possible even if two or more

VCPUs execute on a single physical CPU concurrently.

Several approaches were proposed to deal with the LHP problem. The VMWare

hypervisor2 employs the co-scheduling technique [57], consisting of a scheduler that tries

to execute processes communicating with each other in the same time slice, thus, reducing

the chances of blocking. Uhlig et. al. [81] proposed a full-virtualized and a para-virtualized

technique to deal with the problem. In the full-virtualized technique, the authors consider

that the spinlocks are always acquired and released in kernel mode. Thus, the hypervisor

never preempts the guest OS when executing in kernel mode, avoiding the LHP problem.

Their para-virtualization technique consists of a hypercall to be invoked when entering in

spinlock and another hypercall to be invoked when leaving the lock. Thus, the hypervisor

knows when a VCPU is in a spinlock and should not preempt it.

In ES, the main consequence of the LHP problem is the impact in real-time re-

sponsiveness. Thus, the LHP should be carefully considered when designing a virtualized

ES.

2.5 Virtualization for Embedded Systems

Virtualization is a widespread technology for enterprise and workstation applica-

tions, but, it is a relatively new concept in the ES area. The importance of virtualization for

ESs is due to its ability to address some of the growing challenges in this area, e.g., the

increasing software complexity and time-to-market. One advantage of virtualization is its

ability to support heterogeneous operating-system environments to address conflicting re-

quirements such as high level APIs, real-time support or legacy software. The architectural

abstraction offered by virtualization allows for migration of multicore guest OSs to virtualized

single core systems essentially without modification. Security is another important motiva-

tion, since, virtualization can enable a strong spatial separation between the guest OSs [31].

Virtualization as deployed in the enterprise environment cannot be directly used in ESs.

Although ESs are starting to implement some features of general-purpose systems, some

differences remain. ESs still present critical real-time constraints and frequently have re-

2http://www.vmware.com/

52

source constraints, such as reduced battery capacity, memory and processing power. Thus,

virtualization in the ES world is a different challenge than that faced in the enterprise envi-

ronment. To distinguish server virtualization from embedded system virtualization, the term

embedded virtualization is used. Additionally, in this dissertation the term virtualization refers

to embedded visualization unless stated otherwise.

This dissertation focuses on embedded systems that require large software stacks

to implement their functionalities. These systems can use virtualization to meet these re-

quirements. In addition, the proposed virtualization techniques presented in this dissertation

can be used to improve real-time responsiveness and increase security on ESs. Some ex-

amples of ES candidates are customer electronics (CE) like smart phones, tablets, set-up

box among others. Moreover, enterprise and industrial electronic devices such as network

devices (routers and switches) may apply embedded virtualization. Recently, virtualization

for IoT devices emerged as a trend. The main advantage of virtualization on IoT is secu-

rity. Hypervisors can provide memory isolation between applications and implement a Root

of Trust software base, which means an environment where the hypervisor guarantees the

authenticity of the virtual machines.

2.6 Past, Present and Future of Embedded Virtualization

Roughly ten years ago, virtualization started to move to the ESs field. At that mo-

ment, embedded virtualization was ruled by hypervisors that adopted para-virtualization to

overcome the performance issues of full-virtualization. Though some popular hypervisors

used for server computing were adapted for embedded systems, other hypervisors were de-

veloped from scratch. Some of these hypervisors are still in use, and they will be discussed

in Chapter 3. These hypervisors were especially designed to deliver virtualization in embed-

ded systems, but in a lightweight way, and implement techniques to improve the real-time

responsiveness along with memory separation.

With the advance of the semiconductors and their decreasing cost, it is possible

to implement hardware support for virtualization on embedded processors affordably. The

first embedded processors with hardware-assisted virtualization emerged around five years

ago. The possibility of implementing full-virtualization without the performance penalties of

the past motivated the appearance of newer hypervisors. The current stage of embedded

53

virtualization allows full-virtualization of the CPU combined with para-virtualized I/O. Thus,

hybrid hypervisors combine full and para-virtualization. In a few years, proper support for

IOMMU on embedded processors will allow for high performance communication between

guests using the DMA hardware.

In the next five years, virtualization will increasingly be used in embedded systems

[61]. Virtualization will not be restricted to powerful embedded devices, but will also be

used in IoT devices, primarily motivated by security concerns. Thus, embedded hypervi-

sors will need to execute in devices with extreme hardware restrictions. Small footprint and

lightweight execution will still be important.

54

55

3. STATE-OF-THE-ART IN EMBEDDED VIRTUALIZATION

This section describes the current status of embedded virtualization. As shown

in Chapter 2, hypervisors designed for general purpose virtualization cannot be directly

adopted for ES. However, this chapter starts by showing well-known hypervisors widely

used for cloud computing. They present larger footprints and overheads than hypervisors

that are specially designed for embedded systems. Several authors have dedicated their

work to adapting them for ES. The chapter is divided into the following sections: Subsec-

tion 3.1 presents the architecture and proposals based on the Xen hypervisor. Xen was

designed for enterprise appliances. Therefore, there are ports for embedded devices and

special support for real-time. Subsection 3.2.3 presents proposals based on KVM (Kernel-

Based Virtual Machine), a type 2 hypervisor, which was ported for the ARM architecture.

The remaining hypervisors that will be presented were developed for ES. Section 3.3 de-

scribes the SPUMONE hypervisor. Section 3.4 presents XtratuM, a hypervisor for safety

critical systems. Section 3.5 presents three different embedded hypervisors based on the

L4 microkernel family: OKL4, L4/Fiasco, PikeOS and Mini-Nova. Section 3.6 presents the

M-Hypevisor. Section 3.7 shows the XVisor embedded hypervisor. A comparative study

between the hypervisors is presented in Section 3.8. Section 3.9 explains how the RT-Linux

patch modifies the Linux kernel and how it is similar to virtualization. Finally, Section 3.10

concludes this chapter.

3.1 The Xen Hypervisor

Xen is an open-source type 1 hypervisor that has been developed over the last 13

years [9]. Today, Xen is used for different commercial and open-source projects, such as:

server virtualization, desktop virtualization, security and embedded applications. Addition-

ally, Xen supports the largest clouds in production today1. Initially developed for desktop or

server application, it was modified to be embedded, especially for ARM processors.

1http://www.xenproject.org/

56

3.1.1 Xen’s Architecture

Figure 3.1 depicts Xen’s architecture. Xen is responsible for handling CPU, mem-

ory, interrupts and scheduling the VMs. Xen is a type 1 hypervisor, thus, it interacts directly

with the hardware and the VMs executes over it. A running instance on a VM in Xen is called

domain or guest. There is a special domain, called Domain 0 (Dom0), that is responsible for

I/O and also contains a stack to manage the VM’s creation, destruction and configuration,

called Toolstack.

Hardware

Xen Hypervisor

Dom0

Dom0 Kernel

Toolstack

VM0

VM1

VMn

Guest OS

$>_

Console

I/O

Figure 3.1: Xen’s Architecture. Adapted from [9].

The Xen hypervisor has less than 150,000 lines of code and a footprint around

600KB. However, the footprint can variate with different compilers and compilation flags.

Xen does not implement I/O functions such as networking or storage itself. Instead, I/O

functionality is accomplished by the Dom0. Dom0 has special privileges to access the hard-

ware directly and it is responsible for handling the I/O for all VMs. Thus, if a VM needs an I/O

function it must interact with Dom0, which will execute the transaction with the hardware. Ad-

ditionally, the Dom0 implements the Toolstack, which exposes an interface composed of the

command line and graphical interface, as well as interacts with cloud APIs like OpenStack

[67] for configuration purposes.

The Xen architecture requires that the guests are modified (patched), since all I/O

are redirected to Dom0. Essentially, Xen was designed to be a para-virtualized hypervisor.

Therefore, this approach prevents unmodified guest OSs be virtualized on top of Xen. Thus,

proprietary OSs like Microsoft Windows can not be virtualized. Aiming to overcome this lim-

57

itation, Xen implements the hardware-assisted virtualization (HVM) that uses virtualization

extensions from the CPU, like Intel VT or AMD-V. Xen does not deal with I/O directly, thus,

it needs to use the Qemu [11] to emulate BIOS, IDE disk controller, VGA graphics adapter

among others devices. This allows for Xen to perform full-virtualization. However, the de-

vice emulation causes a performance issue and fully-virtualized guests over Xen are usually

slower than the para-virtualized ones. Nonetheless, Xen provides a technique to avoid the

performance issue when using HVM, called PV on HVM. This technique consists in to com-

bine para-virtualization and full-virtualization. Thus, para-virtual device drivers are installed

in the guest OS to bypass the emulation for storage and network I/O. CPU and memory

virtualization continues to be performed by hardware support. This allows for performance

improvement for guest proprietary or even open source OSs. However, it requires the im-

plementation of para-virtual device drivers to the guest OSs. Both PV and HVM guests can

coexist on a single Xen system.

3.1.2 The Xen Scheduling Algorithm

An important component of a hypervisor is the scheduler. The default Xen’s sched-

uler is called Credit Scheduler [23]. Xen implements two other scheduling algorithms: the

Simple Earliest Deadline First (SEDF) [10] and the Borrowed Virtual Time (BVT) [24]. Al-

though at the present time both algorithms are available, they are marked as deprecated and

probably they will be removed from the Xen’s source code. Nevertheless, several works still

rely on SEDF to improve real-time on XEN. Thus, just the Credit Scheduler and the SEDF

will be discussed.

In the Credit Scheduler, each domain has two special attributes: weight and cap.

The weight determines the proportional fair share of CPU resource. For example, a domain

with weight of 1024 will get the CPU two times more than a domain with weight of 512.

The weight values range from 1 to 65535 and the default is 256. The cap is an optional

parameter used to determine the amount of CPU that a domain will be able to consume,

even if the host system has idle CPU cycles. The cap is expressed as a percentage of one

physical CPU. For example, a cap of 0.5 means that the domain can take up to 50% of CPU

time, 1 means the domain can take upto 100% of the CPU time and 2 means the domain

can take upto 100% of two CPUs’ time. When cap is 0 means there is no limit for CPU

58

usage. Credit scheduler keeps a local queue of runnable VCPUs by physical CPU ordered

by priority. When a VCPU is scheduled, the algorithm computes how much time (credits)

was consumed and subtracts from the total time reserved for it. If the VPCU exceeds its

available credits it is in "over" status, otherwise, it is in "under" status. Once in over status,

the VCPU needs to wait for the next period to execute again. By default, the scheduler

quantum is 10ms and the VCPU credits are recomputed each 30ms. In a SMP platform,

when a CPU does not find a VCPU in under status in its local queue, it looks on other CPU

queues for one. This is called SMP load balancing and it guarantees that there is not an idle

CPU when there are runnable VPCUs in the system.

The SEDF scheduler allows to allocate processing resources for each domain ac-

cording to period, deadline (the time when the period ends) and capacity (the amount of

processing time reserved to the domain in a period). In fact, the algorithm guarantees that

a domain will be executed for the amount of time given by its capacity on each time interval

given by its period [56]. The algorithm keeps the deadline for each domain and the amount

of processing remaining to be done before the deadline. The domains are sorted in the

execution queue according to their deadlines. An interesting effect of this algorithm is that

when a domain consumes processing time, its deadline will be moved forward. Thus, I/O-

intensive domains that consume little processing time will typically have earlier deadlines,

which means higher priority over CPU-intensive domains. This is advantageous to environ-

ments that combine CPU and I/O intensive domains. The main disadvantage of the SEDF

algorithm is to keep local queues organized by CPU on multicore processors preventing

VCPU migration across multiple cores and avoiding dynamic workload balance. Neverthe-

less, it was made obsolete because with Credit scheduler is possible to improve scheduling

performance on multiprocessors.

3.1.3 Xen-Based Proposals

The proposals to improve real-time responsiveness on Xen hypervisor are typically

based on two different approaches: a) improving the Xen’s scheduler real-time responsive-

ness, or; b) dealing with the hierarchical scheduling problem. The first approach typically

tries to improve the real-time scheduler responsiveness by applying different scheduling al-

gorithms or non-intrusive techniques to monitor the guest’s behavior. Nevertheless, such

59

approaches generally do not consider the hierarchical scheduling problem. The second ap-

proach uses theoretical research on hierarchical real-time scheduling or intrusive techniques

that require modifications inside of the guest OSs.

Improving The Scheduler’s Real-time Responsiveness

Ongaro et al. [56] studied the performance impact on the Xen hypervisor when

multiple guests with different workloads (CPU-intensive, I/O-intensive and latency-sensitive)

run concurrently. The results led to some optimization proposals, including disabling pre-

emption for Dom0 and sorting the scheduler run queue based on the remaining credits to

give priority to I/O-intensive domains. These optimizations were focused on improving the

I/O performance, nevertheless, the authors claim that it impacts latency positively. Finally,

their study showed that latency-sensitive applications will perform better when not combined

in the same domain with CPU-intensive applications. Instead, latency-sensitive applications

should be placed within their own domain.

Lee et al. [43] introduced the laxity concept enhancing the soft real-time perfor-

mance of the Xen Credit scheduler. Each domain has an attribute named laxity used to

define the position where its VCPUs will be inserted in the scheduler’s run queue. In other

words, it is possible to use laxity to determine the maximum desired latency for a real-time

domain, because when a VCPU is inserted into the run queue, it is inserted where its dead-

line is expected to be met.

Masrur et al. [48] implemented a new scheduler for Xen based on the SEDF sched-

uler aiming to improve its worst-case response time, named Priority-based scheduling plus

SEDF (PSEDF). The major difference is that PSEDF implements the concept of real-time

domains (domRT), where, a domRT has scheduling priority over non real-time ones (domU).

When several domRTs coexist at the same Xen instance, priorities must be defined between

them. The domUs continue to be scheduled with the default SEDF. The resulting scheduler

allows safety-critical applications (e.g. airbag control and brake system) to be run on the

same hardware with general-purpose applications (e.g. navigation and multimedia). The

main drawback of the authors’ technique is that a domRT can just contain a single real-time

application to avoid the hierarchical scheduling problem.

Hu et al. [34] proposed a technique to improve the I/O performance of Xen on

multicore processors. Their technique take advantage of the fact that traditional hypervisor

60

schedulers, including Xen, focus on sharing the processor’s resources fairly among domains,

while, the scheduling of I/O resources is treated as a secondary problem. This seriously im-

pacts on the performance of applications that execute I/O-intensive tasks, like network or

storage. The authors’ technique consists of implementing a scheduler for multicore dynamic

partitioning, where, the processor cores are divided into three specialized subsets with dif-

ferent scheduling strategies. The subset called driver core host only the dom0, i.e, the dom0

is bounded to a physical core and never is scheduled. The fast-tick cores subset handles

I/O events and its scheduler employs small time slices to ensure fast response to I/O events.

Finally, the general cores subset is used for computation-intensive workloads. Their ap-

proach increases I/O performance, although, it degrades the performance for CPU-intensive

applications.

Huacai et al. [15] proposed improvements to Xen’s Credit scheduler from the

real-time perspective to guarantee audio performance (avoiding human-sensible glitches)

in virtualized environments. Their strategy consist of three approaches: flexible time slices,

real-time priority adjustment and adaptive audio-aware. The Credit scheduler was modified

to allow flexible time slices, i.e, the scheduler restriction of fixed time slices or quantum of

10ms (see Subsection 3.1.2) was removed allowing different time slice lengths. For example,

a real-time domain may receive 1ms time slice and a non real-time may receive the default

time slice (10ms). The real-time priority adjustment promotes a domain from non real-time

to real-time when the user plays audio. The adaptive audio-aware algorithm is used to detect

when the user starts/stops the audio player given to it a higher priority.

Credit scheduler was designed to be efficient with computation intensive workloads.

However, I/O-intensive tasks suffer from latency issues. To minimize this problem, Zeng et al.

[91] enhanced performance to the I/O latency-sensitive applications minimizing the system

response time by balancing the VCPUs with BOOST priority in multi-core systems. BOOST

is an additional priority level of the Credit scheduler, which allows a VCPU to preempt a run-

ning VCPU in under state. The results showed that their proposal can improve the response

time for latency-sensitive applications without having adverse impact on compute-intensive

applications.

Cheng et al. [16] optimized the Xen’s scheduler for soft real-time applications. They

introduced a new priority level marking high priority VMs as real-time domains. Additionally,

their strategy includes management of the physical CPU’s queue, limiting the number of

61

real-time domains to guarantee to meet the scheduling requirements, and pinning VCPUs to

physical CPUs to reduce the performance impact caused by VCPU migration. The authors

evaluated their solution using IP telephony workloads for soft real-time applications. The

results compared to Credit scheduler and RT-Xen showed that their purpose achieves best

performance and maintains a fairer scheduling in the meantime.

Dealing With The Hierarchical Scheduling Problem

Masrur et al. [49] proposed the design of a scheduler to deal with the hierarchical

scheduling problem targeting automotive applications. The authors consider that all do-

mains schedule their applications using the deadline-monotonic scheduler algorithm. On

the other hand, the hypervisor utilizes the rate-monotonic scheduler algorithm [14] [13] for

VCPU scheduling. Thus, they proposed a method to determine optimum time slices and

periods for each VM in order to maintain their time constraints. The proposed scheme was

validated using the Xen hypervisor. Their solution solves the hierarchical scheduling prob-

lem without hypercalls between the VM and hypervisor, although the Xen’s default scheduler

algorithm must be modified to accommodate the rate-monotonic algorithm.

The RT-Xen project [84] implements a hierarchical scheduling architecture based

on fixed-priority scheduling focused on soft real-time applications for single-core proces-

sors. It considered four fixed-priority scheduling policies for the RT-Xen scheduler: De-

ferrable Server [75], Sporadic Server [72], Periodic Server and Polling Server [68]. The four

scheduling policies were implemented and compared to Xen’s Credit Scheduler and SEDF

schedulers. The experiments was conducted using a modified kernel Linux implementing

the rate-monotonic scheduling algorithm. The results show that RT-Xen presents an accept-

able soft real-time performance. The Deferrable Server presented the best results, while the

Periodic Server suffered from a high number of missed deadlines in overloaded situations.

Recently, it was released the RT-Xen 2.0 [85] supporting multi-core processors and up to

eight combinations of real-time VM scheduling policies. Moreover, it supports a range of

interfaces for compositional scheduling, which enables designers to calculate and specify

the resource demands of VMs to the underlying RT-Xen 2.0 scheduler.

Lee et al. [42] proposed a Compositional Scheduling Architecture (CSA) that en-

ables timing isolation among VMs and supports timing guarantees for real-time tasks running

on each VM. The CSA supports a broad range of real-time scheduling algorithm at the hy-

62

pervisor level, and it was implemented extending the original RT-Xen interfaces. The authors

presented an extensive evaluation to demonstrate the utility and effectiveness of CSA in op-

timizing real-time performance. The results using both synthetic and avionics workloads

showed significant improvements regarding response time.

Yoo et al. [89] studied the schedulability in VMs considering the quantization

overhead caused by the Xen’s scheduler. Quantization overhead comes from tick-based

scheduling of Xen-ARM, which requires integer presentation of scheduling period and ex-

ecution slice. To minimize the quantization overhead they proposed a new algorithm to

provide accurate and efficient parametrization of real-time VMs. Next, they presented an

inter-VM schedulability test to the real-time VMs. Their proposal was evaluated on an ARM

platform using a RTOS. Their experiments showed that is possible to guarantee the deadline

for real-time tasks scheduled in a hierarchical fashion. However, the SEDF scheduler must

be used as Xen’s scheduler. Moreover, their work does not cover the I/O, since it is complex

in Xen and requires a separate investigation.

Other Proposals

Avanzini et al. [8] proposed the integration of the ERIKA OS2 and the Linux on

a dual-core processor through Xen. ERIKA OS is an open-source, low-footprint and real-

time operating system certificated for automotive applications. Their system configuration

consisted in the Linux as dom0 and ERIKA OS as domU. The system was prototyped on

a cubieboard23, an ARMv7 with virtualization extensions. In their proposed setup, each of

the domains runs on a dedicated core, assigned statically by the hypervisor. Linux is the

control domain, thus performing the Xen toolstack. Moreover, it must grant to ERIKA access

to any I/O-memory range needed. Their approach provides an improved temporal isolation

of concurrent operating systems. The main drawback is to keep the guests on dedicated

cores not allowing load-balancing.

2http://erika.tuxfamily.org/drupal/
3http://cubieboard.org/

63

3.2 KVM Hypervisor

The Kernel-based Virtual Machine (KVM) is a type 2 hypervisor designed to be

a kernel-resident virtualization infrastructure, meaning it is totally integrated with the Linux

Kernel since the 2.6.20 release. KVM is implemented as a Linux kernel module providing

full-virtualization when hardware-assisted virtualization is supported, otherwise it provides

para-virtualization. It supports SMP hosts and guests and enterprise level features like live

migration4, which is the ability to move guest OSs between physical servers.

3.2.1 KVM’s Architecture

KVM’s architecture is shown in Figure 3.2. It is composed of two main compo-

nents: the KVM-loadable module that manages the virtualization hardware and exposes a

configuration interface through the /dev file system; and a modified version of Qemu, called

qemu-kvm, used to provide platform peripheral emulation.

Hardware

VM
0

VM
1

VM
n

Guest OS

/dev/kvm

KVM-loadble module
Linux Kernel

KVM Utilities

Qemu

for

KVM

User Land

User

Process
User Libraries

Figure 3.2: KVM’s Architecture.

A utility called kvm is used in user land to boot a guest OS in KVM. Once booted,

the guest becomes a process of the host OS being scheduled like any other process by the

Linux scheduler. Each VM has its own virtual memory space mapped to the host’s physical

address. Nevertheless, I/O requests are mapped through the host kernel to the Qemu for

emulation purposes. Although KVM is strongly dependent of the Linux OS, it supports a rich

4http://www.ibm.com/developerworks/library/l-hypervisor/

64

list of guest OSs which includes Linux distributions, Microsoft Windows, QNX, Solaris x86,

FreeBSD among others.

KVM is mature enough to support advanced enterprise features such as enhanced

security and live migration. Security in Linux is based on the Security-Enhanced Linux

(SELinux) [62], which is a project developed by the NSA to add access control, multi-level

and multi-category to the kernel. From the Linux kernel point-of-view, a guest OS is like

any other process, it is possible to apply the standard Linux security model over it. Thus,

SELinux can be used by the administrator to define permissions assuring that a VM resource

can not be accessed by any other process or VM. Nonetheless, with live migration, a VM

can be moved between physical servers transparently to the end user.

Similar to Xen (see Subsection 3.1.1), KVM implements a mix of para-virtualization

and full-virtualization in order to speed up I/O operations. Para-virtualized device drivers

are installed in the guest OS in order to avoid the necessity of Qemu emulation for certain

devices, specially networking and block devices. Nevertheless, KVM implements a standard

called VirtIO (developed by IBM and Red Hat in conjunction) [64], which is an independent

interface for building device drivers to offer better interoperability between hypervisors. When

a hypervisor uses a proprietary interface for para-virtualized device drivers the guest is not

portable between different hypervisors. VirtIO improves the portability of guests between

hypervisors.

3.2.2 The Linux Scheduling Algorithm

KVM does not have its own scheduler, instead, it takes advantage of the Linux

scheduler. Therefore, a minimal background in Linux scheduling is necessary to understand

how real-time is addressed by KVM. The Linux OS is a general purpose OS. Thus, the

scheduling algorithm has a set of requirements with conflicting objectives: good throughput

for background jobs, avoidance of starvation, dealing with high and low priority processes,

among others. The Linux scheduler implements a set of rules, called scheduling policy,

that determine how a process will be scheduled. In order to apply a scheduling policy onto

a process the scheduler needs to classify the process according three different process

classes:

65

• Interactive: Processes that interact constantly with the user. These processes spend

a lot of time waiting for user inputs. Once, the input is received, it must return a quickly

response or the user will consider the system unresponsive.

• Batch: Processes running in the background and that do not need user interaction.

• Real-time: Processes with very strict scheduling requirements.

Linux 2.6 and higher implement a sophisticated heuristic algorithm based on the

past behavior of the processes to classify they as interactive or batch. The scheduler gives

priority to interactive processes over batch ones [12], which results in a better response time

even when the system is running under a heavy load. Real-time processes need special

attention and there is a set of kernel features that improves the real-time responsiveness.

In fact, improvements in the KVM real-time response implies on improvements in the Linux

real-time response.

Conventional processes (non real-time) have an attribute value called static priority

which determines the time quantum of the process following the Equation 3.1. The legal

range for static priority is from 100 (highest priority) to 139 (lowest priority). As a conse-

quence of Equation 3.1, higher priority processes get longer slices of CPU time.

quantum =

(140 - static priority) × 20 if static priority < 120)

(140 - static priority) × 5 if static priority ≥ 120)
(3.1)

In addition, a conventional process also has a dynamic priority which is the number

actually used by the scheduler to choose the next process to run. The dynamic priority is

determined by the Equation 3.2.

dynamic priority = max (100, min(static priority - bonus + 5, 139)) (3.2)

The bonus variable is determined by the process’ average sleep time, that is, the

average time (in nanoseconds) spent by the process while sleeping. The average sleep time

is not allowed to be greater than 1 second. Each interval of 100 milliseconds represents a

bonus value. For example, an average sleep time between 0 and 99 milliseconds results in a

bonus equal to 0, intervals between 100 and 199 result in a bonus of 1. The greatest bonus

66

value is 10. Nonetheless, the average sleep time is used by the scheduler to determine

if a process is considered interactive or batch. If a process satisfies Equation 3.3, it is

considered interactive.

dynamic priority ≤ 3 × static priority/4 + 28 (3.3)

A real-time process has an attribute called real-time priority with a legal range from

1 (highest priority) to 99 (lowest priority). Their main difference from conventional processes

is that a real-time process inhibits the execution of every lower-priority process while it re-

mains runnable [12]. Nevertheless, if several real-time process with the same priority are

ready to run at same time, the scheduler will choose the process that occurs first in the

runnable queue. Hence, there is no time reservation and no guarantee that a process will be

scheduled at a certain time. The user must explicitly set the process to the real-time state

using the system calls sched_setparam() and sched_setscheduler().

3.2.3 KVM-based proposals

As previously explained, a VM in KVM is treated as a Linux process, hence, any

real-time improvement to the Linux host scheduler will translate in real-time improvement to

the VM. Yet, other approaches are possible such as adding hypercalls to allow a guest OS to

dynamically boost the priority of its VCPUs or implement a hierarchical scheduling algorithm

scheme in both the host and guest OSs.

Kiszka [41] analyzed the KVM real-time responsiveness in two situations:

• Qemu/KVM running onto a Linux kernel with CONFIG_PREEMPT, which is a compi-

lation flag that allows the Linux kernel to be preemptive resulting in better responsive-

ness;

• The same configuration plus the PREEMPT-RT kernel patch. PREEMPT-RT is a kernel

patch that improves the Linux kernel real-time responsiveness.

Based on the results, the authors proposed real-time improvements to KVM given higher

priority to the qemu-kvm thread and to the desired VCPUs at the expense of giving lower

priorities to other Linux processes. Additionally, a para-virtualized scheduling approach was

67

implemented consisting of two hypercalls: set scheduling parameters (used to change a

VCPU priority) and, interrupt done (used to indicate that its interrupt handling is done and

no reschedule is required). These hypercalls allow the guest to adjust its priorities according

to the task currently running. Nevertheless, this implies that KVM cannot be executed as

a strict full-virtualization system. The results showed that when using PREEMPT-RT kernel

patch, the guest can achieve better determinism and sub-millisecond scheduling latencies.

Yet„ the hypercall scheme introduced up to 25% higher average latencies.The authors claim

that this impact could be reduced by optimizing their approach.

Cucinotta et al. [20] proposed the use of mechanisms designed according to the

theory of hierarchical scheduling on real-time systems aiming to enhance predictability of

the temporal behavior of VMs. They offered two different approaches: fixed priority (FP)

inter-VM scheduling and reservation-based inter-VM scheduling. The first approach con-

siders that the hierarchy is FP/FP, i.e, fixed-priority scheduling in both the hypervisor and

guest OS scheduler. In the second approach, they implemented a variant of the Constant

Bandwidth Server (CBS) scheduler algorithm [1]. Introduced by [58], this variant consists

of a modification to ensure hard time reservation behavior at the hypervisor level and keep-

ing the fixed-priority scheduling in the guest OS. The authors used KVM to validate their

approach without considering the influence of the virtualized I/O. The results show that the

hierarchical real-time scheduling theory may be effectively applied to virtualized systems. In

[79], Cucinotta et al. addressed the problem of providing network response guarantees to

VMs on multicore hosts. Their proposal is focused in single-core VMs scheduled according

to a partitioned EDF policy, meaning that each VM is pinned to a certain CPU. The EDF

scheduler algorithm provides time isolation between VMs resulting in a significant delay time

when asynchronous events occur, e.g., when a network packet is received and the VM is

in the non-responsive time frame. In order to avoid delays imposed by the EDF scheduler

and improve the responsiveness for network traffic, the authors modified the original EDF

algorithm adding spare time to the VMs. The spare time is used by a VM when it exhausted

its time budget, thus, the VM is allowed to execute for a short time being able to receive and

eventually respond to network traffic. The results show a significant response time increase

for network traffic.

Zuo et al. [94] studied the behavior of a virtualized RTOS running on KVM. A

way to minimize the average latency on the RTOS is to increase its priority over the other

Linux processes. This approach affects negatively the whole CPU throughput. However, the

68

authors claim that usually the execution of RT tasks is short or periodic, thus, the RTOS do

not always need to have higher priority. Based on this affirmation, hypercalls are introduced

allowing the guest to inform its priority to the host. Thus, if a guest is going to enter a time-

critical execution, it informs the host about the desired scheduling policy and priority. When

no more time-critical execution necessary, the guest informs to the host to lower its priority.

RESCH (Real-time Scheduler) framework [40] is a loadable kernel module (RESCH

core) and a user library (RESCH library) that allows for the implementation of new schedul-

ing algorithms within Linux without modifying the kernel. Asberg et al. [7] implemented a

hierarchical scheduler using RESCH and applied it to both host and Linux guest. As result,

it is possible to have a two layer scheduler approach that does not require kernel modifi-

cations. Instead, only RESCH kernel and libraries must be installed on both the host and

guest. The advantage of this approach is that it is not restricted to KVM, i.e, it can be applied

at any other virtualization layer, like VirtualBox 5. The authors claim that their approach can

improve performance of multimedia intensive applications, because the CPU availability for

video and audio can be better controlled.

Yunfang et al. [76] proposes the KVM-Loongson, a virtualization solution for MIPS

based on KVM to the Loongson-3A [47] processor. This processor do not implement the re-

cently released MIPS virtualization extensions. Nonetheless, MIPS without the VZ module

does not allow full-virtualization because it cannot support complete virtualization of kernel

virtual address space. A possible solution targeting full-virtualization is to modify the proces-

sor core as presented at [2]. However, the authors modified the KVM (primarily designed for

full-virtualization) to support para-virtualization. The authors performed an intensive study

to determine all Linux kernel privileged instructions that could be substituted by hypercalls.

As a result, they showed that about 98.6% of the privileged instructions can be substituted.

Still, their memory virtualization overhead is about 4% on average. The main disadvantage

of their technique is the effort to para-virtualize the Linux kernel and the impossibility to

support proprietary software.

Dall and Nieh [22] proposed a KVM port to the ARM architecture with virtualization

extensions, called KVM/ARM. This architecture takes the advantage of the wide Linux hard-

ware support to the ARM family to simplify the hypervisor development and maintenance. It

became the standard ARM hypervisor for Linux platforms. Experimental results showed an

5https://www.virtualbox.org/

69

average of 10% overhead when compared to native execution and significantly lower over-

head when compared to KVM x86 virtualization. KVM was designed for general-purpose

computing. Therefore, it does not comply with ES constraints like small footprint and real-

time. For example, KVM/ARM requires a native Linux as host increasing the minimal system

memory footprint. Additionally, KVM/ARM relies on the Linux OS scheduler which means it

is difficult to improve the real-time responsiveness on virtualized OSes.

Zhang et al. [92] used the KVM/ARM to explore virtualization with a promising

kind of main memory: non-volatile random access memory (NVRAM). This technology has

attractive features, such as high density and low standby power. However, it has a long

write latency that slow down the performance of write-intensive applications. Thus, time-

critical tasks may result in unacceptable performance. The authors focused on improving

the embedded virtualization with NVRAM/DRAM hybrid main memory. They proposed the

NV-CFS, an optimized scheduling method that includes two main elements: a task allocator

and a VM scheduler. The task allocator place write-intensive tasks in DRAM and read-

intensive tasks in the NVRAM. The VM scheduler improves the system performance by

giving a higher priority to foreground VMs. Thus, focusing on the user experience. Their

approach can improve the performance by at least 30% when compared to the same system

without NVRAM. In addition, they claim a reduction on task deadline misses ratio compared

to the original scheduling algorithm.

3.3 SPUMONE

Kanda et al. [39] proposed a lightweight virtualization layer for embedded sys-

tems called SPUMONE (acronym for Software Processing Unit, Multiplexing ONE into two).

SPUMONE builds a hybrid operating system environment composed by a RTOS running in

parallel with a GPOS, i.e., multiplexing the CPU between the OSs. SPUMONE’s architecture

is shown in Figure 3.3. It was designed to address three main goals:

• minimal code modification on the guest OS, since it uses the para-virtualization tech-

nique;

• the hypervisor should be as light as possible;

• reboot the guest OSs independently from each other.

70

SPUMONE supports just the SH-4A [63] architecture and virtualizes only the CPU,

i.e., it does not implement peripheral virtualization (a peripheral must be mapped directly to a

guest OS). In order to minimize the engineering cost of modifying the guest OS and improve

performance, both the hypervisor and guest OSs run in privileged mode. Thus, most of

the privileged instructions are executed directly and just minor instructions are replaced by

hypercalls. The GPOS can provide isolation between user applications, since they run in

the unprivileged mode. Nevertheless, the hypervisor, RTOS and GPOS run in the privileged

mode without memory isolation. A fault in one of these three software components may

compromise the entire system.

CPU

SPUMONE

RTOS

App
RT

GPOS

$>_

VCPU VCPU

App
RT

App
RT

App0 App1 AppN
CPU unprivileged mode

CPU privileged mode

Figure 3.3: SPUMONE’s single-core Architecture. Adapted from [39].

Mitake et al. [51] proposed a distributed multicore architecture for SPUMONE as

depicted in the Figure 3.4. Each CPU runs a SPUMONE instance and all guest kernels

run at the privileged level. Each instance keeps a local memory area for data accessible

only from local CPU. The authors claim that this design can reduce the intrusion risks at the

virtualization layer, because a hypervisor instance is limited to one CPU. Additionally, this

reduces the need of shared structures and synchronization among instances increasing the

scalability of the system.

CPU 0

RTOS

App
RT

GPOS

VCPU VCPU

App
RT

App0 App1 AppN
CPU unprivileged mode

CPU privileged mode

SPUMONE

...

VCPU

SPUMONE

CPU 1

Figure 3.4: SPUMONE’s multicore Architecture. Adapted from [51].

71

In both SPUMONE versions (single and multicore), the authors chose better per-

formance over reliability. Both RTOS and GPOS are complex software and can fail. For

example, a faulty AppRT on the RTOS may compromise the whole system, because the

hypervisor is at the same privilege level as the guest OS kernels. On the other hand, this

approach decreases the number of hypercalls implemented in the guest OS, improving per-

formance and maintainability.

In addition to the previously mentioned works, Mitake et al. [52] proposed two new

techniques to avoid the LHP problem (see Subsection 2.4.2) in real-time virtualized systems

using SPUMONE. These techniques rely on the VCPU migration among physical cores. The

first technique called trap based migration consists in does not allow Linux to execute the

kernel code on core 0 (see Figure 3.4). As the LHP is caused by the kernel’s spinlocks,

performing Linux kernel only on core 1 guarantee that the RTOS is performing concurrently

with the Linux (see Figure 3.4). The second technique called on-demand migration consists

in to migrate Linux from core 0 to core 1 when the RTOS executes on core 0 avoiding to

execute the Linux and the RTOS on the same physical core. If the RTOS is addle, the Linux

can perform on both cores.

3.4 XtratuM

Crespo et al. [19] presented the XtratuM, a type 1 hypervisor specially designed

for real-time embedded systems to meet temporal and spatial requirements of safety critical

systems. In order to better fit real-time constraints, XtratuM was developed with the following

a set of requisites:

• data structures are static to allow for better control over the resources being used;

• XtratuM’s code is non-preemptive to make the code simpler and faster;

• all hypercalls are deterministic;

• peripherals are managed by the VMs (directly mapped devices);

• interrupt occurrence isolation (when a VM is in execution only the interrupts related to

it are enabled).

72

Hardware

XtratuM

RTOS

$>_

App
RT

App
RT Baremetal

APP
RTOS

App
RT

App
RT Baremetal

APP

Supervisor Partitions
*

User Partitions

peripheral shared

peripheral

Hypervisor Driver
direct

mapped

*
On XtratuM, a VM is named partition.

Figure 3.5: XtratuM’s architecture. It is a type 1 hypervisor designed for safety critical sys-
tems. Adapted from [19].

Initially developed over x86, XtratuM now supports LEON2, LEON3, LEON4 (SPARC-

V8 RISC [71]) and ARM processor architectures. The hypervisor’s overall architecture is

shown in Figure 3.5. In XtratuM, each VM is called a partition and each partition can sup-

port a RTOS or a bare metal application (GPOSs are not supported). There are two types

of partitions: normal and system. Normal partitions have restricted functionality while sys-

tem partitions can manage and monitor the state of the system and other partitions. Unlike

SPUMONE, XtratuM virtualizes not just the CPU and interrupts, but also some specific pe-

ripherals using para-virtualization. If there is no need to share a peripheral between two or

more partitions, it can be directly mapped to the specific partition. When a peripheral needs

to be shared between partitions, XtratuM implements a device driver to serialize the access

and the guest OS must be modified in order to implement hypercalls to this device driver.

In addition to previous work, Trujillo et al. [80] proposed the MultiPARTES: a project

to support mixed critically integration for embedded systems based on virtualization tech-

niques. It uses the XtratuM for virtualization purposes. MultiPARTES project resulted in a

tool that allows for the application description using UML and additional annotations, like

CPU time, memory, or bandwidth. The tool uses these descriptions to define a system par-

titioning and generate three outcome: source code, XtratuM configuration files, and system

generation files. The authors claim that their approach accelerates the certification process

for mixed-critical systems.

73

3.5 L4 Microkernel Family based hypervisors

The microkernel concept reduces the OS kernel code to fundamental mechanisms

and implements the remainder of the system services at the user level [45]. The L4 micro-

kernel was based on the L3 OS [44] developed by Liedtke to the x86 processor architecture.

During his work at GDM and IBM, Liedtke modified the L3 to implement and test new ideas

resulting in the L4. This initial development triggered an entire family of L4 based micro-

kernels. Figure 3.6 summarizes the L4 microkernels family tree that resulted in embedded

hypervisors.

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

L3 -> L4 Hazelnut Pistachio

Fiasco Fiasco.OC

P4 -> PikeOS

L4-Embeded

OKL4 ukernel

OKL4 Microvisor

NOVA
Mini-

NOVA

16

Figure 3.6: Summarized L4 microkernel family tree that resulted in embedded hypervisors.
Adapted from [25].

GDM and IBM imposed a restrictive intellectual propriety for other researchers,

forcing the University of Dresden to implement an x86 version of the L4 from scratch, called

Fiasco. It was later renamed to Fiasco.OC. Liedtke moved to the University of Karlsruhe

where he developed a version of the L4 supporting Pentium and ARM architectures, called

Hazelnut. In 2001, it was implemented a new open-source kernel, called Pistachio, based on

the previous version of L4. This kernel was written to x86 and PowerPC. The NICTA Labora-

tory and the University of South Wales ported it to MIPS, Alpha, 64-bit PowerPC and ARM.

NICTA created a fork of Pistachio, called L4-embedded, that was adopted by Qualcomm

as an RTOS on wireless modems. The NICTA work resulted in a spin-off company called

Open Kernel Labs for further support and development of the kernel. This company re-

named L4-embedded OKL4 and developed the OKL4 Microvisor for virtualization purposes.

PikeOS is another commercial clone of the original L4 that is certified for use in safety-

critical avionics. NOVA is a open-source hypervisor based on L4 principles and designed

for hardware-assisted virtualization on x86 platforms. Mini-NOVA is a port of the NOVA to

74

the ARM Cortex-A9 using para-virtualization due to the absence of hardware support for

virtualization on this processor.

3.5.1 OKL4 Microvisor

The OKL4 Microvisor [32] was developed targeting mobile devices. Currently, it

supports Linux, Android, Symbian and Windows Mobile OSs. The OKL4 powered the first

commercial virtualized phone in 2009, named Motorola Evoke QA4. It executed two VMs on

top of the OKL4 Microvisor: a Linux guest to handle the user interface and another guest for

the BREW (Binary Runtime Environment for Wireless).

Figure 3.7 shows OKL4’s overall architecture. The microvisor is the only software

layer that executes in the privileged mode while GPOSs, bare metal applications and even

device drivers execute in the unprivileged mode. It has the ability to execute several GPOSs

and bare metal applications concurrently.

Hardware

OKL4 Microvisor

GPOS

APP APP

Baremetal
APP

Device
Driver

Device
Driver

CPU unprivileged mode

CPU privileged mode

Figure 3.7: OKL4’s architecture. It was developed targeting mobile devices supporting sev-
eral mobile OSs, and it powered the first commercial virtualized phone in 2009.

With OKL4 it is possible to execute both GPOS and a real-time environment on

a single ARM processor, while providing high performance communication between them.

This eliminates the need for a second ARM processor, which reduces the final cost and

design complexity.

75

3.5.2 L4/Fiasco

The L4/Fiasco was developed as a clone of the original L4 kernel and adapted to

provide virtualization on single-core x86 processors. Figure 3.8 shows L4/Fiasco’s archi-

tecture. L4Linux is a modified Linux kernel to support the L4/Fiasco’s para-virtualization

mechanism. It is mainly different from other hypervisors due to its ability to map Linux kernel

threads directly onto VCPUs. The L4Linux invokes hypercalls during kernel thread creation

to allow to the L4/Fiasco to create VCPUs. However, this mechanism does not avoid the two-

level scheduling problem because the Linux scheduler keeps mapping processes to Linux

kernel threads. As is the case with other microkernels, device drivers are executed in user

land. Additionally, L4/Fiasco supports RTOSs.

L4 Linux

L4/Fiasco

Hardware

Linux
kernel
thread

VCPU

Kernel

User

user
processes

Device
Drivers

L4
Linux

RTOS

CPU unprivileged mode

CPU privileged mode

Figure 3.8: Fiasco’s architecture. The L4/Fiasco maps the L4Linux kernel threads directly to
VCPUs.

Jungwoo et al. [88] proposed a compositional scheduling framework to deal with

the two-level scheduling problem and extended L4/Fiasco to support real-time constraints.

L4Linux was modified to obtain the timing requirements from its internal processes and send

them to the hypervisor through hypercalls. L4/Fiasco’s scheduler implements a periodic task

model and it uses the timing information from the guest OSs to meet the time constraints.

This approach drastically reduces the number of deadline misses when compared to the

original implementation. Additionally, it adds a small overhead that increases with the num-

ber of threads.

76

3.5.3 PikeOS

PikeOS [38] is a proprietary microkernel developed by SYSGO AG6 with support

for virtualization. It was designed for safety-critical systems by implementing the concept of

partitioning as defined by the ARINC 653 standard [4]. Additionally, the standard determines

the CPU time allocation across the partitions. The approach consists of a fixed cycle time in

a specified order for a guaranteed duration. This allows for real-time guarantees, but it leads

to a poor CPU utilization. The microkernel has approximately 6,000 lines of code. It traps

all interrupts and privileged instructions. Thus, it implements para-virtualization. Currently, it

supports x86, PowerPCs and MIPS processors.

Hardware

PikeOS Microkernel

PikeOS Software Libraries

Linux RTOS 0 RTOS n

CPU non-privileged mode

CPU privileged mode

Trusted

...Untrusted

Figure 3.9: PikeOS’s architecture. It is a proprietary microkernel with support for virtualiza-
tion designed to attend safety-critical systems.

Figure 3.9 depicts the architecture of the PikeOS. The microkernel is the only soft-

ware executed in CPU’s kernel mode. The PikeOS software layers establish a set of parti-

tions or VMs. Each partition can host a para-virtualized OS. The guest OSs are considered

untrusted software and are kept isolated from each other. Finally, PikeOS supports inter-VM

communication between guest OSs based on a mechanism defined by the ARINC standard.

In this mechanism, the microkernel acts as a communication arbiter to manage message

exchanges.

6https://www.sysgo.com/

77

3.5.4 Mini-Nova

In 2010, Steinberg et al. [73] proposed a hypervisor supporting the VT-x extensions

on x86 architecture, called NOVA. Based on the NOVA hypervisor, Xia et al. [86] suggested

the use of the NOVA microkernel on an ARM-FPGA platform capable of managing recon-

figurable hardware parts dynamically, but without support for virtualization. In the following

work, Xia et al. [87] presented the Mini-NOVA, a type 1 embedded hypervisor for the ARM

architecture using para-virtualization due to the absence of hardware support.

The main difference in their approach is to manage the coexistence of software

and hardware computing resources. Thus, Mini-NOVA provides support for dynamic partial

reconfiguration (DPR) to hardware tasks. According to the authors, the major challenge

of this approach is to coordinate the hardware resources efficiently among the separate

VMs. Security is another major concern, because the hardware tasks are shared among

the guests. The solution adopts a centralized technique where a hardware task manager

performs as a hypervisor service that manages the hardware. If a guest needs to execute

a hardware task, it must require it using hypercalls. The evaluation demonstrated that the

hardware can be efficiently managed with a short response latency and with a small overall

latency.

3.6 M-Hypervisor

The M-Hypervisor [93] is a type 1 hypervisor supporting the Loongson 2f [74] MIPS

based processor. It is implemented by referencing the XtratuM’s principles (see Section

3.4). Para-virtualization is adopted because Loongson 2f does not support the newer MIPS-

VZ module. Hardware virtualization support is expected to be seen in the next genera-

tion of Loongson. Similar to XtratuM, the VMs are called partitions and support different

OSs, like Linux and RTOSs. Real-time is supported through bare metal applications. The

M-Hypervisor provides virtualization of the timer, interrupt, memory management, process

switching and scheduling to ensure the real-time performance of high-level applications in

the partitions and also temporal and spatial isolation. Based on the benchmarks, the authors

claim that the M-Hypervisor can guarantee accurate real-time performance.

78

3.7 Xvisor

Xvisor, shown in Figure 3.10, is an embedded hypervisor that supports both full-

virtualization and para-virtualization[59]. It supports ARM virtualization extensions to provide

full-virtualization and para-virtualization through optional VirtIO compatible device drivers. It

can map interrupts directly to guests, allowing guest interrupts to be handled without the

intervention of the hypervisor. Additionally, it provides memory isolation between hypervi-

sor, guests and guest applications using the third privileged level from ARM’s virtualization

support. However, Xvisor has a poor support for MIPS processors since it only supports

para-virtualization on the MIPS 24k processor model under the Qemu emulator.

Hardware

VirtIO
Backends

Orphan
VCPUsOrphan

VCPUsOrphan
VCPUs

Device Drivers

Xvisor

VirtIO
Frontend

Linux Kernel

User Land

App App
User mode

Kernel privileged mode

Hypervisor mode

Figure 3.10: Xvisor’s architecture. The Xvisor hypervisor uses the third privileged level from
ARM’s architecture.

Xvisor implements the concept of Orphan VCPUs that executes background pro-

cessing for device drivers and management purposes with the highest privilege. When

compared to Xen or KVM, Xvisor has the advantage of having a single software layer where

all virtualization related services are provided. For example, KVM depends on Qemu for

device emulation and Xen depends on dom0 for I/O. Thus, the Xvisor’s context switches

are lightweight, resulting in instruction trap handling, host interrupts and guest I/O events.

Also, the Xvisor’s scheduler is per-CPU and does not do load balancing for multiprocessor

systems. Instead, load balancing is performed by a distinct entity in Xvisor.

79

3.8 Embedded Hypervisors Comparison

Table 3.1 is a comparison of the previously described embedded hypervisors and

their key features.

Table 3.1: Embedded hypervisors’ comparative table.

Hypervisor Supported
OSs

Architecture Virtualization
technique

Native Real-
time support7

Xen Linux, Windows ARM PV, FV No
KVM Linux, Windows x86, ARM PV, FV No
SPUMONE Linux SuperH-4A PV Yes
XtratuM RTOSs LEONx, ARM, PV Yes
OKL4 RTOSs, Linux,

Android
ARM, MIPS,
x86

PV Yes

L4/Fiasco Linux x86(single-
core)

PV No

PikeOS RTOSs x86, PowerPC,
MIPS

PV Yes

Mini-NOVA Linux, RTOSs ARM PV Yes
M-
Hypervisor

Linux, RTOSs MIPS PV Yes

Xvisor Linux, RTOSs ARM PV/FV Yes

The Xen hypervisor was developed for enterprise and desktop applications, as ex-

plained in Section 3.1. However, recently it was ported to ARM processors. It does not

support real-time natively. Instead, it requires modifications to improves the real-time re-

sponsiveness. Similar to Xen, KVM was recently ported to ARM processors and requires

additional improvements in the Linux kernel to support real-time. All the other hypervisors

presented were developed for embedded virtualization. However, with the exception of Xvi-

sor, they were the first generation of embedded hypervisors. Thus, they share two important

characteristics: lack of support for full-virtualization and lack of memory isolation between

the guest’s kernel and applications. Yet it is important to note that in SPUMONE the guest’s

kernel is executed in privileged mode along the hypervisor. Thus, it can keep the user appli-

cations isolated from each other, but the guest’s kernel can access the hypervisor’s memory

space. Xvisor was designed to take advantage of the ARM virtualization support. Thus, it

supports both full and para-virtualization and provides memory isolation between the hyper-

visor, guest kernel and guest applications.
7Xen, KVM and L4/Fiasco can support real-time through modifications.

80

Tables 3.2 and 3.3 compare the footprint of the hypervisors studied. Xen and KVM

require the installation of additional elements to perform virtualization. The installations col-

umn in Table 3.2 shows the different elements that must be installed with these hypervisors

and their footprint. For example, Xen requires the Xen kernel, Dom0 and the Toolstack while

KVM requires the Linux kernel and QEMU. Table 3.3 compares the footprint of the remaining

hypervisors.

Table 3.2: Footprint requirements for Xen and KVM.

Installations

Xen Xen Kernel Dom0 Toolstack RAM footprint
600KB > 3-4MB 20MB < 180MB> 204MB<

KVM Host Linux zImage QEMU footprint
3-4MB 20MB < 20MB > 44MB<

Xen has a total footprint of roughly 204MB. KVM has a smaller footprint, but it

requires a host Linux to execute. When compared to the configuration of modern computer

servers, these requirements are modest. However, though they are used in embedded

systems, their footprint may be unacceptable for many devices.

Table 3.3: Footprint requirements of the hypervisors when available.

kernel size RAM Memory footprint

SPUMONE 30KB - >30KB8

Xtratum 8KB 16KB 24KB
OKL4 48KB 78KB 126KB
Xvisor 1-2MB 4-16MB 5-18MB
Mini-NOVA 40KB 20MB 20.04MB

Hypervisors developed for embedded systems typically present a smaller footprint

than hypervisors for server virtualization. Unfortunately, some authors do not mention the

memory requirement of their hypervisors. This is the case for L4/Fiasco, PikeOs and M-

Hypervisor. The remaining of the hypervisors are shown in Table 3.3. Note that the footprint

and RAM requirements can be quite different. For example, Xvisor has a footprint between

5 and 18MB. OKL4 has a footprint of only 126KB. SPUMONE’s kernel requires 30KB each

8The total memory needed by SPUMONE during its execution is unknown.

81

core in its multicore version. For example, in a dual-core processor SPUMONE will require

60KB. However, the amount of memory needed during its execution is unknown. Xtratum

has the smallest footprint, requiring only 24KB during its execution.

3.9 RT-Linux

RT-Linux [18] provides the capability of executing bare-metal tasks along a Linux

OS. It is a kernel patch that adds a software layer with a real-time scheduler. From the

point of view of the RT-Linux layer, the Linux kernel is a process that shares the processor

with real-time tasks. Figure 3.11 shows RT-Linux’s architecture. The I/O and interrupts

subsystems of the Linux kernel are modified to communicate with the RT-Linux layer. This

is similar to a para-virtualized hypervisor. The bare-metal tasks have priority over the Linux

kernel and can access peripherals directly. Additionally, the Linux kernel will always be pre-

empted to give priority to the real-time tasks.

RTLinux

Linux Kernel

User
app

User
app

User
app

User
apps

device drivers

I/O

RT
app

RT
app

real-time scheduler

Direct
mapped
devices

Linux OS executed in background

High priority
real-time tasks

Figure 3.11: RT-Linux is a kernel patch that adds a software layer with a real-time scheduler
and it makes the Linux kernel to share the processor with real-time tasks.

RT-Linux’s architecture is similar to a lightweight hypervisor, but without the capabil-

ity of supporting multiple guest OSs. In fact, its objective is to improve the responsiveness of

real-time tasks while maintaining the Linux software stack. The real-time tasks must be writ-

ten using the RT-Linux API. Finally, shared memory can be used for communication between

real-time tasks the Linux threads.

82

3.10 Final Considerations

This chapter presented the main hypervisors available for embedded virtualization.

This study exposed the complexity of embedded virtualization and the wide range of pos-

sible solutions. It was identified that real-time is an issue addressed frequently, since all

mentioned hypervisors have some real-time support. In respect to Xen and KVM, the pri-

mary focus of the studied works is the issue of real-time improvements. These hypervisors

have a deep dependency on the Linux OS, which makes it difficult to reduce their memory

requirements. Thus, a recurrent challenge for hypervisors specially designed for embedded

systems is to achieve a small footprint. To accomplish this goal, they avoid dedicating do-

mains for I/O (in contrast to Xen) and they implement the type 1 hypervisor model (unlike

KVM). Also, the presented hypervisors regularly do not meet common embedded system

requirements. For example, XtratuM does not support GPOSs while SPUMONE cannot

provide spatial isolation between guests. L4 based hypervisors support GPOSs and pro-

vide spatial separation but do not support full-virtualization. Para-virtualization is extensively

adopted on embedded hypervisors. As seen in Table 3.1, KVM and Xvisor are the only

embedded hypervisors that support full-virtualization, but their support is limited to the ARM

virtualization extensions. Chapter 2 showed that hardware-assisted virtualization is a trend

in embedded processors. Thus, it is inevitable for the further development on hypervisors

to adopt full-virtualization even when combined with para-virtualization. This study makes

it clear that an novel embedded virtualization model is required to take advantage of newer

processors and to better fit embedded system needs.

83

4. A VIRTUALIZATION MODEL FOR EMBEDDED SYSTEMS

This chapter presents the virtualization model proposed by this dissertation. As

discussed in Subsection 3.10, the techniques currently applied for virtualization on embed-

ded environments do not meet all requirements. Additionally, the evolution of the embedded

processors is growing towards the usage of hardware support for virtualization. However,

this is ongoing, and the next generations of embedded processors will support new hard-

ware features for virtualization. Thus, the existing virtualization techniques for ES require

continuous improvement and new approaches must be proposed. Based on the state-of-

the-art for embedded virtualization, a set of important features were chosen as a guideline

for the development of embedded virtualization models. Section 4.1 discusses these fea-

tures. Section 4.2 presents the proposed virtualization model. The Embedded Systems

Group (GSE) started to research embedded virtualization in 2010. Since then, another vir-

tualization model was proposed by Aguiar [3]. Thus, Section 4.3 compares the virtualization

model presented in this dissertation to the model proposed by Aguiar [3]. Finally, Section

4.4 is the final considerations of this chapter.

4.1 Desirable Features for an Embedded Virtualization Model

This section states the important features for an embedded virtualization model.

As explained before, real-time support on virtualized ESs has become an major concern,

since all works presented in Chapter 3 have some support for real-time. However, these

works still have different drawbacks. Widely adopted hypervisors like Xen and KVM (see

Subsections 3.1 and 3.2) were designed for enterprise usage and do not scale well on some

ESs because of their memory footprint. Solutions designed to target ESs, like SPUMONE,

XtratuM and L4/Fiasco (see Sections 3.3, 3.4 and 3.5.2) have different constraints. For

example, SPUMONE does not provide spatial isolation, XtratuM was designed for critical

systems, therefore it does not support GPOSs, and L4/Fiasco was designed for only single-

core processors and it does not have proper real-time support. Moreover, the most of the

hypervisors do not make use of the current hardware-assisted support present in the modern

embedded processors. The only exception is the Xvisor (Section 3.7), but its support is

restrict to ARM processors. The research shows an increasing interest in emergent topics

84

like hardware-assisted virtualization and security. Thus, it is essential to address these

topics on a virtualization model.

Based on the related works, there is not a consolidated approach for embedded

virtualization. Additionally, due to the wide diversity of ES architectures and applications,

there is not a single approach that can overcome all challenges at once. Nevertheless,

more accurate techniques can be applied to build a hypervisor able to better address the

virtualization needs on the most of ESs. Thus, this dissertation suggests a virtualization

model that supports the following major features:

• Hardware-assisted virtualization: Considering that virtualization will be widely adopted

for ESs shortly, the manufacturers will provide hardware-assisted virtualization for their

embedded CPUs. The decreased fabrication cost of the embedded processors al-

lowed for the adoption of hardware features for virtualization support. In fact, ARM

and MIPS have already specified their virtualization extensions as seen in [6] and [36].

Additionally, several manufacturers have released their virtualization platforms. Once

the hardware supports a flexible set of features, hypervisor designers must decide

what policy usage to adopt. As explained in Subsection 2.3.3, hardware-assisted vir-

tualization allows more efficient and simpler hypervisors. The main advantages of the

hardware-assisted virtualization are to speed-up hypervisor performance, save engi-

neering costs and improve time to market.

• Multicore support: Multicore processors are already widespread in ES platforms.

When available, the hypervisor should ensure the proper support to obtain maximum

performance. Additionally, migration of VCPUs between physical cores should be con-

sidered to allow load balancing.

• Real-Time support: Real-time is an intrinsic characteristic of embedded systems.

The hypervisor should be predictable and ensure temporal isolation between GPOS

and real-time applications. For multimedia purposes, soft real-time support is enough.

Nevertheless, some ESs require accurate time constraints to run with GPOSs. For

example, a smartphone system that must support a rich user graphical interface still

needs to deal with the GSM stack [5] time constraints. In this case, real-time support

is desirable because it avoids the need for a second processor dedicated to the GSM

stack.

85

• Coexistence of multiple GPOSs and Real-time instances: A GPOS is highly desir-

able for certain ESs, such as smartphones and set-up boxes, due to its wide diversity

of software. However, usually GPOSs have poor real-time responsiveness. In fact,the

hypervisor must guarantee real-time instances that are executed with GPOSs. Addi-

tionally, some virtualized platforms can require more than one GPOS at the same time.

For example, in a virtualized network router that, for reliability reasons, the data plan

must be isolated from the control plan.

• Direct mapped and shared devices: The current generation of embedded platforms

designed for virtualization do not support I/O virtualization. Thus, when it is neces-

sary to share a physical device, e.g. an Ethernet device, the hypervisor may use the

para-virtualization technique. In this case, a device driver at hypervisor level serializes

the access to the Ethernet device, and the guest OS implements a para-virtual device

driver. However, aiming better performance, when device sharing is not desired, the

hypervisor must map the device directly to the desired guest OS. Efficient implemen-

tation of directly mapped devices depends on the support of the processor’s hardware

(see Subsection 2.3.3).

• Security: The hypervisor must provide robust spatial isolation between VMs, i.e., a

misbehavior in the guest OS should not affect the behavior of the other guest OSs or

even the hypervisor. The goal of separation used for security purposes is to create

and preserve a trusted operating environment for an embedded system. Separation is

intended to prevent exploitable defects in one virtualized environment from propagating

to adjacent virtual environments, or to the physical platform as a whole [61].

• Inter-VM communication: A virtualized system is composed by a set of VMs. Pos-

sibly, these VMs will require some level of interaction between them. Also, some ap-

plications can require secure communication channels for sensitive information. Thus,

an efficient and secure inter-VM communication mechanism must be available in the

hypervisor.

• Lightweight virtualization layer: Due to the resource constraints on ESs, the hy-

pervisor layer must have a small memory footprint and induce the least amount of

overhead possible. This requirement is intrinsically related to hardware-assisted virtu-

86

alization. As explained in Section 2.3.3, greater hardware support simplifies hypervisor

implementation and can improve performance.

The design of an embedded hypervisor should consider this features. However,

some are difficult to measure. For example, if the hypervisor is lightweight, it cannot be

measured directly, but it can only be compared regarding the lines of code and memory

footprint of similar hypervisors. Security is another feature that is hard to evaluate. The

simplest way to evaluate security is to consider if the hypervisor ensures spatial isolation

or separation between VMs. However, critical systems may require formal proof. Other

system characteristics are directly measured based on responsiveness, memory and time

overhead. Section 4.2 presents the proposed virtualization model that is flexible enough to

accommodate these features.

4.2 Model Overview

An innovative virtualization model was proposed based on the desired features

described in the Section 4.1. As a result, an implementation of this model is presented in

the Chapter 5. Thus, this section describes the proposed virtualization model. However,

there are two considerations about this model:

1. The model does not try to impose or improve the real-time capabilities of non real-

time entities, like a GPOS. Instead, it provides mechanisms for GPOSs and real-time

entities coexist and;

2. The model was not designed to be a pure full-virtualization model. Instead, it was de-

signed to support full-virtualization of the CPU and use the para-virtualization concept

for other services, such as communication and shared devices.

Many hypervisor solutions for ESs try to improve the real-time responsiveness of

GPOSs in virtualized environments. For example, different authors propose to apply tech-

niques to improve the Linux real-time responsiveness when virtualized in KVM or Xen (see

sections 3.2.3 and 3.1.3). However, the proposed model avoids the utilization of GPOSs

as real-time instances. Instead, it allows real-time services to be directly scheduled by the

hypervisor, see Subsection 4.2.3. Additionally, the model provides full-virtualization based

87

on the hardware-assistance of the CPU. Other peripherals may require para-virtualization

techniques, see Subsection 4.2.2.

Figure 4.1 depicts the proposed model. At the hardware level, it uses a bus-based

homogeneous MPSoC along with shared memory. The first software layer is the the hyper-

visor, which is responsible for the creation and management of each VM. It also provides a

logic arrangement for associating the VM with its VCPUs. Moreover, the hypervisor controls

the memory space of each VM for memory isolation. Thus, this model describes a hyper-

visor type 1, as explained in Subsection 2.2.1. Type 1 hypervisors usually requires lower

footprint then type 2 ones, since they does not require an underline OS.

Hypervisor

GPOS
Kernel

BE-

VCPU1

BE-

VCPUn

APP 1 APP 2

APP 3 APP n

VM 1

VM 2

VM n

Hardware Level

Hypervisor

Software Layer

Supervisor Mode

OS Kernel

Layer

Kernel Mode

CPU1 CPU2 CPU3 CPUn peripherals

Shared Memory

Real-Time

Manager

RT APP 1 RT-APP n

RT-

VCPU1

RT-

VCPUn

RT VM 1

RT VM n

Application

Layer

Unprivileged Mode

Extended

Services

Figure 4.1: Overall view of the proposed virtualization model.

The GPOSs are mapped onto best-effort VCPUs while real-time instances are

mapped onto real-time VCPUs, as further explained in Subsection 4.2.1. The model takes

advantage of the processor’s additional privilege levels (see Subsection 2.3.3) to provide

spatial isolation between hypervisor and guests. Additionally, unlike virtualization models

that do not utilize the additional privilege levels scheme, the proposed model can provide

spatial isolation between the guest kernel and guest applications. Therefore, the hypervisor

is protected from the actions of malicious or misbehaving guest OSs and the guest OSs are

protected from their applications.

The model provides additional features, called extended services, that expand the

virtualization platform functionalities. See Subsection 4.2.2 for more details. Additionally, for

better temporal isolation, the model proposes the adoption of the RT-VM, which maps real-

88

time services onto RT-VCPUs, as explained in Subsection 4.2.3. Finally, direct communica-

tion among VMs is possible using shared memory areas or message passing mechanisms

can be implemented using the hypervisor as a communication arbiter, which is explained in

detail in Subsection 4.2.4.

4.2.1 The Flexible Scheduling Mapping

Figure 4.2 shows the possible flexible mapping and the partitioning model for vir-

tualized architectures based in the proposed model. To perform temporal isolation between

VMs, the hypervisor specifies two different kinds of VCPUs: best-effort VCPUs (BE-VCPUs)

and real-time VCPUs (RT-VCPUs). RT-VCPUs have priority over BE-VCPUs and follow

the policy of a real-time scheduling algorithm. BE-VCPUs are scheduled by a best-effort

scheduler algorithm that is invoked when there are not RT-VCPUs ready to execute. Addi-

tionally, the BE-VCPUs can migrate among physical cores, i.e., when a CPU becomes idle

the scheduler will choose the next BE-VCPU ready to run in a global queue. The migration of

RT-VCPUs depends on the real-time scheduler algorithm adopted. Due to time constraints,

a real-time scheduler algorithm for multicore processors must be carefully designed, as pro-

posed by [66] and [82]. This model is flexible enough to accommodate different combinations

of real-time and best-effort scheduler algorithms, which is an implementation decision.

A multiprocessing GPOS may have several BE-VCPUs available, and its scheduler

is responsible for mapping the task among BE-VCPUs according to its policies. At the hy-

pervisor level, the best-effort scheduler algorithm will map a BE-VCPU to the next idle CPU.

This arrangement enables an N-to-N mapping of task over BE-VCPUs and BE-VCPUs over

CPUs.

4.2.2 Extended Services

The model suggests the implementation of the para-virtualization concept to pro-

vide extended services to the guest OSs. Extend services are useful to expand the vir-

tualization platform functionalities, i.e., to implement functions that does not exist in a pure

fully-virtualized system. Hypercalls are widely used in para-virtualization based approaches,

89

CPU1 CPU2 CPUn

BE-
VCPU1

BE-
VCPUn

RTM

Direct Mapping

RT
APP 1

RT
APP n

RT-
VCPU1

RT-
VCPUn

RT VM 1

N to N
mapping

APP
1

APP
2

APP
n

VM 1

N to N mapping
GPOS Scheduler

Hypervisor

Figure 4.2: Flexible mapping for multiprocessor embedded systems with real-time support.

where the guest OS needs to be modified to invoke hypercalls instead of using privileged

instructions. However, this work uses full-virtualization with a hardware-assisted technique,

where the guest OS does not need to be modified for virtualization purposes. Yet it must use

hypercalls to take advantage of the extended services, e.g., real-time services and commu-

nication among VMs.

The model suggests a minimal set of extended services. However, an implementa-

tion can add services for different purposes as necessary. Table 4.1 resumes the extended

services available through hypercalls. Altogether, six different hypercalls are supported and

may be implemented by a guest OS when needed. The services are divided into three

different groups:

• VM identification composed by a hypercall that returns a unique VM identification num-

ber issued by the hypervisor.

• RT-VCPU management is composed by a group of three hypercalls responsible to

manage the RT-VCPUs. Using this hypercalls the guest OS can create, launch or

delete real-time services.

• Communication services are composed of two hypercalls designed for communication

purposes.

90

Table 4.1: Hypercalls as extended services.

Extended Service Hypercall Description

VM identification HCALL_INFO_GET_ID Return the VM ID number

RT-VCPU Management
HCALL_RT_CREATE_APP RT application Instantiation
HCALL_RT_LAUNCH_APP RT application launch
HCALL_RT_DELETE_APP RT application delete

Communication Services HCALL_IPC_SEND_MSG Send messages
HCALL_IPC_RECV_MSG Receive messages

The utilization of the hypercalls for management of the RT-VCPUs is better ex-

plained in Subsection 4.2.3. The extended services proposed in Table 4.1 are supported by

the hypervisor implementation presented in Chapter 5.

4.2.3 Real-time Aspects

To deal with real-time constraints, a special VM called RT-VM was designed to

provide a robust temporal isolation between real-time services and GPOSs. The RT-VM

does not support RTOSs. Instead, it implements what is called a Real-Time Manager

(RTM), which supports communication facilities and basic user libraries. The RTM can map

its tasks directly to RT-VCPUs in the hypervisor scheduler, i.e., it does not implement a

scheduler on its level avoiding the hierarchical scheduling problem and improving perfor-

mance. The real-time services must be registered during the RT-VM initialization calling

the HCALL_RT_CREATE_APP hypercall. After the registration, the real-time services are

available in the system and they can be started/stopped by the guests using the hypercalls

HCALL_RT_LAUNCH_APP and HCALL_RT_DELETE_APP.

RTM may or not provide spatial isolation between tasks. Providing spatial isolation

means the implementation of virtual memory support on the RTM, which may impact in

the real-time responsiveness. Nevertheless, if spatial isolation between different services is

desired, more than one RT-VM can be instantiated. When a developer is interested in taking

advantage of real-time in this model, he must implement its real-time service using the RTM

API.

The RT-VCPUs are scheduled by a real-time algorithm, e.g., EDF, which has priority

over the best-effort scheduling algorithm. To keep the RT-VCPUs in a global queue (allowing

91

migration) or in a local queue per CPU is a implementation decision. As described in Sub-

section 4.2.1, an implementation for multi-core processor using a global queue and allowing

CPU migration must be carefully designed to guarantee temporal isolation. Additionally, crit-

ical systems require schedulability analysis to guarantee system resource availability during

RT-VCPU admission. Finally, during the execution of a RT-VCPU, interrupts sent to BE-

VCPUs may or not be postponed in order to increase temporal isolation, see Section 5.5

about interrupt delivery policies.

Schedulability Analysis for Real-time Services

As explained, the real-time services are available in the RT-VM, and they can be

started/stopped by the guest OSs. An important concern about this scheme is how to deal

with concurrent real-time services that can be started asynchronously. For example, a set of

real-time services available in a RT-VM may not be schedulable altogether. Thus, some of

the real-time services may not be accepted for execution when a guest OS requires it due

to unavailable CPU time. This is especially critical for systems where the non-execution of a

service may cause safety concerns.

The model does not specify mechanisms for schedulability analysis or any other

approach to avoid the schedulability problem. In fact, to determine the schedulability of a

task set, the real-time scheduling algorithm and the real-time scheduling parameters must

be known. However, the model allows for different real-time algorithms making the schedu-

lability analysis dependant of implementation. Finally, the simpler approach for a hypervisor

based on this model to avoid schedulability problems is to guarantee the schedulability of

the set of real-time services available in the system. For this, two approaches can be take:

• The development team performs a schedulability analysis;

• The hypervisor implements its own schedulability test, that is performed during its ini-

tialization.

Both approaches can be used together. If the development team fails in their

schedulability analysis, the hypervisor can detect the problem during the system’s initializa-

tion, since the RT-VM must register its services at boot time using the hypercall HCALL_R-

T_CREATE_APP. It is important to highlight that both approaches work only for real-time

services implemented at design time. However, the model does not permit to install new

92

real-time services in runtime. The hypervisor implementation presented in Chapter 5 imple-

ments the schedulability test to the EDF scheduler algorithm.

4.2.4 Communication Model

Inter-VM communication capabilities must be implemented as part of the extended

services, i.e., using hypercalls. However, the model does not impose any specific communi-

cation mechanism. Instead, this decision is made by the developer. For example, for better

performance, the designers may choose to implement direct communication between VMs

using memory sharing. Or, if the major concern is security, the designers may choose to im-

plement a message exchange mechanism using the hypervisor as a communication arbiter.

The model’s implementation presented in Section 5 provides communication between VMs

using the hypervisor as a manager.

Inter-device communication, i.e., communication of the virtualized platform with ex-

ternal devices is desirable in modern ESs. The proposed model is flexible enough to support

typical socket style [77] communication among VMs. Thus, the hypervisor may implement

a network layer in order to route Internet Protocol (IP) datagrams [77] between VMs. Still,

when communication with the external world is desired, the hypervisor may virtualize a net-

work adapter providing network capabilities to the platform. Nevertheless, in the embedded

system context, the socket communication scheme can be expensive in terms of system

overhead, therefore message passing may be preferable.

4.3 Comparison with the Virtual Hellfire Hypervisor (VHH)

In 2010, the GSE group started to research virtualization for embedded systems.

Aguiar [3], proposed an embedded virtualization model and a hypervisor implementation in

2013. The resulting hypervisor was called Virtual Hellfire Hypervisor (VHH). This section

discusses the main differences between the virtualization model proposed by Aguiar and

the model presented in this dissertation.

Figure 4.3 presents the VHH’s virtualization model. Similar to the model proposed

in this dissertation, the VHH model assumes a bus-based homogeneous MPSoC along with

93

shared memory. On top of the CPUs, it executes the hypervisor, which is responsible for

the creation and management of each Application Domain Unit (ADU). The ADU is a logical

arrangement responsible for associating the guest OS with its VCPUs. Moreover, each

ADU has its own memory space controlled by the hypervisor to provide memory isolation.

Applications can be mapped on best-effort (non-real-time) and real-time VCPUs according

to their needs in an ADU. The guest OS is responsible for instantiating RT-VCPUs for each

real-time application it wishes to execute.

CPU1 CPU2 CPU3 CPUn peripherals

Shared Memory

Hypervisor

Application Domain
Unit (ADU)

guest OS RT-app

BE-
VCPU

RT-
VCPU

Application Domain
Unit (ADU)

guest OS RT-app

BE-
VCPU

RT-
VCPU

Figure 4.3: Virtual Hellfire Hypervisor’s virtualization model.

The VHH’s model was designed to be compatible with the existing embedded pro-

cessors that were available at the time it was developed, see Section 2.6. Thus, the resulting

model does not support essential hardware features to meet security and performance pro-

viding full-virtualization without hardware-assistance. A side effect is the absence of spatial

isolation between the guest OS’s kernel and user modes. Without additional processor

privilege levels, the entire guest OS must execute in user-mode. In addition, all privileged

instructions must be handled by the hypervisor. Thus, the model can only be used when the

processor meets the Popek and Goldberg requirements (see Subsection 2.2.2).

Aguiar’s model provides weak temporal isolation between real-time and non-real-

time applications since it does not provide spatial isolation between BE-VCPUs and RT-

VCPUs. Figure 4.3 shows that BE-VCPUs and RT-VCPUs coexist in ADUs. Sharing mem-

ory space is advantageous for software stack sharing and communication performance.

This means that a GPOS could instantiate RT-VCPUs that share all its software stack and

communicate using shared memory. However, this approach has one major drawback. A

94

RT-VCPU may be prevented from executing because a BE-VCPU is holding a shared lock

causing a priority inversion. The model proposed in this work, implements spatial isolation

between real-time and best-effort VCPUs to provide stronger temporal isolation between

them.

The VHH’s model was implemented in the 4Kc MIPS processor. This implemen-

tation required the modification of the target processor to allow virtualization of the MIPS’s

exception vector [53]. As the processor’s core was modified the hypervisor could not be

evaluated in a hardware platform, thus only OVSim [37] simulations were performed. Also,

the resulting implementation has performance issues as shown in [3]. Despite the fact

that full-virtualization avoids the need for guest OS modifications, the absence of hardware-

assistance forces the hypervisor to intervene constantly in the execution of the guest OS.

The hypervisor handles all system interrupts routing them to the destined guest OS. VHH

uses the trap-and-emulate strategy to deal with privileged instructions. Additionally, memory

mapped devices use a similar strategy. When the guest OS tries to access a protected mem-

ory address, the hypervisor intervenes checking if it is a valid address to the guest OS, if so,

the hypervisor proceeds to emulate the operation. The model proposed in this dissertation

uses hardware-assistance to avoid excessive hypervisor intervention. Finally, guest OSs are

allowed to access memory mapped devices directly and interrupts targeted to guests can

be directly routed.

4.4 Final Considerations

The proposed embedded virtualization model was designed to take advantage of

the current technologies available in the embedded processor families. These technologies

allow for full-virtualization of the CPU, but they do not support efficient I/O virtualization. De-

spite the advantage of avoiding guest modifications, experience with the VHH has shown

that full-virtualization without proper hardware support results in excessive overhead. Thus,

this model avoids full-virtualization for hardware subsets without proper hardware-assisted

virtualization. As a result, the proposed model implements a hybrid approach, which pro-

vides full-virtualization for the CPU and para-virtualization for I/O devices. Additionally, a

list of major features for embedded virtualization was determined and the model was de-

signed to support them. For example, spatial isolation among VMs is guarantied based on

95

hardware support while temporal isolation is provided by BE and RT-VCPUs. Moreover, the

extended services concept uses para-virtualization to allow inter-VM communication and

real-time service management.

The hierarchical scheduling problem is avoided by the introduction of the RT-VM

that maps real-time services directly onto RT-VCPUs. The flexible scheduling mapping pro-

posed may cause the LHP (Subsection 2.4.2) because a multiprocessing OS with concurrent

VCPUs may be preempted while holding a spinlock. However, the LHP is not directly ad-

dressed in the model, since this problem requires different approaches depending of the

scheduling algorithm implemented. But, it can be avoided with different approaches. For

example, the real-time services proposed in this model does not implement spinlocks. Thus,

they will not be subjected to the LHP. Additionally, single-core processors where the hyper-

visor maps each VM to a single VCPU does not suffer from the LHP.

The model proposed in this dissertation strengthens the hypothesis that is possible

to have an embedded lightweight hypervisor capable of supporting the major embedded

virtualization requisites Moreover, hardware-assisted virtualization is important to achieve

low footprint and high performance.

96

97

5. HELLFIRE HYPERVISOR - AN IMPLEMENTATION USING MIPS

HARDWARE-ASSISTANCE

This chapter presents a hypervisor implementation based on the virtualization model

discussed in Section 4. This implementation was partially built by Zampiva [90] during his

master degree, and finished during the development of this dissertation. Focused on full-

virtualization, as proposed by the model, this implementation supports the MIPS virtualiza-

tion extensions (MIPS VZ). The target processor is the M5150 that supports two-level TLBs,

thus, it allows memory isolation at both the hypervisor and guest OS levels. Additionally, this

chapter shows how software design decisions based on hardware-assisted virtualization

associated with embedded systems characteristics result in a simpler hypervisor. Section

5.1 gives a brief description of the MIPS M5150 processor core. Section 5.2 describes

the software architecture of the hypervisor implementation. Section 5.4 explains the mem-

ory virtualization strategy adopted. Finally, Section 5.5 describes the fast interrupt delivery

mechanism supported by the hypervisor.

5.1 The M5150 processor

The M5150 processor was released by the end of 2013 and was one of the first

cores based on the MIPS32 Release 5 (MIPS32r5) specification. It is a fully synthesiz-

able MIPS processor designed for embedded applications. The main features of the pro-

cessor are: single-core, 5-stage pipeline, 32-bit address and data paths, MIPS32 and mi-

croMIPS ISA [35], 16 or 32 dual-entry joint Translation Lookaside Buffer (TLB) with variable

page sizes, Multiply/Divide Unit, Floating Point Unit (FPU), upto 16 general purpose register

shadow sets (copies of the normal GPR to avoid the need to save and restore them on entry

to high-priority interrupts or exceptions) and Virtualization Module Support (MIPS VZ). Ad-

ditionally, as part of the virtualization module, the core has two COP0 instances: one for the

guest OS and the other exclusive to the hypervisor. Moreover, in the M5150 terminology the

COP0 state for the guest OS is called guest-context while the COP0 state for the hypervisor

is called root-context of the processor.

98

5.1.1 MIPS32’s Memory Model

Figure 5.1 depicts the memory model of the MIPS32 processor family. The memory

map for processors that implement TLB is different from processors with fixed mapping. For

example, the M5100 processor does not implement the TLB on the guest’s level. Thus,

only the hypervisor has control over the virtual memory. The M5100 is designed for guests

without TLB support. The MIPS-VZ module always requires the root-context TLB. For the

purpose of this dissertation, only the memory model of the M5150 processor with two-stage

TLB is presented.

The MIPS32 core has 4 gigabytes (GB) of virtual memory space and supports 4GB

of physical memory. The virtual memory space is divided into four segments for different

purposes. The kuseg support 2GB of virtual address range and starts at 0x0000_0000. It is

designed for user applications and can be mapped through the TLB anywhere in the physical

memory. The kuseg can be accessed from kernel or user-modes. The segments kseg0 and

kseg1 are designed for OS’s code and data. It only can be accessed from kernel-mode.

Access to these segments from user-mode will cause an address error exception. Both

segments are directly mapped to the lower 512 megabytes (0.5GB) of the physical memory.

For example, the addresses 0x8000_0000 and 0xA000_0000 are mapped to the physical

address 0x0000_0000. However, the kseg1 does not support cache and is used during boot

time and for memory-mapped I/O. The last two segments, kseg2 and kseg3, are accessible

only in kernel-mode and can be mapped anywhere in the physical memory. These segments

were intended to execute programs in supervisor mode. However, it took many years from

the conception of MIPS32 before the virtualization in these processors could take place.

Additionally, the Linux Kernel uses these segments as high kernel memory.

5.2 Software Architecture

The source code of our hypervisor was written mainly in the C programming lan-

guage, but some hardware abstraction layer (HAL) parts were written in assembly. For

implementation, debug and simulation purposes it was used the MIPS Instruction Accurate

Simulator (IASim), which is a hardware simulator for MIPS processors able to simulate an

99

Kernel Mapped
Cacheable

kseg3

0.5GB

Kernel Mapped
Cacheable

kseg2

0.5GB

Kernel Unmapped
Uncached

kseg1

0.5GB

Kernel Unmapped
Cacheable

kseg0

0.5GB

User Mapped
Cacheable

kuseg

2GB

3.5GB

0.5GB

Mapped Anywhere

Mapped Anywhere

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0xFFFF_FFFF

0x0000_0000

0xFFFF_FFFF

0x2000_0000

Virtual Memory Physical Memory

Figure 5.1: MIPS32 memory map.

entire platform, and based on the OVSim. However, during the development of this disserta-

tion, only the M5150 processor, serial port and RAM memory models were available. IASim

performs fast simulation aiming to deliver a virtual platform for embedded software develop-

ment without the need of the real hardware platform. For better accuracy, all performance

tests were performed on the SEAD-3 [50] development platform board, as detailed in the

Chapter 6.

Figure 5.2 shows the block diagram of hypervisor software implementation. It is

composed of a hardware abstraction layer (HAL), real-time and best-effort schedulers, dis-

patcher, VCPU manager, VM instantiation and toolkit.

Figure 5.2: Hypervisor’s software block diagram.

100

The HAL implements the low-level application programming interface (API) used to

isolate higher layers from further hardware details. Some HAL parts were written in MIPS

assembly language due to the necessity of use specific COP0 access, TLB or cache con-

trol instructions. After reset, the M5150 processor starts the instruction fetch at address

0xBFC0_0000 in the kseg1 memory segment (non-cacheable). For a stand-alone boot pro-

cess, e.g., when a boot-loader software is not present, the boot init code is placed at this

address to be the first code executed after reset. This code must configure the processor ac-

cordingly and copy the hypervisor code to a cacheable memory area, in this case, the kseg0

memory segment. This boot process is used with the IASim. In the SEAD-3, the native

bootloader (Yammon) is used to configure the processor and copy the hypervisor directly to

the kseg0 segment. Thus, avoiding the use of the hypervisor’s boot-init code.

The real-time and best-effort schedulers are responsible for implementing the Earli-

est Deadline First (EDF) and best-effort round-robin scheduler algorithms for scheduling the

RT-VCPUs and BE-VCPUs, respectively. The scheduler module can be easily substituted

by any other algorithm. During timer interrupt handling, the hypervisor invokes the scheduler

module that manages the VCPU’s queues returning to the scheduled VCPU. Consequently,

the dispatcher is responsible for dispatching the chosen VCPU to the physical CPU. Thus,

the dispatcher uses the HAL interface to write onto the correct CPU’s registers.

The instruction emulation module is needed to emulate instructions that cannot be

directly executed by the guest OS, e.g., write to specific bits of the COP0 that change the

overall processor behavior as the reduced power mode bit in the status register. As a result

of the MIPS-VZ module, a minimal number of instructions need to be emulated.

The VM instantiation module is used during the hypervisor’s initialization process

to configure and start up the VMs. Finally, the toolkit module is a collection of software tools

such as linked-list and UNIX compatible libraries.

5.2.1 Virtual Machine and Virtual CPU Software Abstraction

A virtual machine must create the abstraction of a different hardware set from the

original hardware platform. This different view consists of a subset of the real platform, like a

compatible subset of the processor or a small amount of the entire memory. Additionally, the

virtual machine can emulate hardware subsets that do not exist in the underlying hardware.

101

KVM uses Qemu for this purposes. Pragmatically, a VM is a data structure that keeps all

information necessary to control the guest execution. The VM data structure is showed

in details in Appendix A.1. Typically, this data structure is kept for each guest OS. In this

implementation, the VMs are allocated dynamically during the hypervisor initialization. Thus,

the hypervisor’s kernel uses the control information kept in these data structures to control

the guest behaviors.

Virtual CPU is an abstraction of the real CPU used to keep the last state of the

CPU’s registers during a context-switching. Similar to VMs, VCPUs are represented by a

data structure in memory and are dynamically created during the hypervisor’s initialization.

The VCPU data structure is showed in details in Appendix A.2. VCPUs are the execution

unity of the VMs, each one represents a different execution thread. Thus, the level of con-

currence in a VM depends on the number of VCPUs associated with it and the level of

concurrence in the hypervisor is directly related to the total number of VCPUs in the system.

There is no performance improvements if multiple VCPUs are given to a VM on a single-core

processor, instead, the context-switching overhead will cause performance penalties. Thus,

this implementation does not support multiple VCPUs for a VM, since the target processor

is single-core.

5.3 CPU Virtualization Strategy

The virtualization model described in the Chapter 4 suggests full-virtualization of

the CPU. VHH [3] implements full-virtualization of the CPU using a trap-and-emulate strategy

(see Section 4.3) causing frequent hypervisor interventions, since all privileged instructions

result in traps. This hypervisor implementation takes advantage of the hardware-assisted

virtualization of the M5150 processor core. As a result, a hypervisor able to execute guest

OSs with minimal intervention is expected. This section describes how the hypervisor uses

the MIPS-VZ module to avoid traps.

The MIPS-VZ module allows the hypervisor to use a different hardware config-

uration for each guest. Thus, the virtualized system can support software from different

hardware platforms by running guests with different configurations. Additionally, the guest

OSs can have features and capabilities that are different from the host processor and other

guests. These different views are possible because the hypervisor can determine what pro-

102

cessor feature subset is accessible from the guest-context. In root-context, the hypervisor

configures the GuestCtl0 (guest control register 0) register that controls what privileged fea-

tures can be accessed from the guest mode. Using the GuestCtl0 register, the designers

can choose fewer hypervisor interventions, consequently less control over the processor

hardware. Alternatively, they can opt for more hypervisor interventions that give them better

hardware control. Some virtualized systems require more accurate hardware control, e.g.,

when guest OSs wish to configure different cache algorithms. In this case, the hypervisor

will keep the cache instructions privileged and control the cache operation. This hypervi-

sor implementation is focused on avoiding hypervisor interventions during guest executions

as much as possible. Thus, reducing overhead and improving real-time behavior. Table

5.1 summarizes the configurable processor features. First, the hypervisor gives general ac-

cess to the coprocessor 0 (CP0) using the bit 28 of the GuestCtl0 register. However, some

features in the CP0 remain privileged. Thus, the hypervisor allows access to the cache

instructions, setting the CG field (bit 24), which allows the guest to configure the cache algo-

rithms. Still, guest OSs are allowed to have access to the config 0 through config 7 registers.

The config register set specifies various configuration and capability information. Most of the

fields in the config registers are initialized by hardware during the exception reset process,

or they have constant values [78]. When the hypervisor wishes to give a different view of

the system configuration to a certain guest OS, it must keep the config registers privileged.

Thus, reads to this registers in a guest-context will trap the hypervisor that performs a trap-

and-emulate strategy. The config registers are unprivileged in guest-context when the bit 23

of the GuestCtl0 register is set. Finally, the guest OSs can directly access the timer registers.

Timer virtualization is explained in Subsection 5.3.2.

Table 5.1: GuestClt0 register fields. These bits are used to control the hardware accessibility
by the guest OS.

Fields DescriptionName bits
CP0 28 Guest access to coprocessor 0.
AT 26-27 Guest Address Translation control.
GT 25 Guest Timer register access.
CG 24 Cache Instruction Guest-mode enable.
CF 23 Config register access.

Despite the MIPS-VZ module support, some registers or specific bits of the reg-

isters always remain privileged. For example, the reduced power mode bit in the status

103

register will always trap the hypervisor on guest write attempts. A VM should not have direct

control of the processor performance or any other feature that could disrupt the execution

of other VMs. Another reason to keep certain registers privileged is to give a different view

of the system to a certain guest OS, as performed by the config registers. The same case

applies to the processor identification (PID) register. When the guest OS is trying to identify

the processor, the hypervisor can return a different processor identification. For example, in

the M5150 processor the hypervisor can return the 4Kc processor identification limiting the

guest to a compatible processor subset.

The hypervisor can keep different views of the hardware to different VMs modifying

the desired fields of the GuestCtl0 register during context-switching. Thus, the only hypervi-

sor requirement is to keep an individual copy of the GuestCtl0 register in the VM’s software

control structure for each guest OS. This hypervisor implementation keeps direct access to

all features described in Table 5.1.

5.3.1 Best-effort and real-time scheduler algorithms

The hypervisor implements both Earliest Deadline First (EDF) [33] and best-effort

(round-robin) policies to deal with RT-VCPUs and BE-VCPUs, respectively. The EDF has

higher execution priority than the best-effort scheduler. The latter will not suffer from starva-

tion since the implementation counts on time reservation for it. The EDF scheduler requires

the deadline (D), period (P), and capacity (C) real-time parameters, which are received from

the hypercall HCALL_RT_CREATE_APP, as explained in Section 4.2.2. For the sake of

simplicity, BE-VCPUs and RT-VCPUs are kept in different software queues.

Figure 5.3 illustrates the scheduling strategy where both EDF and best-effort sched-

ulers cooperate to increase the CPU utilization. Assuming the execution of two BE-VCPUs

and two RT-VCPUs with the following real-time parameters:

• RT-VCPU 0: period = 5, capacity = 3 and deadline = 5;

• RT-VCPU 1: period = 4, capacity = 1 and deadline = 4.

The BE-VCPUs have the same priority. The scheduling scenario during 20 time

slices can be viewed in Figure 5.3. Each RT-VCPU is scheduled according to the EDF

104

RT_VCPU 0

RT_VCPU 1

CPU

BE-VCPU 0

BE-VCPU 1

Deadlines signalized by thicker marks

1

4

Time Slice

0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 206

3

2

Figure 5.3: Example of the scheduling strategy to combine the EDF and best-effort sched-
ulers.

policy. Thus, RT-VCPU 1 executes in the first quantum as shown in (1). Next the RT-VCPU

2 executes three quanta, according to (2). In quantum 9, BE-VCPU 0 is executed for the

first time because there was not any RT-VCPU ready to execute in this time slice (see (3)).

Finally, The BE-VCPU 1 is executed for the first time on quantum 14 according to (4). Thus,

when executed concurrently, BE-VCPUs will only execute when the RT-VCPUs are not ready

to execute. An amount of CPU time can be reserved for best-effort VMs to avoid starvation.

The schedulability test for the EDF algorithm when the deadline is equal to the period is

determined by the following equation:

U =
n∑

i=1

Ci

Pi
≤ 1 (5.1)

U is the CPU utilization. Thus, the sum of the ratios between the capacity and the

period of all real-time tasks must be less than 1. The equation 5.1 can be used to reserve an

amount of CPU for best-effort tasks. For example, if the designers wants to reserve at least

40% of the CPU time for the best-effort, the result of the above equation must be less than

to 0.6, according to equation 5.1. Note that the amount of CPU dedicated to real-time and

best-effort tasks is determined at design time. However, during the creation of RT-VCPUs

the hypervisor checks the amount of CPU used and if it exceeds the maximum time allowed

it will not be created.

5.3.2 Timer Virtualization

Timer virtualization is an important topic for hypervisor implementation, since it

implements the timing view from the VM’s perspective. MIPS32 cores can be configured to

105

generate timer interrupts periodically. Two registers are used to configure the timer: counter

and compare registers. The counter is incremented for each other processor’s clock. When

the counter value is equal to the compare register, the processor’s core generates a timer

interrupt. Thus, the hypervisor or OS that wants to generate timer interrupts must read the

counter value, add the amount of time to the next interrupt and write the resulting value to

the compare register. This procedure must be performed on each timer interrupt to keep its

periodicity.

The accessibility of the compare and timer registers from the guest-context is con-

trolled by the GT field on the GuestCtl0 register. Allowing direct access to the counter and

compare registers, the guest OS will be able to perform read and writes to the compare

register and reads to the counter registers. Thus, the guest OS cannot perform writes to

the counter, since it will disrupt the global view of the system timer. In fact, a typical OS

implementation will write on the counter register only during its initialization. Therefore, the

hypervisor needs to emulate a few writes to the counter register during the VM’s initialization.

This hypervisor implementation allows the guest OSs direct access to the timer registers

avoiding traps during context-switching of the guests.

The hypervisor implements timekeeping within VMs, i.e., it can decide what to do

with the time frame that a VM was not executing. The guest OS’s time view is called virtual

time. The MIPS-VZ module has a special register to configure the time within VMs called

GTOffset. This register accepts a two’s complement value that will add or subtract the current

value of the counter in the guest-context. Thus, the hypervisor can hide the time frame that

the VMs were not executing. However, this implementation gives an absolute time view to

the guest OSs, i.e., they are aware of the lost time frames. Thus, the value written to the

GTOffset is zero, resulting in a virtual time equal to the absolute time.

5.4 Virtual Memory Management

The MIPS VZ module implements a second-stage TLB translation in the hardware.

Essentially, the hardware performs the translation from IPA to PA without software interven-

tion, as explained in Subsection 2.3.3. The hypervisor still manages its page table mapping

IPA to PA in a second-stage TLB. The guest OS is allowed to configure directly the first-stage

TLB. The resulting PA is generated by the hardware combining both TLBs. This mechanism

106

decreases the number of hypervisor exceptions drastically and also hypervisor complexity.

The M5150’s TLB supports a second-stage TLB translation and a range of page sizes from

1Kbyte to 256Mbytes. Our hypervisor takes advantage of large pages to avoid TLB misses

during IPA to PA translations. VMs are loaded into a contiguous memory region, and the IPA

translation is statically mapped to reserved TLB entries. For example, to allocate 32Mbytes

of physical address space to a VM, the hypervisor uses a dual-TLB entry (MIPS’ TLB allows

to map two pages by TLB entry) to map two consecutive 16Mbyte pages in the second-

stage TLB. Figure 5.4 depicts this scheme. The guest OS manages the first stage address

translation in exactly the same way as on a non-virtualized system. In the second-stage

translation, the hypervisor maps a virtual memory address range to a contiguous physical

address range.

Guest
OS

Guest
OS

.

.

.

Hypervisor

.

.

.

.

.

.

.

.

.

Virtual Address
(VA)

Intermediate physical
address (IPA)

Physical Address
(PA)

first-stage Translationsecond-stage Translation

Physical
contiguous

space

Physical
contiguous

space

Figure 5.4: Virtual memory organization view of our hypervisor.

Typical hypervisors for cloud computing implement a complete paging mechanism.

The hypervisor keeps a page table to map guest OSs to physical addresses. In these sys-

tems, the guest OS does not need to be entirely loaded into the main memory to be exe-

cuted. In fact, the hypervisor can implement an on-demand paging mechanism (swapping).

Such a scheme reduces the memory usage since pages that have not been used recently

can be stored in the swapping system. Additionally, it avoids the memory external fragmen-

tation problem because the VMs do not need to be allocated contiguously in the physical

memory. However, this approach has critical drawbacks for ESs. First of all, swapping sys-

tems and on-demand paging mechanisms impact real-time responsiveness. Additionally,

some ESs do not support swapping due to storage restrictions. Moreover, a complete virtual

107

memory management mechanism implies a more complex hypervisor and, consequently, a

larger footprint and more processing requirements.

A simplified virtual memory management mechanism brings some advantages to

ESs. First, it avoids second-stage TLB misses keeping the VM entirely mapped at the TLB

during its execution. Thus, RTOSs that do not implement virtual memory support will not

suffer additional delays and jitter due to hypervisor paging management. Secondly, some

ESs execute a limited number of virtual machines and some keep a static configuration

during their execution. For these systems, memory fragmentation due to contiguous guest

OS allocation is not a major problem. This implementation supports mapped devices di-

rectly, i.e., it can map non-continuous memory regions to a VM. Usually, such devices are

mapped to specific physical addresses requiring a special mapping for guest access. For

example, a VM may have mapped 32Mbytes of RAM to be loaded into the physical mem-

ory at 0x1000_0000. If the same guest requires access to a memory mapped peripheral

at physical address 0x1F00_0800 the hypervisor must configure a second-stage TLB entry

to match this address. Finally, a VM requires, at least, one TLB-entry to be mapped at the

second-stage TLB, and an additional TLB-entry for each directly mapped peripheral. The

M5150 has 32 TLB-entries. If the number of TLB-entries needed to map all VMs and pe-

ripheral on a system exceeds 32 entries, the hypervisor must reconfigure the TLB on each

context-switching.

5.5 Interrupt Virtualization

The MIPS VZ module allows to map an interrupt source directly to a guest OS

avoiding hypervisor intervention. This mechanism is known as interrupt pass-through and it

allows one to support directly mapped devices. Therefore, it does not share devices between

guests, but allows a certain guest OS to have direct access. The main advantage of this

technique is low overhead, which is close to non-virtualized systems in terms of throughput

and latency. However, if an interrupt occurs during the execution of any other guest OS, the

hypervisor must decide between:

• keep the interrupt masked and delay its delivery or;

• intercept the interrupt and reschedule the guest OSs.

108

This allows the implementation of different policies for interrupt control. For ex-

ample, for low priority devices such as a serial port for a user console, the hypervisor may

choose to keep the interrupt masked while in the supervisor mode. Thus, the guest OS will

handle the interrupt only on its next execution (hypervisor scheduling quantum), resulting

in a relatively long delay. This requires a large buffer queue in hardware or hardware flow

control, otherwise, data may be lost. This arrangement is acceptable for low bandwidth, non

interactive devices. Devices with higher priority or higher bandwidth may require hypervisor

intervention to avoid long delays in the interrupt handling. To illustrate a typical scenario,

suppose that a Linux guest has a directly mapped Ethernet device. In this case, the hyper-

visor can keep the Ethernet interrupt unmasked to perform a context switch between guests

when a network packet is received and the Linux guest is not executing.

guest
1

guest
2

guest
3

guest
1

guest
2

guest
3

Source Interrupt
to guest 3

Interrupt Handle

time

(a) Interrupt delayed.

guest
2

guest
3

guest
1

guest
2

guest
3

Source Interrupt
to guest 3

guest 1

guest 3
Interrupt Handle

time

(b) Fast interrupt with recycled quantum.

guest
3

guest
2

guest
1

guest
2

guest
3

Source Interrupt
to guest 3

guest 1

guest 3
Interrupt Handle

shorter
quantum

time

(c) Fast interrupt with reset quantum.

Figure 5.5: Quantum scheduler scheme for interrupt delivery.

Figure 5.5 depicts three guest OSs being scheduled in a round-robin policy with

the three different quantum schemes for interrupt handling. Figure 5.5(a) shows an interrupt

targeted to the guest OS 3 being asserted during the execution of the guest OS 1. Without

a proper hypervisor policy, the interrupt delivery will be delayed until the execution of the

guest OS 3. In fact, the overhead is similar to a non-virtualized system since there is no

hypervisor intervention. However, this causes a long delay to deliver the interrupt. This

implementation was designed to use the interrupt pass-through mechanism, which allows for

the coexistence of general-purpose OSs and RTOSs with minimal interrupt delivery delay.

First, we studied two different schemes regarding the use of the scheduler quantum: recycle

quantum and reset quantum. Figure 5.5(b) shows a fast interrupt delivery approach, causing

109

the preemption of the current guest OS and the dispatch of the guest which will execute

during the time remaining in the same quantum. In Figure 5.5(c), the current quantum is

shortened, and the dispatched guest will execute during an entire new quantum. Chapter

6.6 presents the results and discussion about the implications of these different approaches.

Independently of the quantum scheme adopted, our hypervisor accepts a set of

rules to describe the behavior to address different interrupt sources. This set of rules is

defined at design time. For each guest OS, the designers define which interrupts are directly

mapped and, if an interrupt can induce the preemption of the current guest OS. Additionally,

a higher priority guest OS can be marked to never be preempted by the hypervisor during

its scheduler quantum. Table 5.2 shows a possible configuration for three guest OSs. Guest

1 has the timer and serial 1 interrupts directly mapped. The column Root Int describes

which interrupts will trigger the hypervisor when the guest is not executing. In this case, the

hypervisor will intercept serial 1, dispatching Guest 1. Guest 2 has the timer and serial 2

interrupt sources directly mapped. The hypervisor will intercept serial 2 interrupts when the

guest is not executing only if the current guest is marked to be preempted. In the example,

the hypervisor will preempt guest Linux 1 to deliver network interrupts to guest 2, but the

same interrupts will be delayed if the guest 1 is executing. Thus, a high priority guest OS

cannot be preempted by events from other guests, but only by the hypervisor scheduler.

Our hypervisor provides a strong temporal isolation between guests, which is essential in

ES virtualization if predictability of the RTOSs is a major concern. In addition, the flexibility

of this approach allows the system to be configured for specific applications. Finally, our

hypervisor always keeps the guest timer interrupt directly mapped, since it avoids hypervisor

intervention during guest scheduling.

Table 5.2: Example of a set of interrupt rules for a system configured with three guest OSs.

Rules
Guests Direct Mapped Interrupts Root Int Preempt
Guest 1 Timer, Serial 1 Serial 1 No
Guest 2 Timer, Serial 2 Serial 2 Yes
Guest 3 Timer, Network Network Yes

110

5.5.1 Virtual Interrupt

The M5150 processor core supports an interrupt injection mechanism called virtual

interrupt. Virtual interrupts are software generated and used when the hypervisor needs to

inject interrupts in the guest OSs. Our hypervisor implements a secure inter-VM message

passing mechanism described in Section 5.6 based on para-virtualization and virtual inter-

rupt injection.

5.6 Inter-VM Communication

As explained in Subsection 4.2.4, the proposed virtualization model does not define

a communication mechanism. However, it defines a hypercall interface for communication

among VMs. Thus, this implementation adopts a message passing mechanism based on

para-virtualization. The hypervisor uses the VM identification number to route the mes-

sages among the VMs. The hypervisor requires the address, size and ID destination to

route a message, which are discovered during the hypercall. Thus, the hypervisor does not

make any assumptions about the message formatting; this is entirely the responsibility of the

communicating guest OSs. For example, if a multi-task guest OS needs to demultiplex [77]

incoming messages among different tasks, it may add a header to the message indicating

the origin and destination task id. In this case, different guest OSs must agree about the

header format.

guest OS 1

guest OS 2

ring
buffer

ring
buffer

VCPU 1 VCPU 2

HCALL_IPC_SEND_MSG

Sender
Buffer

Receiver
Buffer

virtual
interrupt

HCALL_IPC_RECV_MSG

Hellfire Hypervisor's Kernel

2

13

Figure 5.6: Example of inter-VM communication involving two guests.

111

Each VCPU implements its incoming message queue as a circular buffer, stati-

cally allocated for performance purposes. A message targeting a determined VCPU will be

copied to its queue, and the hypervisor will insert a virtual interrupt to the VCPU. The next

time that the VCPU is executed it will handle the virtual interrupt and call the hypercall to

retrieve the message. Figure 5.6 describes the hypervisor behavior while redirecting mes-

sages between guests. The guest OS 2 invokes the HCALL_IPC_SEND_MSG hypercall (1)

causing a message copy from the guest’s buffer to the ring buffer of the VCPU 1. After, the

hypervisor injects a virtual interrupt (2) in the VCPU 1. In the next execution, the guest OS 1

will answer to the interrupt and executes the HCALL_IPC_RECV_MSG hypercall. Thus, the

hypervisor will copy the message from the ring buffer to the target buffer (3).

5.7 Engineering Effort to Support a Guest OS

Due to the full-virtualization feature, to port a new guest OS to the Hellfire Hyper-

visor does not require any modification of the guest OS’s kernel. However, it is important to

highlight that the OS must be ported to the target platform. Thus, it must be able to execute

natively on the hardware platform. To port an OS to a new processor or platform is a different

job, and it is not necessarily related to virtualization. Thus, the designers must know some

details about the memory mapping and platform resources required by the target OS. A

guest OS requires specific memory regions, and it may depend on platform resources such

as timer counters or other sources of interrupts. The hypervisor allows one to describe the

memory arrangement for each guest OS at design time. This description consists of map-

ping from IPA to PA (see Subsection 2.3.3) addresses that are written to the second-stage

TLB by the hypervisor. The designers must choose the amount of main memory available to

the guest OS based on the application and OS requirements. For example, 16MB of DRAM

are enough to execute a minimal Linux distribution, while 64KB of DRAM are sufficient for

a Hellfire OS guest with several tasks. Next, the designers must choose a contiguous area

of physical memory to allocate to the guest OS. Additionally, the designers must determine

which interrupts and peripherals will be directly mapped to the guest OS. Again, the arrange-

ment between the source of interrupts and target guest OSs is described in a data structure

at design time. In any case, the timer interrupt must at least be mapped to the guest OS,

112

since this implementation does not provide timer emulation, i.e., each guest OS must receive

its timer interrupts directly. Table 5.2 shows how the interrupt mapping can be described.

Table 5.3: Example of memory mapping for a Linux and a HellfireOS guests.

Addresses
VA IPA PA

0x8000_0000 0x0000_0000 0x1000_0000Linux 0xBF00_0000 0x1F00_0000 0x1F00_0000
0x8000_0000 0x0000_0000 0x1200_0000HellfireOS 0xBF00_0000 0x1F00_0000 0x1F00_0000

Table 5.3 shows a valid memory mapping for a Linux and Hellfire OS guest. Both

OSs are compiled to execute at the 0x8000_0000 VA. Additionally, each OS require ac-

cess to peripherals. Thus, a 4KB page is mapped at 0xBF00_0000, where the peripher-

als mapping starts in the SEAD-3 development board (see Section 6.1). Note that each

guest requires, at least two TLB entries. The addresses 0x8000_0000 and 0xA000_0000

(including 0xBF00_0000) correspond to the Kseg0 and Kseg1 memory segments, respec-

tively, as shown in Figure 5.1. These segments are fixed mapped and correspond to the

0x0000_0000 physical address. However, when implementing the MIPS-VZ module, these

addresses become IPA, and the hypervisor must map them to the PA. The PA column shows

the 0x1000_0000 and 0x1200_0000 addresses highlighted since they correspond to the

physical addresses where the guests are located in the memory. Additionally, for peripheral

mapping the IPA and PA are the same because the hypervisor keeps the original addresses

where the guest OSs expect to find the peripherals.

5.7.1 Linux and Hellfire OSs as Guests

Most of the work to port an OS to the Hellfire Hypervisor is described in Tables 5.2

and 5.3. However, some details must still be explained. Current Linux releases do not use

periodic timer interrupts. In fact, when the OS is idle, it programs the timer interrupt to the

next event, even if it will take several scheduler quanta, and executes the wait instruction.

This instruction will put the processor in the power saving mode. The processor comes up

once an interrupt arrives. However, wait is a privileged instruction that must be emulated

by the hypervisor. Emulating this instruction means to check when the next OS timer inter-

rupt is programmed to happen and to program an event in the hypervisor to insert a virtual

113

interrupt in the guest. However, the current implementation does not support emulation of

this instruction. Thus, the Linux kernel was configured to use the periodic timer interrupt

technique. Note that this is not an OS modification, since it was not needed to write kernel

patches. Instead, both ways to use the timer interrupts are kernel features and they can be

selected during kernel initialization. Finally, modifications were made to the Linux kernel to

improve its performance once executed as a guest. This is better explained in Section 6.3.

Hellfire OS has fewer restrictions than Linux when virtualized since it is a simpler

operating system. However, an initial port to the M5150 processor had to be done before it

was virtualized. Once virtualized, para-virtualized communication drivers were then imple-

mented to allow inter-VM communication.

5.8 Current Hypervisor Restrictions

Similar to any other implementation based on a theoretical model, the proposed

hypervisor faces some limitations. The first limitation is that the M5150 is a single-core pro-

cessor. The model proposes to support homogeneous multicore processors. The decision

for this processor core was based on availability. The M5150 was one of the first MIPS pro-

cessors, released in early 2013, implementing the MIPS-VZ technology. Additionally, it was

the first MIPS core supporting MIPS-VZ module available to the GSE group. As a single-

core processor, mutex or spinlocks are not required in the hypervisor since there are no

concurrent executions on its kernel. A consequence is a simpler hypervisor kernel. Finally,

it is important to highlight that this is a limitation imposed by the hardware platform that can

be overcome when multicore processors become available.

Despite the overhead imposed by share devices, they are important in different sit-

uations. Because many guest OSs may require communication with the external world, the

only solution is to implement a switching layer at the hypervisor level and para-virtualized

device drivers to the VMs. The current stage of this implementation does not support any

shared device, e.g. Ethernet. However, the implementation of a shared device is a matter

of engineering effort since the para-virtualized interface between guest OSs and the hyper-

visor is already supported for inter-VM communication. The optimization and techniques to

support shared devices is a future work.

114

The inter-VM communication implemented as a message passing mechanism is a

secure and effective communication channel. However, as shown in Section 6.7, it imposes

an excessive overhead to the system. Significant improvements can be achieved using a

shared memory communication mechanism that is not available at this moment.

The RT-VM concept provides strong temporal isolation among VMs. Additionally,

it avoids the hierarchical scheduling problem. A restriction of the RT-VM is that it does not

provide a compatible software environment for legacy software libraries. This means, any

implementation must be build from scratch, impacting time-to-market and costs. However,

this is a model restriction since it does not provide any tool or resource to avoid the problem.

A practical implementation may avoid this problem porting a RTOS to execute as a guest

in the RT-VM with its scheduler disabled, consequently, executing just one task. Thus, the

application can use the RTOS’s legacy libraries, but without concurrent tasks.

The Hellfire Hypervisor was built from scratch avoiding any proprietary or open-

source external library which makes it the propriety of the GSE group. However, this results

in an important drawback: all engineering efforts must be from the university group. Differ-

ent from several other open-source hypervisors those count on contributions from different

groups, the Hellfire Hypervisor is entirely the responsibility of the GSE group. As a result,

the current implementation only supports Linux/MIPS and Hellfire RTOS guests. Addition-

ally, there are limitations caused by the lack of engineering efforts because of the small

number of engineers working on the project. However, the Hellfire Hypervisor is planned to

be released as an open-source software in early 2016.

5.9 Final Considerations

An important question about theoretical models is how practical is it for them to

be implemented on a hardware/software platform. This implementation demonstrated that

the model can be implemented with relatively simple algorithms and data structures help to

keep a small footprint. A factor that contributed to the simplification of the hypervisor was the

M5150’s hardware-assisted virtualization, especially the support for memory and MIPS CP0

virtualization. The footprint and performance results are analyzed in Chapter 6. The only

feature not implemented was the multi-core support because the target processor is single-

core. The absence of multi-core support simplified the hypervisor’s kernel because it avoided

115

the need for mutex or spinlocks. Other restrictions, like the lack of shared devices, concerns

to the limited time and number of engineers working on the project, which can be overcome

with more engineering effort. It is fair to conclude that the presented implementation is a

suitable representation of the virtualization model proposed in the Chapter 4.

116

117

6. HYPERVISOR EVALUATION AND PRACTICAL RESULTS

This chapter is dedicated to the evaluation of the Hellfire Hypervisor. The chapter

is composed of a sequence of experiments that show the practical results for different hyper-

visor aspects. When possible, the results are compared to other hypervisors. Section 6.1

describes the SEAD-3 development board used for the hypervisor deployment. Section 6.2

shows the hypervisor memory footprint. Section 6.3 describes the Linux/MIPS port to the

hypervisor and a modification for better performance. Section 6.4 describes the overhead

impact of the virtualization layer on the Linux/MIPS. Section 6.5 analyses the overhead im-

pact of the hypervisor on the HellfireOS. Section 6.6 evaluates the proposed fast interrupt

delivery mechanism. Section 6.7 shows the results of the inter-VM communication mech-

anism. Section 6.8 describes two experiments to show the effectiveness of the real-time

services. Finally, Section 6.9 presents the final considerations of this chapter.

6.1 SEAD-3 Development Board

The SEAD-3 development platform board [50] was used to validate and conduct

performance tests. It supports MIPS processors allowing the user to evaluate the cores

in a FPGA environment. The board can be used for performance benchmarking and soft-

ware development. It is configured with the M5150 processor core running at 50MHz and

512Mbytes of main memory. Additionally, it has several peripherals including a Ethernet

network device, two serial ports and a USB.

6.2 Hypervisor Memory Footprint

The memory footprint is the amount of main memory that a software occupies while

executing. Similar to OSs, the hypervisor footprint must be as conservative as possible. The

memory required by a hypervisor to manage VMs results in overhead. This is especially

critical when targeting embedded virtualization. Additionally, virtualization has been applied

to the IoT field, where the target devices have severe memory limitations.

118

Table 6.1 shows the size of the hypervisor’s segments. The executable code or text

segment requires 35,008 bytes of memory. A read-only data segment needs 2,300 bytes.

The data segment (global variables) is only 976 bytes. The amount of memory reserved

for the stack is 2,048 bytes. Finally, the memory segment reserved for dynamic allocation

(heap) is 20,480 bytes. Thus, the hypervisor footprint during its execution is 60,812 bytes.

However, the heap size requirement may vary depending on the application. The VM and

VCPU data structures allocation happen dynamically during the hypervisor initialization, as

explained in the Subsection 5.2.1. The data structure to represent a VM requires 56 bytes

of the heap. The VCPU data structure varies depending on the inter-VM communication

requirements (see Subsection 5.2.1). If inter-VM communication is not required for a vir-

tualized system, the VCPU data structure will only need 780 bytes. Otherwise, the space

occupied by the message queue will be added to the total amount required by the data struc-

ture. For example, a VCPU compiled to support a queue for five messages with 128 bytes

each will result in 1460 bytes. After the initialization, heap allocations are no longer required.

The maximum number of VMs allowed by the processor’s hardware is 7. Thus, a virtualized

system executing 7 VMs with a VCPU attached to each one will require 10,612 bytes of the

heap.

Table 6.1: Size of the hypervisor’s segments. The sum of all segments is the footprint of the
hypervisor during its execution.

Segment Size (bytes)

text 35,008
read-only data 2,300
data 976
stack 2,048
heap 20,480
footprint 60,812

The Hellfire Hypervisor presents an intermediate footprint between Xtratum and

OKL4 with 60,812 bytes, as can be seen in Table 3.3. Footprint comparison with SPUMONE

is not possible because its total footprint amount is unknown. With a few tenths of kilobytes,

this hypervisor implementation is acceptable to be used in IoT devices.

119

6.3 Linux Port Experience

Linux/MIPS is the port of Linux for the MIPS architecture. The kernel sources are

maintained by the open source community with the support of a few companies, such as

Imagination1. The community is doing great work to keep the Linux/MIPS updated with the

newest mainstream kernel version. Thus, we worked with the Linux kernel release 4.0.0,

which already had proper support for the SEAD-3 platform board.

Virtualization provides a subset of the all hardware resources to a guest OS. In

this case, the network card, a serial port and a small amount of the main memory for the

Linux guest was reserved while the processor was shared with one or more RTOSs. The

current release of the Hellfire Hypervisor does not support the sharing of the network or

serial port among guest OSs. To begin with, the implementation was focused on exploring

assisted virtualization benefits. However, a para-virtualized device driver was implemented

to the Linux guest for inter-VM communication purposes. It is important to highlight that the

para-virtualized driver is intended for inter-VM communication only and is not required for

Linux virtualization. Thus, the fully-virtualized hypervisor supports Linux without any kernel

modification. Additionally, the development was focused on avoiding hypervisor interven-

tions during Linux guest execution as much as possible. Thus, it took advantage of the

configurable privilege access to the MIPS VZ guest coprocessor 0 (GCP0). The M5150 pro-

cessor allows the designer to configure privileged access to different instructions and GCP0

subsets. The designers can choose fewer hypervisor interventions, consequently less con-

trol over the processor hardware. Or they can opt for more hypervisor interventions which

gives them better hardware control. Yet, some virtualized systems require more accurate

hardware control, e.g., when guest OSs wish to configure different cache algorithms. In this

case, the hypervisor will keep the cache instructions privileged and control the cache oper-

ation. This hypervisor implementation allows for complete access to the GCP0 during Linux

execution. However, some registers or specific bits of the registers are always privileged.

For example, the reduced power mode bit in the status register will always trap the hypervi-

sor in guest write attempts. Another example is the processor identification (PID) register.

When the guest OS is trying to identify the processor, the hypervisor can return a different

1https://imgtec.com/

120

processor identification. For example, in the M5150 processor the hypervisor can return the

4Kc processor identification limiting the guest to a compatible processor subset.

Table 6.2: Number of guest exceptions in the original and the modified Linux/MIPS guest
during the boot.

Kernel
Original Modified

of exceptions 1476000 6

The number of guest exceptions generated during the Linux kernel boot process

was determined. However, even with the maximum level of privilege, the kernel was still

generating an excessive number of exceptions due to GCP0 access to privileged registers.

In fact, the Linux/MIPS kernel performs the pooling of the PID register, which is always

a privileged GCP0 register in the MIPS VZ specification. In the MIPS R4000/R4400 pro-

cessors [30] before version 5.0, there is a hardware bug that avoids generating the timer

interrupt if the counter register is read at the exact moment that it is matching the compare

register. Thus, the Linux/MIPS always checks the PID to avoid reads to the counter reg-

ister on R4000/R4400 processors. In the MIPS architecture, it is easy to obtain the PID

performing a mfc0 instruction. However, a virtualized Linux/MIPS instance will suffer a huge

overhead impact. Thus, it was necessary to modify the Linux/MIPS source code to avoid the

frequent reads of the PID register. This modification is restricted to three punctual routines:

can_use_mips_counter(), get_cycles() and random_get_entropy(). Because the kernel al-

ready keeps the processor identification number obtained in the early boot stages in a data

structure, the GCP0 reads were substituted by reads in memory. This punctual modification

resulted in an important reduction of the number of guest exceptions, as shown in Table

6.2 . It is important to highlight that such a modification does not imply para-virtualization,

since the privileged GCP0 read was not substituted by a hypercall. Instead, the processor

identification number is obtained from a privileged read to the GCP0 (that is emulated by the

hypervisor), but the subsequent reads were substituted by a memory access. The remain-

ing 6 guest exceptions are read/write to GCP0 privileged registers including the PID register

itself.

121

6.4 Overhead Impact on Linux

The virtualization overhead caused by the hypervisor for CPU-bound and I/O-bound

applications in the Linux guest was analyzed. Experiments were also conducted for different

hypervisor scheduler time slots in order to better understand the influence of our hypervisor

on guest performance. Thus, the non-virtualized system was compared to virtualized perfor-

mance with different scheduler quanta: 10, 20 and 30 milliseconds (ms). For all experiments,

only one Linux guest was used, because we were focused on obtaining the direct hypervisor

influence over the performance. Additionally, Linux was executing with 32Mbytes of main

memory in all experiments. Furthermore, the same Linux kernel binary file was utilized for

virtualized and native executions since the Hellfire Hypervisor performs full-virtualization.

6.4.1 CPU-bound Benchmarks

UnixBench is a benchmark used to evaluate performance on Unix-Like systems

providing indicators for different system aspects. According to the byte-unixbench2 web-

site, UnixBench development started in 1983 at Monash University, but many people have

updated it over the years. For the best interpretation of the results, the benchmarks were

divided into two different groups: user-land and intensive syscall applications. The user-

land group is composed of synthetic applications that perform CPU-intensive computation in

user-space, i.e., they do not require context-switching between the user and kernel-space.

The intensive syscall group consists of synthetic applications that use syscalls, requiring

context-switching between the user and kernel-space. However, these benchmarks do not

require context-switching between the guest and hypervisor. Thus, the only intervention

during guest execution is the hypervisor’s scheduler interrupt timer.

Each benchmark was performed 10,000 times to determine the average execution

time. Figures 6.1 and 6.2 shows the normalized performance results for the user-land and

syscall application groups. As expected, the overhead increased slightly with a smaller

quantum due the increasing hypervisor intervention. In the user-land group, dhry2 was the

most affected application with a performance penalty of 5.57% when compared to a 10ms

2https://code.google.com/p/byte-unixbench/

122

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

10ms 20ms 30ms

N
o
rm

al
iz

ed
 o

v
er

h
ea

d

Scheduler quantum (miliseconds)

dhry2reg
dhry2
hanoi
float

int
long

double
short

register

-5.19%

-4.48%

-4.16%

-5.57%

-2.69%

-4.61%

-2.21%

-2.14%

-1.53%

-3.84%

Figure 6.1: Performance overhead for user-land applications relative to non-virtualized per-
formance.

scheduler quantum. Additionally, most of the applications suffered an overhead of less than

3% with a 30ms scheduler quantum. The syscall group suffered a greater performance

impact since the benchmark force context-switching between the user and kernel-space

in the Linux guest. In the worst case, the syscall close resulted in a penalty of 15.25%

performance loss with a 10ms scheduler quantum. However, for the majority of the cases

the overhead was lower than 9%.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

10 20 30

N
o
rm

al
iz

ed
 o

v
er

h
ea

d

Scheduler quantum (miliseconds)

close
getpid

pipe
spawn

context1

-15.25%

-14.04%

-12.92%

-2.99%

-2.28%

-0.35%

-11.52%

-9.92%

-8.26%

-1.3%
-1.07%

-9.00%

-8.06%
-7.66%

Figure 6.2: Performance overhead for syscall applications relative to non-virtualized perfor-
mance.

123

6.4.2 IO-bound Benchmark

The Hellfire Hypervisor supports the SEAD-3’s network device directly mapped to

the Linux guest allowing it to receive network packages without any hypervisor intervention.

The Iperf tool was used to measure the network bandwidth between the SEAD-3 board and

a Linux host. Thus, it was possible to determine how our virtualization layer affects the I/O

performance of the network device when directly mapped. Iperf consists of a client/server

application originally developed by NLANR/DAST as a tool for measuring maximum TCP

and UDP bandwidth performance [27]. In this experiment, the Iperf server was executed

on a Linux host and the Iperf client on the SEAD-3 board. Thus, the Iperf TCP bandwidth

was measured for 1 minute for each experiment case. Figure 6.3 shows the results. The

throughput was 8.32 Mbits/second for the native Linux execution. With a 30 ms scheduler

quantum, the overhead was 1.84%. As expected, the overhead increased slightly with a

smaller quantum reaching 4.39% for a 10 ms quantum. Even with smaller quanta, the overall

results are optimistic and can be attributed to minimal hypervisor intervention.

 7.6

 7.7

 7.8

 7.9

 8

 8.1

 8.2

 8.3

 8.4

10 ms 20 ms 30 ms Native

M
b
it

s
/s

Bandwidth

-4.39%

-2.46%

-1.84%

Figure 6.3: Iperf bandwidth results for TCP protocol comparing native versus virtualized
execution with different hypervisor’s scheduler quantum.

6.5 Overhead Impact on HellfireOS

This section evaluates the virtualization overhead imposed to the Hellfire OS. The

HellfireOS’s kernel executes only in kernel mode. Thus, it does not perform memory isola-

124

tion between tasks because it does not implement memory management. However, the Hell-

fireOS can execute on small processors without MMU support. Two different benchmarks

were ported to the RTOS for evaluation purposes. The first algorithm was the adaptive differ-

ential pulse-code modulation (ADPCM) [21]. ADPCM is a technique to convert analog sound

to binary information. It is used for voice communication and sound storage. The second

was a data compression algorithm, where only compression is done in a buffer containing

totally random data. The implementation of this algorithms was obtained from the WCET

Project3, which keeps a large number of benchmark programs. Thus, the source-code was

ported to the HellfireOS’ APIs.

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

10ms 20ms 30ms

N
o
rm

al
iz

ed
 o

v
er

h
ea

d

Scheduler quantum (miliseconds)

adpcm
compress

-1.71%

-1.33%

-0.74%
-0.53%

-0.26%
-0.17%

Figure 6.4: Performance overhead for CPU intensive applications relative to non-virtualized
performance.

Both algorithms were performed natively and virtualized with hypervisor sched-

uler’s quantum of 10, 20 and 30ms. The average time for 10,000 executions for each al-

gorithm was obtained. Figure 6.4 shows the normalized results relative to non-virtualized

execution. The worst case overhead was 1.71% for the ADPCM algorithm executing with a

scheduler quantum of 10ms. The measured overhead is still smaller than the overhead for

Linux CPU-Bound applications (see Figure 6.1). Despite the HellfireOS to be a lightweight

RTOS requiring fewer computation resources, the set of processor resources saved during

context-switching is the same of the Linux. A possible explanation for the lower overhead in

the HellfireOS is cache effects since the code size impact over the processor’s cache was

not considered in this study. Linux has a larger code size than HellfireOS what can make

it more susceptible to cache effects when submitted to hypervisor interventions. However,
3http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

125

more research is necessary to determine the exact cause of the smaller overhead in the

HellfireOS benchmarks.

6.6 Interrupt Delivery Delay

This experiment was performed to test the effectiveness of the fast interrupt de-

livery mechanism as described in Section 5.5. Thus, the following experiments show how

the response delay of the OS’s interrupt handler is affected by the hypervisor interference

and how the proposed solution can improve overall system responsiveness. The virtualized

system setup consisted of a Linux guest with a variable number of concurrent VMs execut-

ing HellfireOS instances. The Ethernet device was directly mapped to the Linux guest. For

interrupt delay measurement, the Internet Control Message Protocol (ICMP) was used to

send echo request messages from an Intel Xeon server running Debian Linux 7.8 directly

connected to the SEAD-3 board. For all test cases, ICMP messages were sent at intervals of

50 milliseconds (20Hz) using the Linux ping application4. Each test case consisted of 10,000

echo request messages followed by their respective response messages (echo reply). Thus,

the round-trip time (RTT) [77] of the messages for network communication with the SEAD-3

board was determined. Delays in the Linux interrupt handler caused by the hypervisor im-

pacting directly in the RTT were expected. Finally, the average delay (x), standard deviation

(s), median (m) and the 95th percentile (pth) for the RTT of the messages were determined.

Results for the Linux/MIPS native (non-virtualized) execution can be viewed in Table 6.3.

Table 6.4 shows the results of all experiments performed using virtualization. Lines three

and five depict the behavior of the recycled quantum and reset quantum policies with half of

the VMs marked as non-preemptable. Figure 6.5 shows the corresponding histogram for the

RTT of native Linux execution messages. The data sets used to generate the results of the

lines 1 to 5 of the Table 6.4 are represented in the histograms of the Figures 6.6, 6.7, 6.8,

6.9 and 6.10.

Once the native response time was obtained, the results were compared to virtu-

alized instances of the Linux/MIPS. For each test case, the guest Linux/MIPS shared the

processor with VCPUs in different system configurations: 2 VMs (one Linux/MIPS and one

BE-VCPU), 4 VMs (one Linux/MIPS and three BE-VCPUs) and 6 VMs (one Linux/MIPS

4http://linux.die.net/man/8/ping

126

Table
6.3:A

verage
(x),standard

deviation
(s),m

edian
(m

)and
95

th
percentile

(p
th)forR

TT
ofthe

m
essages

in
m

illiseconds
forLinux

native
execution.

S
trategy

x
s

m
p

th

Linux
interruptpolice

1.073
0.107

1.05
1.24

Table
6.4:

A
verage

(x),standard
deviation

(s),m
edian

(m
)

and
95

th
percentile

(p
th)

for
R

TT
ofthe

m
essages

in
m

illiseconds
for

virtualized
Linux

execution.

#
S

trategy
2

V
M

s
4

V
M

s
6

V
M

s
x

s
m

p
th

x
s

m
p

th
x

s
m

p
th

1
W

ithoutinterruptpolice
9.35

10.21
2.73

29.5
30.7

29.6
86.4

66.29
66.29

49.40
66.90

145
2

R
ecycled

quantum
(R

.Q
.)

1.87
4.09

1.2
1.83

12.05
1.56

5.52
6.90

6.90
21.04

1.44
50.4

3
R

.Q
.w

ith
non-preem

pt.V
C

P
U

9.28
10.16

2.70
29.1

12.90
1.66

29.1
9.72

9.72
19.83

1.68
31.5

4
R

esetquantum
(R

es.Q
.)

1.29
0.81

1.11
1.69

2.49
1.55

1.85
2.50

2.50
10.39

1.22
1.82

5
R

es.Q
.w

ith
non-preem

pt.V
C

P
U

2.86
3.17

1.1
9.89

8.61
8.19

2.07
21.1

10.49
12.32

1.71
30.7

127

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.7 1.36 2.02 2.68 3.34 4

F
re

q
u

en
cy

Time (ms)

Figure 6.5: Histogram for RTT of the messages for native execution of the Linux/MIPS.

and five BE-VCPUs). Each BE-VCPU was performing the HellfireOS as a guest during the

tests. For each configuration, tests were performed without any specific policy, consequently

increasing the response delay. Line one of the Table 6.4 shows that the delay growth is pro-

portional to the increasing number of concurrent VMs. Figures 6.6(a), 6.6(b) and 6.6(c) show

the corresponding histogram to the RTT of the messages to the configuration of 2, 4 and 6

VMs, respectively. Observe the increased horizontal scale of the histogram in the figures.

These results show that the hypervisor significantly affected the response time when com-

pared to native results. This was expected since the VMs were scheduled in a round-robin

algorithm, and an interrupt on the Ethernet device must wait for the next Linux/MIPS execu-

tion. Moreover, the hypervisor scheduler time quantum is 30 milliseconds. For example, in a

system configuration of 4 VMs the delay to handle an interrupt can be up to 90 milliseconds

if the guest Linux/MIPS is the last in the round-robin queue.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.7 7.36 14.02 20.68 27.34 34

F
re

q
u
en

cy

Time (ms)

(a) Two VMs.

 0

 50

 100

 150

 200

 250

 300

 350

 0.7 18.76 36.82 54.88 72.94 91

F
re

q
u
en

cy

Time (ms)

(b) Four VMs.

 0

 50

 100

 150

 200

 250

 300

 0.7 29.56 58.42 87.28 116.14 145

F
re

q
u
en

cy

Time (ms)

(c) Six VMs.

Figure 6.6: Histogram for RTT of the messages without policy.

After determining how the hypervisor affects the interrupt response time, two dif-

ferent policies were tested to discover which one gives the best approximation to the native

response time. Line two of Table 6.4 (Recycled quantum) shows the results when applied

the fast interrupt policy together with the recycled quantum scheme (as explained in Figure

128

 0

 200

 400

 600

 800

 1000

 1200

 0.7 7.56 14.42 21.28 28.14 35

F
re

q
u
en

cy

Time (ms)

(a) Two VMs.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0.7 20.36 40.02 59.68 79.34 99

F
re

q
u
en

cy

Time (ms)

(b) Four VMs.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.7 24.96 49.22 73.48 97.74 122

F
re

q
u
en

cy

Time (ms)

(c) Six VMs.

Figure 6.7: Histogram for RTT of the messages with fast interrupt policy and quantum
recycling.

5.5(b)). This technique improves the overall results. However, the recycled quantum mecha-

nism has a drawback. If the remaining of quantum time is not sufficient to finish the interrupt

handler routine, it will be finished only in the next guest’s execution. Figures 6.7(a), 6.7(b)

and 6.7(c) depict the corresponding histogram of the RTT of the messages for the config-

uration of 2, 4 and 6 VMs, respectively. Most interrupts have a fast response as shown by

the peak near 0.7 milliseconds. For such cases, the interrupt assertion happened during the

guest execution or the remaining quantum time was enough for the interrupt handler to finish

its job. However, some messages experience a long delay and the response time is close

to multiples of 30 milliseconds. Thus, the remaining quantum time was not enough and the

interrupt handler only finished in the next execution.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.7 1.36 2.02 2.68 3.34 4

F
re

q
u
en

cy

Time (ms)

(a) Two VMs.

 0

 100

 200

 300

 400

 500

 600

 700

 0.7 1.36 2.02 2.68 3.34 4

F
re

q
u
en

cy

Time (ms)

(b) Four VMs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.7 1.36 2.02 2.68 3.34 4

F
re

q
u
en

cy

Time (ms)

(c) Six VMs.

Figure 6.8: Histogram for RTT of the messages with fast interrupt policy and quantum reset.

Line four of Table 6.4 (Reset quantum) shows the results of the fast interrupt policy

with a reset quantum scheme. For 2 VM configurations, the average and standard deviation

delays are close to native execution. In the 4 and 6 VM system configurations, the results

are slightly higher but better than results for the recycled quantum scheme. Figures 6.8(a),

6.8(b) and 6.8(c) show the corresponding histogram of the RTT of the messages for the

configuration of 2, 4 and 6 VMs, respectively. Observe that the horizontal scale in the figure

129

is similar to native execution. These histograms show two peaks. The peak for delays under

one millisecond represents interrupt assertions that happened when the target guest OS

was executing. The second peak for delays greater than one millisecond represents interrupt

assertions that caused a context switch because the target guest was not executing.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.7 6.56 12.42 18.28 24.14 30

F
re

q
u
en

cy

Time (ms)

(a) Two VMs, one non-preempt.

 0

 100

 200

 300

 400

 500

 600

 0.7 19.16 37.62 56.08 74.54 93

F
re

q
u
en

cy

Time (ms)

(b) Four VMs, two non-preempt.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.7 23.56 46.42 69.28 92.14 115

F
re

q
u
en

cy

Time (ms)

(c) Six VMs, three non-preempt.

Figure 6.9: Histogram for RTT of the messages with fast interrupt policy and quantum
recycling with non-preemptable VCPUs.

Finally, lines 3 (R.Q. with non-preempt. RTOS) and 5 (Res.Q. with non-preempt.

RTOS) of Table 6.4 show the results for recycled quantum and reset quantum schemes in

the presence of non-preemptive guests. For each configuration, half of the guests were

marked as non-preemptive. The presence of non-preemptive guests increased the average

and standard deviation delays, but the results are better than the approach without any

interrupt policy. Figures 6.9(b), 6.9(c) and 6.9(c) show the histograms for recycled quantum

with non-preemptive guests for 2, 4 and 6 VMs. Figures 6.10(b), 6.10(c) and 6.10(c) show

the histograms for reset quantum with non-preemptive guests for 2, 4 and 6 VMs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.7 3.16 5.62 8.08 10.54 13

F
re

q
u
en

cy

Time (ms)

(a) Two VMs, one non-preempt.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.7 5.76 10.82 15.88 20.94 26

F
re

q
u
en

cy

Time (ms)

(b) Four VMs, two non-preempt.

 0

 50

 100

 150

 200

 250

 0.7 7.16 13.62 20.08 26.54 33

F
re

q
u
en

cy

Time (ms)

(c) Six VMs, three non-preempt.

Figure 6.10: Histogram for RTT of the messages with fast interrupt policy and quantum
reset with non-preemptable VMs.

The reset quantum scheme associated with the fast interrupt policy presented bet-

ter results than the recycled quantum. However, this scheme may be disruptive for RTOSs

with strict timing constraints and can not be combined with the EDF scheduler algorithm.

130

The EDF implemented computes the next time slot execution of the RT-VCPUs based on

the number of quanta performed. The reset quantum scheme breaks the correspondence

between time and the completed number of quanta. The recycle quantum mechanism keeps

a substantial time isolation between guests. Thus, it must be used when predictability is

more important than low response time. Additionally, the fast interrupt policy allows for the

reduction of hypervisor interference for values close to non-virtualized systems in certain

configurations. Finally, the proposed mechanism is flexible and allows for customization of

the hypervisor for specific applications for any number of guest OSs. Section 6.8.2 describes

a scenario where the fast interrupt delivery policy is combined with RT-VCPUs.

6.7 Inter-VM Communication Response Time

In order to calculate the RTT of the messages to the inter-VM communication mech-

anism, it was implemented an echo server application, which replayed all messages re-

ceived, in the HellfireOS. A client application was implemented in the Linux to send 16, 32

and 64 byte messages after reading the server’s response. The measurement of the aver-

age RTT for 10,000 messages for each different size resulted in 59.90, 59.90 and 59.99ms

with a standard deviation of 0.71ms, 0.71ms and 0.69ms, respectively. An increase in the

message size from 16 to 64 bytes did not significantly impact the RTT. The imposed over-

head was caused by message copies from the sender’s buffer to the target VCPU and to

the receiver’s buffer. The message exchange mechanism caused an additional copy but al-

lowed the hypervisor to have better communication control, similar to pipes in Linux. Figure

6.11 depicts the histogram of the RTT’s distribution for 16, 32 and 64 byte messages. In

this experiment, we applied our fast interrupt delivery policy. Thus, once the Linux guest

sent a message, the hypervisor rescheduled the VMs to the target guest resulting in a faster

response and reducing the standard deviation.

6.8 Real-time Services Performance

This section depicts experiments related to real-time services. Thus, RT-VMs are

used to provide tasks performed by RT-VCPUs. Subsection 6.8.1 describes an experiment

131

 0

 20

 40

 60

 80

 100

 57 58 59 60 61 62

F
re

q
u

en
cy

Time (ms)

16 bytes size

 57 58 59 60 61 62

Time (ms)

32 bytes size

 57 58 59 60 61 62

Time (ms)

64 bytes size

Figure 6.11: RTT’s histograms for inter-VM communication using the Hellfire Hypervisor
communication mechanism.

to determine the real-time scheduler delay caused by the EDF implementation in a system

with an increasing number of RT-VCPUs. Subsection 6.8.2 determines how RT-VCPUs are

influenced by external system interrupts.

6.8.1 RT-VCPUs Execution Delay

It is important to determine how long an RT-VCPU takes to start its execution when

it is ready. The real-time scheduling involves the timer interrupt handling and the EDF algo-

rithm execution. As mentioned before, the scheduling process adds overhead to the system

and the time expended in this process is discounted from the RT-VCPU quantum. To under-

stand how an increasing number of RT-VCPUs affect their execution is important for further

improvements in the scheduler algorithm.

The system configuration for this experiment consisted of a HellfireOS guest re-

sponsible for starting and stopping the RT-VCPUs. The RT-VCPUs were managed by a

RT-VM. The number of RT-VCPUs in execution in the system were 1, 4 and 8. External

interrupts were masked during this experiment. The time needed for RT-VCPU scheduling

was determined by reading the counter register when entering the interrupt handler and

calculating the time spent to return to the execution of the VM.

Table 6.5 shows the average, standard deviation, median and the 95th percentile

after 10,000 scheduling rounds for each number for RT-VCPUs in microseconds. The cor-

responding histograms for the execution of the 1, 4 and 8 RT-VCPUs are shown in Figures

132

Table 6.5: Average (x), standard deviation (s), median (m) and 95th percentile (pth) for the
execution delay on the EDF scheduler in microseconds.

RT-VCPUs x s m pth

1 88.35 4.84 85 94
4 88.66 12.75 91.9 103.2
8 91.44 16.31 97.45 111

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 64 72 80 88 96 104

F
re

q
u
en

cy

Time (us)

(a) System with one RT-VCPU.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 64 72 80 88 96 104

F
re

q
u
en

cy

Time (us)

(b) System with four RT-VCPUs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 64 72 80 88 96 104

F
re

q
u
en

cy

Time (us)

(c) System with eight RT-VCPUs.

Figure 6.12: Histogram of the execution delay for RT-VCPUs in microseconds.

6.12(a), 6.12(b) and 6.12(c) The average time expended to schedule a RT-VCPU is less than

100 microseconds. When compared to a scheduler quantum of 30ms this represents only

0.003% of the quantum. However, the standard deviation and the 95th percentile increases

with a higher number of RT-VCPUs. This is caused by the EDF algorithm implementation

that has a complexity of O(n). Despite the increase in the response time to represent only

a few microseconds, this can be minimized with a predicable EDF implementation, like pro-

posed by [69].

6.8.2 Interrupt Handling Interference on RT-VCPUs

A sequence of four experiments were performed to show how the Hellfire Hyper-

visor can be configured to support real-time services while minimizing the interrupt delivery

delay on BE-VCPUs. Additionally, these tests determined how RT-VCPUs are influenced by

external system interrupts. For this, the extended real-time services and fast interrupt deliv-

ery capabilities were combined in the same virtualized system. The system configuration for

this experiment consisted of a Linux guest, a HellfireOS guest and a RT-VM. The Linux guest

was responsible for network communication with external devices because it was configured

with TCP/IP support and the Ethernet device was directly mapped to it. The HellfireOS was

responsible for managing the real-time services (start and stop). The RT-VM implemented

133

a real-time service to perform the ADPCM algorithm (see Subsection 6.5). When the algo-

rithm is encoding or decoding for sound reproduction purposes, it must keep a constant bit

rate to avoid sound glitches. Thus, the hypervisor must guarantee that concurrent events

will not affect the ADPCM execution.

Hellfire Hypervisor

Linux

BE-VCPU

HardwareEthernet

Device
Driver

Hellfire

para-virtual
drivers

BE-VCPU

RT-VM

 ADPCM

RT-VCPU

Figure 6.13: System configuration for the ADPCM execution.

On the RT-VM, the ADPCM algorithm was mapped to a RT-VCPU that is scheduled

by the EDF algorithm, as explained in Subsection 5.3.1. The real-time parameters of the RT-

VCPU were: deadline 10, period 10, and capacity 1. Thus, a tenth of the processor’s time is

reserved for the RT-VCPU. The remaining time is available to the BE-VCPUs responsible for

executing the Linux and HellfireOS guests. The final system configuration consisted of two

BE-VCPUs and 1 RT-VCPU. Figure 6.13 shows this arrangement. Similar to the experiment

shown in Section 6.6, the ping tool was used to generate echo request messages from a

host computer to the SEAD-3 board at a rate of 20Hz.

 0

 50

 100

 150

 200

 250

 300

 800 960 1120 1280 1440 1600

F
re

q
u
en

cy

Time (ms)

encoding
decoding

Figure 6.14: Histogram of encoding and decoding execution time for the ADPCM algorithm
without external interferences.

Experiment 1. The first experiment determined how much time the ADPCM al-

gorithm takes to encode and decode a data array. The algorithm was performed during

134

Table 6.6: Average (x), standard deviation (s), median (m), 95th percentile (pth), worst exe-
cution case (WEC) and best execution case (BEC) to ADPCM encoding and decoding and
the RTT of the messages for different system configurations in milliseconds.

System Conf. Test x s m pth WEC BEC

1 Execution time
Encoding 1366.58 134.21 1487 1487 1487 1217
Decoding 1068.94 133.1 1187 1188 1188 917
RTT 1.073 0.107 1.05 1.24 3.25 0.99

2 Non policy
Encoding 1375.27 133.16 1487 1488 1488 1216
Decoding 1082.17 148.63 1188 1188 1189 917
RTT 13.37 15.1 5.78 45.5 66.6 0.78

3 Fast policy - non-RT
Encoding 2004.25 546.48 2082 2705 2997 1217
Decoding 1505.45 497.15 1211 2390.1 2677 917
RTT 2.077 4.8 1.45 1.74 63.6 1.07

4 Fast Policy - RT
Encoding 1378.48 132.55 1487 1488 1490 1217
Decoding 1081.0 132.12 1188 1188 1188 917
RTT 3.60 7.26 1.48 20.81 65.8 1.05

1,000 encoding and decoding cycles and the time of each execution was recorded. Table

6.6 shows the numeric results for this experiment in line 1. Additionally, it was plotted in

the histogram shown in Figure 6.14. During this experiment, the RT-VCPU was performed

alone and all external interrupts were masked. Thus, obtaining the execution time without

the influence of other VCPUs or interrupts. The worst case execution time for encoding was

1,487 ms and 1,217 ms for decoding. Moreover, line one of Table 6.6 shows the RTT of

the messages for native Linux execution for comparison purposes with the upcoming exper-

iments.

Experiment 2. The second experiment showed the behavior of the ADPCM exe-

cution time and the RTT of the messages when the fast delivery policy was not used. This

is the simplest configuration, where all interrupts are postponed to the next execution of the

target VCPU. This scheme guarantees a temporal isolation to the RT-VCPU since interrupts

to other VMs do not preempt its execution. The histogram for 1,000 encoding and decoding

cycles is shown in Figure 6.15(a). Additionally, line 2 of the Table 6.6 shows the numeric re-

sults. It confirms that the ADPCM’s execution time was not affected by the external interrupts

since it is similar to the histogram in Figure 6.14. However, this scheme had an undesired

effect over the RTT of the messages: the average response time increased substantially.

Figure 6.15(b) is a histogram for 10,000 messages recorded during the experiment. The

histogram for the RTT of the messages for native Linux execution can be seen in Figure 6.5.

135

 0

 100

 200

 300

 400

 500

 600

 800 960 1120 1280 1440 1600

F
re

q
u

en
cy

Time (ms)

encoding
decoding

(a) Histogram of encoding and decoding time for the
ADPCM algorithm.

 0

 100

 200

 300

 400

 500

 0 12.2 24.4 36.6 48.8 61

F
re

q
u

en
cy

Time (ms)

(b) Histogram for RTT of the messages.

Figure 6.15: System response time without the fast interrupt deliver policy and a
preemptable RT-VM.

Experiment 3. The third experiment tried to minimize the RTT of the ICMP mes-

sages applying the fast interrupt delivery policy. However, the RT-VM was kept as preempt-

able for an evaluation of how system interrupts can intervene on the RT-VCPU’s execution.

Thus, both the RT-VCPU and the HellfireOS could be preempted for interrupts targeting the

Linux guest. Similar to the previous experiments, 1,000 ADPCM encoding and decoding cy-

cles and 10,000 messages RTT were recorded. Figure 6.16 shows the resulting histograms.

The numerical results can be seen in line 3 of Table 6.6.

 0

 50

 100

 150

 200

 250

 800 1270 1740 2210 2680 3150

F
re

q
u

en
cy

Time (ms)

encoding
decoding

(a) Histogram of encoding and decoding time for the
ADPCM algorithm.

 0

 100

 200

 300

 400

 500

 0 12.8 25.6 38.4 51.2 64

F
re

q
u

en
cy

Time (ms)

(b) Histogram for RTT of the messages.

Figure 6.16: System response time with the fast interrupt deliver policy and a preemptable
RT-VM.

Figure 6.16(b) and the numerical results show that the RTT of the messages im-

proved significantly. Most of the RTTs were near native execution (see Figure 6.5). However,

136

some RTTs suffered a long delay, around 31 ms and 61 ms. This is result of the fast interrupt

policy with recycled quantum. The recycled quantum was used to preserve the scheduling

time coherency to the EDF algorithm. Despite the reset quantum scheme resulting in an

improved interrupt response time, as shown in Section 6.6, it can not be used in combina-

tion with RT-VCPUs. Thus, the long delay is due to the insufficient time remaining in the

current quantum. Moreover, the interrupt handling finishes only on the next Linux guest exe-

cution. On the other hand, Figure 6.16(a) showed that ADPCM execution time was affected,

increasing significantly. The numerical results can be seen in line 3 of the Table 6.6.

Experiment 4. The fourth experiment consisted of combining the fast interrupt

delivery policy with a non-preemptable RT-VM. This system configuration provides the best

temporal isolation for RT-VCPUs while improving the response for external interrupts. This is

possible because the fast interrupt delivery policy preempts the VCPUs for faster response

time. However, the RT-VM is marked as non-preemptable resulting that its RT-VCPUs cannot

be preempted. This guarantees a tenth of the CPU to the RT-VCPU executing the ADPCM

algorithm.

 0

 100

 200

 300

 400

 500

 600

 700

 800 960 1120 1280 1440 1600

F
re

q
u

en
cy

Time (ms)

encoding
decoding

(a) Histogram of encoding and decoding time for the
ADPCM.

 0

 100

 200

 300

 400

 500

 0 12.6 25.2 37.8 50.4 63

F
re

q
u

en
cy

Time (ms)

(b) Histogram for the RTT of the messages.

Figure 6.17: System response time with the fast interrupt deliver policy and a
non-preemptable RT-VM.

Line 4 of Table 6.6 shows the numerical results for this experiment. The worst exe-

cution case to encoding and decoding the ADPCM algorithm is similar to the execution time

presented in line 1 (non external interference). Moreover, the histogram for the execution

time shown in Figure 6.17(a) is similar to the histogram in Figure 6.14. This shows the ef-

fectiveness of the temporal isolation provided by the hypervisor. In addition, the RTT of the

messages improved significantly. The histogram in Figure 6.17(b) shows that some RTTs

137

are spread between 0.7 and 31ms. This is caused by the RT-VCPU in the RT-VM. The ICMP

messages arrived during its execution are delayed until the end of the quantum. The peak

near 31ms and 61ms is due to the recycling quantum scheme, as explained before.

6.9 Final Considerations

This chapter studied the effectiveness of the hypervisor implementation. A se-

quence of experiments was performed in the SEAD-3 development board to evaluate differ-

ent aspects of the hypervisor. One important aspect discussed was the footprint. A direct

comparison with all other hypervisors studied is not possible because some of them do not

mention their footprint. However, the Hellfire Hypervisor’s footprint is acceptable for IoT de-

vices, and is similar to the smallest hypervisors with a known footprint. The overhead impact

on Linux was determined using benchmarks for virtualized and non-virtualized executions.

User-land applications suffered lower impact than applications that use syscalls intensively.

However, the overall overhead is small and comparable to other hypervisors. Moreover,

the hypervisors present a low overhead for directly mapped devices. The fast interrupt de-

livery mechanism was evaluated showing the effectiveness of this policy. This experiment

showed that the hardware-assisted virtualization can be used to improve responsiveness

while keeping the simplicity of the implementation. The inter-VM communication mecha-

nism presented a considerable overhead caused by the data copies between the VMs and

the hypervisor. However, the usage of the hypervisor as a communication arbiter improves

the security. Also, shared memory can be used to implement inter-VM communication with

lower overhead. Finally, the real-time services were evaluated. The average time expended

for RT-VCPU scheduling is lower than 100us in a system with 8 VCPUs. The temporal iso-

lation was tested showing that the fast interrupt policy with non-preemptable RT-VMs is an

effective method to combine real-time tasks and fast interrupt handling. The overall results

are promising and prove that the hypervisor implementation is efficient in performance and

responsiveness.

138

139

7. CONCLUSIONS

This dissertation started by defining the research goal. The objective was to verify

hypothesis that is possible to have an embedded lightweight hypervisor capable of support-

ing the major embedded virtualization requisites. After the study of the state-of-the-art and

the current trends in embedded virtualization, this hypothesis was considered true. Thus, the

importance of the new hardware-assisted virtualization to accomplish this goal was consid-

ered. The hypothesis was refined into different research questions, which were addressed

in the chapters of this dissertation. Now, the answers will be summarized. Then, concluding

remarks and possible directions for future work will be presented.

First, the major existing embedded hypervisors were presented. This study pro-

vided an understanding the state of the art for embedded virtualization. Several different

hypervisors were proposed for embedded virtualization, including modified versions of hy-

pervisors for server virtualization. This study exposed the complexity of the embedded vir-

tualization. The wide range of applications and the variety of embedded processors pushed

the appearance of different hypervisor approaches. However, it was possible to identify

trends in the current virtualization methods. The footprint is a recurrent challenge in em-

bedded virtualization since its adoption for IoT devices require hypervisors with only a few

dozen of kilobytes. Embedded virtualization was firmly based on para-virtualization due to

the absence of hardware-assisted virtualization in the previous generations of embedded

processors. Embedded processor families have adopted hardware for virtualization. Addi-

tionally, spatial isolation between VMs is critical to improve reliability and security. Finally,

support for real-time on embedded virtualization is an obligatory feature because real-time

is intrinsically related to embedded systems. This study highlighted the need for a different

embedded virtualization approach to better fit the needs of embedded systems.

Based on these findings, the primary embedded virtualization requisites were de-

termined. These requirements included the need to adoption full-virtualization using hardware-

assisted virtualization. Moreover, previous experience with VHH showed that full-virtualization

applied on hardware subsets without proper virtualization support results in excessive over-

head. Thus, the model provides full-virtualization of the CPU (covered by hardware-assistance),

and para-virtualization for I/O and extended services. The result was a hybrid model that

combines full and para-virtualization. Hence, different aspects of embedded virtualization

140

are covered by the model. For example, the model uses the hardware-assisted virtualization

to provide spatial isolation while para-virtualization is used for inter-VM communication and

to manage real-time services. Temporal isolation is provided by the separation of BE and

RT-VCPUs. Finally, the major embedded virtualization features were accommodated in a

well-defined virtualization model.

The proposed embedded virtualization model guided the development of a inno-

vative hypervisor, called Hellfire Hypervisor, to the MIPS M5150 processor. This processor

was chosen for different reasons. First, it implements the MIPS-VZ module for hardware-

assisted virtualization. Second, the other hypervisors presented do not implement suitable

support for MIPS virtualization. Lastly, an instruction accurate simulator and a hardware de-

velopment board for M5150 was available to the GSE group. The development showed that

the model can be implemented with relatively simple algorithms and a small number of lines

of code resulting in a small footprint. For example, the virtual memory management was

simplified and just a few instructions needed to be emulated. Moreover, almost all proposed

embedded virtualization features were supported by the hypervisor. The only exception was

the multicore support because the M5150 is a single-core processor. The evaluation of the

hypervisor showed that it is efficient and presents low overhead. Additionally, the resulting

footprint is acceptable for IoT applications.

7.1 Concluding Remarks

Based on the research work presented in the dissertation, the main conclusion is

that the proposed virtualization model was successful to accommodate the major embed-

ded system requirements. Additionally, the model proved to be efficiently implemented on

a hardware platform. Finally, the implementation resulted in a hypervisor with performance

and footprint comparable to the currently embedded hypervisors. While the majority of em-

bedded hypervisors adopt para-virtualization exclusively, this work has shown that hardware-

assisted virtualization associated with para-virtualization can benefit embedded systems by

simplifying the hypervisor and improving performance.

The main contributions (including technical and scientific contributions) of this work

are:

141

• A study of state-of-the-art for embedded virtualization and its main trends;

• The characterization of the major features required for embedded virtualization;

• A proposal of an embedded virtualization model;

• An implementation and evaluation of a hypervisor guided by the proposed model.

Lastly, from a more elevated perspective, the resulting hypervisor can benefit the

industry and can also be used in commercial applications.

7.2 Future Research

There are many possible directions for future work based on this research. Firstly,

this study revealed that hardware-assisted virtualization can be associated with embedded

system requirements for the development of hypervisors that better fit embedded virtualiza-

tion. Thus, when I/O virtualization is supported in embedded hardware, it may be necessary

to update the virtualization model to adapt to this new hardware.

Security is a trend in embedded virtualization. IoT devices will be adopted in large

scale in industrial and residential applications. These devices are susceptible to hacker

attacks like any other device connected to the network. Thus, techniques to improve security

must be adopted for the embedded hypervisors. For example, secure boot methods must

be implemented to guarantee the authenticity of the hypervisor and VMs.

In server virtualization, VMs on the same host can perform different services for

different users without any relation between them. On the other hand, embedded systems

are customized devices with a determined goal. Thus, VMs in an embedded hypervisor

can perform different services to accomplish a common goal. As a consequence, the VMs

must interact using the hypervisor communication mechanism. Therefore, more efficient and

secure communication services must be proposed.

Multicore processors are widely adopted for embedded devices. Thus, the pro-

posed hypervisor must be ported to a multicore platform. However, multicore support adds

concurrent execution at the hypervisor’s kernel, which requires synchronization primitives.

This increases significantly the hypervisor’s kernel complexity, and it can impact on perfor-

mance. Thus, the port to multicore processors must be carefully designed.

142

7.3 List of Publications

This section resumes all publications related to this dissertation in chronological

order. Some of these publications are direct-related (D), i.e., publications resulted from this

dissertation. The remainder of the publications are indirect-related (I), and they resulted

from the work with the VHH.

• (D) Moratelli, C.; Filho, S.; Hessel, F."Exploring Embedded Systems Virtualization Us-

ing MIPS Virtualization Module," in Computing Frontiers (CF, 2016 ACM International

Conference on), 16-18 May 2016.

• (D) Moratelli, C.; Filho, S.; Hessel, F."Hardware-assisted interrupt delivery optimization

for virtualized embedded platforms," in Electronics, Circuits, and Systems (ICECS),

2015 IEEE International Conference on), 6-9 December 2015.

• (D) Zampiva, S.; Moratelli, C.; Hessel, F., "A hypervisor approach with real-time sup-

port to the MIPS M5150 processor," in Quality Electronic Design (ISQED), 2015 16th

International Symposium on , vol., no., pp.495-501, 2-4 March 2015.

• (I) Moratelli, C.; Zampiva, S.; Hessel, F., "Full-virtualization on MIPS-based MPSOCs

embedded platforms with real-time support," in Integrated Circuits and Systems Design

(SBCCI), 2014 27th Symposium on , vol., no., pp.1-7, 1-5 Sept. 2014.

• (I) Aguiar, A.; Moratelli, C.; Sartori, M.; Hessel, F., "Adding virtualization support in

MIPS 4Kc-based MPSoCs," in Quality Electronic Design (ISQED), 2014 15th Interna-

tional Symposium on , vol., no., pp.84-90, 3-5 March 2014.

• (I) Aguiar, A.; Moratelli, C.; Sartori, M.L.L.; Hessel, F., "A virtualization approach for

MIPS-based MPSoCs," in Quality Electronic Design (ISQED), 2013 14th International

Symposium on , vol., no., pp.611-618, 4-6 March 2013.

• (I) Aguiar, A.; Moratelli, C.; Sartori, M.L.L.; Hessel, F., "Hardware-assisted virtualization

targeting MIPS-based SoCs," in Rapid System Prototyping (RSP), 2012 23rd IEEE

International Symposium on , vol., no., pp.2-8, 11-12 Oct. 2012.

143

REFERENCES

[1] Abeni, L.; Buttazzo, G. “Integrating multimedia applications in hard real-time systems”.

In: 19th IEEE Real-Time Systems Symposium, 1998, pp. 4–13.

[2] Aguiar, A.; Moratelli, C.; Sartori, M.; Hessel, F. “Adding virtualization support in mips

4kc-based mpsocs”. In: 15th International Symposium on Quality Electronic Design

(ISQED), 2014, pp. 84–90.

[3] Aguiar, A. C. P. “On the virtualization of multiprocessed embedded systems”, Ph.D.

Thesis, Pontifical Catholic University of Rio Grande do Sul - Faculty of Informatics,

2013.

[4] Airlines Electronic Engineering Committee. “Avionics Application Software Standard

Interface”, Technical Report, 2006.

[5] Appleton, I. “The gsm protocol stack”. In: IEEE Colloquium on the Design of Digital

Cellular Handsets, 1998, pp. 9/1–9/5.

[6] ARM. “ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition”, 2012.

[7] Asberg, M.; Forsberg, N.; Nolte, T.; Kato, S. “Towards real-time scheduling of virtual

machines without kernel modifications”. In: 16th Conference on Emerging Technologies

Factory Automation (ETFA), 2011, pp. 1–4.

[8] Avanzini, A.; Valente, P.; Faggioli, D.; Gai, P. “Integrating linux and the real-time erika

os through the xen hypervisor”. In: 10th IEEE International Symposium on Industrial

Embedded Systems (SIES), 2015, pp. 1–7.

[9] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt,

I.; Warfield, A. “Xen and the art of virtualization”, SIGOPS Oper. Syst. Rev., vol. 37–5,

Oct 2003, pp. 164–177.

[10] Beleg, G. “Scheduling operating-systems”, Technical Report Mat.-No.: 2854416,

Technical University Dresden, 2007.

[11] Bellard, F. “Qemu, a fast and portable dynamic translator”. In: Annual Conference on

USENIX Annual Technical Conference, 2005, pp. 41–41.

144

[12] Bovet, D.; Cesati, M. “Understanding The Linux Kernel”. Oreilly & Associates Inc, 2006.

[13] Brun, A.; Guo, C.; Ren, S. “A note on the edf preemption behavior in rate monotonic

versus edf: Judgment day”, Embedded Systems Letters, IEEE, vol. 7–3, Sept 2015, pp.

89–91.

[14] Buttazzo, G. C. “Rate monotonic vs. edf: Judgment day”, Real-Time Syst., vol. 29–1,

Jan 2005, pp. 5–26.

[15] Chen, H.; Jin, H.; Hu, K.; Yuan, M. “Adaptive audio-aware scheduling in xen virtual

environment”. In: IEEE/ACS International Conference on Computer Systems and

Applications (AICCSA), 2010, pp. 1–8.

[16] Cheng, K.; Bai, Y.; Wang, R.; Ma, Y. “Optimizing soft real-time scheduling performance

for virtual machines with srt-xen”. In: 15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), 2015, pp. 169–178.

[17] Corbet, J.; Rubini, A.; Kroah-Hartman, G. “Linux Device Drivers, 3rd Edition”. O’Reilly

Media, Inc., 2005.

[18] Cottet, F.; Mammeri, Z.; Delacroix, J.; Kaiser, C. “Scheduling in real-time systems”.

Chichester, West Sussex, England: J. Wiley, 2002.

[19] Crespo, A.; Ripoll, I.; Masmano, M. “Partitioned embedded architecture based on

hypervisor: The xtratum approach”. In: Dependable Computing Conference (EDCC),

2010 European, 2010, pp. 67–72.

[20] Cucinotta, T.; Anastasi, G.; Abeni, L. “Respecting temporal constraints in virtualized

services”. In: 33rd Annual IEEE International in Computer Software and Applications

Conference (COMPSAC ’09)., 2009, pp. 73–78.

[21] Cummiskey, P.; Jayant, N.; Flanagan, J. “Adaptive quantization in differential pcm

coding of speech”, Bell System Technical Journal, The, vol. 52–7, Sept 1973, pp. 1105–

1118.

[22] Dall, C.; Nieh, J. “Kvm/arm: The design and implementation of the linux arm

hypervisor”. In: 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, 2014, pp. 333–348.

145

[23] Ding, X.; Ma, Z.; Da, X. “Dynamic time slice of credit scheduler”. In: IEEE International

Conference on Information and Automation (ICIA), 2014, pp. 654–659.

[24] Duda, K. J.; Cheriton, D. R. “Borrowed-virtual-time (bvt) scheduling: supporting latency-

sensitive threads in a general-purpose scheduler”, SIGOPS Oper. Syst. Rev., vol. 33–5,

Dec 1999, pp. 261–276.

[25] Elphinstone, K.; Heiser, G. “From l3 to sel4 what have we learnt in 20 years of l4

microkernels?” In: 24th ACM Symposium on Operating Systems Principles, 2013, pp.

133–150.

[26] Freescale. “e500mc Core Reference Manual”, Technical Report, 2013.

[27] Gates, M.; Tirumala, A.; Dugan, J.; Gibbs, K. “Iperf version 2.0.0”. NLANR applications

support, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2004.

[28] Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. “Internet of things (iot): A vision,

architectural elements, and future directions”, Future Gener. Comput. Syst., vol. 29–7,

Sep 2013, pp. 1645–1660.

[29] Heath, S. “Embedded Systems Design”. Newton, MA, USA: Butterworth-Heinemann,

2002, 2nd ed..

[30] Heinrich, J. “MIPS R4000 Microprocessor User’s Manual”, Technical Report, 1994.

[31] Heiser, G. “The role of virtualization in embedded systems”. In: 1st workshop on

Isolation and integration in embedded systems, 2008, pp. 11–16.

[32] Heiser, G.; Leslie, B. “The okl4 microvisor: Convergence point of microkernels and

hypervisors”. In: 1st ACM Asia-pacific Workshop on Workshop on Systems, 2010, pp.

19–24.

[33] Hesselink, W. H.; Tol, R. M. “Formal feasibility conditions for earliest deadline first

scheduling”, Technical Report, 1994.

[34] Hu, Y.; Long, X.; Zhang, J.; He, J.; Xia, L. “I/o scheduling model of virtual machine

based on multi-core dynamic partitioning”. In: 19th ACM International Symposium on

High Performance Distributed Computing, 2010, pp. 142–154.

146

[35] Imagination Technologies Ltd. “MIPS Architecture For Programmers Volume I-B:

Introduction to the microMIPS32 Architecture”, Technical Report, 2013.

[36] Imagination Technologies Ltd. “MIPS32® Architecture for Programmers Volume IV-i:

Virtualization Module of the MIPS32® Architecture”, Technical Report, 2013.

[37] Imperas Software Limited. “Ovpsim and imperas cpumanager user guide”, Technical

Report, 2015.

[38] Kaiser, R. “Combining Partitioning and Virtualization for Safety-Critical Systems”,

Technical Report, 2009.

[39] Kanda, W.; Yumura, Y.; Kinebuchi, Y.; Makijima, K.; Nakajima, T. “Spumone:

Lightweight cpu virtualization layer for embedded systems”. In: IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing (EUC ’08), 2008, pp. 144–151.

[40] Kato, S.; Rajkumar, R.; Ishikawa, Y. “A loadable real-time scheduler framework for

multicore plafforms”. In: 6th IEEE International Conferece on Embedded and Real-

Time Computing Systems and Applications (RTCSA), 2010.

[41] Kiszka, J. “Towards linux as a real-time hypervisor”. In: 11th Real-Time Linux

Workshop, 2009.

[42] Lee, J.; Xi, S.; Chen, S.; Phan, L. T. X.; Gill, C.; Lee, I.; Lu, C.; Sokolsky, O. “Realizing

compositional scheduling through virtualization”. In: 18th Real Time and Embedded

Technology and Applications Symposium, 2012, pp. 13–22.

[43] Lee, M.; Krishnakumar, A. S.; Krishnan, P.; Singh, N.; Yajnik, S. “Supporting soft

real-time tasks in the xen hypervisor”. In: 6th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, 2010, pp. 97–108.

[44] Liedtke, J. “A persistent system in real use-experiences of the first 13 years”. In: 3rd

International Workshop on Object Orientation in Operating Systems, 1993, pp. 2–11.

[45] Liedtke, J. “On micro-kernel construction”. In: 50th ACM Symposium on Operating

Systems Principles, 1995, pp. 237–250.

[46] Lindholm, T.; Yellin, F. “Java Virtual Machine Specification”. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 1999, 2nd ed..

147

[47] Loongson Technology Corp. Ltd. “Loongson 3a processor manual”, 2009.

[48] Masrur, A.; Drossler, S.; Pfeuffer, T.; Chakraborty, S. “Vm-based real-time services for

automotive control applications”. In: 16th International Conference on Embedded and

Real-Time Computing Systems and Applications, 2010, pp. 218–223.

[49] Masrur, A.; Pfeuffer, T.; Geier, M.; Drössler, S.; Chakraborty, S. “Designing vm

schedulers for embedded real-time applications”. In: 7th IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis, 2011, pp. 29–38.

[50] MIPS Technologies, Inc. “MIPS SEAD-3 Board User’s Manual”, Technical Report,

2010.

[51] Mitake, H.; Kinebuchi, Y.; Courbot, A.; Nakajima, T. “Coexisting real-time os and general

purpose os on an embedded virtualization layer for a multicore processor”. In: ACM

Symposium on Applied Computing, 2011, pp. 629–630.

[52] Mitake, H.; Lin, T.-H.; Kinebuchi, Y.; Shimada, H.; Nakajima, T. “Using virtual cpu

migration to solve the lock holder preemption problem in a multicore processor-based

virtualization layer for embedded systems”. In: 18th International Conference on

Embedded and Real-Time Computing Systems and Applications (RTCSA), 2012, pp.

270–279.

[53] Moratelli, C.; Zampiva, S.; Hessel, F. “Full-virtualization on mips-based mpsocs

embedded platforms with real-time support”. In: 27th Symposium on Integrated Circuits

and Systems Design (SBCCI), 2014, pp. 1–7.

[54] Muench, D.; Paulitsch, M.; Herkersdorf, A. “Temporal separation for hardware-based

i/o virtualization for mixed-criticality embedded real-time systems using pcie sr-iov”. In:

27th International Conference on Architecture of Computing Systems (ARCS), 2014,

pp. 1–7.

[55] Noergaard, T. “Embedded Systems Architecture: A Comprehensive Guide for

Engineers and Programmers”. Newnes, 2005.

[56] Ongaro, D.; Cox, A. L.; Rixner, S. “Scheduling i/o in virtual machine monitors”. In: 4th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

2008, pp. 1–10.

148

[57] Ousterhout, J. “Scheduling techniques for concurrent systems”. In: 3rd International

Conference on Distributed Computing Systems, 1982, pp. 22–30.

[58] Palopoli, L.; Cucinotta, T.; Marzario, L.; Lipari, G. “Adaptive quality of service

architecture”, Softw. Pract. Exper., vol. 39–1, Jan 2009, pp. 1–31.

[59] Patel, A.; Daftedar, M.; Shalan, M.; Watheq El-Kharashi, M. “Embedded hypervisor

xvisor: A comparative analysis”. In: 23rd Euromicro International Conference on

Parallel, Distributed and Network-Based Processing (PDP), 2015, pp. 682–691.

[60] Popek, G. J.; Goldberg, R. P. “Formal requirements for virtualizable third generation

architectures”, Commun. ACM, vol. 17–7, Jul 1974, pp. 412–421.

[61] prpl Fundation. “Security Guidance for Critical Areas of Embedded Computing”,

Technical Report, 2015.

[62] RedHat. “Kvm - kernel based virtual machine”, Technical Report, RedHat Enterprise,

2013.

[63] Renesas Techology. “Sh-4a software manual”, Technical Report, Renesas Techology,

2004.

[64] Russell, R. “Virtio: Towards a de-facto standard for virtual i/o devices”, SIGOPS Oper.

Syst. Rev., vol. 42–5, Jul 2008, pp. 95–103.

[65] Sandstrom, K.; Vulgarakis, A.; Lindgren, M.; Nolte, T. “Virtualization technologies in

embedded real-time systems”. In: 18th Conference on Emerging Technologies Factory

Automation (ETFA), 2013, pp. 1–8.

[66] Saranya, N.; Hansdah, R. “Dynamic partitioning based scheduling of real-time tasks

in multicore processors”. In: 18th International Symposium on Real-Time Distributed

Computing (ISORC), 2015, pp. 190–197.

[67] Sefraoui, O.; Aissaoui, M.; Eleuldj, M. “Article: Openstack: Toward an open-source

solution for cloud computing”, International Journal of Computer Applications, vol. 55–

3, October 2012, pp. 38–42.

[68] Sha, L.; Lehoczky, J. P.; Rajkumar, R. “Solutions for some practical problems in

prioritized preemptive scheduling”. In: IEEE Real-Time Systems Symposium’86, 1986,

pp. 181–191.

149

[69] Singh, J. “An algorithm to reduce the time complexity of earliest deadline first scheduling

algorithm in real-time system”, CoRR, vol. abs/1101.0056, 2011.

[70] Smith, J.; Nair, R. “Virtual Machines: Versatile Platforms for Systems and Processes

(The Morgan Kaufmann Series in Computer Architecture and Design)”. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[71] SPARC International Inc. “The SPARC Architecture Manual - Version 8”, Technical

Report, 1992.

[72] Sprunt, B.; Sha, L.; Lehoczky, J. P. “Aperiodic task scheduling for hard real-time

systems”, Real-Time Systems, vol. 1–1, 1989, pp. 27–60.

[73] Steinberg, U.; Kauer, B. “Nova: A microhypervisor-based secure virtualization

architecture”. In: 5th European Conference on Computer Systems, 2010, pp. 209–222.

[74] STMicroelectronics. “Loongson2f user manual”, 2007.

[75] Strosnider, J. K.; Lehoczky, J. P.; Sha, L. “The deferrable server algorithm for enhanced

aperiodic responsiveness in hard real-time environments”, IEEE Trans. Comput.,

vol. 44–1, Jan 1995, pp. 73–91.

[76] Tai, Y.; Cai, W.; Liu, Q.; Zhange, G. “Kvm-loongson: An efficient hypervisor on mips”.

In: 12th IEEE International Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), 2013, pp. 1016–1022.

[77] Tanenbaum, A. S.; Wetherall, D. J. “Computer Networks”. Prentice Hall, 2011, 5th ed..

[78] Technologies, M. “Mips32® m5150 processor core family software user’s manual”,

July 2014.

[79] Tommaso, C.; Dhaval, G.; Dario, F.; Checconi, F. “Providing performance guarantees

to virtual machines using real-time scheduling”. In: Euro-Par 2010 Parallel Processing

Workshops, 2011, pp. 657–664.

[80] Trujillo, S.; Crespo, A.; Alonso, A. “Multipartes: Multicore virtualization for mixed-

criticality systems”. In: Euromicro Conference on Digital System Design (DSD), 2013,

pp. 260–265.

150

[81] Uhlig, V.; LeVasseur, J.; Skoglund, E.; Dannowski, U. “Towards scalable multiprocessor

virtual machines”. In: 3rd Virtual Machine Research and Technology Symposium, 2004,

pp. 43–56.

[82] Vigeant, G.; Beaulieu, A.; Givigi, S. “Hard real-time scheduling on a multicore platform”.

In: 9th Annual IEEE International Systems Conference (SysCon), 2015, pp. 324–331.

[83] Waldspurger, C.; Rosenblum, M. “I/o virtualization”, Commun. ACM, vol. 55–1,

Jan 2012, pp. 66–73.

[84] Xi, S.; Wilson, J. a. C. L.; Gill, C. “Rt-xen: Towards real-time hypervisor scheduling in

xen”. In: International Conference on Embedded Software (EMSOFT), 2011, pp. 39–

48.

[85] Xi, S.; Xu, M.; Lu, C.; Phan, L. T. X.; Gill, C.; Sokolsky, O.; Lee, I. “Real-time multi-core

virtual machine scheduling in xen”. In: 14th International Conference on Embedded

Software, 2014, pp. 27:1–27:10.

[86] Xia, T.; Prévotet, J.-C.; Nouvel, F. “Microkernel dedicated for dynamic partial

reconfiguration on arm-fpga platform”, SIGBED Rev., vol. 11–4, Jan 2015, pp. 31–36.

[87] Xia, T.; Prevotet, J.-C.; Nouvel, F. “Mini-nova: A lightweight arm-based virtualization

microkernel supporting dynamic partial reconfiguration”. In: IEEE International Parallel

and Distributed Processing Symposium Workshop (IPDPSW), 2015, pp. 71–80.

[88] Yang, J.; Kim, H.; Park, S.; Hong, C.; Shin, I. “Implementation of compositional

scheduling framework on virtualization”, SIGBED Rev., vol. 8–1, Mar 2011, pp. 30–37.

[89] Yoo, S.; Yoo, C. “Real-time scheduling for xen-arm virtual machines”, Mobile

Computing, IEEE Transactions on, vol. 13–8, Aug 2014, pp. 1857–1867.

[90] Zampiva, S. “Um hypervisor com suporte a tempo-real para a arquitetura MIPS32R5”,

Master’s Thesis, Pontifical Catholic University of Rio Grande do Sul - Faculty of

Informatics, 2015.

[91] Zeng, L.; Wang, Y.; Shi, W.; Feng, D. “An improved xen credit scheduler for i/o latency-

sensitive applications on multicores”. In: International Conference on Cloud Computing

and Big Data (CloudCom-Asia), 2013, pp. 267–274.

151

[92] Zhang, D.; Liu, D.; Liang, L.; Yao, L.; Zhong, K.; Shao, Z. “Nv-cfs: Nvram-

assisted scheduling optimization for virtualized mobile systems”. In: 7th International

Symposium on Cyberspace Safety and Security (CSS), 2015, pp. 802–805.

[93] Zhou, R.; Ai, Z.; Yang, J.; Chen, Y.; Li, J.; Zhou, Q.; Li, K.-C. “A hypervisor for

mips-based architecture processors - a case study in loongson processors”. In: IEEE

International Conference on High Performance Computing and Communications, 2013,

pp. 865–872.

[94] Zuo, B.; Chen, K.; Liang, A.; Guan, H.; Zhang, J.; Ma, R.; Yang, H. “Performance

tuning towards a kvm-based low latency virtualization system”. In: 2nd International

Conference on Information Engineering and Computer Science (ICIECS), 2010, pp.

1–4.

152

153

APPENDIX A – VIRTUAL MACHINE AND VIRTUAL CPU DATA

STRUCTURES

This appendix shows the data structures used to built the virtual machine and the

VCPU abstractions.

A.1 Virtual Machine Data Structure

The fast_int is given by the developers, and it determines which interrupts are eli-

gible to the fast interrupt delivery policy in the VM. During system initialization, for each VM,

the hypervisor makes an or bit-wise operation over the fast_int with all other VMs resulting in

the value of apply_fast_int variable. The apply_fast_int is the interrupt mask. It determines

which interrupts are enabled during the VM’s executing allowing the VM to be preempted by

the hypervisor. Non-preemptable VMs have the apply_fast_int variable equal to zero (0).

1 typedef struct vm_t {

2 unsigned i n t i d ; / *VM ID * /

3 unsigned i n t base_addr ; / * Base address where the cont iguous

4 mapping s t a r t s . * /

5 unsigned i n t s ize ; / * VM s ize i n bytes . * /

6 l i n k e d l i s t _ t vcpus ; / * L i s t o f VCPUs associated to the VM. * /

7 unsigned i n t os_type ; / * OS execut ing i n the VM. * /

8 unsigned i n t n t l b e n t ; / * Number o f TLB e n t r i e s . * /

9 unsigned i n t i n i t ; / * Flag to i n d i c a t e i f the VM i s

10 al ready i n i t i a l i z e d . * /

11 unsigned i n t f a s t _ i n t ; / * I n t e r r u p t s market to the f a s t

12 i n t e r r u p t d e l i v e r y to t h i s VM. * /

13 unsigned i n t a p p l y _ f a s t _ i n t ; / * I n t e r r u p t s t h a t can cause

14 preemption o f t h i s VM. * /

15 unsigned i n t non_preemptable ; / * Non preemptable VM. * /

16

17 struct t l b e n t r y * t l b e n t r i e s ; / * TLB e n t r i e s . Gives the

154

18 i n f o rma t i on o f the v a l i d memory reg ions f o r t h i s VM. * /

19 } vm_t ;

A.2 VCPU Data Structure

The message_t data structure defines the internal message formatting to the hy-

pervisor communication mechanism. The message is kept in a circular buffer, defined in

the message_buffer_t data structure, until the receiver is able to receive it. Each VCPU has

its own circular buffer dedicated to its messages. The message size (MESSAGE_SZ) and

the number of messages in the circular buffer (MESSAGELIST_SZ) impacts directly in the

hypervisor footprint.

1 typedef struct {

2 unsigned i n t source_id ; / * ID o f the sender VM. * /

3 unsigned i n t s ize ; / * Size o f the message . * /

4 unsigned i n t message [MESSAGE_SZ] ; / * Message . * /

5 } message_t ;

6

7 / * C i r c u l a r b u f f e r . * /

8 typedef struct {

9 unsigned i n t i n ;

10 unsigned i n t out ;

11 unsigned i n t num_messages ;

12 message_t message_l is t [MESSAGELIST_SZ] ;

13 } message_buffer_t ;

14

15

16 typedef struct vcpu_t {

17 unsigned i n t i d ; / *VCPU ID . * /

18 unsigned i n t roo tcoun te r ; / * counter r e g i s t e r o f the roo t

19 contex t . * /

20 unsigned i n t offseTelapsedTime ; / * Elapsed t ime to determine

21 how long the VM i s i n the wa i t i ng queue . * /

155

22 unsigned i n t gprshadowset ; / *GRP shadow page . * /

23 unsigned i n t cp0_reg is te rs [3 2] [4] ; / * CP0 r e g i s t e r s * /

24 unsigned i n t gp_reg is te rs [3 4] ; / *CPU r e g i s t e r s * /

25 unsigned i n t g u es t c l t 2 ; / * * /

26 unsigned i n t p ip ; / * I n d i c a t es which i n t e r r u p t s are

27 al lowed to the i n t e r r u p t pass−through * /

28 vm_t *vm; / *VM data s t r u c t u r e * /

29 unsigned i n t pc ; / * Program counter * /

30 unsigned i n t sp ; / * Stack p o i n t e r * /

31 unsigned i n t gp ; / * Global p o i n t e r * /

32 message_buffer_t messages ; / * C i r c u l a r b u f f e r . * /

33 } vcpu_t ;

