PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS
COMPUTER SCIENCE GRADUATE PROGRAM

A UNIFIED MAPREDUCE
PROGRAMMING INTERFACE
FOR MULTI-CORE AND
DISTRIBUTED
ARCHITECTURES

DANIEL COUTO ADORNES

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fullfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Prof. Luiz Gustavo Ledo Fernandes

Porto Alegre
2015

Dados Internacionais de Catalogacao na Publicacao (CIP)

A241u Adornes, Daniel Couto
A unified mapreduce programming interface for multi-core and

distributed architectures / Daniel Couto Adornes. — Porto Alegre,

2015.
139 p.

Diss. (Mestrado) — Fac. de Informatica, PUCRS.
Orientador: Prof. Luiz Gustavo Ledo Fernandes.

1. Informatica. 2. Processamento Distribuido.
3. Processamento Paralelo. 4. MapReduce. 5. DSL. 6. Memoria

Compartilhada. |. Fernandes, Luiz Gustavo Le&o. Il. Titulo.

CDD 005.4

Ficha Catalografica elaborada pelo
Setor de Tratamento da Informacao da BC-PUCRS

Pontificia Universidade Catdlica do Rio Grande do Sul
. FACULADADE DE INFORMATIgA
PROGRAMA DE POS-GRADUACIKO EM CIENCIA DA COMPUTACAO

TERMO DE APRESENTACAO DE DISSERTACAO DE MESTRADO

Dissertacao intitulada “A Unified Mapreduce Programming Interface for Multi-
Core and Distributed Architectures” apresentada por Daniel Couto Adornes
como parte dos requisitos para obtencdo do grau de Mestre em Ciéncia da
Computacao, aprovada-em 31/03/2015 pela Comissao Examinadora:

/))]
LYo 2uoune j

Prof. Dr.Luiz Gustavo Ledo Ferhandes- PPGCC/PUCRS
Orientador
— {
))
Prof. Dr. César Augusto Fonticielha De Rose- PPGCC/PUCRS
e Z/—/E?L:"”

Prof. Dr. Rodrigo da Radsa Righi- UNISINOS
Homologada emﬁ/'/4 2(//], conforme Ata No. Jf&} pela Comissao
Coordenadora.

/{/('\//(_ ’L' 2 oA k‘_/é‘

Prof. Dr. Lujz Gustavo Le&o Fernandes
Coordenadeor. L‘

Campus Central

PUCRS Av. Ipiranga, 6681 - P32- sala 507 — CEP: 90619-900
Fone: (51) 3320-3611 - Fax (51) 3320-3621
E-mail: ppgcc@pucrs.br ‘
wWww.pucrs.br/facin/pos

This work is dedicated to my precious wife Juliana and my lovely son Pietro.

“Blessed are those who find wisdom, those
who gain understanding, for she is more prof-
itable than silver and yields better returns than
gold. She is more precious than rubies; noth-
ing you desire can compare with her. Long life
is in her right hand; in her left hand are riches
and honor. Her ways are pleasant ways, and
all her paths are peace.”

(Proverbs 3:13-17)

ACKNOWLEDGMENTS

| thank God, who takes my charges and keeps being faithful and giving me His
peace, which exceeds all understanding. To my dear wife, always understanding and sup-
porting this important stage of my life and career, despite many difficult moments. To my
lovely son, who still not even talks, but gives me very special moments with every little thing
he does. And to my parents, who always taught me to strive for excellence in everything |
do.

| thank my advisor professor Luiz Gustavo for advising me along each decision and
step to build this work, my research partner Dalvan Griebler who contributed almost as much
as an advisor, the Pontificia Universidade Catélica do Rio Grande do Sul and Faculdade de
Informéatica for accepting me in the program and providing such a great structure, team and
equipments, and CAPES for providing me with financial support for the whole program.

UMA INTERFACE DE PROGRAMACAO MAPREDUCE UNIFICADA PARA
ARQUITETURAS MULTI-CORE E DISTRIBUIDA

RESUMO

Visando melhoria de performance, simplicidade e escalabilidade no processamento
de dados amplos, o Google propds o padrao paralelo MapReduce. Este padrdao tem sido
implementado de variadas formas para diferentes niveis de arquitetura, alcangando resulta-
dos significativos com respeito a computacao de alto desempenho. No entanto, desenvolver
codigo otimizado com tais solugbes requer conhecimento especializado na interface e na
linguagem de programacao de cada solucdo. Recentemente, a DSL-POPP foi proposta
como uma solucdo de linguagem de programacgao de alto nivel para programacao para-
lela orientada a padrdes, visando abstrair as complexidades envolvidas em programacgao
paralela e distribuida. Inspirado na DSL-POPP, este trabalho prop6e a implementagcao de
uma interface unificada de programagcdo MapReduce com regras para transformacao de
cbdigo para solucdes otimizadas para arquiteturas multi-core de memdria compartilhada
e distribuida. A avaliacdo demonstra que a interface proposta é capaz de evitar perdas
de performance, enquanto alcan¢ca uma reducao de cédigo e esforco de programagéo de
41,84% a 96,48%. Ademais, a construgdo do gerador de codigo, a compatibilidade com
outras solucées MapReduce e a extensdao da DSL-POPP com o padrao MapReduce sao
propostas para trabalhos futuros.

Palavras-Chave: mapreduce, dsl, shared-memory, multi-core, parallel, distributed.

A UNIFIED MAPREDUCE PROGRAMMING INTERFACE FOR
MULTI-CORE AND DISTRIBUTED ARCHITECTURES

ABSTRACT

In order to improve performance, simplicity and scalability of large datasets pro-
cessing, Google proposed the MapReduce parallel pattern. This pattern has been im-
plemented in several ways for different architectural levels, achieving significant results for
high performance computing. However, developing optimized code with those solutions re-
quires specialized knowledge in each framework’s interface and programming language. Re-
cently, the DSL-POPP was proposed as a framework with a high-level language for patterns-
oriented parallel programming, aimed at abstracting complexities of parallel and distributed
code. Inspired on DSL-POPP, this work proposes the implementation of a unified MapRe-
duce programming interface with rules for code transformation to optimized solutions for
shared-memory multi-core and distributed architectures. The evaluation demonstrates that
the proposed interface is able to avoid performance losses, while also achieving a code
and a development cost reduction from 41.84% to 96.48%. Moreover, the construction of
the code generator, the compatibility with other MapReduce solutions and the extension of
DSL-POPP with the MapReduce pattern are proposed as future work.

Keywords: mapreduce, dsl, shared-memory, multi-core, parallel, distributed.

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10
3.1

4.1
4.2
5.1
5.2
5.3
5.4
5.5
5.6
B.1

LIST OF FIGURES

MapReduce job execution flow [DG08] 26
Key/value pairs distribution [Ven09] i 27
Shuffle and Sort steps with Hadoop [Whi09] 30
The basic data flow for the Phoenix runtime [RRP*07] 34
Phoenix data structure for intermediate key/value pairs. 34
Execution Flow of Tiled-MapReduce [CCZ10] 38
NUCA/NUMA-aware mechanism [CCZ10]t 40
Task Parallelism through pipeline [CCZ10] 41
Experiment of 1 GB word count using Phoenix++ and Hadoop on a multi-

core architecture. The y-axis is in a logarithmic scale. [CSW13] 45
Hybrid structure with mixed patterns [GF13] 46
The relationship graph between abstraction and performance on the pro-

gramming interface of analyzed researches. 51
Transformation Process i e 58
Compilation flow e 69

Mean execution time in seconds for original and generated Phoenix++ code 75

Mean execution time in seconds for original and generated Hadoop code .. 75
SLOC count for the interface version without curly braces 77
Cost estimate for the interface version without curly braces 78
SLOC count for the interface version with curly braces 78
Cost estimate for the interface version with curly braces 78

General Purpose GPU Architecture. (SP: Streaming Multi-Processor) [BK13] 136

2.1
2.2
2.3

3.1
4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
B.1

LIST OF TABLES

Phoenix APl functions 32
Phoenix scheduler attributes 33

Key distributions and optimized data containers proposed by Phoenix++

[TY K] o e e e 42
Overview of Related Work e 51
Java imports and C++ includes always required by MapReduce applications 60
Variable types, code transformation and additional includes/imports.. 61
Built-in functions, code transformation and additional C++ includes 62
Built-in functions for emitoperations. 62
Code transformation rules for indirect replacements. 64
Software category as suggested by COCOMO model 73

Suggested parameters according to COCOMO model and software category 73

Mean execution time in seconds for original and generated Phoenix++ code 74

Mean execution time in seconds for original and generated Hadoop code .. 75
SLOC count for the version without curly braces 76
Cost estimate for the version without curlybraces 76
SLOC count for the version with curly braces. 77
Cost estimate for the version with curly braces 77

Comparisons of the GPU-based MapReduce frameworks [BK13]......... 137

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.7.1
2.7.2
2.8
2.9
2.10

3.1
3.2
3.3
3.4

41

411
41.2
4.2

4.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

CONTENTS

INTRODUCTION e 23
BACKGROUND e 25
MAPREDUCE 25
AN OVERVIEW OF MAPREDUCE IMPLEMENTATIONS 27
HADOOP MAPREDUCE e 29
PHOENIX . . .o 31
PHOENIX 2 . o 35
TILED-MAPREDUCE. 37
PHOENI DX+ o o 41
LIMITATIONS OF PREVIOUS VERSIONS 42
PHOENIX++: A COMPLETE REVISION OF PHOENIX 43
PHOENIX++ AND HADOOP PERFORMANCE COMPARISON 44
DSL-POPP . . 45
SUMMARY OF THE CHAPTER e 47
RELATED WORK e 49
THEHONE PROJECT 49
SCALE-UP VS SCALE-OUT FORHADOOP 49
THE AZWRAITH PROJECT 50
RELATED WORK OVERVIEW 50
UNIFIED MAPREDUCE PROGRAMMING INTERFACE 53
JUSTIFICATION . . . e e 53
REQUIRED CODE BY HADOOP AND PHOENIX++ 54
ADVANTAGES OF A UNIFIED MAPREDUCE PROGRAMMING INTERFACE .. 54
RESEARCH QUESTIONS AND HYPOTHESIS 55
PROPOSED INTERFACE 55
UNIFIED INTERFACES’S STRUCTURE 56
TRANSFORMATION PROCESS 58
INTERFACE COMPONENTS AND TRANSFORMATION RULES 59
SPECIAL COMPONENTS FOR TEXT PROCESSING 65

PERFORMANCE COMPONENTS 67

4.3.6
4.4

5.1
5.2
5.2.1
5.2.2
5.3
54

A1
A2
A3
A4
A5
A.6
A7

B.1
B.2
B.3
B.3.1
B.3.2

INTERFACE ACHIEVEMENTS AND LIMITATIONS 68
DEVISED CODE GENERATOR. e 69
EVALUATION 71
SAMPLE APPLICATIONS e e 71
SLOCCOUNT .o e e e 72
PROGRAMMING LANGUAGE SUPPORT i 72
COCOMO MODEL. . .ot e e e e e e e e 72
PERFORMANCE EVALUATION e 74
SLOC AND EFFORT EVALUATION e e 76
CONCLUSION AND FUTUREWORK 81
REFERENCES 83
APPENDIX A - Evaluated applications and generatedcode 89
WORD COUNT .. e e 89
WORD LENGTH . ..o e e e 93
HISTOGRAM . . . e 99
K-MEANS . . 106
LINEAR REGRESSION e 120
MATRIX MULTIPLICATION e e e 128
PRINCIPAL COMPONENT ANALYSIS 130
APPENDIX B — MapReduce for Many-core GPU architectures 135
BACKGROUNDS OF GPGPUS e 135
PRECEDENT RESEARCHES e 136
MAPREDUCE PHASES INGREX. e 137
BUFFER MANAGEMENT INGREX 138

EVALUATION . . . 139

23

1. INTRODUCTION

In order to improve performance, simplicity and scalability of large datasets pro-
cessing, Google proposed the MapReduce parallel pattern [DG08] based on two simple
operations, map and reduce, originally from functional programming languages. Since
then, the MapReduce model has originated many implementations by both industry and
academia. Some of these implementations have achieved great importance worldwide, such
as Hadoop', which is suited for large-clusters architectures and Phoenix++ [TYK11] for low
level multi-core architectures.

Meanwhile, Griebler et al. [Gri12, GF13] proposed a Domain Specific Language
for Patterns-oriented Parallel Programming (DSL-POPP), aimed at providing a more intuitive
and structured language for developing parallel applications.

Both research trends, DSL for parallel programming and MapReduce parallel pat-
tern, converge to similar goals while aimed at disseminating parallel programming among
not so specialized programmers and researchers, with optimal resource usage on modern
architectures. Besides similar goals, both have also shown solid results and maturity in the
field of high performance computing.

Inspired on DSL-POPP, this work proposes a unified MapReduce programming in-
terface, from which it also proposes detailed rules for code transformations toward generat-
ing Phoenix++ [TYK11] and Hadoop [Whi09, Ven09, Lam10] MapReduce code, for shared-
memory multi-core and distributed architectures, respectively. High-performance MapRe-
duce solutions with highly optimized resource usage were chosen for the proposed code
generation. Moreover, the coverage of other MapReduce frameworks as well as the con-
struction of the code generator and the extension of DSL-POPP with the addition of the
proposed unified MapReduce programming interface are proposed as future work.

The work is organized as follows.

Chapter 2 presents the most important MapReduce implementations and their evo-
lution through more specialized architectures and improved resource usage. Chapter 3 gives
continuity to chapter 2 but covering research projects more focused on unified MapReduce
programming interfaces for different architectural levels, which comes to be more tightly
related to our research. Additionally, Appendix B discusses some important MapReduce im-
plementations for heterogeneous architectures, with GPGPUs, which were studied though
are proposed to be addressed by future work.

Chapter 4 then provides a detailed description of the proposed unified MapReduce
programming interface, the code transformation rules for Hadoop and Phoenix++, the re-
search justification, research questions and evaluated hypothesis.

'http://hadoop.apache.org

24

Chapter 5 in turn provides a detailed analysis of the evaluation process, metrics
and obtained results based on the sample applications described in the Appendix A.

Finally, chapter 6 presents the conclusions and future work.

25

2. BACKGROUND

This chapter presents the result of a study carried out on the MapReduce model
and a set of important implementations of this model for distributed and shared-memory
multi-core architectures.

It also presents a Domain Specific Language for Patterns-Oriented Parallel Pro-
gramming (DSL-POPP), whose progress motivated our research.

Additionally, a brief overview of MapReduce implementations for heterogeneous
architectures with GPGPUs is covered in Appendix B.

2.1 MapReduce

In order to facilitate constant petascale data processing, Google introduced the
MapReduce model [DGO08] based on two operations, map and reduce, originally from func-
tional programming languages.

The MapReduce model aims at improving the simplicity of developing software for
large datasets processing, as well as improving scalability by harnessing the distributed
architecture in a seamless way. One of its main objectives is allowing programmers to focus
on the business rules of the data processing, without worrying about data distribution to
and among job instances, network communication, and other complex details required by
distributed processing.

The model’s definition avoids excessive prescriptions, since the basic expected
structure consists of map and reduce tasks assigned to a set of worker units, which generate
key/value pairs, which are in turn reduced according to some user-provided logic. It does not
determine that this set of worker units must be run in a cluster, nor that the architecture must
be independent commodity machines, though this is the environment in which the model
originally showed its big performance advantages.

Dean and Ghemawat (2004, p. 3) clearly visualized it while originally proposing the
model:

Many different implementations of the MapReduce interface are possible.
The right choice depends on the environment. For example, one implementation
may be suitable for a small shared-memory machine, another for a large NUMA
multi-processor, and yet another for an even larger collection of networked machines.

To illustrate the applicability of this model, Dean and Ghemawat present a sample
implementation. The execution flow of a MapReduce job (illustrated in figure 2.1) starts by
dividing the input dataset among the nodes, so that each node has early access to a chunk
of it. The next step consists of starting up a single execution of the program per node, also
assigning the role each node is to play during the execution, whether master or worker. The

26

(1) fork .~

(1) foik £1) fork
, @
2) assign
. assign reduce .
map |
split 0 6) writ
: i ©rwite | ouput
: worker -
split 1 (5) remote read OrRe file O
split 2 (3) read orker (4) local write
- Workel output
split 3 file 1
split 4 5
_\ I
worker
[nput Map Intermediate files Reduce Output
I I [
files phase (on local disks) phase files

Figure 2.1: MapReduce job execution flow [DGO08]

master node is given the responsibility of assigning map and reduce tasks for the worker
nodes. It also monitors eventual idle nodes, so as to assign a new task, and failed nodes,
so as to assign the failed task to some working and available node.

When a worker node is assigned a map task, it is also delegated a piece of the
dataset in order to execute over it the user defined map function. According to MapReduce
model, this function must receive a key/value pair, execute some process over it, and pro-
duce key/value pairs which will be the intermediate data to be received by some reduce task
assigned to some other node.

When the map task is completely executed by a node, the intermediate key/value
pairs are written to local disk, in order to avoid volatility. Through this persistence pro-
cess, the values are sorted by key and organized into partitions in order to be subsequently
grouped by key. The information about the locations of these partitions of key/values pairs
is passed back to the master node.

At the end of the execution of all map tasks, the master node forwards the location
of the grouped key/values pairs to the nodes who were assigned the reduce tasks. These
nodes, in turn, call the reduce function provided by the user passing key and values in order
to run the reduction code over it.

At last, when all the reduce tasks are completed, one or more output files will
contain the conclusive results of the MapReduce job. The figure 2.2 shows in more details

27

] Value3
Keyl || Valuet w | || Key2 | Value?
Key7 || Value2 g Valueg
= Record
RE’CD"J N‘apTaSk -]
Record Seit Key2 || Valued -} covg | Valued Reduce Record
Record Keyd || Valued = [Keys | Valued Task Record
Key8 || Values + Record
Record LI [Key6 | ValueC Rocord
2cor
Record
= Value5
= Record Keys
E LK% VoD s
g Record =
= 2
i Record Spiit Map Task Key2 Value7 E
Record eyt || vaieo]
Record _ y Valued
Record @ Record
Record 5 [Ke ValueA | Reduce
Keyl || Valueo 2 53 Record
Record Split Keys || ValueB Task
Key3 || ValueA g Record
Record Map Task 2
Key5 || ValueB @« Record
S| [Key?][Value2 Record
Keyb ValueC
Keys ValueD

Figure 2.2: Key/value pairs distribution [Ven09]

the way the key/value pairs are passed through map and reduce functions so as to produce
the final results of the job.

Additionally to the reduce and the map function, whenever running in a distributed
environment, a combine function can be defined by the user, which takes place by the parti-
tioning phase and runs a reduction algorithm over the data before creating the partition. This
is specially useful to harness each node’s computation power and save network bandwidth
when passing partitions content to final reduce tasks assigned to other nodes across the
cluster.

2.2 An Overview of MapReduce Implementations

Throughout a thorough research over MapReduce implementations since its first
publication by Dean and Ghemawat [DG08], a set of works were analyzed [RRP*07, HFL*08,
YRKO09, HCC*10, JRA10, CCZ10, TYK11, SO11, GL11, JA12, CC13, BK13, BKX13], which
includes implementations for distributed-memory, shared-memory and heterogeneous ar-
chitectures.

The following list provides a chronological visualization of the most relevant MapRe-
duce implementations.

» 2004 MapReduce original publication [DGO08]

» 2005 Hadoop [Whi09, Ven09, Lam10]

28

« 2007 Phoenix [RRP*07]

» 2008 Mars [HFL*08]

« 2009 Phoenix Rebirth [YRK09]

+ 2010 MapCG [HCC*10]

» 2010 Tiled-MapReduce [CCZ10]
+ 2011 Phoenix++ [TYK11]

« 2013 Grex [BK13]

* 2013 Moin [BKX13]

» 2014 Glasswing [EHHB14]

The most widely adopted implementation for distributed systems, namely Hadoop,
achieved the highest level of programming abstraction among the analyzed implementations
previously mentioned. It lets programmers ignore almost completely the underlying archi-
tectural aspects and focus only on its specific application and the way to represent it through
a MapReduce job.

By other hand, the shared-memory implementations, such as Phoenix++ [TYK11]
and Tiled MapReduce [CCZ10], aimed at achieving maximum optimization, force program-
mers to deal in some level with details concerned to memory allocators, underlying data
structures, fixed or dynamic sizes in memory, among other. Otherwise, the programmer
is unable to minimize memory pressure, fit levels of cache memory and optimally use the
processing units.

Finally, implementations for heterogeneous architectures such as Mars [HFL*08],
MapCG [HCC*10], Grex [BK13], and Moin [BKX13] force programmers to deal with specific
APIs through which to choose the more suitable components and data structures according
to the size and volatility of data, in order to optimally exploit the different memory levels of
GPU devices.

More recently, Glasswing [EHHB14] proposed a highly optimized MapReduce im-
plementations for distributed, shared-memory and heterogeneous architectures, outperform-
ing Hadoop on a 64-node multi-core CPU cluster (VU Amsterdam cluster of DAS4, each
node equipped with a dual quad-core Intel Xeon 2.4GHz CPU, 24GB of memory and two
1TB disks configured with software RAIDO) by a factor of 1.8 to 4 and by a factor from 20
to 30 on 16 of these nodes each one equipped with an NVidia GTX480 GPU. The work,
though, does not provide details about the programming interface, presenting only some
specific functions signatures. For this reason we did not use it in our research and did not
include in the further studies of next sections.

29

2.3 Hadoop MapReduce

This section explains the logic and organization behind the Hadoop Core, the main
subproject of Apache Hadoop project !, which implements the MapReduce model described
in section 2.1 and the Hadoop Distributed File System (HDFS) aimed at distributed-memory
architectures.

According to Venner (2009, p. 4) [Ven09]:

Hadoop is the Apache Software Foundation top-level project that holds
the various Hadoop subprojects that graduated from the Apache Incubator. The
Hadoop project provides and supports the development of open source software
that supplies a framework for the development of highly scalable distributed com-
puting applications. The Hadoop framework handles the processing details, leaving
developers free to focus on application logic.

White (2009, p. 42) highlights the focus of Hadoop on Clusters of commodity ma-
chines [Whi09]:

Hadoop doesn’t require expensive, highly reliable hardware to run on. It's
designed to run on clusters of commodity hardware (commonly available hardware
available from multiple vendors) for which the chance of node failure across the clus-
ter is high, at least for large clusters. HDFS is designed to carry on working without
a noticeable interruption to the user in the face of such failure.

When running a MapReduce job on Hadoop, each node in the cluster is given a
specific role represented in a piece of code built from a set of pre-defined components.
Hadoop provides two components for managing the MapReduce tasks distribution and exe-
cution, JobTracker and TaskTracker, respectively. [Lam10]

By analyzing the execution flow of a MapReduce job in Hadoop, it is possible to
clearly visualize the way the components work together and play each one its role contribut-
ing to the process as a whole. It also becomes clearer where the programmer contribution
takes place, by specially implementing the map and reduce tasks, and preview how data
shall be shuffled, sorted and, finally, returned to the user application. [Whi09]

A JobClient instance, running a client application on a JVM in an external node,
starts the process by communicating with a JobTracker node, asking it for a Job identifier,
splitting the input dataset across the HDFS and, finally, calling submitJob() on the JobTracker
instance. Once submitted, the job holds references to all map tasks, which in turn reference
each input split processed by the JobTracker instance. The reduce tasks are also created at
this stage with a configured number of instances. [Whi09]

Once created, the tasks are assigned to TaskTracker nodes, which communicate
their availability by periodically sending heartbeat signals to the JobTracker. It is possible for
a TaskTracker to be assigned more than one map or reduce task, so as to run in parallel in
multi-core systems [Whi09].

'http://hadoop.apache.org

30

While assigning a map task to a TaskTracker the JobTracker looks for data locality
attempting to make the TaskTracker as close as possible from its targeted data split. Once
everything is ready for task execution, the TaskTracker looks for the Java code library con-
taining the map or reduce user defined code and runs it over the target data. The execution
of a TaskRunner is started by default within a new JVM instance for fault tolerance purposes.
If the JVM instance executing the TaskRunner code breaks or becomes hung, for any rea-
son, this process can be killed without impacting the TaskTracker process, which will be
running in a different JVM instance. [Whi09]

Copy “Sort” Reduce
phase phase phase
map task b reduce task
spill fo disk f‘-"‘-’h‘ P-
bufferin ¢ *- merge o
memury -
= —_
mput meé%i : merge nutput
split :
; pamrmns : .— ‘ .
mixture of in-memory and on -disk data
Other maps ...y, Other reduces

Figure 2.3: Shuffle and Sort steps with Hadoop [Whi09]

As previously described, the MapReduce model states that the map tasks yield
key/value pairs, which are afterwards grouped by key and then processed by reduce tasks
so that, while processing a given key, the reduce task is guaranteed to hold all possible
values for such key. This process is illustrated in figure 2.3.

As the TaskRunner’s execution of a map operation produces key/value pairs, these
pairs are buffered in memory to be, after a configured threshold, grouped in partitions and
persisted to disk. The partitions are built so as to correspond to the reduce tasks that will
process it. During the partitioning process, the partitions content is sorted by key. Within this
phase, if a combine function was provided, such function is run over the key/values pairs in
order to decrease the amount of data to be persisted to local disk and to be after transferred
to reduce nodes across the network.

After successfully completing a map operation, the TaskRunner process reports it
and the partitions locality to TaskTracker parent process, which in turn communicates these
informations to JobTracker service.

Instead of waiting all map operations to be successfully completed, the TaskTracker
nodes responsible for reduce operations keep watching over the cluster for partitions that are
ready to be copied. The locality information about the data to be reduced is obtained through

31

the JobTracker. Thereby, when all map operations are completed, almost all partitions will
be already copied and locally available to reduce operations.

Finally, as reduce operations finish their execution, the JobTracker is notified and
sends commands to erase mapping output data from the nodes which executed the map
tasks.

2.4 Phoenix

In 2007, Ranger et al. proposed an implementation of MapReduce (section 2.1)
named Phoenix [RRP*07] aimed at evaluating the suitability of MapReduce model to multi-
core and SMP architectures.

Compared to Cluster architectures, for which there are MapReduce implementa-
tions such as Hadoop (section 2.3), shared-memory multi-core and multi-processor archi-
tectures bring a set of peculiarities which in turn require different development skills. Phoenix
provides an API for easy development of functional-style map, reduce and related operations
which, once implemented, can be run over a provided Runtime which in turn dynamically
manages all parallelism mechanisms, resource management and fault recovery. This way,
the whole execution is adapted to the specific system characteristics and scalability, such as
number of cores, processors and memory details.

Phoenix Runtime provides a scheduling mechanism which keeps track of proces-
sors availability, delegating tasks in parallel among the processing units so as to optimize
the load balance and task throughput. To improve locality, the tasks granularity is adjusted
according to memory specific hierarchy and capacity.

By managing low-level details, one of the main goals is to simplify parallel program-
ming by allowing programmers to focus on their specific problem assuming, though, that
there are problems not suitable to a MapReduce paradigm. For these, the ease of program-
ming would only be provided by some other parallel pattern. On the other hand, Phoenix
allows the programmer to customize almost any low-level default mechanism it provides, as
soon as it is found a more optimized way to deal with the system architecture in an specific
scenario.

The Phoenix API

The API provided by Phoenix is written in C, and thus compatible with C and C++,
however can be extended to Java and C#. It provides a set of functions to be used by the
programmer’s application, and another set of functions definitions to be implemented and
provided by the programmer. The first set includes functions to initialize the process and
emit intermediate and output values, and the second set defines functions that comprehend

32

the Map and Reduce logic, apart from partitioning logic and key comparison. Table 2.1
shows the two sets of functions, being the three first the set of Runtime provided functions,
and the remaining the functions defined by the programmer.

Table 2.1: Phoenix API functions

Function

Description

int phoenix_scheduler (sched-
uler_args_t * args)

Initializes the runtime system. The scheduler_args_t struct
provides the needed function and data pointers.

void emit_intermediate(void
*key, void *val, int key_size))

Used in Map to emit an intermediate output <key,value>
pair. Required if the Reduce is defined.

void emit(void *key, void *val)

Used in Reduce to emit a final output pair.

int, | Splits the input data across Map tasks. The arguments are
the input data pointer, the unit size for each task, and the
input buffer pointer for each Map task.

The Map function. Each Map task executes this function on
its input.

Partitions intermediate pair for Reduce tasks based on their
keys. The arguments are the number of Reduce tasks, a
pointer to the keys, and a the size of the key. Phoenix pro-
vides a default partitioning function based on key hashing.

The Reduce function. Each reduce task executes this on
its input. The arguments are a pointer to a key, a pointer
to the associated values, and value count. If not specified,
Phoenix uses a default identity function.

Function that compares two keys, used for merge phase.

int (*splitter_t)(void *,
map_args_t*)

void (*map_t)(map_args_t*)

int (*partition_t)(int, void *, int)

void (*reduce_t)(void *, void **,
int)

int (*key_cmp_t)(const void *,
const void*)

The process is started by an application call to the phoenix_scheduler() function,
which from there on takes care of the whole process, controlling load balancing, fault tol-
erance and all other details involved in the MapReduce job. Many configuration details,
though, must be parametrized by the programmer through a scheduler_args t type whose
attributes are described in Table 2.2.

The Phoenix Runtime

As previously described, the execution process starts when the application calls the
phoenix_scheduler() function. From that moment on, the scheduler takes place and starts
to create and manage threads that run the MapReduce mechanism, having as its basis the
configurations and pointers provided by the scheduler_args t parameter. For each available
core, or each thread of a multithreaded core, the scheduler spawns a worker thread which
runs all over the process being dynamically assigned Map and Reduce tasks along the
execution.

Through the provided Splitter, the running Map tasks look for data to process, us-
ing pointers so as to avoid copying data. As each Map task is being completed, it emits
intermediate <key,value> pairs.

33

Table 2.2: Phoenix scheduler attributes

Attribute Description

Input_data Input data pointer; passed to the Splitter by the runtime.
Data_size Input dataset size

Output_data Output data pointer; buffer space allocated by user.
Splitter Pointer to Splitter function.

Map Pointer to Map function.

Reduce Pointer to Reduce function.

Partition Pointer to Partition function.

Key_cmp Pointer to key compare function.

Unit_size Pairs processed per Map Reduce task.

L1_cache_size L1 data cache size in bytes.

Num_Map_workers Maximum number of threads (workers) for Map tasks.
Num_Reduce_workers |Maximum number of threads (workers) for Reduce tasks.
Num_Merge_workers Maximum number of threads (workers) for Merge tasks.
Num_procs Maximum number of processors cores used.

As each <key,value> pair is emitted, the Partition function ensures it is grouped
within a unit with all values of the same key. When all Map tasks are finished, these units
are ready to be processed by Reduce tasks.

Each worker is dynamically assigned Reduce tasks until all intermediate pairs have
been processed. Each Reduce task processes reduction on all values of a given key. De-
pending on the input dataset and the application specific logic, this peculiarity of Reduce
tasks can generate some load imbalance, since some keys might have many more values
than others (i.e. Word Count, described in the Appendix A).

A preliminary sorting is performed by Partition function and, when all Reduce tasks
are finished, the merge phase ensures the final sorting. There are applications which do not
require the output pairs to be ordered, however Phoenix always executes this step accord-
ingly to the originally proposed implementation (section 2.1).

Figure 2.4 shows the basic data flow of a MapReduce application with Phoenix, as
explained in previous paragraphs.

Along the process, the data is stored in buffers allocated in shared memory. The
main type of buffers, named Map-Reduce buffers, are buffers organized in a two-dimensional
array strategy. These buffers are hidden from user application and are internally used by
Phoenix Runtime to store in memory the intermediate <key,value> pairs generated from the
Map tasks and consumed by Reduce tasks. The figure 2.5 shows how the buffers behave
while running a WordCount application (Appendix A).

During the execution of a Map task, data is written into a keys-array represented by
a column in the 2D-array, storing on it one key per position and a vals-array which contains all
values emitted for that key during that specific Map task. This keys-array starts with a default
height of 256 positions that can be expanded and acts as a hash table for <key,values> pairs,

34

Map Stage Reduce Stage

Worker 1 Worker 1
/}\Mahb\%muon/l

\’ll o

> 1 Re@ 1l
:"H@ab"gm“‘i”/ IE—DI Redu%

Worker N Worker M

—

™
]} /Reduce il | |
.' -___F//

Input
v
g

Figure 2.4: The basic data flow for the Phoenix runtime [RRP*07]

where the values are stored as a vals-array. The pairs of the keys-array are dynamically
sorted by key as each one is inserted.

Map task

v

/ Red Red Red Red Red

\ vals array
T
Blue
vals array
Red

Green

Reduce task —»

keys array

Figure 2.5: Phoenix data structure for intermediate key/value pairs

During the Map phase, the Map tasks work in a column-oriented approach. After
that, when the Reduce phase takes place, the orientation of Reduce tasks turns to be row-
wise. Each task goes through a given row which is guaranteed to contain all values emitted
for a given key during all Map tasks. After merging these values, the Reduce task runs
the provided reduction function storing the reduced pairs in another set of buffers named
Reduce-merge buffers.

When the Reduce phase is completed, the Reduce-merge buffers are sorted by
key and, finally, the Runtime writes the result in the user provided Output_data buffer.

35

As previously described, each Map task processes a unit, whose size can optionally
be parametrized by the user through the scheduler_args t type. The default size, though,
is adjusted by Phoenix to fit the L1 data cache in order to improve efficiency. If the system
also offers an L2 data cache, the Phoenix Runtime can use it to prefetch data for the task to
be executed after the current executing task.

While evaluating Phoenix through a set of common applications and three differ-
ent datasets, the results showed important differences concerning suitability to MapReduce
model, code complexity and overall performance.

In order to evaluate performance, two categories of architecture, CMP and SMP,
were used. The hardware support for multithreading was exploited when using a CMP
based on the UltraSPARC T1 multi-core chip with 8 multithreaded cores sharing the L2
cache [KAOO05], and the speedup achieved was high when increasing the number of cores.
With SMP architecture based on the UltraSPARC Il multi-processor with 24 processors, the
performance was also considerably improved when scaling the system.

Some applications such as Matrix Multiplication can achieve a higher granularity
and thus better exploit the cache memory available in each core, achieving even superlinear
speedups. Some others such as Word Count, though, present suboptimal load balance at
the Reduce phase when a higher number of cores was used. An also superlinear speedup
is achieved by Reverse Index, which shows its heavy processing at the merge phase, taking
high advantage of cache memory.

Summarizing, applications that are naturally key-based and some tailored to this
model, show good results and resource usage with Phoenix, such as Word Count, Matrix
Multiplication, String Match and Linear Regression. Others, although tailored to MapReduce
model, present no advantage but only avoidable overheads which evinces a better suitability
with some other parallel programming pattern.

2.5 Phoenix 2

The original Phoenix (described in section 2.4) performed well on small-scale CMP
and SMP systems with uniform memory access and 24 to 32 hardware threads, but when
benchmarked over large-scale systems with NUMA characteristics it underperformed.

In 2009, Yoo at el. published a new version of Phoenix System for MapReduce im-
plementation on shared-memory systems [YRKO09], this time with resource usage improve-
ments for NUMA architectures.

At this second work, the system used for evaluation was a Sun SPARC Enter-
prise T5440, quad-chip, 32-core, 256-thread UltraSPARC T2+, with NUMA characteristics
[SPA10]. The 256 supported hardware threads are distributed among the 4 chip. Each chip

36

has 4 channels of locally attached main memory (DRAM). Whenever a remote access to
some other chip’s memory is required, the access is 33% slower than the access to locally
attached memory. This way, when a program uses at most 64 threads, it is able to use only
one chip and avoid remote memory access, but when it needs more than 64 threads the
cost of non-uniform access cannot be avoided.

The authors realized that three issues should be specially addressed in order to
overcome the challenges presented by this category of architecture. First, the runtime must
hide the non-uniform accesses, through locality enhancement. Second, use specialized data
structures for input, output and intermediate data for different kind of datasets in order to
improve performance with large datasets. Lastly, dynamically identify mechanisms provided
by the operating system for memory management and 1/O operations.

In order to address these issues and improve performance on large-scale NUMA
systems, the second version of Phoenix proposes a three-layered optimization focused on
algorithm, implementation and OS interaction.

First of all, in a NUMA architecture, the runtime cannot assign tasks without taking
into consideration the locality of the targeted data chunks, it must be NUMA-aware. Such
locality must be taken into account, otherwise it can end up having tasks running locally but
continuously working on remote data, causing additional latency and unnecessary remote
traffic.

To solve the locality issue, Phoenix 2 introduces a task queue per locality group,
where each group is assigned tasks that work with local data chunks, sharing memory and
processor, avoiding remote access as much as possible. The limit is when a given local
queue becomes empty, when it happens the algorithm starts stealing tasks from neighbor
queues. As load balance is improved, this stealing of tasks happens less frequently.

The data management mechanism of the original Phoenix, presented in section
2.4, performed well with medium-sized datasets, but when brought to larger datasets and
large-scale architectures, goals of Phoenix 2, it was dramatically suboptimal.

The algorithmic optimizations include the locality groups, in which tasks are allo-
cated in a way to work on local data. But after Map phase is concluded, some keys might
have been emitted by tasks located in different locality groups, causing some Reduce tasks
to be unable to avoid remote accesses in a NUMA system.

While working with larger datasets, the buffers reallocation also appeared as a crit-
ical bottleneck whenever some buffer ran out of default space. Each keys-array hash table
is dynamically ordered during Map phase to enable binary search, what shows a down-
side of forcing reallocation of all keys coming lexicographically after some new key. Similar
reallocation problem affects vals-array.

Phoenix 2 overcomes the reallocation issue of keys-array by increasing the number
of hash buckets allowing each keys-array to store only one key most of the times. This

37

approach significantly optimizes Map tasks. In order to also optimize Reduce tasks, an
iterator interface is added to hide the way vals-arrays are arranged in memory, allowing
it to be arranged in the way that better optimizes locality, as well as allowing prefetching
mechanism that mitigates the latency of NUMA remote accesses.

Other approaches such as linked-lists, tree structure and combiners were evaluated
to optimize keys-array and vals-array but offered little or no optimization.

MapReduce systems tend to be I/0O and memory intensive, and so is Phoenix sys-
tems. Some peculiarities need to be addressed, such as the memory allocations for sig-
nificant amount of intermediate data at Map phase and the deallocation of this memory by
some other thread running a Reduce task. The input and output datasets also represent
large 1/0O operations.

In order to address these specific needs, a suited memory allocator must be cho-
sen. mmap() showed great scalability while the number of threads increased, as well as a
mechanism for thread stacks. The only downside was the increased thread join time due
to calls to munmap(), what was addressed by a thread pool implementation, which allowed
threads to be reused across many phases and iterations.

Phoenix 2 improved the original Phoenix’s Runtime, and enabled significant speed-
ups in some scenarios. With single-chip machines of 64 threads the average improvement
was 1.5x with a maximum of 2.8x. For large-scale NUMA systems the average was 2.53x
with a maximum of 19x. It evinces the significant improvements achieved in NUMA systems.

Operating System interaction optimizations had the most impact, but still repre-
sented the main bottlenecks. Once both sbrk() and mmap() presented limited scalability,
no memory allocator successfully scaled up to the 256 threads offered by UltraSPARC T2+
[SPA10], even though many options have been experimented.

In order to confirm the assumption of OS being the main bottleneck, it was tested
the pre-allocation of all memory needed for a WordCount workload and the reading of all the
data into the user address space before the Runtime started executing, and as result the
system scaled well up to the 256 threads.

In summary, this second version of Phoenix system proved that optimizing a Run-
time for a large-scale, shared-memory NUMA environment can be non-trivial but great
speedups can be achieved.

2.6 Tiled-MapReduce

In 2010, Chen et al. proposed a MapReduce implementation based on Phoenix 2
(section 2.5) with an innovative tiling strategy.

38

Named Tiled-MapReduce [CCZ10], it considers that the core limitation of a MapRe-
duce implementation for multi-core is that the available memory in such architectures can-
not process more than some gigabytes of data, while a distributed implementation such as
Hadoop (section 2.3) can smoothly process terabytes or even petabytes. The reason of this
limitation is that MapReduce model is designed to work with the same input and intermedi-
ate data along the entire process, what demands available memory in the same proportion
of such data.

The tiling strategy [CM95] turns to be a feasible way to overcome such limitation,
by dividing the whole job in sub-jobs and iteratively executing, optimally harnessing the re-
sources provided by the architecture and avoiding input and intermediate data to persist
along the entire life cycle of a processing phase.

For more optimal use of architecture, the proposed mechanism enhances reuse
of data structure allocation among execution iterations, includes NUCA/NUMA awareness
(based on Phoenix 2 enhancements, section 2.5) and employs pipelined execution among
sub-job’s reduce phase and the successive sub-job’s map phase.

The iterative process allows partial results to be persisted and eventually restored
when some failure breaks the system. When resumed, the process continues from the state
achieved by the latest sub-job completion, what turns to be also an effective fault tolerance
mechanism.

Partial results can also be used to provide real-time information about process
progress, such as explored by Condie et al. in a project called MapReduce Online [CCA*10].

Figure 2.6 shows the execution flow for a Tiled-MapReduce job and highlights the
extension over Phoenix 2 implementation.

MapReduce

Job (1) init meememeemeemmemeeeeeaeeeeeaaay
e current iteration |
. Worker :
(3) o % ¢ \ :
P i ; .
1 e (2) r Work emit_combine % ! s ¥ Worker i
| - ‘orker 7 % :
2 / spawn | & a : cse qk_‘
8 |[Selito v : : 5 &
c = 1 Worker (6) s R] @
= |[sprit1 »(Worker i combine S : R @ b
g i H A i IS
= |[Selit2 [e A oL ; Worker | B a
2 |lsom) "] i (8) O TP | £
g Split M ot @ L i H i reduce emit .E-
=] (5) __* : :]
— vo. emit_intermedi M 1 § N Markar (10) merge
| Wo : i
Intermediate Buffer
Input Map Combine Reduce Merge %lOufpuf

Figure 2.6: Execution Flow of Tiled-MapReduce [CCZ10]

39

The mr_dispatcher function starts the process splitting the input data in the lteration
Window. For each iteration, input data chunk is split into M pieces distributed among Map
tasks. Each available CPU core is bound to a worker job which keeps looking for pending
tasks whenever idle.

The Map phase invokes user-provided map function, in which the runtime-provided
emit_intermediate function is executed and inserts key/value pairs into the Intermediate
Buffer.

Similarly to Phoenix 2, the Intermediate Buffer is organized as an M by R matrix,
where R is the number of reduce tasks and the column orientation searched for combine
phase, which executes emit_combine immediately after map execution, populating the Iter-
ation Buffer. Following MapReduce model’s original definition (section 2.1), combine phase
is a forehand reduce phase, usually executed internally to a node in a cluster, before sending
results back through the network. In Tiled-MapReduce context, combine phase is a forehand
reduce phase executed internally to each iteration process.

After the combine phase, all resulting lteration Buffers are provided as input for
the final reduce phase, along which the workers invoke the programmer-provided reduce
function. This function in turn populates the Final Buffer, which finally is sorted and merged
into the Output Buffer.

As previously mentioned, the adoption of tiling strategy by Tiled-MapReduce model
not only allows the input data to be much larger by splitting the execution in multiple sub-
jobs, but also allows a set of optimizations on resources usage by circumventing limitations
of original MapReduce model, such as the need of map phase completion before starting
reduce phase. This set of optimizations covers memory reuse, data locality and task paral-
lelism.

The proposed implementation for Tiled-MapReduce, namely Ostrich, enhances
memory efficiency by reusing memory allocations for input data and intermediate data among
sub-jobs. Once an lteration Buffer has been allocated for the first iteration, it is reused by
the subsequent iterations. The same happens with lteration Window over Input Data.

For Input Data, the original model suggests pointers to every piece of the split data,
however this strategy may cause excessive pressure on memory. Instead of taking this
approach, Ostrich is designed to adapt its execution to the concerned data and application,
applying different strategy according to keys duplication and available memory. If there are
abundant duplicated keys, memory copy is allowed, and memory efficiency is improved by
harnessing cache levels. Otherwise, if there are not abundant duplicated keys, pointers are
used instead. Behind this, a single fix-sized memory buffer is allocated for the first iterations
and reused for all subsequent iterations, being remapped to the corresponding lteration
Window whenever a new sub-job starts.

40

For Intermediate Data, a single global allocation is also exploited. While running,
each sub-job populates the global Intermediate Buffer with the result of Map phase and
starts reducing such result through Combine phase which in turn runs in parallel (pipelined)
with the subsequent sub-job’s Map phase. Each iteration’s Combine phase generates an
Iteration Buffer which is limited to a threshold in order to fit into the last-level cache. When-
ever the limit is exceeded, the runtime runs an internal Compress phase which, similarly
to Combine phase, runs the same user-provided reduce function, thus improving memory
efficiency also with Intermediate Data.

As larger the Input Data, more accesses are required from map and reduce func-
tions to Input Data and Intermediate Buffer, causing poor temporal and spatial data locality.

Again, Ostrich circumvents the problem by splitting Input Data and, hence, de-
creasing input to lteration Windows. By working with a shortened set of data, the sub-jobs
can fit the cache and achieve great speedups.

Similarly to Phoenix [YRKO09], Ostrich also was designed to be suitable for archi-
tectures with non-uniform access to cache or memory (NUCA and NUMA). In order to be
optimized for such environments, a Dispatcher thread spawns one Repeater thread for each
chip. The Dispatcher delegates sub-jobs to Repeaters as soon as they become idle.

The Repeaters play the role of reproducing the entire execution flow described
earlier inside each chip, hence avoiding accesses beyond the chip boundaries. However,
cross-chip accesses can only be avoided until Combine phase is completed, becoming un-
avoidable from final Reduce phase.

I
_/ Core

[] Private $

l:| Shared $

é_l,_ S (/"]“;3':“
k] = — —\ [T
QJ: AR (R R (R I/"s‘t”z
@ ©
=/ - §—~ ! R L ASE ASE - 3 A\=
= =
s
= NN NN =
O L L I I B B J | LI I N B B B | JO
9| —r Intermediate — —r Intermediate +— 2
® 7 buffer T buffer | ®
2 [T T 1] [T T TT1 Q
.E. | | | | | | | | | | 6.
Iteration il = Iteration
ol \B\u\ffe\r\ R \B\u\ffe\r\
Main - Main
Memory | ‘ Final Bufi’erI || Output Burrerl Memory

Figure 2.7: NUCA/NUMA-aware mechanism [CCZ10]

Figure 2.7 illustrates Ostrich’s NUCA/NUMA-aware mechanism.

In Tiled-MapReduce, there is no need for a strict barrier between the end of Map
phase and the beginning of Reduce phase, as it is with original MapReduce model. The tiling

41

strategy allows runtime to pipeline tasks and mitigate idle threads avoiding the imbalance
among tasks when the amount of keys and values per key is unpredictable.

PIPELINE

Time l

Bl map task
Bl reduce task

] idie

Figure 2.8: Task Parallelism through pipeline [CCZ10]

Figure 2.8 illustrates the tasks pipeline, where the Map task of subsequent iteration
is able to start even if the Reduce task has not finished. Due to Intermediate Buffer allocation
reuse among iterations, this buffer needs to be duplicated when pipeline is enabled, thus
increasing memory consumption. Depending on the application, this may cause excessive
memory pressure and loss of performance. Ostrich, for that reason, allows user to disable
pipeline in order to avoid specific suboptimal cases.

Experimental results showed that Ostrich outperforms Phoenix 2 due to the men-
tioned optimizations, made possible through Tiled-MapReduce. Experiments using different
types of data-parallel applications show that Ostrich can save up to 87.6% memory, cause
less cache misses, and make more efficient use of CPU cores, resulting in a speedup from
1.86x to 3.07x.

All experiments were conducted on a 48-core machine with eight 2.4 GHz 6-core
AMD Opteron chips. Each core has its own private 64KByte instruction and data caches,
and a 512KByte L2 cache. The cores on each chip share a 5MByte L3 cache. The size of
the physical memory is 128GByte.

2.7 Phoenix++

In 2011, the Phoenix project evolved to a third version and a completely new im-
plementation of MapReduce for shared-memory multi-core architectures, this time built over

42

C++ programming language aiming to exploit object-oriented facilities to modularity and in-
line compilation.

The new Phoenix++ Runtime [TYK11] focuses on overcoming a set of limitations
noted in previous versions (sections 2.4 and 2.5). Talbot et al. mentioned that many users
reported the need to rewrite and circumvent some parts of Phoenix engines in order to
achieve a reasonable optimization for specific applications.

The static MapReduce pipeline adopted by Phoenix until its second version showed
suboptimal execution for some types of applications and the need of an adaptable Runtime.

Besides that, recent researches (section 2.6) achieved up to 3.5x speedup over
Phoenix 2 (section 2.5).

2.7.1 Limitations of previous versions

The table 2.3 describes the three possible key distributions for MapReduce appli-
cations as well as the more optimal data container for each type of distribution.

Table 2.3: Key distributions and optimized data containers proposed by Phoenix++ [TYK11]

Key distribution | Description Sample applica- Container type
tions
i any map task can emit any | Word Count variable-size hash table

key, where the number of
keys is not known before ex-

ecution
*:k any map task can emit any of | Histogram, Lin-|array with fixed mapping
a fixed number of keys k ear Regression,
K-means, String
Match
1:1 each task outputs a single, | Matrix Multiplica- shared array
unique key tion, PCA

Precedent versions ignored such peculiarities, proposing a static and uniform way
to execute all kind of applications. This approach exposed inefficiencies on intermediate
key-value storage, combiner implementation and task chunking.

Inefficient Intermediate key-value storage

The use of map thread-specific fixed-width hash tables, with a constant number of
hash buckets (described in section 2.4), allows each single reduce task to traverse the same
bucket in each hash table in a cross-cutting fashion, avoiding locking. Nevertheless, this
strategy limits the performance for *:* workloads with large number of keys, and performs

43

unnecessary processing and memory usage in *:k and 1:1 workloads. For instance, a pic-
ture histogram application fits better with fixed size arrays, instead of hash tables, since the
number of pixels is known in advance.

Ineffective Combiner

In previous versions, the Combiner phase is always run at the end of Map phase.
This strategy is an inheritance from implementations of MapReduce for clusters, where it
is used in order to minimize network traffic among nodes. In SMP architectures, though,
there is greater cost in memory allocation than in data traffic. The Combiner execution at
the end of Map phase forces the data to remain allocated for a longer time causing memory
pressure, and also suffers from cache-misses, which greatly affects performance. In such
cases, users tend to implement Combiner calls inside the Map function.

Exposed Task Chunking

Phoenix exposes data chunks to Map function implementation, bringing extra code
into user code and allowing the user to manipulate such chunks in ways that can break
Runtime capabilities of managing data.

2.7.2 Phoenix++: A Complete Revision of Phoenix

Phoenix++ is based on a totally new source code written in C++, which promotes
capabilities toward modularization through templates and inline functions.

Two core abstractions compose the new modularized Runtime: containers and
combiner objects. Besides that, Phoenix++ allows users to alternate between memory allo-
cators and choose whether the final key-value sort is required or avoidable.

Containers

By knowing in advance the desired workload characteristics, the user is able to
choose the more suitable container to hold intermediate key-value pairs, rather than being
forced to use a hash table structure.

For *:* workloads, the hash container implements a data structure similar to the
one used in Phoenix, except for making hash tables resizable. For *:k workloads, the array
container implements a fixed-size, thread-local array. And for 71:1 workloads, the common
array container implements a non-blocking array structure shared across all threads.

44

The resizable hash tables in hash container causes the correspondence between
keys and bucket indices to be lost. Nevertheless, Phoenix++ overcomes this issue by copy-
ing the result of Map phase into a new fixed-width hash table with the same number of
buckets as reduce tasks. Surprisingly, such copy overhead still allows execution to achieve
speedup over Phoenix. The array container easily increases overall performance by avoid-
ing the cost of hashing keys and repeatedly checking whether the hash table must be re-
sized. The common array container avoids many verifications involving hashing and syn-
chronizing, since it is known that each key produces a single value. Finally, a container
interface is also provided in order to allow users to implement their own container without
circumventing Phoenix++ mechanisms.

Combiner objects

In Phoenix++, a new stateful object takes place to incorporate the combiner be-
havior and is called after each key-value pair is emitted by the map function.

There are two standard implementations and an interface for customized imple-
mentations. The buffer_combiner buffers all emitted values in order to run the Combine
phase only until reduce function is called, following the original model, whereas the associa-
tive_combiner in turn does not buffer the values but executes combine logic incrementally
after each value is emitted.

Evaluation

For all types of workloads, Phoenix++ achieves improved performance and more
scalability up to 32 threads. Alternative containers and combiners evince that there is no
single option suitable for all workloads. The template and inline functions capabilities of
C++ also eliminate function calls in the map and reduce inner loops. The overall speedup
achieved an average of 4.7x over Phoenix 2.

Experiments were conducted in a multi-core system with 4 Nehalem-EX chips, 8
cores per chip, 2-way Hyper-Threading per core, a total of 64 hardware contexts on system
and 32 GB of RAM memory. Per core data / instruction L1, 32 KB. Per core L2, 256 KB.
Shared L3, 24 MB.

2.8 Phoenix++ and Hadoop performance comparison

In order to implement a high-performance recommendation system with MapRe-
duce for multi-core architectures, Cao et al. [CSW13] evaluated Phoenix++ against Hadoop,
achieving 28.5x speedup over Hadoop for a word count sample application, as shown in the

45

Figure 2.9 (note the log-scale in the y-axis). Their final recommendation system performed
225% faster than the Hadoop counterpart without losing recommendation quality.

1000 Phoenix++

® Hadoop

100

Time (seconds)

1 2 4
Number of virtual CPUs

Figure 2.9: Experiment of 1 GB word count using Phoenix++ and Hadoop on a multi-core
architecture. The y-axis is in a logarithmic scale. [CSW13]

Wittek and Daranyi [WD11] perform a case study of high-performance computing
and cloud technologies for applications of digital libraries. Their work observes that Hadoop
is able to run into a single shared-memory multi-core machine executing multiple jobs simul-
taneously by launching multiple Java Virtual Machines (JVM), and hence exploiting internal
parallelism of multicore nodes. However, such solution performs poorly, particularly due
to JVM instances management, being this the reason why Hadoop emphasizes its focus
on data-intensive computing. In other words, a large volume of data has to be processed
reliably and the execution time is considered of secondary importance.

Tiwari and Solihin [TS12] carefully analyze key performance factors of shared mem-
ory MapReduce implementations. Their work particularly observes that Hadoop uses disk-
based file system to store intermediate key-value pairs, which is required for distributed
execution and contingency for fault tolerance. However, such requirements are inexistent for
multi-core environments, in which the MapReduce intermediate data can be stored in the
main memory and be still optimized to better resource usage.

2.9 DSL-POPP

After an overview of MapReduce implementations for different levels of architec-
tures in the previous sections, this section analyzes the DSL-POPP, which, proposed by
Griebler et al. [Gri12, GF13, GAF14], aims at providing both specialized syntax and compiler
based on C for patterns-oriented parallel programming through a Domain Specific Language
[Fow10, Gho11]. Programmers are, thus, supplied with special coding blocks through which

46

they are able to define the chosen parallel pattern(s) [MSMO04, McC10] more suitable for the
parallel application being developed.

From the chosen pattern(s) (i.e. Master/Slave, Pipeline, Divide and Conquer) the
compiler is able to generate a parallel code with threads management, load balancing and
any other low-level detail needed for optimal parallel execution.

DSL-POPP also provides the possibility of nested pattern structures, which is rep-
resented by more than one level of the same pattern (i.e. Master/Slave) or different pat-
terns, for instance, each stage of a Pipeline process can be structured as a Master/Slave
sub-process. Figure 2.10 demonstrates a nested hybrid patterns structure with Pipeline and
Master/Slave.

Hybrid patterns

p
Pl]——[P2| —> -+ ——|Pn
@5@ (2)-~[on])
subroutine n
@SCQ@ @ (pipeline)
subroutine T subroutine 2
(master/slave) (master/slave)

main routine (pipeline

Figure 2.10: Hybrid structure with mixed patterns [GF13]

Currently, DSL-POPP supports only shared memory multi-core architectures, how-
ever its coding structure aims at being futurely portable for different architectures, such as
distributed or even modern heterogeneous systems with GPGPUSs, in a seamless way for
programmers.

The Listing 2.1 shows an example of Master/Slave pattern implementation with
DSL-POPP and how the code blocks are structured for this parallel pattern.

1 int func_name () {

2 (void «buffer, const int size){

3 //pure C/C++ code

4 (const int num_threads, void «buffer ,const int size, const
policy){

5 /! pure C/C++ code

6 }

7 /I pure C/C++ code

8 }

9}

Listing 2.1: Master/Slave programming interface.

47

The DSL-POPP project is an ongoing research, which motivated our current re-
search with the aim of including the MapReduce model as a new parallel pattern to be
supported by the DSL, however some challenges arose. DSL-POPP currently does not sup-
port built-in functions, such as those required by MapReduce to emit intermediate key/value
pairs and finally emit the reduced values per key. The MapReduce implies very specialized
underlying stages of execution, such as shuffle, group and sort, whereas the patterns cur-
rently supported by DSL-POPP deal with a more high level of simply dividing the execution
of almost any parallelizable algorithm.

Moreover, to implement a whole new MapReduce mechanism would be to neglect
the well evolved projects already widely used for shared and distributed environments.

Nevertheless, Griebler et al. successfully evaluated key concepts on develop-
ing and evaluating domain specific languages for abstracting parallel programming, which
served as an essential basis for our research on a unified programming interface for MapRe-
duce.

2.10 Summary of the chapter

As introduced in the beginning of the chapter, a comprehensive study was per-
formed over the MapReduce model and a set of important implementations of this model for
different architectural levels.

This chapter also presented performance evaluations among these works and how
MapReduce implementations evolved to state-of-the-art solutions, with optimal performance
and resource usage, even in very low-level architectures.

Such evaluations led our research to focus on Hadoop (section 2.3) for distributed
systems and Phoenix++ (section 2.7) for shared-memory multi-core architectures. Hetero-
geneous architectures with GPGPUs (Appendix B) are indicated for future work, as de-
scribed in chapter 6.

Finally, DSL-POPP served as an essential basis for our research.

48

49

3. RELATED WORK

Separately from chapter 2, this chapter focuses on some researches which re-
cently explored the power of combining multi-architecture MapReduce implementations with
a single and simple programming interface, thus more directly related to the objetives of our
research.

We searched for MapReduce implementations of unified MapReduce programming
interfaces through the concept of a DSL and also aimed at providing seamless optimiza-
tion for different architectural levels. Important researches were found on improving exist-
ing MapReduce implementations for distributed systems, particularly Hadoop, in order to
achieve high performance in MapReduce implementations at the single-node level. Never-
theless, no research was found on building a unified MapReduce programming interface for
shared memory and distributed architectures through a DSL.

3.1 The Hone project

The Hone project [KGDL13, KGDL14], by Kumar et al., advocates that the exclusiv-
ity of large clusters for data processing can be re-evaluated, once shared-memory multi-core
systems have increased in memory capacity and several common MapReduce applications
do not deal with petascale datasets. Kumar et al. also observe the unfeasibility of adapting
MapReduce implementations like Phoenix++ [TYK11] to be used with Hadoop, once they
do not share a single programming interface and programming language. To achieve such
integration, several reimplementations would be required in the Hadoop project.

Hone is aimed at providing an efficient MapReduce implementation for multi-core
systems with the Java language, sharing thus compatibility with Hadoop MapReduce pro-
gramming interface and requiring no code changes on MapReduce applications previously
developed for distributed systems with Hadoop.

Experiments conducted in a server with dual Intel Xeon quad-core processors
(E5620 2.4 GHz) and 128 GB RAM showed, however, that Phoenix++ still outperforms Hone,
with speedup from 2X to 4X depending on the application.

3.2 Scale-up vs Scale-out for Hadoop

Appuswamy et al. [AGN*13] also argue about the increasing relevance of shared-
memory multi-core environments for several MapReduce applications (section 3.1). Several
categories of common MapReduce workloads fit well in the memory capacity of multi-core

50

environments, however current popular implementations, such as Hadoop, perform poorly
on such environments.

Their research proposes a reimplementation of many Hadoop internals in order to
improve the execution performance on multi-core systems in a completely seamless fashion.

Finally, authors present the results of experiments with a set of MapReduce ap-
plications in order to measure advantages of the refactored internals concerning execution
time, financial costs of cloud resources and energy consumption. Nevertheless, no source
code or enough information is provided to support comparison with Phoenix++.

3.3 The Azwraith project

Xiao et al. [XCZ11] argue that the disregarded efficiency of Hadoop for single-
node level fails to exploit data locality, cache hierarchy and task parallelism for multi-core
architectures. The JVM-based runtime causes extra objects creation and destroys overhead
as well as memory footprint. The authors also argue that such resource wasting causes
avoidable costs in pay-as-you-go cloud systems such as Amazon’s Elastic MapReduce .

In order to increase Hadoop efficiency on multi-core, Xiao et al. proposes Azwraith,
an integration of Hadoop with an efficient MapReduce runtime (namely Ostrich, section 2.6)
for multi-core. Both Ostrich and Hadoop are adapted to conform to the same workflow and
communication protocols, causing most components of Hadoop (e.g., TaskTracker, HDFS)
to be left untouched, and avoiding thus impacts on existing Hadoop applications.

Experiments were conducted on a small-scale cluster with 1 master node and 6
slave nodes. Each machine was equipped with two AMD Opteron 12-core processors, 64
GB main memory and 4 SCSI hard drives. Each machine connected to the same switch
through a 1Gb Ethernet link.

Azwraith gains a considerable speedup over Hadoop with different input sizes,
ranging from 1.4x to 3.5x. Computation-oriented tasks like Word Count and Linear Re-
gression gain larger speedup than the I/O-intensive applications such as GigaSort. With
the support of the cache system, Azwraith gains a 1.43X to 1.55X speedup over a Azwraith
instance without the cache scheme, and 2.06X to 2.21X over Hadoop.

3.4 Related work overview

As previously mentioned in this chapter, no research was found on building a uni-
fied MapReduce programming interface for shared memory and distributed architectures

'http://aws.amazon.com/pt/elasticmapreduce/

51

through a DSL. The researches described in this chapter and summarized in Table 3.1 aim
at improving Hadoop, in order to achieve high performance in MapReduce implementations
at the single-node level.

Table 3.1: Overview of Related Work

Work Approach Evaluation

Hone A MapReduce implementation in Java opti- | Phoenix++ outperforms Hone with
mized for multi-core systems with the Java lan- | speedup from 2x to 4X
guage and compatible with Hadoop MapRe-
duce programming interface

Appuswamy | Reimplementation of many Hadoop internals in | No source code or enough informa-
order to optimize execution time, financial costs |tion is provided to support compari-
of cloud resources and energy consumption. | son with Phoenix++

Azwraith Integration of Ostrich and Hadoop, bringing Os- | Speedups from 1.4x to 3.5x over
trich’s multi-core optimizations to Hadoop inter- | Hadoop, although still presenting
nals without imposing a different MapReduce |less performance improvements
programming interface compared Phoenix++

Concerning programming interface, such solutions make use of the same interface
of Hadoop, making the underlying improvements transparent to the programmers. However,
such improvements are still far from the performance achieved by Phoenix++ on shared
memory multi-core level.

A
Unified
Interface
Hone
Azwraith

_5 Hadoop Appuswamy et al.

E

= Phoenix++
175}

Q

<

Phoenix Phoenix 2 Tiled-MapReduce

Performance on shared-memory

Figure 3.1: The relationship graph between abstraction and performance on the program-
ming interface of analyzed researches.

Figure 3.1 also justifies our choices for generating MapReduce code for Hadoop
and Phoenix++. These are the best alternatives for our design principles in terms of ab-
straction and performance.

52

53

4. UNIFIED MAPREDUCE PROGRAMMING INTERFACE

This chapter starts by presenting the justification for this research (section 4.1),
which also covers the disadvantages of implementing MapReduce applications directly from
the selected frameworks (section 4.1.1) and the advantages of a unified MapReduce pro-
gramming interface for both shared-memory multi-core and distributed architectures (section
4.1.2). It continues with the research questions and the advocated hypothesis (section 4.2).

The proposed unified MapReduce programming interface is then described in detalil
(section 4.3), which starts by providing an overview of the transformation process in section
4.3.2. This section continues covering the interface’s structure in section 4.3.1 and the
interface’s components in section 4.3.3, which in turn describes the equivalence among
the interface’s components and those from Hadoop and Phoenix++ code. Section 4.3.4
also describes some special components and code transformation rules for text processing,
which comprehend most common MapReduce applications.

Section 4.3.5 describes performance mechanisms provided through Phoenix++
and Hadoop interfaces, which are also guaranteed through the proposed unified interface.

Section 4.3.6 describes programming complexities the unified interface is able to
abstract and some very specialized features from Phoenix++ which are not supported since
no possible abstraction was identified.

Finally, section 4.4 describes the devised code generator and its code transforma-
tion flow.

4.1 Justification

MapReduce pattern brings modularization and abstraction of data processing to an
innovative level, what turns it to be an intuitive and simple model. In order to achieve high
performance, it is mandatory an optimized resources usage for either shared-memory multi-
core or distributed architectures. Current researches have exploited it in order to maximize
optimization and have achieved considerable speedups. MapReduce solutions though have
implied more complex interfaces and required more advanced skills from programmers.

Therefore, it is opportune to propose a unified MapReduce programming interface
to minimize coding complexities and still optimally use the available resources by generat-
ing optimized code for consolidated solutions according to the architectural level, namely
Hadoop (described in section 2.3) and Phoenix++ (described in section 2.7).

Complexities involving MapReduce programming with Hadoop and Phoenix++ are
further described in section 4.1.1 and advantages of a unified MapReduce programming
interface are discussed in section 4.1.2.

54

411 Required code by Hadoop and Phoenix++

The implementation of MapReduce applications with Hadoop requires the writing of
two classes, which must inherit from Mapper and Reducer in order to override the respective
methods which hold the mapping and reduction logics. Such methods also are required to
throw specific Java and Hadoop exceptions. Phoenix++, in turn, requires the definition of a
subclass of MapReduce or MapReduceSort class with functions for mapping and reduction,
or the definition of a combiner.

In Phoenix++, the class definition also requires the parametrization of many con-
figuration aspects, which may include explicit definition of data sizes, since optimized multi-
core implementations deal directly with memory allocators. Concerning optimized memory
usage, Phoenix++ requires the programmer to specify both the container to manage the
intermediate key-value pairs emitted during the Map phase (table 2.3) and the combiner to
perform early reduction.

Besides such complex structures, inside which mapping and reduction logics are
defined, there also are many required lines of code outside such structures and not related
to the relevant MapReduce logic. For instance, both Hadoop and Phoenix++ always require
many imports and includes which are thus totally repetitive among any kind of MapReduce
application implemented with one of these two frameworks. Considering that a given im-
port or include is required due to some variable type being used along the code, this also
represents some unneeded code redundancy.

Appendix A shows the code for all sample applications, providing thus a complete
and detailed visualization of the code required from Phoenix++ and Hadoop, as well as
complexities imposed by the hosting languages C++ and Java respectively.

41.2 Advantages of a unified MapReduce Programming interface

The proposed unified MapReduce interface is not only able to significantly reduce
the code required for MapReduce applications, by following transformation rules for equiva-
lent Phoenix++ and Hadoop code, but also to keep performance optimizations and hereafter
be evolved to generate code for different MapReduce frameworks.

Implementations for heterogeneous parallel architectures were considered and stud-
ied along our research (Appendix B), but were left as indication for future work (chapter 6).

Most of all, the interface provides code reuse among different architectural levels
and the respective MapReduce implementations, being also able to be hereafter extended
to comprehend new solutions and architectures.

55

4.2 Research questions and hypothesis

* Q1 Is it possible for a unified MapReduce programming interface to generate effective
code for Hadoop and Phoenix++7?

* Q2 Does the unified MapReduce programming interface significantly reduce program-
ming effort?

The effectiveness questioned by Q7 implies a working code for both Phoenix++
and Hadoop with negligible or no performance loss.

The significance questioned by Q2 implies a significant reduction in lines of code
and programming effort.

Experiments are based on hypothesis, which in turn must provide a way of being
proved either false or true [Oat06].

The hypothesis H1 and H2 are proposed to answer the research question Qf,
whereas H3 is aimed to answer question Q2.

« H1 The code resultant from the transformation rules produces the same output re-
sults with the same input datasets for code implemented directly from Phoenix++ and
Hadoop.

* H2 Both the Phoenix++ and Hadoop code, resultant from the transformation rules,
execute with negligible or no performance loss.

» H3 The lines of code and the programming effort required by the unified interface are
significantly less than those required by Phoenix++ and Hadoop programming inter-
faces.

4.3 Proposed interface

It is proposed a unified MapReduce programming interface, in conjunction with
code transformation rules for shared-memory multi-core and distributed architectures. The
code transformation rules cover Phoenix++ (section 2.7) and Hadoop (section 2.3) MapRe-
duce code, being up to the user to choose either one or the other according to the tar-
get architecture, whether shared-memory multi-core or distributed, in order to obtain high-
performance with highly optimized resource usage.

The proposed interface is inspired by the syntax proposed by the Patterns-oriented
Parallel Programming (POPP) model from Griebler et al. (section 2.9). Our interface how-
ever is not built over a third-part language as C or C++, being based on an own language

56

instead. The different programming languages (Java and C++) and the very specific syn-
taxes for Phoenix++ and Hadoop code led us to decide for an own language in order to
maximize abstraction. A C++ programming interface provided by the Hadoop project, called
Hadoop Pipes’', was initially considered but later discarded due to absence of documentation
and for looking as a discontinued project.

Moreover, the parallel patterns already comprehended by DSL-POPP, namely Mas-
ter/Slave and Pipeline, allow the implementation of a wide diversity of algorithms, whereas
a MapReduce approach is more peculiar. Algorithms adapted to MapReduce always deal
with key/value pairs and its (map and reduce) blocks imply very specific code for managing
the intermediate and final key/value pairs.

431 Unified Interfaces’s structure

Our unified MapReduce programming interface’s structure consists of an outer
@MapReduce block and two inner @Map and @ Reduce blocks, as detailed on listing 4.1
and grammar 4.1.

1 <NAME,

2 K_IN, V_IN,
3 K_OUT, V_OUT,
4 K_DIST>{

5

6 (key, value){

7 \\ Map code logic
8 }

9

10 (key, values){
11 \\' Reduce code logic

12}
13}

Listing 4.1: Interface’s structure.

The @MapReduce block always requires six parameters, namely NAME, K_IN,
V_IN, K_OUT, V_OUT and K_DIST.

The NAME parameter is any user-defined name, which is used for identifying
the MapReduce process and further transforming the code for Java and C++ classes, for
Hadoop and Phoenix++ respectively.

The K_IN, V_IN, K_ OUT and V_OUT parameters are used to define the <key/-
value> input and output types, respectively. In other words, these parameters define which

'http://wiki.apache.org/hadoop/C%2B%2BWordCount

57
(Map) ::= ‘@Map (key, value){ { (cmd)* (EmitCall) (cmd)* }+ ‘¥

(Reduce) ::= ‘@Reduce (key, values){ { (cmd)* (EmitCall) (cmd)* }+ ‘}’ | ‘@SumReducer’ |
‘@IdentityReducer’

(MapReduce) ::= ‘@MapReduce<’ (mapreduce-params) ‘>{’ (Map) (Reduce) ‘¥

Grammar 4.1: Structure’s grammar

type of raw data is initially read by the MapReduce process and which type of reduced data
is produced by it at the end.

Finally, the K_DIST parameter is used for defining the keys distribution (see table
2.3) of each specific MapReduce application. Section 2.7.1 describes how useful can this
information be in order to employ more optimized data structure for intermediate <key/value>
pairs. In other words, this parameter is critical for the generation of Phoenix++ optimized
code. If not provided, *:* is assumed as the key distribution.

The inner blocks, @Map and @ Reduce, must be programmed by the user in order
to define the core logic of the given MapReduce application. The @Map block receives a
<key/value> input pair from which to compute the <key/value> intermediate pairs. Finally,
the @Reduce block receives all mapped values for each key, this is a <key/values> pair,
and computes the final reduced <key/value> pair by key. Both blocks are also provided with
an @emit function (grammar 4.2), which for @Map block represents the function to emit
intermediate <key/value> pairs, whereas for @ Reduce block represents the function to emit
the final reduced value for a given key.

(EmitCall) ::= ‘emit (' (key) *,” (value) ‘)’
Grammar 4.2: The emit function’s grammar

One additional characteristic of the @ Reduce block is that it can be replaced by
a single @ SumReducer directive with no block code (grammar 4.1), which indicates that a
simple sum operation must be performed over all values of each key. Another option is the
@ IdentityReducer directive, which indicates that no reduction needs to be performed. Both
default options are provided by Hadoop and Phoenix++, since these are the most common
reduce logics for MapReduce applications. Nevertheless, whenever the provided default
reducers do not fit the need, a customized reducer can be implemented, as demonstrated in
the Listing 4.2 for a hypothetical multiplicand reducer.

(key, values){
double product = 1

for(int i=0; i < length(values); i++)
product *= values[i]

aa b~ O =

58

7 emit (key, product)

Listing 4.2: Multiplicand reducer example.

The code developed for @Map and @ Reduce logics can employ many language
components such as variable declarations and loops, further described in section 4.3.3.
Every code declared inside a @Map or @ Reduce block is private and will not be accessible
from other code blocks. Global variables and functions may be used for data and operations
to be accessible from different blocks.

4.3.2 Transformation process

Figure 4.1 provides an overview of the transformation process through which the
transformation rules defined in sections 4.3.1, 4.3.3 and 4.3.4 are to be applied.

First imports/includes
Stage
oecond @MapReduce global variables
Stage
@Map @Reduce @Type
Thi
St;rg;je unsolved keywords
Fourth .
Stage variables types
Fifth .
Stage functions

Figure 4.1: Transformation Process

+ First stage - The process starts by generating all imports/includes always required by
Phoenix++ and Hadoop applications. This stage follows the rules detailed in table 4.1.

» Second stage - The process then continues by transforming the @MapReduce block
and its @Map and @Reduce inner blocks. At this same stage, custom types @Type

59

may have been provided by the programmer being then also transformed. At last,
global variables, external to the @MapReduce block, may have also been defined by
the programmer and are also transformed in this second stage. This stage follows the
rules defined in listings 4.1, 4.2, 4.3 and 4.4.

» Third stage - This stage addresses the transformations of the unsolved keywords
included by the second stage and defined in table 4.5.

» Fourth stage - This stage transforms the variable types defined in the blocks’ signature
and also internally to these blocks. The transformation rules for this stage are defined
in table 4.2.

« Fifth stage - At last, the fifth stage transforms the functions defined internally to the
MapReduce blocks and internally to custom types. The transformation rules for this
final stage are defined in tables 4.3 and 4.4.

4.3.3 Interface components and transformation rules

This section provides a detailed description of the proposed interface’s compo-
nents, which comprehends variable types, built-in functions, flow control and, finally, the
MapReduce blocks variants.

As each component is detailed, it is also described the correspondent code trans-
formation for Hadoop and Phoenix++, which in turn is the base for the proposed code gen-
erator (section 4.4).

Imports and Includes

Concerning code transformation, the first important topic to describe is the set
of imports (for Hadoop’s Java code) and includes (for Phoenix++’s C++ code) always in-
cluded in the generated code. Each one of these imports/includes is always required for any
MapReduce application, being for this reason automatically included by our interface. Table
4.1 shows the two set of Java imports and C++ includes.

Additional imports/includes are inferred from the components used by the program-
mer along the code, as detailed in the following sections.
Variable types

The proposed interface is typed. This way, for the programmer to be able to define
variables in any of the allowed contexts, it is provided a set of variable types.

60

Table 4.1: Java imports and C++ includes always required by MapReduce applications

Framework |import/include

Hadoop import java.io.lOException;

Hadoop import java.util.*;

Hadoop import org.apache.hadoop.fs.FileSystem;

Hadoop import org.apache.hadoop.fs.Path;

Hadoop import org.apache.hadoop.conf.”;

Hadoop import org.apache.hadoop.mapreduce.*;

Hadoop import org.apache.hadoop.mapreduce.lib.input.FilelnputFormat;
Hadoop import org.apache.hadoop.mapreduce.lib.input. TextinputFormat;
Hadoop import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
Hadoop import org.apache.hadoop.mapreduce.lib.output. TextOutputFormat;
Phoenix++ | #include <sys/mman.h>

Phoenix++ | #include <sys/stat.h>

Phoenix++ | #include <fcntl.h>

Phoenix++ | #include “map_reduce.h”

Phoenix++ | #include “tbb/scalable_allocator.h”

Specifically for contexts that imply communication among MapReduce tasks, Hadoop
requires a Writable? type, instead of primitive/wrapper® types, and Phoenix++ requires point-
ers. The proposed interface, in turn, prevents the programmer from this distinction, parsing
the variable types to the right format (Writable, primitive or pointer) according to the context.

Table 4.2 describes the set of variable types, the Hadoop/Phoenix++ correspondent
code transformation and any additional include/import required. For those types for which
there are more than one possible Hadoop/Phoenix++ equivalent code, the code transforma-
tion rule considers the suitable option according to the context, whether it implies communi-
cation beyond the task’s scope, as previously described.

Custom variable types

The programmer is also able to define custom types, which are translated to C++
structs for Phoenix++ and Java classes implementing the Writable interface for Hadoop. The
resulting Java classes, particularly, include getters and setters methods, besides some other
methods whose implementation is required by Writable interface.

Moreover, whenever a custom type is defined for input data in Hadoop, a complete
implementation of a subclass of FilelInputFormat* and another subclass of RecordReader® is
required. It is particularly needed in order to instruct Hadoop on how to split and distribute the
input data among Map tasks. Nonetheless, it causes applications developed with Hadoop to
reach a considerable amount of code.

2https://hadoop.apache.org/docs/current/api/org/apache/hadoop/io/Writable.html
3http://docs.oracle.com/javase/tutorial/java/data/numberclasses.html
“https://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/FileInputFormat.html
Shitps://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapreduce/RecordReader.html

61

Table 4.2: Variable types, code transformation and additional includes/imports

Type Phoenix++ |Hadoop C++ Java imports
includes
string ph_word String <string.h> | org.apache.hadoop.io.Text
<ctype.h>
text ph_string | Text
boolean bool BooleanWritable org.apache.hadoop.io.BooleanWritable
Boolean
boolean
float float FloatWritable org.apache.hadoop.io.FloatWritable
Float
float
double double DoubleWritable org.apache.hadoop.io.DoubleWritable
Double
double
longdouble | long double | DoubleWritable org.apache.hadoop.io.DoubleWritable
Double
double
short int8_t ShortWritable <stdint.h> |org.apache.hadoop.io.ShortWritable
intptr_t Short
short
ushort uint8_t ShortWritable <stdint.h> |org.apache.hadoop.io.ShortWritable
uintptr_t Short
short
int int16_t IntWritable <stdint.h> |org.apache.hadoop.io.IntWritable
intptr_t Integer
int
uint uint16_t IntWritable <stdint.h> |org.apache.hadoop.io.IntWritable
uintptr_t Integer
int
long int32_t LongWritable <stdint.h> |org.apache.hadoop.io.LongWritable
intptr_t Long
long
ulong uint32_t LongWritable <stdint.h> |org.apache.hadoop.io.LongWritable
uintptr_t Long
long
longlong |int64 t LongWritable <stdint.h> |org.apache.hadoop.io.LongWritable
intptr_t Long
long
ulonglong |uint64_t LongWritable <stdint.h> | org.apache.hadoop.io.LongWritable
uintptr_t Long
long
vector<T> |vector<T> |ArrayWritable org.apache.hadoop.io.ArrayWritable

List<T>

62

In such cases, the transformation rules provide a subclass of RecordReader which
considers each line of a input file to represent a single instance of the given custom type, in
which the values for its attributes are separated by space.

The sample Histogram, K-means and Linear Regression applications (sections A.3,
A.4 and A.5) provide complete demonstrations of custom types and the consequently re-
quired additional code.

Functions
For a wide set of common operations, built-in functions are provided with the unified

interface, as shown in Table 4.3. Loops and control flow structures follow the same pattern
as in Java and C++, since their structures do not differ between these two languages.

Table 4.3: Built-in functions, code transformation and additional C++ includes

Function Phoenix++ Hadoop C++
include
toUpper(str) for (uinté4_ti=0;i<<s.len;i++) |str=str.toUpperCase() |<string.h>
s.data]i] = toupper(s.data]i]); <ctype.h>
toLower(str) for (uinté4_ti=0;i<<s.len;i++) str = str.toLowerCase() | <string.h>
s.data[i] = tolower(s.datali]); <ctype.h>
length(str) strlen(str) st.length() <string.h>
<ctype.h>
length(vector) |vector.size() vector.size()
rand() rand() Math.random()
min_int() std::numeric_limits<int>::min() Integer.MIN_VALUE <limits>
max_int() std::numeric_limits<int>::max() Integer.MAX_VALUE | <limits>
min_double() |std::numeric_limits<double>::min() | Double.MIN_VALUE <limits>
max_double() |std::numeric_limits<double>::max() | Double. MAX_VALUE | <limits>
tokenize(value) | Code in listing 4.9 Code in listing 4.10

Additionally, Table 4.4 shows the syntax for emiting intermediate and final key/value
pairs in the contexts of Map and Reduce operations.

Table 4.4: Built-in functions for emit operations

Function |Context Phoenix++ Hadoop
emit(k, v) | Map emit_intermediate(out, k, v) | context.write(k, v)
emit(k, v) | Reduce out.push_back(kv) context.write(k, v)

63

Code blocks

The code for the MapReduce structure, which is defined as previously demon-
strated in the listing 4.1, is proposed to be transformed to Phoenix++ and Hadoop as shown
in the listings 4.3 and 4.4, respectively.

1SPECIAL TYPES

2

3class NAME : public MapReduceSORT<NAME, V_IN, K OUT, V_OUT,
4 CONTAINER<K OUT, V_OUT,
5 COMBINER, K, HASH> >{
6 CLASS _VARS

7

8public:

9

10 CONSTRUCTOR _FUNC

11

12 void map(data_type const& data, map_container& out) const{
13 \\ Map code logic

14 }

15

16 void reduce (key_type const& key, reduce_iterator const& values,
17 std ::vector<keyval>& out) const {

18 \\ Reduce code logic

19 }

20

21 SPLIT_FUNC

22

23 SORT_FUNC

24}

Listing 4.3: MapReduce structure’s code transformation for Phoenix++
1public class NAME{
CLASS_VARS

3

4

5 public static class Map extends Mapper<K IN, V_IN, K OUT, V_OUT>{
6 @Override

7 public void map(K_IN key, V_IN value, Context context)

8 throws |OException, InterruptedException {

9 \\ Map code logic

0

1

64

13 public static class Reduce extends Reducer<K IN, V_IN, K OUT, V OUT> {

12

14 @Override

15 public void reduce (K_IN key,
)

16 throws [OException,

17 \\ Reduce code logic

18 }

19 }

20}

Iterable <V_IN> values,

InterruptedException {

Context context

Listing 4.4: MapReduce structure’s code transformation for Hadoop

The keywords in upper case are replaced as defined through the code written with
the unified interface. However, as it can be observed, some keywords (i.e., CONTAINER
have no direct correspondents in the unified interface, being dependent on the rules defined

in table 4.5.
Table 4.5: Code transformation rules for indirect replacements.
Condition Keyword Replacement Replacement
for Phoenix++ for Hadoop
K_DIST = "*;*" CONTAINER hash_container
K_DIST = "*k" CONTAINER fixed_hash_container
K_DIST = "*k" K k
K_DIST ="1:1" CONTAINER hash_container
K_OUT =int HASH std::tr1::hash<intptr_t>
K_OUT = string HASH ph_word_hash
K_OUT = string SORT_FUNC Code in listing 4.7
K_OUT = string SORT Sort
K_OUT = string or |SPECIAL_TYPES Code in listing 4.5
V_IN = text
V_IN = text CLASS VARS char* data; private Text token =
uint64_t data_size; new Text();
uint64 _t chunk_size;
uint64_t splitter_pos;
V_IN = text CONSTRUCTOR_FUNC | Code in listing 4.6
V_IN = text SPLIT_FUNC Code in listing 4.8
V_OUT =int CLASS VARS private final
static IntWritable one =
new IntWritable(1);
@SumReducer COMBINER sum_combiner
@IdentityReducer |COMBINER one_combiner

Finally, whenever a custom type is used for output values, Phoenix++ requires the
implementation of a custom associative _combiner, which in turn is most likely to perform a
simple sum for internal attributes of the custom type. By assuming this, the unified interface

still allows @SumReducer directive even if output values are of a custom type.

In this

65

case, the code transformation is defined for the correspondent associative _combiner and
Reducer class of Phoenix++ and Hadoop respectively, as demonstrated in the K-means
sample application (section A.4).

4.3.4 Special components for text processing

As it can be observed in Table 4.5, both the unified interface and the code transfor-
mation rules treat textual types in a special way, inferring many lines of code from it.

Some aspects particularly led us to such approach. The first one is that treating
textual data with Phoenix++ requires a great amount of code, responsible for performing
very elementary operations, like split input data and sort the final reduced keys. Moreover,
even if the application logic greatly differ, the split and sort operations will remain the same.

The listings 4.5, 4.6, 4.7 and 4.8, show the code referenced in Table 4.5 for espe-
cially treating textual data.

1struct ph_string {

2 char- data;
3 uinté4_t len;
4};

5

6struct ph_word {
7 char+ data;
8

9 ph_word () { data = NULL; }
10 ph_word(char+ data) { this-—>data = data; }
11

12 bool operator <(ph_word const& other) const {
13 return strcmp(data, other.data) < 0;

14 }

15 bool operator==(ph_word const& other) const {
16 return strcmp(data, other.data) == O0;

17 }

18};

19

20struct ph_word_hash
21

22 size_t operator () (ph_word const& key) const
23 {
24 char- h = key.data;

25 uint64_t v = 14695981039346656037ULL;

66

26 while (+h != 0)

27 v = (v M (size_t) (+(h++))) = 1099511628211ULL;
28 return v;

29 }

30};

Listing 4.5: Transformation of special variable types for textual applications with Phoenix++

—_—

explicit NAME(char- _data, uint64_t length, uint64_t _chunk_size)
2 data(_data), data_size(length), chunk_size(_chunk_size),
3 splitter_pos (0) {}

Listing 4.6: Constructor for textual applications with Phoenix++

1 bool sort(keyval const& a, keyval const& b) const
2 {
3 return a.val < b.val || (a.val == b.val && strcmp(a.key.data, b.
key.data) > 0);
4 }
Listing 4.7: Sorting function for textual applications with Phoenix++
1 int split(ph_string& out)
2 {
3 if ((uint64_t)splitter_pos >= data_size)
4 return 0;
5
6 uint64_t end = std::min(splitter_pos + chunk_size, data_size);
7
8 while(end < data_size &&
9 data[end] != '’ && data[end] != ’\t’ &&
10 data[end] != ’'\r’ && data[end] != ’\n’)
11 end++;
12
13 out.data = data + splitter_pos;
14 out.len = end — splitter_pos;
15
16 splitter_pos = end;
17
18 return 1;

—_
O
——

Listing 4.8: Split function for textual applications with Phoenix++

Finally, listings 4.9 and 4.10 show the code referenced in Table 4.3 for optimally
splitting a Map task’s textual input data.

1uint64_t i = 0;

2while(i < s.len)

3

4 while(i < s.len && (s.data[i] < 'A’" ||

5 s.data[i] > 'Z"))

6 i +4;

7 uinté4_t start = i;

8 while(i < s.len && ((s.data[i] >= A’ &&
9 s.data[i] <= 'Z') ||
10 s.data[i] == "\""))
11 i ++;

12 if(i > start)
13 {

14 s.data[i] = 0;

15 ph_word token = { s.data+start };
16

17 }

18}

Listing 4.9: Optimized code for splitting a Map task’s textual input data with Phoenix++

1StringTokenizer tokenizer = new StringTokenizer(line);
2while (tokenizer.hasMoreTokens()) {

3 token.set(tokenizer.nextToken());

4

5}

Listing 4.10: Optimized code for splitting a Map task’s textual input data with Hadoop

4.3.5 Performance components

Both Phoenix++ and Hadoop provide good abstraction for the parallel and dis-
tributed processing, so that the programmer is able to concentrate his/her effort on map and
reduce logics, which are sequential in nature. However, some components of Phoenix++

and Hadoop interfaces still play a performance role.

Phoenix++, particularly, requires the programmer to choose a container (table 2.3),
which directly influences the memory consumption and the performance of reading and writ-
ing operations. For instance, a *:k container must always be chosen whenever the number
of keys is known in advance. In such cases, a *:* container could present much lower per-

formance.

68

Hadoop, in turn, allows many performance configurations while the whole environ-
ment is configured. Afterwards, though, when the MapReduce application is indeed imple-
mented, no such configurations are required. One good practice for better memory usage
was identified as the instantiation of constant values as class variables, such as the Writable
instance of the number 1 in MapReduce applications with numeric type for output values
(sections A.1 and A.2).

These few performance controls still required or recommended at the programming
stage are completely covered by the proposed unified interface, as defined in sections 4.3.3
and 4.3.4 and demonstrated with the sample applications in Appendix A.

4.3.6 Interface achievements and limitations

As it can be observed throughout sections 4.3.3 and 4.3.4, the proposed unified in-
terface is able to abstract many aspects of Phoenix++ and Hadoop, by hiding from program-
mers complexities and prescriptions of both the frameworks and their hosting languages,
C++ and Java.

For any application, includes and imports are totally abstracted. The same can be
observed with object-orientation aspects, such as classes, inheritance and inner classes.

Both for Phoenix++ and Hadoop there are also some control objects, map_container
and Context respectively, responsible for managing communication, which are required to be
always parametrized to map and reduce functions. Such objects are also totally abstracted
in the proposed interface.

For Hadoop, particularly, exceptions are also abstracted, as well as the Writable
types which serve as wrappers for every primitive or custom types communicated through
the process.

Finally, for Phoenix++, particularly, sum combiners for custom types are totally ab-
stracted, as well as text processing specific types, functions, and hash.

However, while attempting to cover a wider range of MapReduce applications with
Phoenix++, some limitations were identified.

The Phoenix++ project provides Matrix Multiplication (listing A.21) and Principal
Component Analysis (listing A.22) sample applications, which demonstrate the applicability
of 1.1 key distribution. However, both sample applications demonstrate the requirement
of an explicit implementation of customized split logic, to which we could not devise an
abstract representation suitable for both Phoenix++ and Hadoop, being thus not cover by
our proposed interface.

Phoenix++ also enables programmers to implement a locate function, which is re-
sponsible for data locality optimization in NUMA architectures. Such function has also no

69

correspondent in Hadoop. Therefore, the proposed unified interface is not optimized for this
category of architectures.

4.4 Devised code generator

A compiler and code generator for effectively applying the transformation rules de-
tailed in section 4.3 through the process detailed in section 4.3.2 is indicated for future
work (chapter 6). Nonetheless, this section describes the devised structure for a proper
compiler and code generator, inspired on the work of Griebler et al. for the DSL-POPP
[Gri12, GF13, GAF14].

It is aimed to be executable from the command line as mapred-gen. The first
parameter would indicate the source file for the code written with the proposed interface,
whereas optional parameters could be also included indicating whether to generate code
specifically for Phoenix++ or Hadoop. If no target framework is defined, code would be
separately generated for all supported frameworks. The syntax for the devised mapred-gen
command is as follows.

mapred-gen input_source_file [-hadoop | —-phoenixpp]

The compilation flow supporting both language recognition and code generation is
demonstrated in figure 4.2

unified interface code —» Analysis COd,e mmmmae Hadoop code
generation

Phoenix++ code

Figure 4.2: Compilation flow

Differently from DSL-POPP, our proposed unified interface is not based on a known
host language, such as C or C++. A complete new language is proposed instead. However,
since it is mainly aimed at developing map and reduce high-level logics, its components
consist in a strict set, described in section 4.3, and a straightforward blocks structure is
prescribed, as described in section 4.3.1.

The language recognition phase comprehends the interpretation through lexical,
syntactic and semantic analysis. The lexical analysis validates the compliance with the
proposed components described in sections 4.3.1, 4.3.3 and 4.3.4, then producing tokens.

70

The syntactic analysis uses the identified tokens to check the grammar language
and report syntax errors. The semantic analysis in turn checks how components are dis-
posed throughout the whole code.

Up to this point, the statements are saved and analyzed. This analysis verifies
whether the provided code is syntactically correct and the overall organization of the code
has full compliance with unified interface.

For an effective and proper implementation of a compiler and code generator, we
indicate Lex and Yacc platforms.

71

5. EVALUATION

This chapter describes the approach used for evaluating the effectiveness of results
and execution performance for both Phoenix++ and Hadoop code transformations, as well
as the significance of the achieved programming abstraction and simplification (research
questions and hypothesis are further detailed in section 4.2).

A set of applications with different peculiarities (section 5.1) was implemented with
the proposed interface. Aimed at comparing it against the generated code in Phoenix++ and
Hadoop, it was used the SLOCCount' suite, also used by Griebler et al. [GAF14] for the
evaluation of DSL-POPP (section 2.9) and by a set of other researches [SET*09, LRCS14,
HFBO05, RGBMA06, KEH*09, VSJ*14, STM10]. SLOCCount is described in section 5.2.

Finally, the obtained results for performance evaluation are described and dis-
cussed in section 5.3, whereas simplicity and abstraction evaluation are addressed in section
5.4.

5.1 Sample applications

Five different applications with specific peculiarities, namely Word Count, Word
Length, Histogram, K-means and Linear Regression, were implemented with the proposed
interface and generated through the transformation rules for Phoenix++ and Hadoop.

The main peculiarity we looked for while choosing the sample applications was the
key distribution (table 2.3). Word Count demonstrates the *:* distribution, whereas Word
Length, Histogram, K-means and Linear Regression demonstrate the *:k distribution. Ad-
ditionally, other peculiarities are also covered by the selected sample applications, such as
custom types and custom combiners.

As discussed in section 4.3.6, the Matrix Multiplication and Principal Component
Analysis applications would fit the 7:7 distribution, however would also require more pro-
gramming controls for Phoenix++ generated code beyond the abstraction aimed by the pro-
posed interface and with no equivalent functionality in Hadoop.

The complete code for all the evaluation applications can be found in the Appendix
A.

'http://www.dwheeler.com/sloccount/sloccount.html

72

5.2 SLOCCount

SLOCCount' is a software measurement tool, which counts the physical source
lines of code (SLOC), ignoring empty lines and comments. It also estimates development
time, cost and effort based on the original Basic COCOMO? model.

As previously mentioned, SLOCCount is a common tool for software measurement,
also used by other similar researches such as DSL-POPP [GAF14].

Section 5.2.1 discusses the programming languages supported by SLOCCount
and how it fits the evaluation of the unified programming interface.

Finally, section 5.2.2 describes how SLOCCount uses the COCOMO model for
evaluating development time, cost and effort.

5.2.1 Programming Language support

The suite supports a wide range of both old and modern programming languages,
which include C, C++, Objective-C, C#, Pascal, Java, Python, Ruby, among many others.
For Phoenix++ and Hadoop, C++ and Java are naturally inferred by SLOCCount and thus
used for measurement, however, for our proposed unified interface, there are only languages
with similar syntax. Considering this, it was chosen C++ when using the interface with curly
braces, and Python when using the interface structured by indentation.

522 COCOMO model

COCOMO provides three models for software measurement, namely Basic, Inter-
mediate and Detailed. The Basic model performs the measurement based on the counted
source lines of code and the effort, schedule and personcost parameters when provided.
In contrast, the Intermediate and Detailed models require a wide range of configuration
parameters in order to achieve a customized and more accurate measurement.

Besides the model selection, it is also suggested a value for each of the three pre-
viously mentioned parameters according to the categorize of the software being measured.
There are three possible categories, namely Organic, semidetached and embedded, which
are described in table 5.1.

Table 5.2 shows the suggested parameters according to COCOMO model and soft-
ware category.

2http://www.dwheeler.com/sloccount/sloccount.html#cocomo

Table 5.1: Software category as suggested by COCOMO model

73

Category

Description

Organic

Relatively small software teams develop software in a highly familiar, in-house
environment. It has a generally stable development environment, minimal
need for innovative algorithms, and requirements can be relaxed to avoid
extensive rework.

Semidetached

This is an intermediate step between organic and embedded. This is gener-
ally characterized by reduced flexibility in the requirements.

Embedded

The project must operate within tight (hard-to-meet) constraints, and require-
ments and interface specifications are often non-negotiable. The software
will be embedded in a complex environment that the software must deal with
as-is.

Table 5.2: Suggested parameters according to COCOMO model and software category

COCOMO Software Parameter Factor Exponent
Model Category

Basic Organic Effort 2.4 1.05
Basic Organic Schedule 25 0.38
Basic Semidetached Effort 3.0 1.12
Basic Semidetached Schedule 25 0.35
Basic Embedded Effort 3.6 1.20
Basic Embedded Schedule 2.5 0.32
Intermediate Organic Effort 2.3 1.05
Intermediate Organic Schedule 25 0.38
Intermediate Semidetached Effort 3.0 1.12
Intermediate Semidetached Schedule 25 0.35
Intermediate Embedded Effort 2.8 1.20
Intermediate Embedded Schedule 25 0.32

74

For our evaluation, the COCOMO model and the effort, schedule and personcost
parameters were kept with the default values since for our evaluation the accuracy of these
measurements is less relevant than the proportion of results among the languages. In other
words, the default options of SLOCCount already provide a sufficient measurement for com-
paring the code programmed with the proposed unified interface against the generated code
for Phoenix++ and Hadoop.

5.3 Performance evaluation

The workload for Word Count and Word Length was a 2Gb text file, for Histogram,
a 1.41 Gb image with 468,750,000 pixels and for Linear Regression the workload was a
500Mb file. For Kmeans, no input file is required, since number of points, means, clusters
and dimensions are parametrized through command line or assumed to the default values of
100,000, 100, 3 and 1,000, respectively, which were considered for our tests. All workloads
are available at the Phoenix++ project’s on-line repository?®.

For performance evaluation of Phoenix++ generated code compared to original
code (developed directly with Phoenix++) for the sample applications (appendix A), we used
a multi-core system equipped with a 2.3 GHz Intel Core i7 processor with Hyper-Threading,
which sums 4 cores (8 threads), and 16Gb of DRAM.

In order to obtain the arithmetic means (used in table 5.3 and figure 5.1), 30 exe-
cution times were collected for each sample application.

Table 5.3 shows the mean execution time for each sample application for the code
transformed from our proposed unified interface and for the code developed directly from
Phoenix++. Figure 5.1 graphically demonstrates this same measurements.

Table 5.3: Mean execution time in seconds for original and generated Phoenix++ code

WC WL Histogram |Kmeans LR
Original 5.38 4.02 2.83 5.98 0.62
Generated |5.37 3.99 2.87 6.09 0.63
Difference |-0.27% -0.9% 1.4% 1.7% 0.3%

For performance evaluation of Hadoop generated code compared to original code
(developed directly with Hadoop), we used a Dell PowerEdge M1000e distributed system
equipped with 16 Blades Dell PowerEdge M610, each node with a 2.4 GHz Intel Xeon Six-
Core E5645 processor with Hyper-Threading, which sums 12 cores (24 threads), and 24Gb
of DRAM. The cluster sums 192 cores (384 threads). Nodes are linked through 2 Gigabit-
Ethernet networks and 2 InfiniBand networks.

3hittps://github.com/kozyraki/phoenix

Execution time in seconds

I

1
Histogram

1
Kmeans

1
Linear Regression
Application

1
Word Count

1
Word Length

75

Version

Generated
Original

Figure 5.1: Mean execution time in seconds for original and generated Phoenix++ code

For the evaluation tests, 8 nodes were allocated and 30 execution times were col-
lected for each sample application in order to obtain the arithmetic means used in table 5.4
and figure 5.2. The whole iteration with the cluster was performed through the work of Neves
et al. [?], whose source code is available at github*.

Table 5.4 shows the mean execution time for each sample application for the code
transformed from our proposed unified interface and for the code developed directly from
Hadoop. Figure 5.2 graphically demonstrates this same measurements.

Table 5.4: Mean execution time in seconds for original and generated Hadoop code

Generated
Original

WC WL Histogram |Kmeans LR
Original 36.24 26.36 21.87 51.36 5.97
Generated |37.22 26.48 22.42 50.59 6.01
Difference |2.63% 0.45% 2.45% -1.52% 0.76%
50 -
2
840~
3
£E4- Version
E
T 20-
2
810~
X
L 0
H\stolgram Kmelans Linear R(Iegression Word ICount Word Il_ength
Application

Figure 5.2: Mean execution time in seconds for original and generated Hadoop code

Through tables 5.3 and 5.4 and figures 5.1 and 5.2 it is possible to visualize the
negligible difference between the execution time of the generated and original versions for

“https://github.com/mvneves/hadoop-deploy

76

the two frameworks, being it below the 3% aimed by the hypothesis H2. Moreover, out-
put results were the same between the two versions for all sample applications, confirming
hypothesis H7 as well.

Performance losses are considerably avoided as a direct result of the effective cov-
erage of performance components by the transformation rules, as described in section 4.3.5.

5.4 SLOC and effort evaluation

The SLOC and effort evaluation was performed considering the proposed unified
interface in a first version without curly braces, which makes it close to a Python-like syntax,
and a second version with curly braces, thus keeping it close to a C-like syntax. This second
version is aimed at minimizing the bias due to some SLOC being considered as valid lines
of code while only holding some opening or closing curly brace.

Tables 5.5 and 5.6 present the results for the version without curly braces for SLOC
count and cost estimate, respectively.

Tables 5.7 and 5.8, in turn, present the results for the version with curly braces for
SLOC count and cost estimate, respectively.

Table 5.5: SLOC count for the version without curly braces

- Reduction Reduction
o . Unified
Application Phoenix++ Hadoop compared to| compared to
Interface .

Phoenix++ Hadoop

WordCount 89 27 6 93.26% 77.78%

WordLength 95 33 11 88.42% 66.67%

Histogram 22 170 7 68.18% 95.88%

K-means 98 244 52 46.94% 78.69%

Linear 31 171 16 48.39% 90.64%
Regression

67 129 18.4 69.04% 81.93%

Table 5.6: Cost estimate for the version without curly braces

- Reduction Reduction
. . Unified
Application | Phoenix++ Hadoop compared to| compared to
Interface .

Phoenix++ Hadoop

WordCount $2,131.00 $609.00 $126.00 94.09% 79.31%

WordLength $2,282.00 $752.00 $237.00 89.61% 68.48%

Histogram $491| $4,204.00 $148.00 69.86% 96.48%

K-means $2,357.00| $6,143.00| $1,212.00 48.58% 80.27%

Linear $704.00| $4,229.00| $352.00 50.00% 91.68%
Regression

$1,593.00| $3,187.40 $415.00 70.43% 83.24%

77

Table 5.7: SLOC count for the version with curly braces

. Reduction Reduction
I . Unified
Application | Phoenix++ Hadoop compared to| compared to
Interface .

Phoenix++ Hadoop

WordCount 89 27 8 91.01% 70.37%

WordLength 95 33 14 85.26% 57.58%

Histogram 22 170 9 59.09% 94.71%

K-means 98 244 57 41.84% 76.64%

Linear 31 171 18 41.94% 89.47%
Regression

67 129 21.2 63.83% 77.75%

Table 5.8: Cost estimate for the version with curly braces

Unified Reduction Reduction
Application Phoenix++ Hadoop compared to| compared to
Interface .

Phoenix++ Hadoop

WordCount $2,131.00 $609.00 $170.00 92.02% 72.09%

WordLength $2,282.00 $752.00 $306.00 86.59% 59.31%

Histogram $491| $4,204.00 $192.00 60.90% 95.43%

K-means $2,357.00| $6,143.00| $1,334.00 43.40% 78.28%

Linear $704.00| $4,229.00| $398.00 43.47% 90.59%
Regression

$1,593.00| $3,187.20 $480.00 65.28% 79.14%

Figures 5.3, 5.4, 5.5 and 5.6 show a graphical representation for the reduced SLOC
count and cost estimate, according to the tables 5.5, 5.6, 5.7 and 5.8, respectively.

95.88% -

93.26% -

8 90.64% -
42% -

#) 8: - Framework

78.69% -
8 77.78% Hadoop
] ' O',O Phoenix++
8 68.18% -
o0 66.67% -

48.39% -

46.94% - I—

Histogram K-means Linear Regression Word Count Word Length
Application

Figure 5.3: SLOC count for the interface version without curly braces

By comparing the obtained measurements for SLOC and Cost of the same inter-
face version it is possible to notice that the difference between these two measurements is
negligible, which confirms the approach used by COCOMO model (section 5.2.2).

The difference among versions with curly braces and without it is little, but not
negligible. There is a subtle SLOC reduction while structuring code by indentation, instead of

78

96.48% -
94.09% -
o 91.68% -
8 89.61% -
% 80.27% -
879.31%-
=}
5 69.86% -
C 68.48% -
50.00% -
48.58% -

—

Histogram

K-means

Linear Regression

Application

Word Count

Word Length

Framework

Hadoop
Phoenix++

Figure 5.4: Cost estimate for the interface version without curly braces

94.71% -
91.01% -
(> 89.47% -
Q 85.26% -
9 76.64% -
' 70.37% -
S ,
3 59.09% -
o 57.58% -
41.94% -
41.84% -

95.43% -
92.02% -
. 90.59% -
8 86.59% -
= 78.28% -
8 72.09% -
B 60.90% -
3 60.90%
C 59.31% -
43.47% -
43.40% -

—

Histogram

K-means

Linear Regression

Application

Word Count

Word Length

Framework

Hadoop
Phoenix++

Figure 5.5: SLOC count for the interface version with curly braces

—

Histogram

K-means

Linear Regression

Application

Word Count

Word Length

Framework

Hadoop
Phoenix++

Figure 5.6: Cost estimate for the interface version with curly braces

using curly braces. Nevertheless both interface versions show great SLOC a effort reduction
for all sample applications when compared to Phoenix++ and Hadoop.

A significant SLOC reduction can be observed for Word Count and Word Length
applications compared to Phoenix++ code, which take advantage of the specific components
for text processing, covered in section 4.3.4.

79

Compared to Hadoop, the Histogram, K-means and Linear Regression applications
achieved greater SLOC reduction mainly for the amount of code required to create custom
types in Java, as detailed in section 4.3.3.

K-means also takes advantage over Phoenix++ by completely avoiding code for
custom combiner, however many functions are required for the custom CPoint type, which
causes little SLOC reduction with the unified interface.

80

81

6. CONCLUSION AND FUTURE WORK

The ease of programming and the abstraction intended by the MapReduce model
are impaired by some of its implementations, particularly for more low-level architectures.

From selecting Phoenix++ and Hadoop as the state-of-the-art solutions for shared-
memory multicore and distributed architectures, respectively, this work proposes a solution
for keeping the MapReduce programming easy without losing the performance optimizations
provided by these selected implementations. Such objective is achieved through a unified
MapReduce programming interface, proposed through a comprehensive set of transforma-
tion rules among a proposed interface and the correspondent manually generated code for
Phoenix++ and Hadoop.

Concerning the first research question (section 4.2), the transformation rules are
effective in covering from custom types to custom functions, custom combiners, default re-
ducers, different key distributions and text processing, covering thus all components needed
from the selected sample applications. The same output results are guaranteed and perfor-
mance losses are successfully avoided (difference of less than 3%, as detailed in section
5.3).

And concerning the second research question, special skills are not required from
programmers while developing applications for different architectural levels, being the target
architecture totally abstracted. The evaluation demonstrates that a code and a development
effort reduction from 41.84% to 96.48% can be achieved (section 5.4). The highest reduction
is attributed to code required by Hadoop for custom types, being followed by text process-
ing applications, which for Phoenix++ requires a wide set of mechanisms whose need is
then identified in advance by the proposed transformation rules, being it transparent while
developing with the proposed unified interface.

Some advantages and main contributions are the code reuse among different ar-
chitectures and the possibility to expand the coverage of the transformation rules to other
MapReduce solution, such as Grex for GPGPU (described in Appendix B). Besides that, the
programmer is required to learn a single language and programming interface.

Some limitations were also identified while addressing some more specific appli-
cations for Phoenix++, such as Matrix Multiplication and PCA. The unified interface is also
not compatible to the NUMA support provided by Phoenix++. These limitations are further
described in section 4.3.6.

As future work we identified the effective construction of the compiler and code gen-
erator based on the proposed transformation rules, the compatibility with other MapReduce
solutions (such as Grex) and the extension of DSL-POPP with the MapReduce pattern.

82

[AGN*13]

[BK13]

[BKX13]

[CA12]

[CC13]

[CCA*10]

[CCZ10]

[CM95]

[CSW13]

[DGO8]

83

REFERENCES

Appuswamy, R.; Gkantsidis, C.; Narayanan, D.; Hodson, O.; Rowstron, A.
“Scale-up vs Scale-out for Hadoop: Time to Rethink?” In: Proceedings of
the Annual Symposium on Cloud Computing, 2013, pp. 20:1-20:13.

Basaran, C.; Kang, K.-D. “Grex: An Efficient MapReduce Framework for
Graphics Processing Units”, Transactions on Parallel Distributed Computing,
vol. 73—4, May 2013, pp. 522-533.

Basaran, C.; Kang, K.-D.; Xie, M. “Moin: A Multi-GPU MapReduce Framework”.
In: Proceedings of the International Symposium on MapReduce and Big Data
Infrastructure, 2013.

Chen, L.; Agrawal, G. “Optimizing MapReduce for GPUs with Effective Shared
Memory Usage”. In: Proceedings of the International Symposium on High-
Performance Parallel and Distributed Computing, 2012, pp. 199-210.

Chen, R.; Chen, H. “Tiled-MapReduce: Efficient and Flexible MapReduce
Processing on Multicore with Tiling”, ACM Transactions on Architecture and
Code Optimization, vol. 10—1, April 2013, pp. 3:1-3:30.

Condie, T.; Conway, N.; Alvaro, P.; Hellerstein, J. M.; Elmeleegy, K.; Sears,
R. “MapReduce Online”. In: Proceedings of the Symposium on Networked
Systems Design and Implementation, 2010, pp. 21-21.

Chen, H.; Chen, R.; Zang, B. “Tiled-MapReduce: Optimizing Resource
Usages of Data-Parallel Applications on Multicore with Tiling”. In: Proceedings
of the International Conference on Parallel Architectures and Compilation
Techniques, 2010, pp. 523-534.

Coleman, S.; McKinley, K. S. “Tile Size Selection Using Cache Organization
and Data Layout”, ACM Transactions on SIGPLAN Not., vol. 30-6, June 1995,
pp. 279-290.

Cao, C.; Song, F.; Waddington, D. “Implementing a High-Performance
Recommendation System Using Phoenix++”. In: Proceedings of the
International Conference for Internet Technology and Secured Transactions,
2013.

Dean, J.; Ghemawat, S. “MapReduce: Simplified Data Processing on Large
Clusters”, ACM Transactions on Commun., vol. 51-1, Jan 2008, pp. 107-113.

84

[EHHB14]

[Fow10]

[GAF14]

[GF13]

[Gho11]

[GL11]

[Gri12]

[HCC*10]

[HFBO5]

[HFL*08]

El-Helw, 1.; Hofman, R.; Bal, H. E. “Glasswing: Accelerating Mapreduce
on Multi-core and Many-core Clusters”. In: Proceedings of the International
Symposium on High-performance Parallel and Distributed Computing, 2014,
pp. 295-298.

Fowler, M. “Domain-Specific Languages”. Boston, USA: Addison-Wesley,
2010, 460p.

Griebler, D.; Adornes, D.; Fernandes, L. G. “Performance and Usability
Evaluation of a Pattern-Oriented Parallel Programming Interface for Multi-Core
Architectures”. In: The 26th International Conference on Software Engineering
& Knowledge Engineering, 2014, pp. 25-30.

Griebler, D.; Fernandes, L. G. “Towards a Domain-Specific Language for
Patterns-Oriented Parallel Programming”. In: Programming Languages - 17th
Brazilian Symposium - SBLP, 2013, pp. 105-119.

Ghosh, D. “DSLs in Action”. Stamford, CT, USA: Manning publications Co.,
2011, 377p.

Gordon, A. W.; Lu, P. “Elastic Phoenix: Malleable Mapreduce for Shared-
Memory Systems”. In: Proceedings of the International Conference on Network
and Parallel Computing, 2011, pp. 1-16.

Griebler, D. J. “Proposta de uma Linguagem Especifica de Dominio de
Programacéao Paralela Orientada a Padrdes Paralelos: Um Estudo de Caso
Baseado no Padrdao Mestre/Escravo para Arquiteturas Multi-Core”, Master’s
Thesis, Faculdade de Informatica - PPGCC - PUCRS, Porto Alegre, Brazil,
2012, 168p.

Hong, C.; Chen, D.; Chen, W.; Zheng, W.; Lin, H. “MapCG: Writing
Parallel Program Portable Between CPU and GPU”. In: Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques, 2010, pp. 217-226.

Hertz, M.; Feng, Y.; Berger, E. D. “Garbage Collection Without Paging”.
In: Proceedings of the Conference on Programming Language Design and
Implementation, 2005, pp. 143—153.

He, B.; Fang, W.; Luo, Q.; Govindaraju, N. K.; Wang, T. “Mars: A MapReduce
Framework on Graphics Processors”. In: Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 2008, pp.
260—269.

[JA12]

[JM11]

[JRA10]

[KAOO5]

[KEH*09]

[KGDL13]

[KGDL14]

[Lam10]

[LRCS14]

[McC10]

[MSMO4]

85

Jiang, W.; Agrawal, G. “MATE-CG: A Map Reduce-Like Framework for
Accelerating Data-Intensive Computations on Heterogeneous Clusters”.
In: Proceedings of the International Parallel and Distributed Processing
Symposium, 2012, pp. 644—655.

Ji, F; Ma, X. “Using Shared Memory to Accelerate MapReduce on Graphics
Processing Units”. In: Proceedings of the International Parallel & Distributed
Processing Symposium, 2011, pp. 805-816.

Jiang, W.; Ravi, V. T.; Agrawal, G. “A Map-Reduce System with an
Alternate API for Multi-core Environments”. In: Proceedings of the International
Conference on Cluster, Cloud and Grid Computing, 2010, pp. 84—93.

Kongetira, P.; Aingaran, K.; Olukotun, K. “Niagara: A 32-Way Multithreaded
Sparc Processor”, IEEE Transactions on Micro, vol. 25-2, March 2005, pp.
21-29.

Klein, G.; Elphinstone, K.; Heiser, G.; Andronick, J.; Cock, D.; Derrin, P;
Elkaduwe, D.; Engelhardt, K.; Kolanski, R.; Norrish, M.; Sewell, T.; Tuch, H.;
Winwood, S. “seL4: Formal Verification of an OS Kernel”. In: Proceedings
of the ACM SIGOPS Symposium on Operating Systems Principles, 2009, pp.
207-220.

Kumar, K. A.; Gluck, J.; Deshpande, A.; Lin, J. “Hone: "Scaling Down" Hadoop
on Shared-Memory Systems”, Transactions on the International Conference on
Very Large Data Bases, vol. 6—12, August 2013, pp. 1354—-1357.

Kumar, K. A.; Gluck, J.; Deshpande, A.; Lin, J. “Optimization Techniques
for "Scaling Down" Hadoop on Multi-Core, Shared-Memory Systems”.
In: Proceedings of the International Conference on Extending Database
Technology, 2014, pp. 13—24.

Lam, C. “Hadoop in Action”. Greenwich, CT, USA: Manning Publications Co.,
2010, 1sted..

Li, K.; Reichenbach, C.; Csallner, C.; Smaragdakis, Y. “Residual Investigation:
Predictive and Precise Bug Detection”, ACM Transactions on Software
Engineering and Methodology, vol. 24—2, December 2014, pp. 7:1-7:32.

McCool, M. D. “Structured Parallel Programming with Deterministic Patterns”.
In: Proceedings of the Conference on Hot Topics in Parallelism, 2010, pp. 5-5.

Mattson, T.; Sanders, B.; Massingill, B. “Patterns for Parallel Programming”.
Addison-Wesley Professional, 2004, first ed..

86

[NBGSO08]

[Ngu07]
[Oat06]

[RGBMAO06]

[RRP*07]

[SET*09]

[SO11]

[SPA10]

[STM10]

[TS12]

[TYK11]

[Ven09]

[VSJ*14]

Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. “Scalable Parallel Programming
with CUDA”, ACM Transactions on Queue, vol. 6-2, March 2008, pp. 30-53.

Nguyen, H. “GPU GEMS 3”. Addison-Wesley Professional, 2007.
Oates, B. “Researching Information Systems and Computing”. SAGE, 2006.

Robles, G.; Gonzalez-Barahona, J. M.; Michlmayr, M.; Amor, J. J. “Mining
Large Software Compilations over Time: Another Perspective of Software
Evolution”. In: Proceedings of the International Workshop on Mining Software
Repositories, 2006, pp. 3-9.

Ranger, C.; Raghuraman, R.; Penmetsa, A.; Bradski, G.; Kozyrakis, C.
“Evaluating MapReduce for Multi-core and Multiprocessor Systems”. In:
Proceedings of the International Symposium on High Performance Computer
Architecture, 2007, pp. 13—24.

Shinagawa, T.; Eiraku, H.; Tanimoto, K.; Omote, K.; Hasegawa, S.; Horie,
T.; Hirano, M.; Kourai, K.; Oyama, Y.; Kawai, E.; Kono, K.; Chiba, S
Shinjo, Y.; Kato, K. “BitVisor: A Thin Hypervisor for Enforcing I/O Device
Security”. In: Proceedings of the International Conference on Virtual Execution
Environments, 2009, pp. 121-130.

Stuart, J. A.; Owens, J. D. “Multi-GPU MapReduce on GPU Clusters”. In:
Proceedings of the International Parallel & Distributed Processing Symposium,
2011, pp. 1068-1079.

“Sun Sparc Enterprise T5440 Server Architecture”, 2010.

Siefers, J.; Tan, G.; Morrisett, G. “Robusta: Taming the Native Beast of the
JVM”. In: Proceedings of the Conference on Computer and Communications
Security, 2010, pp. 201-211.

Tiwari, D.; Solihin, Y. “Modeling and Analyzing Key Performance Factors of
Shared Memory MapReduce”. In: Proceedings of the Second International
Workshop on MapReduce and Its Applications, 2012, pp. 1306—1317.

Talbot, J.; Yoo, R. M.; Kozyrakis, C. “Phoenix++: Modular MapReduce for
Shared-Memory Systems”. In: Proceedings of the International Workshop on
MapReduce and Its Applications, 2011, pp. 9-16.

Venner, J. “Pro Hadoop”. Berkely, CA, USA: Apress, 2009, 1st ed..

Vazou, N.; Seidel, E. L.; Jhala, R.; Vytiniotis, D.; Peyton-Jones, S. “Refinement
Types for Haskell”. In: Proceedings of the International Conference on
Functional Programming, 2014, pp. 269-282.

[WD11]

[Whi09]

[XCZ11]

[YRKO9]

87

Wittek, P.; Daranyi, S. “Leveraging on High-Performance Computing and Cloud
Technologies in Digital Libraries: A Case Study”. In: Proceedings of the Third
International Conference on Cloud Computing Technology and Science, 2011,
pp. 606—611.

White, T. “Hadoop: The Definitive Guide”. O’'Reilly Media, 2009, original ed..

Xiao, Z.; Chen, H.; Zang, B. “A Hierarchical Approach to Maximizing
MapReduce Efficiency”. In: Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2011, pp. 167—168.

Yoo, R. M.; Romano, A.; Kozyrakis, C. “Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System”. In: Proceedings of
the International Symposium on Workload Characterization, 2009, pp. 198—
207.

88

89

APPENDIX A — EVALUATED APPLICATIONS AND GENERATED CODE

This appendix describes and shows the programming code for each sample ap-
plication in four versions: Two implementations with the proposed unified MapReduce pro-
gramming interface, one with curly braces, following a C-like syntax, and another without
it, following an indented syntax similar to Python, and the code for Phoenix++ and Hadoop
according to the transformation rules defined in sections 4.3.1, 4.3.3 and 4.3.4.

It is important to observe that the generated terminology used here means a man-
ual process performed accordingly to the transformation rules defined in Chapter 4. The
effective compiler and code generator are indicated as future work in Chapter 6.

At the end, sections A.6 and A.7 are dedicated to the Matrix Multiplication and
PCA applications, with code provided by the Phoenix++ project. These two applications
demonstrate the need of implementing specific split logic for some applications, which has
no correspondent component in our proposed interface.

A1 Word Count

The Word Count application consists of a MapReduce implementation for counting
the total number of occurrences of each word in a given text file.

It is a very common application for MapReduce evaluating, once it is not possible
to know in advance how many keys (distinct words) will be mapped.

In the map phase, each map execution receives a chunk of the input data, splits
it in order to obtain the words, and emits an intermediate key/value pair for each word, in
which the key is the word found, and the value is 1, indicating 1 occurrence found.

In the reduce phase, all values of a given key are summed up, which means sum-
ming up a