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Resumo
O uso de processadores multicore em sistemas embarcados em tempo real de propósito
geral tem experimentado um enorme aumento nos últimos anos. Infelizmente, aplicações
críticas não se beneficiam deste tipo de processadores como se poderia esperar. O principal
obstáculo é que não podemos prever e fornecer qualquer garantia sobre as propriedades
em tempo real do software em execução nessas plataformas. O barramento de memória
compartilhada está entre os recursos mais críticos, que degrada severamente a previsi-
bilidade temporal do software multicore devido à contenção de acesso entre os núcleos.
Para combater este problema, apresentamos neste trabalho uma nova abordagem que su-
porta a execução de carga de trabalho de criticidade mista em um sistema embarcado
baseado em processadores multicore. Permitindo que qualquer número de núcleos execute
tarefas menos críticas concorrentemente com o núcleo crítico que executa a tarefa crítica.
A abordagem baseia-se na utilização de um Hard Deadline Enforcer (HDE) implemen-
tado em hardware, que permite a execução de qualquer número de núcleos (executando
cargas de trabalho menos críticas) simultaneamente com o núcleo crítico (executando a
carga crítica). A partir do melhor de nosso conhecimento, em comparação com as técnicas
existentes, a abordagem proposta permite a exploração do desempenho máximo oferecido
por um sistema multicore, garantindo a escalonabilidade da tarefa crítica. Além disso, a
abordagem proposta apresenta a mesma complexidade de projeto, como qualquer outra
abordagem dedicada a análise temporal para processadores de núcleo único, não impor-
tando o número de núcleos que são utilizados no sistema incorporado ao design. Caso
técnicas atuais fossem utilizadas, a complexidade do projeto para análise temporal de
sistemas de múltiplos núcleos aumentaria dramaticamente conforme o aumento do nú-
mero de núcleos do sistema embarcado. Foi implementado um estudo de caso baseado em
uma versão dual-core do processador LEON3 para demonstrar a aplicabilidade e asserti-
vidade da abordagem. Vários códigos de aplicações críticas foram compilados para este
processador, que foi mapeado na FPGA Spartan 3E da Xilinx. Resultados experimentais
demonstram que a abordagem proposta é muito eficaz na obtenção da alta performance
do sistema respeitando o deadline da tarefa crítica.

Palavras-chaves: Processadores Multi-core, Aplicação Crítica, Sistema Embarcado de
Alto Desempenho, Escalonamento de Tarefas Críticas, Hard Deadline Enforcer (HDE).





Abstract
The use of multicore processors in general-purpose real-time embedded systems has ex-
perienced a huge increase in the recent years. Unfortunately, critical applications are not
benefiting from this type of processors as one could expect. The major obstacle is that
we may not predict and provide any guarantee on real-time properties of software run-
ning on such platforms. The shared memory bus is among the most critical resources,
which severely degrades the timing predictability of multicore software due to the access
contention between cores. To counteract this problem, we present in this work a new ap-
proach that supports mixed-criticality workload execution in a multicore processor-based
embedded system. It allows any number of cores to run less-critical tasks concurrently
with the critical core, which is running the critical task. The approach is based on the use
of a dedicated Hard Deadline Enforcer (HDE) implemented in hardware, which allows the
execution of any number of cores (running less-critical workloads) concurrently with the
critical core (executing the critical workload). From the best of our knowledge, compared
to existing techniques, the proposed approach allows the exploitation of the maximum
performance offered by a multiprocessing system while guaranteeing critical task schedu-
lability. Additionally, the proposed approach presents the same design complexity as any
other approach devoted to perform timing analysis for single core processor, no matter
the number of cores are used in the embedded system on the design. If current techniques
were used, the design complexity to perform timing analysis would increase dramatically
as long as the number of cores in the embedded system increases. A case-study based
on a dual-core version of the LEON3 processor was implemented to demonstrate the
applicability and assertiveness of the approach. Several critical application codes were
compiled to this processor, which was mapped into a Xilinx Spartan 3E FPGA. Exper-
imental results demonstrate that the proposed approach is very effective on combining
system high-performance with critical task schedulability within timing deadline.

Key-words: Multicore Processor, Critical Application, High-Performance Embedded Sys-
tem, Critical Task Schedulability, Hard Deadline Enforcer (HDE).
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1 Introduction

It is of common agreement among designers and users that multicore processors will
be increasingly used in future embedded real-time systems for critical applications where,
in addition to reliability, high-performance is at a premium. The major obstacle is that
we may not predict and provide any guarantee on real-time properties of software on such
platforms. As consequence, the timing deadline of critical real-time tasks may be violated.
In this context, the shared memory bus is among the most critical resources, which severely
degrade the timing predictability of multicore workloads due to access contention among
cores. In critical embedded systems (e.g., aeronautical systems), this uncertainty of the
non-uniform and concurrent memory accesses prohibits the full utilization of the system
performance. In more detail, the system is designed in such a way that the processor runs
in the stand-alone mode when a critical task has to be executed, i.e., the bus controller
allows only one core to run the critical workload, and inhibits the other cores to execute
less-critical workloads till the completion of the critical task. In order to counteract this
problem and properly balance reliability against performance as long as possible, we
present in this work a new approach that supports mixed-criticality workload execution
by fully exploiting processor parallelism. It allows any number of cores to run less-critical
tasks concurrently with the critical core, which is running the critical task. The proposed
approach is not based on any multicore static timing analysis or any timing model of
multicore processor parts such as pipeline, cache memory and interactions of these parts
with shared memory bus. Instead, the approach is based on the use of a dedicated Hard
Deadline Enforcer (HDE), which works as follows: when a critical task starts running,
the HDE allows the execution of any number of cores (running less-critical workloads)
concurrently with the critical core (executing the critical workload) till the moment when
the HDE predicts that the critical workload deadline will be violated if the processor
continues running all cores concurrently. At this moment, the HDE inhibits the non-
critical cores to execute less-critical tasks until the completion of the critical task by the
critical core. Then, it is said that the system is switched from the “shared mode” (where
two or more cores are fighting for shared memory bus access) to the “stand-alone mode”,
where a single (the critical) core is running. Given the above, the proposed approach
presents the following features and advantages compared to the existing techniques:

a) It minimizes the computational complexity imposed by multicore static timing anal-
ysis: it needs only to analyze interactions between pipeline and cache models of a
single core when executing a given critical task. All inter-core conflicts generated
during the execution of the critical and the various less-critical tasks caused by their
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non-uniform and concurrent memory bus accesses are not taken into account by the
HDE.

b) From the above (a) statement, it is also concluded that the proposed approach does
not need the development and it is not based on timing analysis models of multicore
processors. Therefore, the approach is not based on the faithfulness of the multicore
processor model to guarantee a precise workload timing prediction.

c) In contrast to the existing approaches, the proposed approach does not require any
knowledge about the implementation of the less-critical workloads or even the num-
ber of workloads that will run concurrently with the critical task. The HDE is con-
figured according to specific code structure and timing characteristics of the critical
task. Then, the HDE monitors online the critical task execution and automatically
switches the bus usage from the “shared” mode to the “stand-alone” mode to guar-
antee the maximum possible processor performance with workload schedulability.
Note that if the number of less-critical tasks changes, there is no need to re-compute
the timing analysis process for the critical task to guarantee workload schedulabil-
ity. This condition is ensured because the HDE can switch from the “shared mode”
to the “stand-alone mode” automatically, no matters is the number of less-critical
tasks are running in parallel with the critical one.

d) The approach can be applied to any type of processor, considered that the designer
is able to collect two signals from the processor (“Program Counter” and “Annul”).
The latter signal indicates if the current instruction in the pipeline was actually
executed or not.

e) Given that the approach can be applied to any type of processor, it allows a large
spectrum of real-time operating systems to be used. Thus, traditional and well-
stablished real-time operating systems for critical applications such as VxWorks,
LynxOS, Integrity or RTEMS and their advanced versions compliant with ARINC-
653 (an avionics standard for safe, partitioned systems) (ARINC Specification 653,
2006a; ARINC Specification 653, 2007; ARINC Specification 653, 2006b) could also
be considered in the whole system design.

f) The proposed approach does not requires recompilation of the critical task in order
to guarantee its timing deadline.

1.1 Objectives

The objectives of this work are as follows:
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∙ The primary goal is the development of a hardware-based approach, namely “Hard
Deadline Enforcer (HDE)” to guarantee the timing deadline of a single critical task
running concurrently with one or more non-critical tasks in a multicore processor.

∙ The secondary goal is the automation of the determination process of the remain-
ing worst-case execution time (𝑊𝐶𝐸𝑇𝑅) parameter of reference points distributed
strategically within the critical task. This automation by adopting an existing and
well established technique found in the literature (IPET) to automate the determi-
nation of the 𝑊𝐶𝐸𝑇𝑅 parameter by one side. by the other side, it was developed a
new technique to determine this parameter, named GTT. Both techniques presents
advantages and drawbacks and can, thus, be used complementary to each other.
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2 Preliminaries

2.1 Real-Time Systems
Real-time systems are computing systems that must react in strict timing con-

straints. Therefore the correct system behavior not only depends in the correctness of the
output but also depends in the moment in which the output was produced. A real-time
task is a task that posses a timing constraint known as deadline. The deadline is the max-
imum time in which the system must produce the output. A real-time task is classified
by the consequences caused by a missed deadline (BUTTAZZO, 2011) as follows:

∙ Hard: A hard real-time task has catastrophic results when a deadline is missed.

∙ Firm: The result of a firm real-time task loses its purpose after the deadline, but
does not cause any damage.

∙ Soft: In a soft real-time task, the results produced after the deadline has some
utility, but causing a performance degradation.

2.2 Timing Analysis
The timing of real-time tasks running in a real-time systems must analyzed to ver-

ify the deadline constraints of the tasks. If the constraints cannot be met in the evaluated
system, the tasks can be optimized or the system must be replaced with a more powerful
system in order to satisfy the constraints. Figure 1 illustrates basic notions concerning
the timing analysis of systems. The execution time of a task varies depending on the
input data or different behavior of the environment (WILHELM et al., 2008). The upper
curve shows the distribution of execution times of the task, and the bottom curve is the
distribution of measured times for a given set of inputs and environment behaviors.

A task typically shows a certain variation of execution times depending on the
input data or different behavior of the environment. The longest response time is called
the worst-case execution time (WCET). In most cases, the state space is too large to
exhaustively explore all possible executions and thereby determine the exact WCET.
Timing analysis tools tries to determine a timing upper bound that is higher than the
WCET but as close to it as possible.

In most parts of industry, the common method to estimate execution time bound is
to measure the end-to-end execution time of the task for some set of inputs (test cases) on
the target hardware or on a clock cycle-accurate simulator. This determines the maximal
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Figure 1 – Basic notions concerning timing analysis of systems.

Reference: Wilhelm et al. (2008).

observed execution time. In general, this will underestimate the WCET and so is not
safe for hard real-time systems. This method is often called dynamic timing analysis.
In contrast to this method, there is the static timing analysis, which is the preferred
method used by academia. This method does not rely on executing code on real hardware
or on a simulator. Rather, it takes the task code itself, most often together with some
annotations, constructs a control-flow graph (CFG) of the workload and analyzes the set of
all possible paths through the CFG. Next, this technique combines control-flow analysis
with (abstract) models of the processor architecture (e.g., pipeline, cache memory and
bus-access policy models) in order to obtain the WCET bound for the workload.

2.2.1 Static Timing Analysis

Figure 2 depicts the core components of a timing-analysis tool. The front end
is responsible of generating the Control flow graph (CFG) of the application from the
provided executed application. To do so, the instructions are decoded from the executed
application based in the instruction set of the target architecture. The vertices in the
CFG are known as basic blocks, which contains contiguous instructions. Branches are
represented by edges in the CFG.

Value analysis can be used to determine the loops bounds, alternatively these can
be provided by the user. Control-flow analysis (CFA) gathers information about possible
execution paths in the application. That allows to potentially yield tighter bounds, by
removing unfeasible paths in the bound calculation step.

The processor-behavior analysis uses abstract models of the processor to gather
information on the processor behavior for the task under analysis. It analysis the behavior
of components that affects the execution times, such as memory, caches, pipelines and
branch prediction. A common method to analyze the cache is by abstract interpretation
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Figure 2 – Core components of a timing-analysis tool.

Reference: Wilhelm et al. (2008).

(COUSOT; COUSOT, 1977; ALT et al., 1996; FERDINAND; WILHELM, 1999), memory
accesses are classified (e.g. always hit, always miss, first hit).

The bound calculation computes and upper bound of all execution times consider-
ing all possible paths of the task. It is based on the flow and timing information derived in
the previous steps. Analytically determined or measured times can be combined by three
main methods in the literature: structure-based, path-based and implicit-path enumeration
technique (IPET) (WILHELM et al., 2008).

In the structure-based method, the upper bound is computed in a bottom-up
traversal of the syntax tree of the task. It combines the computed task bounds for con-
stituents of statements by following combination rules for the type of the statement.

Figure 3d depicts an example of the upper bound computation for the task in
Figure 3a. It first determines the bound for the if statement composed by “E, F and
G”, which is 𝑇 (𝐸) + max(𝑇 (𝐹 ), 𝑇 (𝐺)) = 14, then it combines this time with the time
of H, yielding 16. Then it computes the time of the “B, C, D” if statement, yielding 12,
which is then combined with the time of “E, F, G, H”, yielding 28. Finally it matches
the resulting structure with a loop statement, which time is given by 𝑇 (𝐴) + (𝑇 (𝐴) +
𝑇 (𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻)) × (𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 1) = 3 + (3 + 28) × 99 = 3072, which is the
upper bound of the task.

The Implicit Path Enumeration Technique (IPET), first proposed by (LI; MALIK,
1995), is a technique where the bound calculation is performed by formulating and solving
an Integer Linear Programming (ILP) constrained optimization problem. In ILP, the
objective function and variables are linear and are constrained to Z. Methods for solving
ILP problems are detailed in (GARFINKEL; NEMHAUSER, 1972).

In IPET, a time coefficient (𝑡𝑒𝑛𝑡𝑖𝑡𝑦) is given for each basic block in the task, which
express the upper bound of the contribution of that basic block of every time it is executed.
It is also given a count variable (𝑥𝑒𝑛𝑡𝑖𝑡𝑦) for every basic block in the task, which counts
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Figure 3 – Methods for calculating the upper bound of a task.

Reference: Wilhelm et al. (2008).

how many times that entity was executed. The objective function of the ILP problem is
defined to be the sum of the product of the time coefficient and count variable for all
basic blocks in the task (∑︀

𝑖∈𝑒𝑛𝑡𝑖𝑡𝑦 𝑥𝑖 × 𝑡𝑖).

The structure of the task is described as a set of constraints in the count variables.
The sum of the count variables of the edges that enters an entity is equal to the sum of
count variables of the edges that leaves the entity, that is also equal to the count variable
of the entity in which the edges entered (exited)., i.e., 𝑥𝐵 = 𝑥𝐴𝐵 = 𝑥𝐵𝐶 + 𝑥𝐵𝐷. Loops
bounds are defined as constraints in the count variable of the loop header, i.e., 𝑥𝐴 ≤ 100.

The start and exit constraints specifies that the task was entered and exited once.
Once the ILP problem is formulated, a tool such as lp_solve (BERKELAAR, 2010) can
be used to obtain the WCET and the count variable of all basic blocks of the task. Figure
4 depicts the solution for the ILP formulation in Figure 3c computed using the lp_solve
tool. It shows the WCET (3072) and the count variables of every basic block and edge.
From the Figure 4, it can be noticed that the basic blocks D and G, were not executed,
once they would not contribute for the WCET of the task.
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Figure 4 – IPET results for the ILP in Figure 3c.

An extension of IPET is presented in (OTTOSSON; SJODIN, 1997) to allow
the independent modeling of micro-architectural aspects, it shows examples for modeling
pipelined execution and set-associative caches. Ballabriga e Cassé (2008) decreases the
WCET computation time by partitioning the CFG of the task into smaller parts, where
a local WCET can be computed faster.

In path-based methods, the upper bound is given by computing bounds for differ-
ent paths of the task, searching for the path with the longest execution time. The number
of paths is exponential to the number of branch points in the task (WILHELM et al.,
2008). Figure 3b depicts an example the path-based method, where the longest path is
marked and its time is combine with the loop bound to computed the upper bound for
the task. A path search method considering pipeline effects, caches and complex flows is
described in (STAPPERT; ERMEDAHL; ENGBLOM, 2001).

2.2.2 Measurement-based Methods

These methods works by executing the task or parts of the task with a set of inputs
on the target hardware and sampling the time of every instruction or basic block of the
task. A clock-cycle accurate simulator can be used instead of executing it in the target
hardware. Measurement can be applied to task snippets as well, and then combining the
results using methods of static methods, such as in Figure 3. Although, using measure-
ment, safe bounds can only be guaranteed on simple architectures (WILHELM et al.,
2008). Using measurement of parts of the tasks (or with instruction granularity), replaces
the “processor-behavior analysis” in Figure 2. Then, using CFA to find all possible paths,
and combining the measured times on the bound calculation step, all paths of the task is
considered in the timing bound estimation. Although, if the measured times are not safe
(e.g. due to cache), the estimated timing bound is not safe.
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Burns e Edgar (2000) predicts the WCET of tasks for complex processor archi-
tectures using measurement associated with statistical analysis, where the computation
time is represented by a probability function and the WCET estimates have a level of
confidence.

Bernat, Colin e Petters (2002), Bernat, Colin e Petters (2003) presents a method
based in measurement and static analysis. It combines probabilistically the worst case
effects observed in individual blocks collected during measurement into the worst-case
path of the application.

2.2.3 Timing Analysis Tools

2.2.3.1 AbsInt’s WCET Analyzer aiT

aiT is a commercial WCET static analysis tool that provides support for several
hardware platforms (Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF
5307, ARM7 TDMI, HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85 (pro-
totype), Infineon TriCore 1.3, LEON2 and LEON3). aiT first derives safe upper bounds
for the execution time of basic blocks and then computes, by integer linear programming,
an upper bound on the execution times over all possible paths of the program (FERDI-
NAND; HECKMANN, 2004).

At first, aiT reconstructs the CFG from a binary program, then value analysis
computes value ranges for register and address ranges for instructions accessing memory.
Loop bound analysis determine the loop bounds for simple loops in the application. Cache
analysis is performed using abstract interpretation, classifying memory references as cache
misses or hits. Cache analysis is based in the results of value analysis to then predict the
behavior of the cache. Pipeline analysis is perform and finally the WCET is computed by
path analysis using integer linear programming.

The user must provide annotations if the automatic loop bound analysis fails.
Furthermore, if some application does not adheres to the standard calling convention, the
user might need to provide additional annotations describing the control-flow properties
of the task (WILHELM et al., 2008).

2.2.3.2 Bound-T Tool

The Bound-T tool was originally a commercial tool developed at Space Systems
Finland Ltd, an was intended for verification of spacecraft on-board software. Tidorum
Ltd extended Bound-T to other application domains. Since January 2014, the Bound-T
tool is supplied free of charge in an open-source license. Although some modules that
relies on proprietary information from third party vendors remains closed source.
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The Bound-T tool is based in static timing analysis, using implicit path enumera-
tion technique to determine the worst-case path and the upper bound. The architecture
is designed to be adaptable to different target processors, extensible with new kinds and
methods of analysis, and portable to different host platforms (HOLSTI; SAARINEN,
2002).

The task being analyzed must not be recursive, must use standard calling con-
ventions and function pointers are not supported. No cache analysis is yet implemented,
and any timing anomalies in the target processor must be accounted for in the execution
time of basic blocks of the CFG (WILHELM et al., 2008). The Bount-T tool supports
the following target platforms: Intel-8051 series (MCS-51), Analog Devices ADSP-21020,
ATMEL ERC32 (SPARC V7), Renesas H8/300, ARM7 (prototype) and ATMEL AVR
and ATmega (prototypes) (WILHELM et al., 2008).

2.2.3.3 RapiTime Tool

RapiTime aims at medium to large real-time embedded systems on advanced pro-
cessors. The RapiTime tool targets the automotive electronics, avionics and telecommu-
nications industries (WILHELM et al., 2008).

Figure 5 depicts the block diagram of the RapiTime tool. The user provides a
set of source codes of that task under analysis, which is then built, from the executable,
a structural model is generated. From test cases provided by the user, alongside with
the executable, the application is run in the target hardware, generating timing traces.
The application must be instrumented with instrumentation points which indicates that
a section of the application was executed (RAPITA SYSTEMS LTD, 2015a). Which can
be performed either by a software instrumentation library or by a lightweight software
instrumentation with external hardware support. Alternatively the timing information
can be captured by purely nonintrusive tracing mechanisms (like Nexus and ETM) or
even traces from CPU simulators (WILHELM et al., 2008).

The structural model and the traces are used in the analysis step to compute
probability distributions from the measured times, producing performance metrics and
predicting the worst-case execution time (RAPITA SYSTEMS LTD, 2015a). Results can
be observed for each function and subfunction of the analyzed task.

RapiTime does not relies on processor models, therefore it can work for any pro-
cessor, as long as traces can be collected from the processor, and that the object code
reader is ported for that processor. RapiTime cannot analyze programs with recursion and
with nonstatically analyzable function pointers (WILHELM et al., 2008). The location of
the jump performed by function pointers can only be determined at runtime (in the case
that it is nonstatically analyzable), making it difficult to generate the structural model
for these applications.
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Figure 5 – RapiTime block diagram.

Reference: RAPITA SYSTEMS LTD (2015a).

2.3 State-of-the-Art on Timing Analysis Techniques for MPSoC

A lot of research has been carried out within the area of WCET analysis (PUSCHNER;
BURNS, 2000). However, each task is, traditionally, analyzed in isolation as if it was run-
ning on a monoprocessor system. Consequently, it is assumed that memory accesses over
the bus take constant amount of time to process. For multiprocessor systems with a shared
communication infrastructure, however, transfer times depend on the bus load and are
therefore no longer constant, causing the traditional methods to produce incorrect re-
sults (ROSÉN et al., 2011). As response to this specific need, several approaches dealing
with WCET prediction in multicore platforms have been proposed (ROSÉN et al., 2011;
CHATTOPADHYAY et al., 2014; LV et al., 2010; UNGERER et al., 2010).

In (ROSÉN et al., 2011), authors proposed a technique to achieve predictability
of tasks running in multiprocessor systems. The approach is based on the simultaneous
analysis of the critical task running in a given core with the shared-bus scheduling process,
in order to bound the WCET for that task. In order to calculate the whole WCET of such
task, the analysis needs to be aware of the TDMA bus, taking into account that cores
must only be granted the bus during their assigned time slots.

In (CHATTOPADHYAY et al., 2014), authors proposed a unified WCET static
timing analysis approach for multicore processors. This work is based on models of cache
and shared bus, which interact with other basic micro-architectural models (e.g. pipeline
and branch predictor unit). Each processor core is analyzed at a time by taking care
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of the inter-core conflicts generated by all other cores. In this multicore scenario, it is
assumed a TDMA shared bus based on round robin arbitration policy, where a fixed
length bus slot is assigned to each core. They also assume fully separated caches and
buses for instruction and data. Therefore, the data references do not interfere with the
instruction references. This work only models the effect of instruction caches. Since it is
considered only instruction caches, the cache miss penalty (computed from cache analysis)
directly affects the instruction fetch (IF) stage of the pipeline. Finally, authors consider
the LRU cache replacement policy.

In (LV et al., 2010), authors proposed a method to bound WCET for workloads
running in a multicore architecture where each core has a local L1 cache and all cores use
a shared bus to access the off-chip memory. They modeled the local cache behavior of a
program running on a dedicated core. Then, based on the cache model, they constructed
a Timed Automaton (TA) to model when the programs access the shared bus. Examples
for TDMA and FCFS buses were analyzed. The UPPAAL model checker (BENGTSSON
et al., 1996) is used to find the WCET of the application.

In contrast to (ROSÉN et al., 2011)(CHATTOPADHYAY et al., 2014)(LV et al.,
2010) that are approaches based on static timing analysis, in (UNGERER et al., 2010)
authors described a project called “Merasa: Multicore Execution of Hard Real-Time Ap-
plications Supporting Analyzability”. This work aimed at developing multicore processor
design (described in SystemC) for hard real-time embedded systems and a technique to
guarantee the analyzability and timing predictability of every feature provided by the
processor. Publications presented results for a quad-core version of this processor, where
each core consists of two pipelines and implements the TriCore (Infineon) instruction set.
Each core provides up to four thread slots (separate instruction windows and register sets
per thread), which allows simultaneous execution of one hard real-time task and three
non-hard real-time tasks.

The processor architecture contains one inter-core bus arbiter, which arbitrates
requests from different cores, and four intra-core bus arbiters (one per core) that arbitrate
among thread requests from the same core. The processor shared memory can suffer from
both intra- and inter-core interferences. To avoid these interferences, authors proposed a
dynamically partitioned memory, which assigns a private subset of memory banks to each
hard real-time task so that no other task has access to it (the Merasa operating system
sets the memory partition assigned to each core by modifying special hardware registers).
Also, the MERASA processor runs based on a Round Robin bus policy.

The MERASA system-level software represents an abstraction layer between the
application software and the embedded hardware. It provides the basic functionalities
of a real-time operating system as a foundation for application software running on the
MERASA processor. MERASA system-level software guarantees the isolation of memory
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accesses of various hard real-time tasks that are running on different cores to avoid mutual
and possibly unpredictable interferences. This isolation should also enable a tight WCET
analysis of application code. The resulting system software can execute hard real-time
tasks in parallel on different cores of the MERASA multicore processor.

The MERASA processor and techniques were validated by means of determining
WCET for a given application based on the use of two CAD tools, one academic and one
from industry: OTAWA (BALLABRIGA et al., 2010) and RapiTime (RAPITA SYSTEMS
LTD, 2015b), respectively. While OTAWA extracts the control flow graph (CFG) from the
binary code (thus, performing static timing analysis), RapiTime uses the extracted traces
to estimate the WCET by measurements/simulations of the target hardware. Further,
the MERASA project was continued on a new action: parMERASA (UNGERER et al.,
2013).

Considered all the above mentioned approaches, our proposed approach represents
a considerable improvement of the state-of-the-art, since:

a) They are not trivial in such a way that they must not only analyze all interactions
between pipeline and cache models of a single core when executing a given critical
task. They also analyze all inter-core conflicts generated during the execution of the
critical and the various less-critical workloads and their non-uniform and concur-
rent memory bus accesses. Note that such analysis is even more complex when the
number of cores running in parallel increases.

b) If the number of tasks changes, the whole process must be recomputed in order to
reschedule the tasks into the TDMA (resp. FCFS or Round-Robin) bus slots.

c) It may happen that after predicting the execution of a critical task in a given
multicore platform, the designer concludes that this task is not schedulable when
executed in concurrence with other (less-critical) tasks. So, the whole analysis is
useless and a new analysis process must restart on the basis of a smaller number
of less-critical tasks to running in parallel with the critical one. The final goal is
to guarantee schedulability of the critical task. If this is not attained yet, then the
whole process is restarted again with an even smaller number of less-critical tasks.
This “re-do” work is long and complex. So, time consuming.

d) Unlike the previous methods, in our approach, the WCET computation for the
critical task is computed independently of the number of less critical tasks running
in any number of cores concurrently with the critical task in the critical core. This
renders the system design complexity much lower than in the case of the previous
approaches. Furthermore if the number of less critical tasks changes (and the number
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of less critical cores as well), the WCET of the critical task does not need to be
recomputed.

2.4 LEON3 Processor
LEON3 is a 32-bit processor core that conforms to the IEEE-1754 (SPARC-V8)

(SPARC International INC., 1992) architecture. It is designed for embedded applications
and implements a 7-stage pipeline with separate instruction and data caches, memory
management unit, hardware multiplier and divider, on-chip debug support and multi-
processor extensions (COBHAM GAISLER AB, 2015).

Figure 6 depicts the block diagram of the LEON3 core, the indicated blocks are
optional, the “Interrupt port” is required for multi-processor systems, since it is used to
start the cores.

Figure 6 – LEON3 processor core block diagram.
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2.4.1 Instruction Pipeline

The LEON3 integer unit is composed by 7 stages, uses a single instruction issue
pipeline, and is depicted below (COBHAM GAISLER AB, 2015):

1. FE (Instruction Fetch): The instruction is fetched from the instruction cache if the
cache is enabled. Otherwise, the fetch is performed in the AHB bus.

2. DE (Decode): The instructions are decoded and the target addresses of the CALL
and Branch instructions are generated.

3. RA (Register access): Operands are read from the register file or from internal data
bypasses.
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4. EX (Execute): ALU, logical, and shift operations are performed. The address is
generated for memory operations (e.g., LD) and for JMPL/RETT instructions.

5. ME (Memory): Data cache is read or written at this stage.

6. XC (Exception) Traps and interrupts are resolved. The data is aligned as appropriate
for cache reads.

7. WR (Write): The result of ALU, logical, shift, or cache operations are written back
to the register file.

2.4.2 Debug Support Unit (DSU)

The Debug support unit is connected to the LEON3 pipeline and allows non-
intrusive debugging of applications running the processor. Four watchpoint registers can
be enabled, which allows hardware breakpoints to be placed in the application. The trace
buffer monitors and stores executed instructions, which can then be read via the debug
interface. It consists of a circular buffer that stores executed instructions information. The
following information is stored in real-time without performance degradation:

∙ Instruction address and opcode

∙ Instruction result

∙ Load/store data and address

∙ Trap information

∙ 30-bit time tag

2.4.3 AMBA interface

The LEON3 processor uses a single AHB master interface to access data and
instructions. Instruction fetches can be configured to be performed by incremental bursts
or by single read cycles. For reading cacheable data, burst operations are used, for non-
cacheable data, byte, half-word and word accesses are used accordingly. To store data,
for 32-bit store a single access is performed, and for a 64-bit store a two-beat incremental
burst is used. The bus arbiter supports the fixed-priority and round-robin policies. In
round-robin mode if no master requests the bus, the arbiter grants the bus to the last
owner.
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2.4.4 Cache System

The LEON3 cache system supports a single-way (direct-mapped) or multiway
cache. It can be configured with a set associativity of 2 to 4, and way sizes of 1 to
256 kiB, divided into cache lines of 16 or 32 bytes of data. The LEON3 cache system
implements the following cache replacement policies:

∙ Least-recently-used (LRU)

∙ Least-recently-replaced (LRR)

∙ Pseudo-random

Data stores uses write-through policy, data is first stored in a double-word write
buffer to later be processed in background, therefore, unless the write buffer is full, the
pipeline can keep executing while the write is being processed. In the LEON3 multi-
processor system, bus-snooping must be enabled to maintain cache coherency. Whenever
a write is performed in a cached area, the cache line is marked invalid and the processor
will be forced to fetch the new data from memory when it is read.

2.4.5 Multi-Processor Support

LEON3 can be used in multi-processor systems, each processor has a unique index
that allows processor identification. Cache coherency is guaranteed in shared-memory
systems by the write-through caches and snooping mechanism. Up to 16 processors can
be connected to the same AHB bus in symmetric multiprocessing (SMP) configurations
with shared memory.

On reset, only the first processor is initialized, the other processors remains in
power-down mode. The first processor can start the other processors by writing to the
“multiprocessor status register” field in the multiprocessor interrupt controller. To deter-
mine which processor an application is running, the “processor index” field can be read
in the LEON3 configuration register.

Figure 7 depicts the block diagram of a minimal LEON3 dual-core processor con-
figuration. It is comprised of two LEON3 processors connected to the same bus, sharing
the same RAM memory.

2.4.6 Register Windows

The LEON3 processor can be configured to have 2 to 32 register windows. During
function calls, the registers does not need to be saved in the stack (“save” and “restore”
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Figure 7 – Dual-Core LEON3 processor block diagram.
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instructions can be used, that moves between register windows). Although when the reg-
ister window overflows a trap is generated, executing a code that handles the window
overflow by committing the registers to the stack. The “ins” and “outs” registers of ad-
jacent windows overlaps, e.g., the “ins” registers of window 0 are the same as the “outs”
registers of window 1.

2.5 Advanced Microcontroller Bus Architecture (AMBA)
The Advanced Microcontroller Bus Architecture (AMBA) is a specification that

defines a communications standard for designing high-performance microcontrollers. Three
distinct buses are defined in the AMBA specification (ARM Ltd, 1999):

∙ The Advanced High-performance Bus (AHB)

∙ The Advanced System Bus (ASB)

∙ The Advanced Peripheral Bus (APB)

Figure 8 depicts a typical AMBA system, composed by an AHB or APB bus
connected to an APB bus via a bridge. In the main bus (AHB or APB), are connected two
masters (“High-performance ARM processor” and “DMA bus master”) that can initiate
transfers to the slaves (“High-bandwidth external memory interface”, “high-bandwidth
on-chip RAM” and “Bridge”). Due to its simple interface, the APB bus is used to connect
devices that does not requires performance, e.g. a Timer and General purpose IOs.

2.5.1 AMBA AHB

The AHB is a high-performance system bus that allows the efficient connection
of processors, on-chip memory and off-chip external memory. It is comprised of masters
and slaves, where only the masters can start a data transfer from slaves. The bus arbiter
ensures that only a master is given the access to the bus at a given time. The master starts
by requesting the bus to the arbiter. Once a master acquires the bus, it can commence the
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Figure 8 – A typical AMBA system.
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1.3 A typical AMBA-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system 
backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory 
bandwidth, on which the CPU, on-chip memory and other Direct Memory Access 
(DMA) devices reside. This bus provides a high-bandwidth interface between the 
elements that are involved in the majority of transfers. Also located on the high-
performance bus is a bridge to the lower bandwidth APB, where most of the peripheral 
devices in the system are located (see Figure 1-1).

Figure 1-1 A typical AMBA system

AMBA APB provides the basic peripheral macrocell communications infrastructure as 
a secondary bus from the higher bandwidth pipelined main system bus. Such 
peripherals typically:

• have interfaces which are memory-mapped registers

• have no high-bandwidth interfaces

• are accessed under programmed control.
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Reference: ARM Ltd (1999).

transfer by driving the address and control signals, the control signals provide information
on the direction of the transfer (read/write), the width of the transfer, the type of the
transfer (single transfer, incrementing burst of unspecified length, and others), among
others.

Normally the arbiter does not interrupts a burst transfer. Although if the arbiter
determines that the transfer must be terminated early, e.g. if a master with higher priority
must access the bus, or if the transfer was taking too long to complete, it can transfer the
bus ownership to another bus master before the burst has completed. Once the interrupted
burst transfer master acquires the bus, the transfer can be resumed from the point it was
interrupted.
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3 Proposed Methodology

The proposed methodology is divided in two parts, which are independent to each
other. The first part is the implementation of the hardware that is virtually invariant
and independent of the target processor architecture. The second part is the computation
of the remaining worst case execution time (𝑊𝐶𝐸𝑇𝑅) of the critical application which
is used to configure the hardware. This part is highly dependent of the target processor
architecture.

3.1 Problem Description
In multi-core processors, the bus sharing between cores causes the time of accessing

the bus to vary. Therefore it makes it hard to predict the time of a bus access, and
by consequence, making hard to compute the WCET of a task running in a multi-core
processor. Tools that computes the WCET of tasks running in multi-core processors must
analyze all of the tasks altogether, and if the task set changes, all of the WCET analysis
must be performed again. Methods using TDMA tries to find a bus schedule, by assigning
fixed slots to each core, that guarantees the deadline of all tasks. Since a core can only
access the bus in its own dedicated slot, even when current slot owner is not requesting the
bus, the bus might often be idle, causing its throughput to decrease, and by consequence,
decreasing the performance of a multi-core system.

Figure 9 depicts an example of a TDMA bus schedule for a dual-core processor.
The TDMA slots are shown below the X axis, when the bus is actually accessed is in the
Y axis. In Figure 9a, the task running in core 0 had an input in which caused idle times
in the bus. Similarly, in Figure 9b, some inputs caused the task in core 1 to sub-utilize
the bus. Therefore, in this example, depending on the input of the tasks, the bus can be
sub-utilized.

3.2 Proposed Solution
Figure 10 depicts the situation where one critical task (𝑇𝑐) and one less-critical

task (𝑇1) are running on two cores. When both tasks are executed (in the “shared mode”),
the WCET of the 𝑇𝑐 violates its deadline D. Thus, the problem is unschedulable (Figure
10a). However, if 𝑇𝑐 is executed in the “stand-alone mode”, it is schedulable (Figure 10b).
In contrast with existing approaches, where only the critical task is executed at a time
in the multicore platform until its completion, the proposed methodology is capable of
scheduling the 𝑇𝑐 by considering the following scenario: initially both tasks (𝑇𝑐 and 𝑇1)



42 Chapter 3. Proposed Methodology

Figure 9 – TDMA bus utilization example.

are executed on the system. Then, reference points (RPs) are used to observe on-line the
execution time of the 𝑇𝑐 and decide switching the processor from the “shared mode” to
the isolated execution of 𝑇𝑐 (Figure 10c). The approach can be applied to any type of
processor, considered that the designer is able to collect two signals from the processor
(“Program Counter” and “Annul”). The latter signal indicates if the current instruction
in the pipeline was actually executed.

Figure 10 – Scheduling based on WCET when are considered for execution (a) both tasks,
(b) only the critical task and (c) proposed approach.

Shared Memory

Core 0 Core 1

t

Tc

T1

Core 0

Core 1

a)

t

TcCore 0

Core 1

b)

t

Tc

T1

Core 0

Core 1

c)

D

T1

T1

In this work, we propose an approach to improve core utilization by running several
tasks in parallel while guaranteeing the critical task schedulability. The target platform
can be a TDMA, First-Come First-Served (FCFS) or Round Robin bus-access policy
multicore system. We assume a single core to run a unique critical task in parallel with
any number of cores running less-critical tasks. If running in the stand-alone mode the
critical task is perfectly schedulable. However, if it is running in parallel with other less-
critical tasks, it cannot be guaranteed its schedulability, unless the proposed approach is
considered. Our methodology is split in two steps (VARGAS; GREEN, 2015b; VARGAS;
GREEN, 2015c; VARGAS; GREEN, 2015a):
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i) Off-line, we analyze the control-flow-graph (CFG) of the critical task and safely
compute the remaining WCET at several Reference Points (RPs) of the 𝑇𝑐 running
in the stand-alone mode. The remaining WCET (𝑊𝐶𝐸𝑇𝑅) is defined as the WCET
between the considered RP until the end of the code.

ii) On-line, for the system running in the shared mode, we use a dedicated Hard Dead-
line Enforcer (HDE) to monitor the real execution time of 𝑇𝑐 and to check whether
there is a risk that the critical task misses its deadline due to system overload. If
so, the less-critical tasks are temporarily paused so that the critical task continues
in the stand-alone mode from that monitored point until its completion. After the
critical task is complete, the less-critical tasks can resume execution from the point
they were temporarily paused.

Figure 11 shows the computed timeline of a critical task. The reference point
zero (𝑅𝑃0) is hereby defined as the start of the task. The Critical Time (CT) of a given
Reference Point (RP) is given by:

𝐶𝑇 (𝑅𝑃𝑛) = 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑇 𝑖𝑚𝑒−𝑊𝐶𝐸𝑇𝑅(𝑅𝑃𝑛)− 𝑡𝑜𝑣𝑒𝑟, (1)

Where,
𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑇 𝑖𝑚𝑒 > 𝑊𝐶𝐸𝑇 + 𝑡𝑜𝑣𝑒𝑟, (2)

And the 𝑊𝐶𝐸𝑇𝑟(𝑅𝑃𝑛) is the remaining worst-case execution time from the 𝑅𝑃𝑛 to the
task end instant, which was statically computed for the processor running in the “stand-
alone” mode. Finally, 𝑡𝑜𝑣𝑒𝑟 (turn-over) is a constant cost associated to the bus arbiter to
switch the processor between the “shared” and the “stand-alone” modes.

When the critical task starts, the elapsed time is initialized and incremented, clock-
by-clock by the HDE and compared against the CT collected at the last RP that it passed
by. It should be noted that during the critical task execution, the CPU passes through
several code paths with different times (since the path taken along the code is a function
of its inputs). Therefore, it is mandatory that the CT be updated at every RP distributed
along the code. When the HDE compares the elapsed time against the CT collected at
the most recent RP that it passed by, three possible situations may occur:

a) The elapsed time is smaller than the CT; then, the processor continues executing
in the “shared” mode.

b) The elapsed time is equal to or greater than the CT; then, the HDE advises the bus
arbiter to switch the processor from the “shared” to the “stand-alone” mode.

c) The elapsed time is greater than the “Deadline”; then, the HDE issues an “Error
Indication” signal.
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Figure 11 – Timeline of a critical task execution.
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It is worth noting that during task execution in the “stand-alone” mode, upon
arriving in the current RP, if the HDE detects that the execution of the critical task is
faster than predicted according to the last RP that it passed by, the HDE signals to the
bus arbiter to switch back to the “shared” mode in order to privilege task concurrency in
the multicore platform.

Figure 12 depicts an example of the HDE of a fictitious dual-core processor com-
posed by the Critical core 𝐶 and a non critical core 𝑁 . The critical core runs the critical
task 𝑇𝑐 with an WCET (of single-core execution) of 8. Although in this example the ex-
ecution time of the task running in a single-core processor is 6 clock cycles. The critical
task has two reference points:

Table 1 – HDE example reference points.

Reference Point Start Instant (cc) 𝑊𝐶𝐸𝑇𝑅 (cc) CT (cc)
𝑅𝑃0 0 8 1
𝑅𝑃1 4 2 7

The Start instant is how many clock cycles the task must be executed for it to
reach the given reference point, the critical time of the reference point is computed using
equation (1) considering 𝑡𝑜𝑣𝑒𝑟 = 0.

The arbitration sequence while in shared mode is [𝐶 𝑁 ] and when entering the
stand-alone mode it pauses the sequence and resumes when switching back to the shared
mode.
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Figure 12 – Hard deadline enforcer example. During the shared mode, the bus is arbi-
trated to both cores.
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At the instant 1 cc the HDE switches the bus to stand-alone mode since the elapsed
time was equal to the CT of the current reference point (𝑅𝑃0), and continued in that mode
until the instant 4 cc, where the next reference point was set (𝑅𝑃1). At the instant 7 cc,
the bus switched to stand-alone mode since the elapsed time was equal to the CT of the
current reference point. The critical task ends a cycle before the deadline.

Figure 13 depicts an example of the HDE with the same parameters as the previous
example but with a different shared mode arbitration sequence ([𝑁 ]), arbitrating only to
the non critical core while in the shared mode.

Figure 13 – Hard deadline enforcer example. During the shared mode, the bus is arbi-
trated only to the non critical core.
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Unlike the previous example, the reference point 𝑅𝑃1 happens at instant 5 cc, and
the critical task ends at the deadline.

3.3 WCET Computation Technique: a case-study on the LEON3
single-core processor
The technique is based in measurement techniques that combines the measured

times into the WCET and 𝑊𝐶𝐸𝑇𝑅. By doing so we do not need to exercise all possible
paths of the application (that is performed during the time combination), but all vertices
and edges in the control flow graph (CFG), which is much simpler and less time consuming.
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Figure 14 depicts the block diagram of the 𝑊𝐶𝐸𝑇𝑅 computation tool, and each block
responsibility is summarized below.

Figure 14 – WCET tool block diagram.

1. CFG Generation: Decode the instructions of the compiled application and generate
the CFG of the task under analysis.

2. Program Execution on Target HW: Execute the application in the target hardware
with the input vectors provided and gather timing information of each instruction
using measurement techniques. For LEON3 it is used the debug support unit (DSU)
instruction trace that stores the time tag of every executed instruction. The time
tag is the time in CPU clock cycles in which a instruction left the exception stage
of the pipeline.

3. Timing Compilation Procedure: Combines the timing values measured from the
target hardware into the timing table.

4. Timing Annotation: Annotate the CFG vertices and edges with timing information
from the timing table.

5. WCET Estimation: Estimate the WCET from the annotated CFG and loop bounds
provided using implicit path enumeration technique (IPET) or graph traversal tech-
nique (GTT).

3.3.1 Program Execution on Target HW

In order to compute the WCET of a task, the task instructions must be sampled
in the target hardware. The sampling must cover all basic blocks and edges of the task
CFG, for that, the user must generate input vectors to be used during sampling.
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Input vectors can be generated either randomly or defined by the user, in this case,
the user must have knowledge about inputs leading to every branch of the task, thereby
defining input vectors that excites all basic blocks and edges of the task. While a single
task run with an input vector does not needs to include every basic block and edge of the
task, the combination of all runs w.r.t. the input vectors must cover all the basic blocks
and edges of the task.

The sampling is performed by the LEON3 DSU Instruction trace module, that
collects information about executed instructions in real-time without performance impact
to the processor. The information is collected at the end of the sixth stage of the LEON3
pipeline stage. Within that information, the time tag and instruction address (PC ) is
used to compute the timing of each instruction.

Figure 15 depicts the execution of four instructions in the LEON3 processor with
the time tag 𝑇𝑇𝑖 of each instruction 𝐼𝑖 being collected at the sixth pipeline stage. The
latency of an instruction is the difference of the time tag of the current instruction 𝑇𝑇𝑖

to the time tag of the previous instruction 𝑇𝑇𝑖−1.

Figure 15 – Measurement procedure of the latency of instructions passing through the
LEON3 micropipeline architecture.
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In this approach, the latency of pipeline up to the end of the fifth stage of the first
instruction is lost, if that time is desired, five nops instructions must be prepended to
the code section being analyzed and the analysis must start at the first nop. Additionally,
since the time tag is acquired at the end of the sixth stage, the time of the “write” pipeline
stage of the last instruction is lost, and if that time is desired, a nop must be inserted at
the end of the code section being analyzed.

Figure 16 depicts the block diagram of a LEON3 processor for sampling the timing
of instructions of a given application through the DSU. The main components of the
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Figure 16 – Single-core LEON3 processor block diagram used to sample instruction times.

DSUJTAG Dbg.
Link

AHB
Controller II

AHB/APB
Bridge II

Dual Port
Register

AHB/APB
Bridge I

AHB
Controller I

LEON3
Processor

AHBRAM
Memory

JTAG

AMBA APB I

AMBA APB II

AMBA AHB II

AMBA AHB I

processor are connected to the “AMBA AHB I” bus. The other components are connected
to the “AMBA AHB II” bus, and are responsible for controlling the processor, retrieving
the time (from the DSU), and configuring the input vectors of the application (Dual Port
Register). The components are split in two buses to avoid interference in the processor
timing caused by access conflicts in the bus. Since the “JTAG Debug Link” is connected
to the “AMBA AHB II”, and there is no connection between the two AHB buses, it is
unable to load the application to the “AHBRAM Memory”, therefore the application
must be preloaded in the memory.

3.3.2 Timing Compilation Procedure

This procedure is responsible for compiling the values measured in Item 2 into
the timing table. The timing table is responsible for mapping the address of an executed
instruction 𝐼𝑖 together with three future addresses of instructions (relative to 𝐼𝑖) to the
latency of the 𝐼𝑖 instruction.

The table is generated from a list of a double of instruction address and time tag
[(𝐴𝑖, 𝑇𝑇𝑖)] collected in Item 2. The latency of each entry is calculated by the difference
of the current instruction time tag and the former instruction time tag i.e., 𝐿𝑖 = 𝑇𝑇𝑖 −
𝑇𝑇𝑖−1, e.g. 𝐿3 in Figure 15. The table is then generated with the addresses and computed
latencies.

Figure 17a shows an example trace of a task running in LEON3 processor measured
with the DSU instruction trace. The latency is calculated from the trace yielding Figure
17b. For example, the latency of instruction at address 4001284 is computed by 2439−2425
resulting in 14 CPU cycles. The timing table (Figure 17c) is then generated from the
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Figure 17 – Timing compilation procedure example.

Address Time Tag
40001214 2425
40001284 2439
40001288 2452
4000128C 2457
40001290 2458
40001294 2461
40001218 2472
4000121C 2479

(a) Trace

Address Latency
40001284 14
40001288 13
4000128C 5
40001290 1
40001294 3
40001218 11
4000121C 7

(b) Latency Table

Instruction Key Value
Address 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖+1 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖+2 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖+3 CPU Cycles
40001284 40001284 40001288 4000128C 40001290 14
40001288 40001288 4000128C 40001290 40001294 13
4000128C 4000128C 40001290 40001294 40001218 5
40001290 40001290 40001294 40001218 4000121C 1

(c) Timing Table

computed latencies and instructions address of each run, and then it is combined in a
single timing table.

3.3.3 Timing Annotation

The algorithm to compute and annotate the CFG with timing information of each
basic block (vertex) and edge is presented in Figure 18.

The addresses of all instructions belonging to a basic block are retrieved in lines 3
and 13. If the basic block has no out-going edges the addresses variable is appended with
three zeros (line 4). The latency of an instruction is found by looking at the timing table
for the four consecutive addresses in the addresses variable starting at the instruction
address. The latencies of every instruction in the vertex are summed and the sum is
assigned to the Time variable in the vertex. This process is depicted in lines 6 to 9 and
17 to 20.

If the basic block does have out-going edges, then the basic block time w.r.t. every
out-going edge must be computed. For every edge the next three instructions address
(after the basic block traversing through the edge) must be retrieved. Those values are
then appended to the 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 variable. The time of the basic block w.r.t. that edge is
then computed in lines 17 to 20. The penalty of the edge is then set to the computed time
(it is later subtracted from the real minimum basic block time) and the minimum basic
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Figure 18 – Basic block annotation algorithm.

1: procedure AnnotateBasicBlock(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑡𝑖𝑚𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒)
2: if 𝑣𝑒𝑟𝑡𝑒𝑥.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠.𝐶𝑜𝑢𝑛𝑡 = 0 then
3: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠← 𝑣𝑒𝑟𝑡𝑒𝑥.𝐺𝑒𝑡𝑉 𝑒𝑟𝑡𝑒𝑥𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐴𝑑𝑑𝑟𝑒𝑠𝑠()
4: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠← 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠.𝐴𝑝𝑝𝑒𝑛𝑑([0, 0, 0])
5: 𝑡𝑖𝑚𝑒← 0
6: for 𝑖← 0, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠.𝐿𝑒𝑛𝑔𝑡ℎ− 4 do
7: 𝑘𝑒𝑦 ← 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠.𝑇𝑎𝑘𝑒(𝑖, 4)
8: 𝑡𝑖𝑚𝑒← 𝑡𝑖𝑚𝑒 + 𝑡𝑖𝑚𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒[𝑘𝑒𝑦]
9: end for

10: 𝑚𝑖𝑛𝑇𝑖𝑚𝑒← 𝑡𝑖𝑚𝑒
11: else
12: for all 𝑒𝑑𝑔𝑒 ∈ 𝑣𝑒𝑟𝑡𝑒𝑥.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do
13: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠← 𝑣𝑒𝑟𝑡𝑒𝑥.𝐺𝑒𝑡𝑉 𝑒𝑟𝑡𝑒𝑥𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐴𝑑𝑑𝑟𝑒𝑠𝑠()
14: 𝑛𝑒𝑥𝑡3← 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝑇ℎ𝑟𝑒𝑒𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝐴𝑑𝑑𝑟𝑒𝑠𝑠(𝑒𝑑𝑔𝑒)
15: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠← 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠.𝐴𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑥𝑡3)
16: 𝑡𝑖𝑚𝑒← 0
17: for 𝑖← 0, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠.𝐿𝑒𝑛𝑔𝑡ℎ− 4 do
18: 𝑘𝑒𝑦 ← 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠.𝑇𝑎𝑘𝑒(𝑖, 4)
19: 𝑡𝑖𝑚𝑒← 𝑡𝑖𝑚𝑒 + 𝑡𝑖𝑚𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒[𝑘𝑒𝑦]
20: end for
21: 𝑒𝑑𝑔𝑒.𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ← 𝑡𝑖𝑚𝑒
22: 𝑚𝑖𝑛𝑇𝑖𝑚𝑒← 𝑚𝑖𝑛(𝑚𝑖𝑛𝑇𝑖𝑚𝑒, 𝑡𝑖𝑚𝑒)
23: end for
24: end if
25: 𝑣𝑒𝑟𝑡𝑒𝑥.𝑇 𝑖𝑚𝑒← 𝑚𝑖𝑛𝑇𝑖𝑚𝑒
26: for all 𝑒𝑑𝑔𝑒 ∈ 𝑣𝑒𝑟𝑡𝑒𝑥.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do
27: 𝑒𝑑𝑔𝑒.𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ← 𝑒𝑑𝑔𝑒.𝑃𝑒𝑛𝑎𝑙𝑡𝑦 −𝑚𝑖𝑛𝑇𝑖𝑚𝑒
28: end for
29: end procedure

block time 𝑚𝑖𝑛𝑇𝑖𝑚𝑒 is updated with the minimum of the current value of 𝑚𝑖𝑛𝑇𝑖𝑚𝑒 and
the computed 𝑡𝑖𝑚𝑒.

Figure 19a depicts a section of a CFG of a task in which the algorithm in Figure 18
will be applied to the topmost vertex. Figure 19b depicts the contents of the 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠

variable for the Branch Taken and Branch Not Taken edges. In Figure 19c shows the
total CPU cycles of the vertex w.r.t. every edge. It also shows the CPU cycles of every
instruction and the key used to retrieve the CPU cycles value from the timing table.

After computing the basic block time w.r.t. every edge, the basic block time is
then set to the 𝑚𝑖𝑛𝑇𝑖𝑚𝑒 variable and the penalty variable of every edge is subtracted
from the 𝑚𝑖𝑛𝑇𝑖𝑚𝑒 variable. Figure 20a shows a CFG of a task with each instruction and
its respective address. The algorithm in Figure 18 was applied to every vertex of the CFG
and the result is shown in Figure 20b. The annotated CFG is a composition of the CFGs
from Figure 20a and 20b, containing the data of both graphs.
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Figure 19 – Timing annotation example.

(a) CFG Section

Branch Taken
40001284
40001288
4000128C
40001290
40001294
40001218
4000121C

Branch Not Taken
40001284
40001288
4000128C
40001290
40001294
40001298
4000129C

(b) 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 Variable
Contents

Branch Taken
Inst. Address Key CPU Cycles
40001284 40001284 40001288 4000128C 40001290 14
40001288 40001288 4000128C 40001290 40001294 13
4000128C 4000128C 40001290 40001294 40001218 5
40001290 40001290 40001294 40001218 4000121C 1
Total: 33
Branch Not Taken
Inst. Address Key CPU Cycles
40001284 40001284 40001288 4000128C 40001290 14
40001288 40001288 4000128C 40001290 40001294 13
4000128C 4000128C 40001290 40001294 40001298 5
40001290 40001290 40001294 40001298 4000129C 3
Total: 35

(c) Timing Table Entries

3.3.4 𝑊𝐶𝐸𝑇𝑅 Computation

This step is responsible for composing the previously collected and aggregated
times into the WCET and 𝑊𝐶𝐸𝑇𝑅, to do so, we detail here two techniques with their
respective trade-offs.

3.3.4.1 Implicit Path Enumeration Technique (IPET)

A count variable 𝑥𝑣𝑖
and a time coefficient 𝑡𝑣𝑖

are defined for every basic block
(vertex) in the CFG. Additionally a count variable 𝑥𝑒𝑖

and a penalty coefficient 𝑝𝑒𝑖
are

defined for all edges in the graph. The WCET can be computed by maximizing the sum of
the product of count variables of all vertices (edges) with the time (penalty) coefficients of
all vertices (edges) (max(∑︀

𝑖∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑡𝑣𝑖
𝑥𝑣𝑖

+∑︀
𝑖∈𝑒𝑑𝑔𝑒𝑠 𝑝𝑒𝑖

𝑥𝑒𝑖
)) subject to a set of constraints.

These constraints reflect the structure of the task and possible flows. The constraint of a
vertex 𝑣𝑖 is imposed into its count variable 𝑥𝑣𝑖

and equals to the sum of the count variables
of all of its incoming (out-going) edges (𝑥𝑣𝑖

= ∑︀
𝑜∈𝑖𝑛 𝑒𝑑𝑔𝑒𝑠∈𝑖 𝑥𝑒𝑜 = ∑︀

𝑜∈𝑜𝑢𝑡 𝑒𝑑𝑔𝑒𝑠∈𝑖 𝑥𝑒𝑜). That
is, the number of times a vertex was entered should be the same as the number of times
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Figure 20 – Task CFG example.

(a) CFG (b) Timed CFG

the vertex was exited. Another constraint is that the count variable should be one for
start (end) vertices, that is, a task should only be entered (exited) once. Loop bounds are
expressed as constraints in the loop back edge count variable.

Figure 21a depicts a CFG of a task showing the count variable 𝑥𝑖 (𝑥𝑒𝑖
) and the

time (penalty) coefficient 𝑡𝑖 (𝑝𝑒𝑖
) of vertices (edges). Figure 21b show the maximization

equation in line 1, depicting both vertices and edges. In line 16 is defined a constraint
related to the loop bound 𝐿𝐵9→2, the loop is bounded to 1000. Lines 3 to 13 depicts the
constraints related to the structure of task and its possible flows. The ILP formulation is
solved by using the lp_solve (BERKELAAR, 2010) tool yielding the max value of 191069
CPU Cycles.
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Figure 21 – IPET example.

(a) Task CFG

1: WCET = max(5 · x0 + 3 · x1 + 33 · x2 + 3 · x3 +
21 ·x4 +3 ·x5 +20 ·x6 +30 ·x7 +3 ·x8 +98 ·x9 +
26 · x10 + 3 · x4→7 + 2 · x2→10)

2: subject to the constraints:
3: x0 = xstart = x0→1

4: x1 = x0→1 = x1→2

5: x2 = x1→2 + x9→2 = x2→3 + x2→10

6: x3 = x2→3 = x3→4

7: x4 = x3→4 = x4→5 + x4→7

8: x5 = x4→5 = x5→6

9: x6 = x5→6 = x6→9

10: x7 = x4→7 = x7→8

11: x8 = x7→8 = x8→9

12: x9 = x6→9 + x8→9 = x9→2

13: x10 = x2→10 = xend

14: xstart = 1
15: xend = 1
16: x9→2 ≤ LB9→2 · x1→2

(b) ILP Formulation

Figure 22 – IPET 𝑊𝐶𝐸𝑇𝑅 example with a single loop.

(a) Task CFG

1: WCET v2
r (n) = max(t1 · x1 + t2 · x2 + t3 · x3 + t4 ·

x4 + p1→2 · x1→2 + p2→3 · x2→3 + p3→4 · x3→4 +
p3→2 · x3→2)

2: subject to the constraints:
3: x1 = x1→2

4: x2 = xstart′ + x1→2 + x3→2 = x2→3

5: x3 = x2→3 = x3→2 + x3→4

6: x4 = x3→4 = xend

7: xstart′ = 1
8: xend = 1
9: x3→2 ≤ LB3→2 − n

(b) ILP Formulation

Even though the IPET is a well established technique from the point of view of
mathematical formulation and automation through the development of CAD tools, this
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technique cannot by directly used to compute the 𝑊𝐶𝐸𝑇𝑅 parameter. In this scenario,
one of the goals is to adapt the existing IPET technique in order to allow the determination
of the 𝑊𝐶𝐸𝑇𝑅 parameter.

The process of computing the 𝑊𝐶𝐸𝑇𝑅 using IPET consists of defining constraints
of edges of cycles depending on which iteration of the loop the 𝑊𝐶𝐸𝑇𝑅 must be computed.
Along with those, the start of the CFG is no longer the start of IPET analysis, but it
is set to the vertex in which the 𝑊𝐶𝐸𝑇𝑅 is desired to be computed on. Figure 22a is
example of a CFG containing a single loop, and the ILP formulation for the 𝑊𝐶𝐸𝑇 𝑣2

𝑅 of
vertex 2 is depicted in Figure 22b. The presented ILP is a function of 𝑛 which is the loop
iteration of the edge 𝑒3→2 in which the 𝑊𝐶𝐸𝑇𝑅 is computed. The start of the CFG is
replaced by a fictitious edge (start’) pointing to the 𝑊𝐶𝐸𝑇 𝑣2

𝑅 target (vertex 2), that is
shown in line 4 of Figure 22b. The value of 𝑥3→2 is constrained to the value of the loop
𝐿𝐵3→2 minus the number of iterations already performed 𝑛, e.g. if the loop is bounded to
100, and it is desired to compute the 𝑊𝐶𝐸𝑇 𝑣2

𝑅 after 4 iterations, 𝑥3→2 must be less than
or equal to 96. That is depicted in line 9 of Figure 22b.

An example of a CFG with a nested loop is given in Figure 23a. In Figures 23b
and 23c it is given the ILP formulation for the 𝑊𝐶𝐸𝑇𝑅 for vertices 2 and 3 respectively.
For the vertex 2, the constraint in the count variable of the outer loop back edge 𝑥4→1 is
simply the loop bound of the outer loop 𝐿𝐵4→1 minus the number of iterations already
performed of the outer loop 𝑛. The constraint in the inner loop count variable back edge
𝑥5→5 is the product of the loop bound of the inner loop 𝐿𝐵5→5 by the count variable of
the in edge of the header of the cycle 𝑥2→5. Those constraints are shown in the lines 11
and 12 of Figure 23b.

For the cycles constraint formulation we define the reachable edges (𝑟𝑒) of the
graph starting at the analysis starting point, and the cycle back edge in which the con-
straint is set 𝑒𝑐 = 𝑒𝑡→ℎ. We define an auxiliary variable 𝛼 that is given by the expression
𝛼 = (𝑖𝑒ℎ𝑐 ∖ 𝑒𝑡→ℎ)∩ 𝑟𝑒, where 𝑖𝑒ℎ𝑐 is a set containing the incoming edges of the header (𝑣ℎ)
of the cycle. The cycle constraint is given by:

𝑥𝑡→ℎ ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑟𝑒 ∩ 𝑒𝑡→ℎ = ∅

𝐿𝐵𝑡→ℎ if 𝑟𝑒 ∩ 𝑒𝑡→ℎ ̸= ∅ ∧ 𝛼 = ∅

𝐿𝐵𝑡→ℎ ·
∑︀

𝑒∈𝛼 𝑥𝑒 if 𝑟𝑒 ∩ 𝑒𝑡→ℎ ̸= ∅ ∧ 𝛼 ̸= ∅

(3)

Where the set 𝛼 contains the incoming edges of the header of the cycle, which is
reachable and it is not the back edge of the cycle. The first condition is satisfied if the
cycle back edge is not reachable, that is, the cycle cannot be reached from the vertex in
which the 𝑊𝐶𝐸𝑇𝑅 is desired to be computed at. In this case the loop bound of the cycle
is actually 0, therefore the loop does not contribute to the 𝑊𝐶𝐸𝑇𝑅.
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Figure 23 – IPET 𝑊𝐶𝐸𝑇𝑅 example with a nested loop.

(a) Task CFG

1: WCET v2
r (n) = max(t1 · x1 + t2 · x2 + t3 · x3 + t4 ·

x4 + t5 ·x5 + t6 ·x6 + p1→2 ·x1→2 + p1→6 ·x1→6 +
p2→3 · x2→3 + p2→5 · x2→5 + p5→5 · x5→5 + p3→4 ·
x3→4 + p5→4 · x5→4 + p4→1 · x4→1)

2: subject to the constraints:
3: x1 = x4→1 = x1→2 + x1→6

4: x2 = xstart′ + x1→2 = x2→3 + x2→5

5: x3 = x2→3 = x3→4

6: x4 = x3→4 + x5→4 = x4→1

7: x5 = x2→5 + x5→5 = x5→4 + x5→5

8: x6 = x1→6 = xend

9: xstart′ = 1
10: xend = 1
11: x4→1 ≤ LB4→1 − n
12: x5→5 ≤ LB5→5 · x2→5

(b) ILP Formulation

1: WCET v6
r (n) = max(t1 · x1 + t2 · x2 + t3 · x3 + t4 ·

x4 + t5 ·x5 + t6 ·x6 + p1→2 ·x1→2 + p1→6 ·x1→6 +
p2→3 · x2→3 + p2→5 · x2→5 + p5→5 · x5→5 + p3→4 ·
x3→4 + p5→4 · x5→4 + p4→1 · x4→1)

2: subject to the constraints:
3: x1 = x4→1 = x1→2 + x1→6

4: x2 = x1→2 = x2→3 + x2→5

5: x3 = x2→3 = x3→4

6: x4 = x3→4 + x5→4 = x4→1

7: x5 = x2→5 + x5→5 = x5→4 + x5→5

8: x6 = xstart′′ + x1→6 = xend

9: xstart′′ = 1
10: xend = 1
11: x4→1 ≤ 0
12: x5→5 ≤ 0

(c) ILP Formulation

The second condition happens when the cycle back edge is reachable and the set
𝛼 is empty, that is, the header of the cycle is only reachable through the cycle back edge,
therefore the constraint must be set to the actual loop bound provided by the user.

The third condition happens when the cycle back edge is reachable and the set
𝛼 is not empty, then the constraint must be set to the loop bound provided by the user
multiplied to the sum of the count variable of the edges in the 𝛼 set.

In Figure 22a, the reachable edges considering the vertex 2 are {𝑒2→3, 𝑒3→4, 𝑒3→2},
the incoming edges of the header of the cycle 𝑒3→2 are {𝑒1→2, 𝑒3→2}, therefore the set 𝛼
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is empty. Since the cycle back edge (𝑒3→2) is in the reachable edges, the constraint of the
cycle is given simply by the loop bound (𝐿𝐵𝑒3→2) minus 𝑛.

In Figure 23a for 𝑠𝑡𝑎𝑟𝑡′, the reachable edges are {𝑒2→3, 𝑒2→5, 𝑒3→4, 𝑒5→4, 𝑒4→1, 𝑒1→2},
the incoming edges of header of the cycle 𝑒5→5 are {𝑒2→5, 𝑒5→5}, therefore 𝛼 = {𝑒2→5} and
since the cycle is contained in the reachable edges and 𝛼 is not empty, the cycle back edge
constraint is given by the third condition in Equation 3, yielding 𝑥5→5 ≤ 𝐿𝐵5→5 · 𝑥2→5.

For 𝑠𝑡𝑎𝑟𝑡′′, the reachable edges are ∅, therefore, since the cycle 𝑒5→5 is not con-
tained in the reachable edges, the cycle back edge constraint is given by the first condition,
and it is 𝑥5→5 ≤ 0.

3.3.4.2 Graph Traversal Technique (GTT)

The graph traversal consists of a simple depth first (CORMEN et al., 2009) traver-
sal that computes the 𝑊𝐶𝐸𝑇𝑅 of all vertices in a CFG. The maximum CPU cycles of
a vertex (𝑇𝑣𝑖

) is computed by summing the time coefficient of the vertex (𝑡𝑣𝑖
) with the

maximum CPU cycles of its descendants considering the penalty of traversal through the
descendants edges (𝑝𝑒𝑡→ℎ

). That is, 𝑇𝑣𝑖
= 𝑡𝑣𝑖

+ max(𝑇𝑣ℎ
+ 𝑝𝑒𝑡→ℎ

), where 𝑒𝑡→ℎ is a directed
edge pointing from 𝑣𝑡 to 𝑣ℎ, and 𝑒𝑡→ℎ ∈ 𝑜𝑒𝑣𝑖

where 𝑜𝑒𝑣𝑖
is the vertex 𝑣𝑖 out-going edges.

In Figure 24 the maximum CPU clock cycles for vertices 𝑣2 and 𝑣3 was previously
computed, and the maximum CPU clock cycles for vertex 𝑣1 is computed by the expression
𝑇𝑣1 = 𝑡𝑣1 + max(𝑇𝑣2 + 𝑝𝑒1→2 , 𝑇𝑣3 + 𝑝𝑒1→3) yielding the value 176.

Figure 24 – Vertex max CPU cycles example.

Figure 25 depicts an example of graph traversal in order to compute the maximum
CPU cycles of the basic blocks in the graph. The algorithm initially starts at the vertex
𝑣1, traversing through its first out-going edge 𝑒1→2 and then to its only out-going edge
𝑒2→4. Since the vertex 𝑣4 has no out-going edges, its maximum CPU cycles is set to its
own timing coefficient 𝑡𝑣4 (Figure 25b). The algorithm then traverses back to 𝑣2, and since
it has no other out-going edges, 𝑇𝑣2 is then set to 𝑡𝑣2 + 𝑇𝑣4 + 𝑝𝑒2→4 (Figure 25c). Back
at vertex 𝑣1, the algorithm must now traverse through edge 𝑒1→3 and then through 𝑒3→4,
retrieving the value of 𝑇𝑣4 and traversing back to 𝑣3, computing 𝑇𝑣3 = 𝑡𝑣3 + 𝑇𝑣4 (Figure
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25d). Traversing back to vertex 𝑣1, 𝑇𝑣1 is computed by 𝑡𝑣1 + 𝑚𝑎𝑥(𝑇𝑣2 + 𝑝𝑒1→2 , 𝑇𝑣3 + 𝑝𝑒1→3),
yielding the value of 𝑇𝑣1 = 31 (Figure 25e).

Figure 25 – Graph Traversal example.

The presented algorithm is only capable of computing the WCET for directed
acyclic graphs, thus whenever the analyzed task has loops, it cannot be analyzed by the
algorithm. To overcome that limitation, it is introduced a cycles state variable (𝑆𝑒𝑡→ℎ

)
to the traversal algorithm, which stores the number of times that a cycle back edge was
traversed. Then the constraint of the cycle state being lower than the loop bound of
the respective cycle is added to every cycle back edge of the graph. By doing so, the
algorithm traverses through edges in which its constraints is satisfied. Upon traversing
through a cycle back edge the state of that edge is incremented, and the state is cleared
when traversing through incoming edges of the cycle header (excluding the cycle back
edge).

Figure 26a shows a CFG example containing a single cycle, which its back edge
denoted by 𝑒3→2, the state of that cycle is denoted by 𝑆𝑒3→2 . When traversing through
the edge 𝑒1→2 the state 𝑆𝑒3→2 is cleared. In the cycle back edge 𝑒3→2 the cycle state is
incremented, and the edge also posses a constraint 𝐶𝑒3→2 that only allows the traversal
through the edge when the cycle state is lower than the loop bound 𝐿𝐵𝑒3→2 . Figure 26b is
a tree containing all paths that is analyzed by the graph traversal algorithm, considering
𝐿𝐵𝑒3→2 = 3. Figure 26c is a tree of all paths traversed through the CFG depicted in Figure
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26a by the algorithm, showing the 𝑊𝐶𝐸𝑇𝑅 of each vertex given the states it depends
on, e.g., vertex 𝑣2 depends in the state 𝑆𝑒3→2 . Therefore, in this example, it posses three
𝑊𝐶𝐸𝑇𝑅. Since the vertices 𝑣1 and 𝑣4, does not belongs to any cycle, each vertex has
only a single 𝑊𝐶𝐸𝑇𝑅. The algorithm exemplified in Figure 25 can be applied to Figure
26b yielding the 𝑊𝐶𝐸𝑇𝑅 of all vertices, shown in Figure 26. In the case of inner loops,
the vertices belonging to an inner loop depends both on the state of the outer and inner
loop, although the outer loop only depends on its own state, this is shown in Figure 27
where both loops have a bound of 2. The previous algorithm is detailed in Figure 28 and
is applied to the root of the graph (the first basic block of the task).

The presented algorithm for computing the timing bound of basic blocks will most
likely compute the timing bound for a vertex several times, one time for each path leading
to the vertex. That has a drastic effect in the algorithm performance. The algorithm is
then improved to perform memoization (MICHIE, 1968) in the computed timing bound
estimates of vertices. It works by caching the computed values w.r.t. the vertex and
cycles state. Since the timing bound of a vertex inside a loop in the first iteration will
be different from any other iteration (and between iterations as well) the memoization
should also consider the cycles state variable on the computation. It is important to note
that the 𝑊𝐶𝐸𝑇𝑅 of every vertex is stored in the memoization cache w.r.t. every cycles
states variable the vertex depends on. Therefore memoization, in this specific case, serves
two purposes, performance gain and storing the 𝑊𝐶𝐸𝑇𝑅 of the vertices to be read when
the computation terminates.

The memoized algorithm is shown in Figure 29. The algorithm performance is
compared with and without memoization for a task which its CFG is shown in Figure 20a
yielding Figures 30b and 30a respectively, which depicts the WCET computation time
for different values of loop bounds. The memoized algorithm shows severals orders of
magnitude of performance gain compared to the non-memoized algorithm. Additionally
for that specific task, the time complexity of the algorithm changed from exponential to
quadratic w.r.t. the loop bound.

3.3.4.3 WCET Computation Technique Comparison

To compute the 𝑊𝐶𝐸𝑇𝑅 of 𝑁 reference points the GTT algorithm is run a single
time while for the IPET, 𝑁 ILP formulations are generated and solved. IPET posses
a lower computational complexity and vastly superior performance compared to GTT.
Although for GTT, the implementation effort is minimal: the user must only provide
the loop bounds of the analyzed task. Whereas for IPET the user must provide the
constraints for the cycles considering their loop bound and what iteration of a loop the
𝑊𝐶𝐸𝑇𝑅 analysis takes place.



3.3. WCET Computation Technique: a case-study on the LEON3 single-core processor 59

Figure 26 – GTT example with a loop.

(a) CFG (b) Tree

(c) Tree
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Figure 27 – GTT example with a nested loop.

(a) CFG (b) Tree

(c) Tree

The algorithm in Appendix A is used by the memoized GTT to identify the vertices
dependence of cycles in the CFG. Those dependencies are used as key for the memoization,
identifying these dependencies improperly results in multiple entries in the memoization
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Figure 28 – ComputeVertexCycles algorithm.

1: procedure ComputeVertexCycles(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑐𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒)
2: 𝑐𝑦𝑐𝑙𝑒𝑠← 0
3: ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠← 𝑓𝑎𝑙𝑠𝑒
4: for all 𝑒𝑑𝑔𝑒 ∈ 𝑣𝑒𝑟𝑡𝑒𝑥.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do
5: if 𝑒𝑑𝑔𝑒 constraints validated then
6: 𝑛𝑒𝑤𝐶𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒← copy of 𝑐𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒
7: if 𝑒𝑑𝑔𝑒 is a back edge then
8: Increment cycle state of edge 𝑆𝑒𝑑𝑔𝑒.
9: end if

10: if 𝑒𝑑𝑔𝑒 points to a cycle header and is not a cycle back edge then
11: Clear cycle state of the edge cycle.
12: end if
13: (𝑒𝑇 𝑖𝑚𝑒, 𝑟𝑒𝑠𝑢𝑙𝑡)← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑉 𝑒𝑟𝑡𝑒𝑥𝐶𝑦𝑐𝑙𝑒𝑠(𝑒𝑑𝑔𝑒.ℎ𝑒𝑎𝑑, 𝑛𝑒𝑤𝐶𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒)
14: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒 then
15: ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠← 𝑡𝑟𝑢𝑒
16: 𝑒𝑇 𝑖𝑚𝑒← 𝑒𝑇 𝑖𝑚𝑒 + 𝑒𝑑𝑔𝑒.𝑃𝑒𝑛𝑎𝑙𝑡𝑦
17: if 𝑐𝑦𝑐𝑙𝑒𝑠 < 𝑒𝑇 𝑖𝑚𝑒 then
18: 𝑐𝑦𝑐𝑙𝑒𝑠← 𝑒𝑇 𝑖𝑚𝑒
19: end if
20: end if
21: end if
22: end for
23: if ¬ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠 ∧ 𝑣𝑒𝑟𝑡𝑒𝑥 has OutEdges then
24: return (0, 𝑓𝑎𝑙𝑠𝑒)
25: end if
26: 𝑐𝑦𝑐𝑙𝑒𝑠← 𝑐𝑦𝑐𝑙𝑒𝑠 + 𝑣𝑒𝑟𝑡𝑒𝑥.𝑇 𝑖𝑚𝑒
27: return (𝑐𝑦𝑐𝑙𝑒𝑠, 𝑡𝑟𝑢𝑒)
28: end procedure

Table 2 – GTT and IPET comparison.

Technique Performance Parameters Definition
GTT Lower Simple
IPET Higher Complex

for the same key, resulting in the failure of the GTT algorithm. The CFG in Figure 31a is
known to have the dependencies of cycles improperly identified, requiring manual depen-
dency identification by the user for the proper WCET and 𝑊𝐶𝐸𝑇𝑅 computation. The
failure is caused by the interleaved loops, possibly caused by a “goto” statement placed
in vertex 3 by the programmer or might have been caused by a compiler optimization,
although that possibility was not analyzed.

Two cycles is detected in the CFG of Figure 31b while it is a single loop, it
will cause a misscomputation in the WCET. The given CFG was detected to happen in
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Figure 29 – MemoizedComputeVertexCycles algorithm.

1: procedure MemoizedComputeVertexCycles(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑐𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒)
2: (𝑐𝑦𝑐𝑙𝑒𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡, 𝑓𝑜𝑢𝑛𝑑)← 𝑓𝑖𝑛𝑑𝑀𝑒𝑚𝑜𝑖𝑧𝑒𝑑𝐸𝑛𝑡𝑟𝑦(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑐𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒)
3: if 𝑓𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒 then
4: return (𝑐𝑦𝑐𝑙𝑒𝑠, 𝑟𝑒𝑠𝑢𝑙𝑡)
5: end if
6: 𝑐𝑦𝑐𝑙𝑒𝑠← 0
7: ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠← 𝑓𝑎𝑙𝑠𝑒
8: for all 𝑒𝑑𝑔𝑒 ∈ 𝑣𝑒𝑟𝑡𝑒𝑥.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do
9: if 𝑒𝑑𝑔𝑒 constraints validated then

10: 𝑛𝑒𝑤𝐶𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒← copy of 𝑐𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒
11: if 𝑒𝑑𝑔𝑒 is a back edge then
12: Increment cycle state of edge 𝑆𝑒𝑑𝑔𝑒.
13: end if
14: if 𝑒𝑑𝑔𝑒 points to a cycle header and is not a cycle back edge then
15: Clear cycle state of the edge cycle.
16: end if
17: (𝑒𝑇 𝑖𝑚𝑒, 𝑟𝑒𝑠𝑢𝑙𝑡) ← 𝑀𝑒𝑚𝑜𝑖𝑧𝑒𝑑𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑉 𝑒𝑟𝑡𝑒𝑥𝐶𝑦𝑐𝑙𝑒𝑠(𝑒𝑑𝑔𝑒.ℎ𝑒𝑎𝑑,

𝑛𝑒𝑤𝐶𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒)
18: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒 then
19: ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠← 𝑡𝑟𝑢𝑒
20: 𝑒𝑇 𝑖𝑚𝑒← 𝑒𝑇 𝑖𝑚𝑒 + 𝑒𝑑𝑔𝑒.𝑃𝑒𝑛𝑎𝑙𝑡𝑦
21: if 𝑐𝑦𝑐𝑙𝑒𝑠 < 𝑒𝑇 𝑖𝑚𝑒 then
22: 𝑐𝑦𝑐𝑙𝑒𝑠← 𝑒𝑇 𝑖𝑚𝑒
23: end if
24: end if
25: end if
26: end for
27: if ¬ℎ𝑎𝑠𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠 ∧ 𝑣𝑒𝑟𝑡𝑒𝑥 has OutEdges then
28: 𝑎𝑑𝑑𝑀𝑒𝑚𝑜𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐸𝑛𝑡𝑟𝑦(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑐𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒, (0, 𝑓𝑎𝑙𝑠𝑒))
29: return (0, 𝑓𝑎𝑙𝑠𝑒)
30: end if
31: 𝑐𝑦𝑐𝑙𝑒𝑠← 𝑐𝑦𝑐𝑙𝑒𝑠 + 𝑣𝑒𝑟𝑡𝑒𝑥.𝑇 𝑖𝑚𝑒
32: 𝑎𝑑𝑑𝑀𝑒𝑚𝑜𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐸𝑛𝑡𝑟𝑦(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑐𝑦𝑐𝑙𝑒𝑠𝑆𝑡𝑎𝑡𝑒, (𝑐𝑦𝑐𝑙𝑒𝑠, 𝑡𝑟𝑢𝑒))
33: return (𝑐𝑦𝑐𝑙𝑒𝑠, 𝑡𝑟𝑢𝑒)
34: end procedure

some applications compiled using GCC optimization levels 2 and 3, therefore it is not
recommended using GCC optimizations.

3.3.4.4 Limitations of the GTT and IPET tools

The limitations of the tools are as follows:

∙ The use of function pointers is forbidden, because the call address is only known at
runtime.
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Figure 30 – WCET computation time comparison.
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(a) Without Memoization
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(b) With Memoization

∙ Traps (i.e., interruptions) are not analyzed in the tool, therefore the programmer
must guarantee that the application does not generate traps. Otherwise the esti-
mated WCET and 𝑊𝐶𝐸𝑇𝑅 are mispredicted.

∙ When compiling code that uses register windows, the programmer must guarantee
that the register window will not overflow. If so, it would generate a trap.
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Figure 31 – CFG Structures known to cause failures in the implemented GTT tool.

(a) Failure caused by CFG structure.

𝑣0

𝑣1

𝑣2

𝑣3

(b) Error caused by a loop with two back edges.

∙ The tools compute the 𝑊𝐶𝐸𝑇𝑅 with a basic block granularity, that is, the 𝑊𝐶𝐸𝑇𝑅

is related to the first instruction of the basic block. In other words, it is not possible
to compute the 𝑊𝐶𝐸𝑇𝑅 of instructions embedded in a basic block.

∙ The use of the “goto” statement is discouraged since it can generate a CFG structure
such as the one seen in Figure 31a. That is known to cause failure of the WCET
and 𝑊𝐶𝐸𝑇𝑅 process computation when using the GTT tool.

∙ The tools are not able to compute the WCET and 𝑊𝐶𝐸𝑇𝑅 when using instruction
and/or data caches, as it would require the development of a processor model or to
use probabilistic methods (BERNAT; COLIN; PETTERS, 2002; BERNAT; COLIN;
PETTERS, 2003; BERNAT; BURNS; NEWBY, 2005; BURNS; EDGAR, 2000).

∙ The tools do not take into account the LEON3 write-buffer to compute the WCET
and 𝑊𝐶𝐸𝑇𝑅 estimations. Therefore, if the buffer is empty during a given measure-
ment sequence, but it is full during runtime, it is our understanding that WCET
and 𝑊𝐶𝐸𝑇𝑅 would be underestimated. A solution to this problem would be to per-
form exhaustive measurements trying to exercise that condition (write-buffer full),
but there is no guarantee that condition would be satisfied. Another (safer) option
would be to modify the memory access policy from write-through (which is based
on the write-buffer) to the write-back policy (where there is no write-buffer).
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3.4 Hard Deadline Enforcer Development (HDE): a case-study on
the LEON3 dual-core processor

3.4.1 HDE Interconnection with MPSoC

Figure 32 depicts a block diagram of the interconnection between the LEON3
processor and the HDE. The processor was modified to export the “Executed Program
Counter (EPC)”, which is set to the value of the PC in the sixth stage of the pipeline
whenever the “Annul” bit at the sixth stage is “0”. The annul bit informs if the instruction
was executed. The modification is shown in Appendix B.

Figure 32 – Block diagram of the interconnection of the LEON3 processor with the HDE.

LEON3
Processor Bus Arbiter

HDE

EPC
Warning

AMBA AHB

The “Warning” output signal of the HDE is connected to the bus arbiter, and is
responsible for informing when the bus must be set to stand-alone mode to guarantee
the timing deadline constraint of the critical task. The modification in the bus arbiter to
support the stand-alone mode is depicted in Appendix C.

3.4.2 HDE Architecture

Figure 33 depicts a general view of the HDE internal blocks and their respective
signals. The first block is the Reference Point Monitor, whose goal is to identify the
current RP of the task. This block can accomplish such goal in different ways (depending
on which information type is treated by the block) which are briefly described below:

a) The Reference Point Monitor Block observes the instruction address bus for memory
reads. By comparing the instruction addresses flowing through the bus, this block
detects when monitored core reaches a specific RP. A drawback of such approach is
that there is no guarantee that the instruction read is executed by the processor; for
example the instructions fetched just after a branch or a speculative execution by the
CPU. As consequence, it constrains the locations where a RP can be inserted (since
a RP cannot be inserted just after a branch or an instruction that is speculatively
executed). Another problem is that if the processor has an instruction cache, then
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Figure 33 – General view of the HDE internal blocks and their respective signals.
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the address of the executed instruction will not appear in the bus in case of a cache
hit.

b) Additionally to observe the instruction address bus, the Reference Point Monitor
Block can also inspect the critical core internal signals (such as the program counter -
PC). Unlike the previous method depicted in (a), by monitoring the internal signals
it is easy to know whether an instruction is executed or not. Therefore relaxing
the locations in which RPs can be inserted (this approach enlarges the universe of
locations a RP can be inserted and so, it is a better option compared to the previous
one). Nevertheless, this method is more intrusive.

c) Finally, the Reference Point Monitor Block can receive explicit information about
the RP currently reached by the core, directly from processor general purpose I/O
pins (e.g., GPIO port of the processor or any other communication channel). In
this case, the Reference Point Monitor Block of the HDE is omitted and the RP
Identification (𝑅𝑃𝐼𝐷) is fed directly to the second block (Reference Point Time
Controller). However, this method has an important drawback: higher detection
latency compared to the methods (a) and (b) described above. Moreover, the critical
task must be modified to write the 𝑅𝑃𝐼𝐷 on the GPIO port of the processor or on
any other communication channel. It should be noted that system designers are
hesitant about this change in the user code. Although, it has the advantage that it
does not need to access any processor internal signal or access to the processor bus.
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Therefore, it can potentially work with processors in which system designers do not
have access to the bus or internal processor signals (for instance, the processor is a
“black-box” third-part intellectual property core).

Among the three methods above, (b) is the one currently implemented in the HDE
to demonstrate the validity of the proposed technique. Figure 34 depicts an example of a
Reference Point Monitor of a task that its CFG is shown in Figure 34a. The addresses of
each instruction in the task is shown in the basic blocks of the task CFG. Two reference
points (𝑅𝑃1 and 𝑅𝑃2) was placed at the address 22 at different iterations of the loop.
The reference point 𝑅𝑃0 relates to the start of the task. Table 3 shows the reference
points placed in the task and their address and at which iteration of the loop it was
placed. Figure 34b depicts the flowchart of the operation of the Reference Point Monitor
example, that has as input the Executed Program Counter (EPC) and has as output
the Reference Point Identifier (𝑅𝑃𝐼𝐷). The indicated points of this figure are detailed as
follows:

a) At this moment, the 𝑅𝑃𝐼𝐷 is set to the number of reference points (3), which by
convention means that the task is not running. This happens either at the start or
reset of the reference point monitor, or when the EPC is equal to the address of the
instruction before the end of the task (38).

b) At this moment, the EPC is equal to the reference points 𝑅𝑃1 and 𝑅𝑃2 address,
although the 𝑅𝑃𝐼𝐷 is only set to any of these if the cycle state matches 0 or 5
respectively.

c) At this moment, the EPC is equal to the first instruction of the task, therefore the
𝑅𝑃𝐼𝐷 is set to the 𝑅𝑃0 id (0).

d) At this moment, the EPC is equal to the address of the instruction before entering
the loop, therefore the cycle state is cleared.

e) At this moment, the EPC is equal to the address of the instruction before to either
traversing out of the loop or to the beginning of it, so the cycle state is incremented.

Table 3 – Reference points of the Reference Point Monitor example.

Reference Point Address Cycle State
𝑅𝑃0 10 X
𝑅𝑃1 22 0
𝑅𝑃2 22 5

The output of the Reference Point Monitor Block is a Reference Point Identification
(𝑅𝑃𝐼𝐷) that is fed to the Reference Point Time Controller, whose responsibility is to
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Figure 34 – Reference point monitor example.
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correlate a 𝑅𝑃𝐼𝐷 with its Critical Time CT(𝑅𝑃𝐼𝐷). This mapping process is performed
by a decoder: the decoder input is a 𝑅𝑃𝐼𝐷 and the output is the corresponding CT(𝑅𝑃𝐼𝐷).
The Reference Point Time Controller also notifies when the critical task starts running
(CTaskStart) and ends (CTaskEnd). The final block (Deadline Enforcer) is responsible
for notifying the event “Warning”. When this event is yielded, the bus controller forces
the processor to switch execution from the “shared-bus” mode into the “stand-alone” one
(in which the bus is exclusively allocated to the critical core). This block also signals the
“Deadline Reached”, which yields an “Error Indication” signal.

Figure 35 depicts the flowchart of the HDE operation. The indicated points in this
figure are detailed as follows:
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1. By default when a critical task starts running, the processor bus is set on the
“shared-bus” mode.

2. The 𝐶𝑇 (𝑅𝑃𝑛) constant is compared and one of the three previously mentioned
situations may occur: (a) the elapsed time is smaller than the 𝐶𝑇 (𝑅𝑃𝑛); (b) the
elapsed time is equal to or greater than the 𝐶𝑇 (𝑅𝑃𝑛); and (c) the elapsed time is
greater than the “Deadline” and then, the HDE issues an “Error Indication” signal.

3. At this moment, the processor is running in the “shared-bus” mode.

4. At this moment, the bus arbiter switches processor operation from “shared” to
“stand-alone” mode.

5. Critical task (being executed in the “shared” or “stand-alone” mode) terminates,
conditionally that it does not violates deadline.

3.4.3 Limitations in the Insertion of Reference Points

Reference points cannot be placed in the delay instructions, that is, the instruction
right after a branch. Additionally reference points cannot be placed inside functions that
are called in more than one location within the critical task. It happens because since
the HDE just looks at the address and cycle states, it cannot differentiate between those
calls. An workaround is to copy the function with a different name, although it increases
the application size.
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Figure 35 – Flowchart of the HDE operation.
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4 Validation & Evaluation

The hard deadline enforcer (HDE) is validated and evaluated in the LEON3 pro-
cessor. The 𝑊𝐶𝐸𝑇𝑅 times are estimated using methods described in section 3.3. Due to
the limitations in the 𝑊𝐶𝐸𝑇𝑅 computation method, the instruction and data caches of
the LEON3 processor are disabled. Furthermore, the tasks call depth are guaranteed to
be within the limit of the configured number of window registers, therefore the “save”
and “restore” instructions used on function calls/return does not yields a trap. The bus
arbiter used the round-robin arbitration policy, and the critical processor is the master
‘0’ of the bus. Additionally the processor was synthesized without MMU, and without
external memory, the on-chip “AHBRAM” module was used instead, which is mapped to
BlockRAMs on Xilinx devices.

4.1 Preliminary Results
The ISE-Xilinx design framework was used to configure and validate the embedded

system (i.e., the processor, the HDE and the four application programs to be described
later). The whole system was mapped into a Xilinx Spartan 3E Field Programmable Gate
Array (FPGA).

The technique is validated against four application programs:

1. “Fibonacci Number Computation”: the application computes a Fibonacci number
randomly, up to 𝐹30, modified from (GUSTAFSSON et al., 2010).

2. “Bubble Sort”: a Random list is sorted using the bubble-sort algorithm.

3. “Dummy Application”: comprises of an outer loop in which its inner loop might be
executed at random.

4. “Heap”: consists of pushing N random elements to a binary heap and popping the
elements afterwards.

Figure 36 presents the simplified CFGs of the application programs. As observed,
the simplest CFG is the Fibonacci code, whereas the most complex is the Heap one.
The Bubble Sort and the Dummy Application present an average complexity. Figure 37
depicts a print-screen collected during system run in the ISim HDL simulator. As observed
in this figure, bus mode is continuously switching the operating mode (between “shared”
and “stand-alone”) during critical task execution, in order to meet the best trade-off
between “the highest possible task concurrency” against “the guarantee of critical task
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schedulability”. At the end of this process, the critical task terminates at 3.15ms whereas
its deadline is set at 3.45ms. Note that since the critical task terminated before the
deadline, there was no “deadline violation” and so, the signal “Deadline Miss”, which is
the HDE’s output, remained at “0” during the whole simulation period (“Deadline Miss”
= “1” means “error occurrence due to deadline violation”). It is worth mentioning that
the timing latency for the bus controller to switch the processor from the “shared” to the
“stand-alone” mode and vice-versa was measured as 1cc (clock cycles). This value plus 3
cc of detection latency of the HDE was used to setup the 𝑡𝑜𝑣𝑒𝑟 (turn-over) parameter of
equation (1).

Figure 36 – Control-flow graphs (CFGs) of the application codes used to validate the
proposed approach: (a) Fibonacci Number Computation, (b) Bubble Sort,
(c) Dummy Application and (d) Heap.

                                                        

              (a)                         (b)                               (c)                       (d) 

 

Figure 37 – Timeline of a system run in the ISim HDL simulator showing the following
parameters: (a) critical task (TC) running; (b) Bus mode operation between
“shared” and “stand-alone” modes; (c) HDE’s output (Deadline Miss) and
(d) Deadline instant.

 
 

Deadline 
instant 

Since the deadline was met for all applications, the timelines of the other applica-
tions were omitted to avoid redundancy.

Table 4 addresses the area overhead yielded due to the addition of the HDE to
monitor the LEON3 processor. For each of the four applications (left-hand side column),
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it was determined a given number of RPs along with the code to be monitored by the HDE
(central column), which yielded the respective area overhead (right column). The HDE
area overhead was evaluated by synthesizing a dual-core version of the LEON3 processor
alongside with the HDE for a Xilinx Spartan 3E FPGA. The area overhead is given by
the ratio of the number of primitives used by the HDE and the number of primitives used
by the processor: 𝐴𝑜𝑣𝑒𝑟 = #𝑃𝐻𝐷𝐸/#𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟×100%. These numbers were collected from
the Xilinx “PlanAhead” Statistics Report. During the validation, no deadline constraints
were missed.

Table 4 – HDE area overhead for the evaluated applications.

Application Reference Points Overhead (%)
Bubblesort 10 4,32
Fibonacci 11 4,29
Dummy 21 5,14

Heap 12 4,95

A dual core LEON3 processor connected to the HDE was synthesized for the Xilinx
Spartan3E FPGA (XC3S1200EFG320). Reference points were placed on loops and the
area overhead of the HDE was analyzed. Table 5 depicts the area overhead of the design
by varying the number of loops in which reference points were inserted. The number of
reference points per loop was kept constant at value 10.

Table 5 – HDE area overhead by varying the number of loops.

Overhead (%)
Loops RPs/Loop Total RPs RP Monitor RP Time Ctrl. Deadline Enforcer Total
1 10 12 1.04 0.33 2.46 3.83
5 10 52 2.56 0.21 2.45 5.22
10 10 102 4.75 0.22 2.49 7.46
30 10 302 13 0.28 2.43 15.7
50 10 502 22.2 0.27 2.48 24.96
70 10 702 27.66 0.32 2.52 30.5
100 10 1002 38.38 0.32 2.48 41.18

Table 6 – Number of primitives by varying the number of loops.

RP Monitor RP Time Ctrl. Deadline Enforcer LEON3 Dual-Core
# of Loops RPs/Loop LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM
1 10 74 38 0 19 16 0 229 36 0 8311 2421 13
5 10 219 56 0 14 8 1 227 36 0 8303 2421 13
10 10 432 77 0 14 9 1 231 36 0 8282 2421 13
30 10 1229 159 0 18 11 1 223 36 0 8239 2421 13
50 10 2130 239 0 17 11 1 229 36 0 8231 2421 13
70 10 2631 320 0 20 12 2 233 36 0 8229 2421 13
100 10 3663 440 0 20 12 2 229 36 0 8250 2421 13

Table 5 shows that the area overhead of the Reference Point Time Controller is
roughly constant, that is because the CTs are stored in a BlockRAM by the synthesis
tool. The Spartan3E BlockRAM has a capacity of storing 512 32bit words, therefore it
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is able of storing 512 CTs. For this reason, two BlockRAM strucutres were used to store
70 and 100 loops, which resulted in a slightly higher area overhead. Table 6 shows that
for 1 loop the synthesizer decided not to use a BlockRAM for the Reference Point Time
Controller, therefore the area overhead of that block was slightly larger than the others.

The area overhead of the Deadline Enforcer block was also constant, it happens
because the number of reference points does not modifies the block logic at all. The only
difference of it is the deadline constant.

Table 7 depicts the area overhead of the HDE by keeping the number of loops
constant at 1 and varying the number of reference points per loop. The area overhead of
the Reference Point Time Controller was significantly small until 6000 reference points
per loop, then the synthesizer decided to not use the BlockRAMs causing a much larger
area overhead in that block.

It can be noted from Table 8 that up to 6000 RPs per loop, the Reference Point
Monitor block was the most significant block for the area overhead of the HDE. After
that, when the synthesizer decided not to use BlockRAMs, the Reference Point Time
Controller was the block with higher area overhead of the three blocks of the HDE.

Table 7 – HDE area overhead by varying the number of reference points per loop.

Overhead (%)
# of Loops RPs/Loop Total RPs RP Monitor RP Time Ctrl. Deadline Enforcer Total
1 10 12 1.04 0.33 2.46 3.83
1 100 102 1.38 0.22 2.48 4.08
1 1000 1002 1.77 0.32 2.47 4.55
1 4000 4002 4.41 0.37 2.47 7.25
1 6000 6002 5.35 6.4 2.46 14.21
1 10000 10002 5.85 7.18 2.45 15.48

Table 8 – Number of primitives by varying the number of reference points per loop.

RP Monitor RP Time Ctrl. Deadline Enforcer LEON3 Dual-Core
# of Loops RPs/Loop LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM
1 10 74 38 0 19 16 0 229 36 0 8311 2421 13
1 100 104 44 0 14 9 1 231 36 0 8311 2421 13
1 1000 140 50 0 20 12 2 229 36 0 8310 2421 13
1 2500 519 54 0 18 14 6 229 36 0 8309 2421 13
1 4000 420 54 0 20 14 6 229 36 0 8309 2421 13
1 6000 519 56 0 654 34 0 229 36 0 8313 2421 13
1 10000 570 58 0 735 36 0 227 36 0 8297 2421 13

In Table 9 the area overhead was analyzed by varying the number of reference
points, without any loops. The reference points started at address “40000000h” and in-
cremented by “4h”, that is, each reference point is an instruction apart. Table 10 depicts
the number of elements of both the HDE and the LEON3 processor that results in the
overhead shown in Table 9.

In Table 11, the reference points are inserted every 100 instructions. The area
overhead increased, if compared to Table 9, because the synthesizer could not optimize as
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Table 9 – HDE area overhead by varying the number of reference points (for loopless
codes). RP added at every instruction in the code.

Overhead (%)
# of Reference Points RP Monitor RP Time Ctrl. Deadline Enforcer Total
10 0.93 0.34 2.43 3.7
100 1 0.22 2.47 3.69
1000 1.12 0.28 2.47 3.86
4000 1.97 0.33 2.47 4.77
8000 2 5.92 2.45 10.36
12000 3.51 6.81 2.45 12.78

Table 10 – Number of primitives by varying the number of reference points (for loopless
codes). RP added at every instruction in the code.

RP Monitor RP Time Ctrl. Deadline Enforcer LEON3 Dual-Core
# of Reference Points LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM
10 66 34 0 22 15 0 225 36 0 8308 2421 13
100 71 37 0 14 9 1 229 36 0 8308 2421 13
1000 80 40 0 16 12 2 229 36 0 8308 2421 13
4000 170 42 0 16 14 6 229 36 0 8309 2421 13
8000 172 43 0 602 34 0 227 36 0 8308 2421 13
12000 333 44 0 695 36 0 227 36 0 8290 2421 13

well as it did previously. Therefore, the area overhead is tightly dependent on the location
where the RPs are inserted. Similarly the same effect can be expected to be observed
in reference points insertion inside loops, the address in which they are inserted and at
which iterations they are inserted. Table 12 depicts the number of elements of both the
HDE and the LEON3 processor that results in the overhead shown in Table 11.

Table 11 – HDE area overhead by varying the number of reference points (for loopless
codes). RP added at every bunch of 100 instructions.

Overhead (%)
# of Reference Points RP Monitor RP Time Ctrl. Deadline Enforcer Total
10 1.28 0.34 2.43 4.06
100 3.6 0.22 2.47 6.3
500 13.16 0.27 2.48 15.92
1000 30.55 0.28 2.49 33.32

Table 12 – Number of primitives by varying the number of reference points (for loopless
codes). RP added at every bunch of 100 instructions.

RP Monitor RP Time Ctrl. Deadline Enforcer LEON3 Dual-Core
# of Reference Points LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM
10 104 34 0 22 15 0 225 36 0 8311 2421 13
100 349 37 0 14 9 1 229 36 0 8276 2421 13
500 1365 39 0 17 11 1 229 36 0 8228 2421 13
1000 3213 40 0 16 12 2 229 36 0 8209 2421 13

4.2 Complex Real-Time Control Application
Model Predictive Control (MPC) is an advanced method of process control that

relies in dynamic models of the system. It computes the optimal control signal by predict-
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ing the system response in a finite time-horizon, therefore being able to anticipate future
events and take control actions accordingly.

Another advantage of MPC is that the control signal can be constrained to a range
of values, therefore it is able to account for input saturation. It can also constrain the
output of the system, e.g., constraining the output of a system that can only be safely
operated within a range of values.

Since the MPC response is highly dependable on the dynamic model of the system,
the sampling period must be constant for the proper response of the method. Therefore
the deadline of the task that computes the MPC is extremely important and must not be
missed. The constrained MPC method is a CPU demanding method whose complexity
increases as the system order and the time-horizon increases.

To validate the HDE, the contrained MPC method was used to control a DC
motor, the state-space model of the motor is depicted below:

⎧⎪⎨⎪⎩𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥
(4)

where:

𝐴 =
⎡⎣ − 𝑏

𝐽

𝑘𝑇 𝐼𝑓

𝐽

−𝑘𝜔𝐼𝑓

𝐿𝑎
−𝑅𝑎

𝐿𝑎

⎤⎦ , 𝐵 =
⎡⎣ 0

1
𝐿𝑎

⎤⎦ , 𝐶 =
[︁
1 0

]︁
, 𝑥 = [𝑤, 𝑖𝑎]𝑇 . (5)

The system can be discretized using the Euler method, resulting in equation (6).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥(𝑘 + 1) = (𝐼 + 𝐴𝑇𝑠)⏟  ⏞  

𝐴𝑑

𝑥(𝑘) + 𝐵𝑇𝑠⏟  ⏞  
𝐵𝑑

𝑢(𝑘)

𝑦(𝑘) = 𝐶⏟ ⏞ 
𝐶𝑑

𝑥(𝑘)
(6)

It can be observed in equation (6) that the system model depends in the sampling
period (𝑇𝑠). Whenever the sampling period changes, the system model changes, requiring
the re-computation of the MPC parameters to account the change in the sampling period,
which includes matrix inverses that is usually computed off-line due to its time complexity.
Hence the sampling period is usually guaranteed to be constant (or with a very low jitter).

The motor parameters are depicted in Table 13, 𝑤 is the angular speed of the
motor shaft and 𝑖𝑎 is the armature current.



4.2. Complex Real-Time Control Application 77

Table 13 – DC motor parameters.

Parameter Symbol Value
Armature resistance 𝑅𝑎 8 Ω
Armature inductance 𝐿𝑎 170 mH
System inertia 𝐽 10× 10−3 N m s2

Viscous friction coefficient 𝑏 3× 10−3 Nm/rad/s
Torque constant 𝑘𝑡 0.521 N m/A
Speed constant 𝑘𝜔 0.521 V s/rad
Field current 𝐼𝑓 0.5 A

The system was discretized using the Zero-Order Hold method with a sampling
period (𝑇𝑠) of 100ms, and then augmented with an integrator. The discretized and aug-
mented state-space matrices are depicted in equation (7).

𝐴𝑒 =

⎡⎢⎢⎢⎣
0.9066 0.5091 0
−0.0299 −0.0071 0
0.9066 0.5091 1.0000

⎤⎥⎥⎥⎦ , 𝐵𝑒 =

⎡⎢⎢⎢⎣
0.2483
0.1178
0.2483

⎤⎥⎥⎥⎦ , 𝐶𝑒 =
[︁
0 0 1

]︁
. (7)

A time-horizon of 4 was implemented, and the MPC objective function is depicted
in equation (8) (WANG, 2009).

𝐽 = Δ𝑈𝑇 (Φ𝑇 Φ + 𝑅)Δ𝑈 − 2Δ𝑈𝑇 Φ𝑇 (𝑅𝑠 − 𝐹𝑥(𝑘𝑖)), (8)

where:

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶𝑒𝐴𝑒

𝐶𝑒𝐴𝑒
2

𝐶𝑒𝐴𝑒
3

𝐶𝑒𝐴𝑒
4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0.9066 0.5091 1.0000
1.7133 0.9669 1.0000
2.4309 1.3743 1.0000
3.0693 1.7367 1.0000

⎤⎥⎥⎥⎥⎥⎥⎦

Φ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶𝑒𝐵𝑒 0 0 0

𝐶𝑒𝐴𝑒𝐵𝑒 𝐶𝑒𝐵𝑒 0 0
𝐶𝑒𝐴𝑒

2𝐵𝑒 𝐶𝑒𝐴𝑒𝐵𝑒 𝐶𝑒𝐵𝑒 0
𝐶𝑒𝐴𝑒

3𝐵𝑒 𝐶𝑒𝐴𝑒
2𝐵𝑒 𝐶𝑒𝐴𝑒𝐵𝑒 𝐶𝑒𝐵𝑒

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0.2483 0 0 0
0.5333 0.2483 0 0
0.7875 0.5333 0.2483 0
1.0136 0.7875 0.5333 0.2483

⎤⎥⎥⎥⎥⎥⎥⎦

(9)

Where 𝑅𝑠 = [𝑟(𝑘𝑖), 𝑟(𝑘𝑖+1), 𝑟(𝑘𝑖+2), 𝑟(𝑘𝑖+3)]𝑇 is a data vector containing the set-
point information. For the validation of the HDE it was considered 𝑟(𝑘𝑖) = 𝑟(𝑘𝑖+1) =
𝑟(𝑘𝑖+2) = 𝑟(𝑘𝑖+3), that is the reference between a time-horizon was considered to be
constant within a time-horizon and equal to 𝑟(𝑘𝑖). 𝑅 is a diagonal matrix in the form of
𝑅 = 𝑟𝑤𝐼3×3, where 𝑟𝑤 is a tuning parameter for the desired closed-loop performance. It
was used 𝑟𝑤 = 3. By minimizing 𝐽 , we find the optimal change in the control signal Δ𝑈 .
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The control signal was constrained in the range −3 ≤ 𝑈 ≤ 3, and Hildreth’s
quadratic programming procedure was used in order to minimize the objective function
𝐽 . Hildreth’s quadratic programming procedure, described in (WANG, 2009), can be used
to solve constrained optimization problems. The objective function that is minimized by
this procedure is:

𝐽𝐻 = 1
2𝜂𝑇 𝐻𝜂 + 𝜂𝑇 𝑓, (10)

subject to constraints
𝐴cons𝜂 ≤ 𝑏, (11)

Which relates to (8) by,

𝐻 = 1
2(Φ𝑇 Φ + 𝑅), 𝑓 = −2Φ𝑇 (𝑅𝑠 + 𝐹𝑥(𝑘𝑖)), 𝜂 = Δ𝑈. (12)

Furthermore, constraints on input saturation are guaranteed by the following,

𝐴cons =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
−1 0 0 0
−1 −1 0 0
−1 −1 −1 0
−1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3− 𝑢(𝑘𝑖−1)
3− 𝑢(𝑘𝑖−1)
3− 𝑢(𝑘𝑖−1)
3 + 𝑢(𝑘𝑖−1)
3 + 𝑢(𝑘𝑖−1)
3 + 𝑢(𝑘𝑖−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

A fixed-point arithmetic was developed to be used with the implemented Hildreth’s
algorithm. The fixed point uses 15 bits to represent the integer part, and another 16 bits
for the fractional part, the signal is represented by 1 bit.

Figure 38 depicts the Hildreth’s Quadratic Programming Procedure pseudocode.
The constant 𝑁𝑐 is the number of constraints applied in the MPC. The variable 𝜆 is a
vector where its dimension is determined by the number of constraints (𝑁𝑐). The loop
in line 5 is the iterative part of the algorithm that computes the 𝜆 until the variation in
𝜆 between the current and past iterations is lower than a chosen threshold, or when the
max number of iterations defined by the constant “maxIterations” was reached.

The loop in line 7 computes each component of the 𝜆 vector individually, line 9
guarantees that the 𝜆 vector can only contain positive elements, otherwise it is set to zero.
The condition in line 11 is responsible for interrupting the loop if the variation between
the current and the previous 𝜆 is below a threshold.

Finally the future control signals (contained in the 𝜂 variable) is computed in line
15. Whenever no constraints is violated, 𝜂 is given by the expression −𝐻−1𝑓 , otherwise
it is adjusted by the expression −𝐻−1𝐴𝑇

𝑐𝑜𝑛𝑠𝜆 using the previous computed 𝜆 vector.
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Figure 38 – Hildreth’s quadratic programing procedure.

1: procedure HildrethQP(𝐻, 𝑓, 𝐴𝑐𝑜𝑛𝑠, 𝑏)
2: 𝑃 ← 𝐴𝑐𝑜𝑛𝑠𝐻

−1𝐴𝑇
𝑐𝑜𝑛𝑠

3: 𝑑← 𝐴𝑐𝑜𝑛𝑠𝐻
−1𝑓 + 𝑏

4: 𝜆← 0𝑁𝑐×1
5: for all 𝑖𝑡𝑒𝑟 ∈ 1 : maxIterations do
6: 𝜆𝑝 ← 𝜆
7: for all 𝑖 ∈ 1 : 𝑁𝑐 do
8: 𝑤 ← 𝑃 (𝑖, :)𝜆− 𝑃 (𝑖, 𝑖)𝜆(𝑖, 1) + 𝑑(𝑖, 1)
9: 𝜆(𝑖, 1)← max(0,−𝑤/𝑃 (𝑖, 𝑖))

10: end for
11: if ||𝜆− 𝜆𝑝||2 < threshold then
12: break
13: end if
14: end for
15: 𝜂 ← −𝐻−1𝑓 −𝐻−1𝐴𝑇

𝑐𝑜𝑛𝑠𝜆
16: return 𝜂
17: end procedure

Figure 39 depicts the simplified CFG of the critical task that computes the control
signal using the MPC method. The quadratic programming optimization problem is solved
by the task using the algorithm in Figure 38. The maximum iterations was set to 25. For
every run of the task, the state 𝑥, the previous input signal (𝑢(𝑘 − 1)) and the reference
are set to a pseudo random value computed by a linear-feedback shift register (LFSR).
By generating these values randomly, different paths of the task is exercised during the
validation.

Figure 40 shows the block diagram of the LEON3 processor used in the validation.
Two tasks were used during the validation, the MPC critical task, and a bubblesort task,
which is non critical. The MPC task runs in the critical core, while the bubblesort task
runs in the secondary core. The Hard Dealine Enforcer collects the Executed Program
Counter (EPC) signal from the critical core, and outputs the “Warning” signal to the
“AHB Controller I”. The “AHB Controller I” arbitrates the bus between the two cores,
and when the “Warning” signal is ‘1’, it only arbitrates to the critical core. The LFSR
seed, the number of MPC task runs, the initial state value and a flag informing whether or
not the secondary core should be started, are set via JTAG on the “Dual Port Register”,
which is read by the LEON3 critical core.

The “Results Sampler” block collects the maximum and average bus await time of
the secondary core, i.e., how long it had to wait to acquire the bus. To do so, it collects
the “hgrant” signal from the AMBA AHB, which informs which master has access to the
bus at the current instant. To differentiate between runs, the “Results Sampler” block
collects the “CTaskEnd” signal from the HDE, which is low whenever the critical task is
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Figure 39 – Simplified MPC task CFG.
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Figure 40 – System used for the validation and evaluation of the HDE comprised of a
dual-core LEON3 processor.
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running. The results are stored in a BlockRAM with capacity of 512 samples, that is read
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back using the Xilinx Impact tool. The design is synthesized for the Spartan3E FPGA
(xc3s500epq208).

The single core WCET was estimated to be 3449973 clock cycles using the GTT
tool. The MPC task times was measured without the interference of the secondary core.
The histogram of the times is depicted in Figure 41. The maximum measured execution
time is 3316550 clock cycles, 3.87% smaller than the estimated WCET.

Figure 41 – MPC task measured execution times.
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Figure 42 depicts the histogram of the maximum waiting time ratio of the non-
critical task(bubblesort) to access the bus with an HDE composed by 15 reference points,
and two deadlines was considered: 110% and 150% of the WCET of the MPC task. The
ratio is computed by the maximum waiting time that the non-critical task have to wait
to access the bus by the execution time of the MPC task in the given run. The longer
the deadline, more time the HDE has to dedicate to the non-critical cores, therefore the
ratio is smaller for the 150%. The average waiting time is also smaller for the deadline of
150% of the WCET of the MPC task, as is shown in Figure 43.

The bubblesort task is modified to sort an array of length 800, the effect in the
maximum and average bus waiting times is negligible when compared with the bubblesort
sorting an array of length 20, Figures 44 and 45.

As the number of reference points increases the maximum bus waiting time ratio
of the non-critical task decreases, Figure 46. Increasing the number of reference points
slightly decreases the average bus waiting time of the non-critical task, Figure 47.
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Figure 42 – Maximum waiting times ratio of the non-critical task with an HDE of 15 RPs.
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Figure 43 – Average waiting times of the non-critical task with an HDE of 15 RPs.
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Figures 48 and 49 depict the measured execution time of the critical task with 15
and 28 reference points respectively, with a deadline of 110% and 150% of the estimated
WCET.

Figure 50 depicts the measured execution time of the critical task without the
HDE. The deadlines of 110% and 150% of the estimated WCET were missed, that is,
without the HDE, the dual-core system cannot be safely used for this critical task. The
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Figure 44 – Maximum waiting times ratio of the non-critical task with an HDE of 15 RPs,
Bubblesort array length: 800.
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Figure 45 – Average waiting times of the non-critical task with an HDE of 15 RPs, Bub-
blesort array length: 800.

5 10 15 20 25 30 35 40 45 50 55
0

50

100

150

200

250

300

Average Waiting Time for the Non−Critical Tasks (cc)

N
um

be
r 

of
 R

un
s

NCT: Bubblesort, Array Length: 800

 

 
10% Avg:44.6364
50% Avg:8.3688

lines 𝐷110% and 𝐷150% denotes the deadlines given by 110% and 150% of the estimated
WCET respectively. The deadlines of 110% and 150% were missed in 438 and 176 runs
respectively.
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Figure 46 – Maximum waiting times ratio of the non-critical task with an HDE of 28 RPs.
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Figure 47 – Average waiting times of the non-critical task with an HDE of 28 RPs.
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Table 14 depicts the area overhead of the HDE considering different number of
reference points and deadlines. For 15 reference points the synthesizer did not used Block-
RAMs for storing the times, therefore the area overhead was slightly higher than with 28
reference points.

Table 15 depicts the number of primitives used in both the HDE and the dual-core
LEON3 processor.
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Figure 48 – Measured execution time of the critical task with an HDE of 15 RPs.
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Figure 49 – Measured execution time of the critical task with an HDE of 28 RPs.
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Table 16 depicts the comparison between TDMA and the HDE. The performance
between these two techniques was not compared due to the high complexity of imple-
menting tools to compute the TDMA bus schedule for the LEON3 processor.
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Figure 50 – Measured execution time of the critical task without the HDE.
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Table 14 – Area overhead of the HDE configured for the MPC task.

Overhead (%)
# of Reference Points Deadline RP Monitor RP Time Ctrl. Deadline Enforcer Total
15 110% 1.26 0.53 2.47 4.25
15 150% 1.26 0.49 2.49 4.23
28 110% 1.36 0.17 2.47 3.99
28 150% 1.36 0.17 2.49 4.01

Table 15 – Number of primitives used in the design.

RP Monitor RP Time Ctrl. Deadline Enforcer LEON3 Dual-Core
# of Reference Points Deadline LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM
15 110% 102 39 0 51 22 0 229 36 0 8306 2421 13
15 150% 102 39 0 52 22 0 231 36 0 8306 2421 13
28 110% 106 40 0 10 7 1 229 36 0 8304 2421 13
28 150% 106 40 0 10 7 1 231 36 0 8304 2421 13
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Table 16 – Comparison between TDMA and the HDE.

Metric TDMA HDE
# of critical tasks run-
ning concurrently

Many One

WCET computation Must consider all cores,
tasks and the bus schedule

Same for a single-core
processor, disregarding the
number and types of the
other cores and tasks

Other tasks changes Computation of a new bus
schedule, performing the en-
tire WCET computation
again

No change to the HDE
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5 Conclusion

We presented a new approach that supports mixed-criticality workload execution
in a multicore processor-based embedded system. Given that the proposed approach can
be applied to any type of processor, it allows a large spectrum of real-time operating
systems to be used as well. Thus, traditional and well-stablished real-time operating sys-
tems for critical applications such as VxWorks, LynxOS, Integrity or RTEMS and their
advanced versions compliant with ARINC-653 (an avionics standard for safe, partitioned
systems) could also be considered in the whole system design.

The approach allows any number of cores to run less-critical tasks concurrently
with the critical core, which is running the critical task. The approach is based on the use
of a dedicated hardware-based Hard Deadline Enforcer (HDE), which allows the execu-
tion of any number of cores (running less-critical workloads) concurrently with the critical
core (executing the critical workload). This approach allows the exploitation of the max-
imum performance offered by a multiprocessing system while guaranteeing critical task
schedulability.

A case-study based on a dual-core version of the LEON3 processor was imple-
mented to demonstrate the applicability and assertiveness of the approach. Four critical
application codes were compiled to this processor, which was mapped into a Xilinx Spar-
tan 3E FPGA. Experimental results demonstrated that the proposed approach is very
effective on combining system highest possible performance with critical task schedulabil-
ity within timing deadline. Furthermore, area overhead is considerably small: in the order
of 4.32% for the dual-core version of the LEON3 processor.

Additionally, the HDE was verified against a complex real-time control application
running on the above mentioned LEON3 dual-core version. The maximum and average
wait time for the secondary processor to access the bus was evaluated for 15 and 28
reference points, demonstrating that the performance of the HDE increases as the number
of reference points increases. The same effect occurs when the deadline is increased: that
happens because the HDE has more available time to distribute among the non-critical
tasks.

In order to configure the HDE, a measurement based tool was developed to com-
pute the 𝑊𝐶𝐸𝑇𝑅 of tasks running in a single-core LEON3 processor. Instruction execu-
tion times are collected using the LEON3 DSU module. Alternatively, these times can
be collected using VHDL simulation of the LEON3 processor. The GTT tool was devel-
oped to combine the sampled times into an WCET and 𝑊𝐶𝐸𝑇𝑅 estimate. Additionally,
the well-stablished IPET method was modified to compute the 𝑊𝐶𝐸𝑇𝑅. GTT is more
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user-friendly than IPET, although it has a much lower performance than IPET. Once
the 𝑊𝐶𝐸𝑇𝑅 times are computed, the HDE VHDL is automatically generated by the tool
with the indicated reference points.

It is important to mention that the complexity of the WCET computation is the
same as for single-core processors, no matter is the number of tasks is running concurrently
in the different cores of the processor. In this case, the tasks are computed independently
one from each other. This reduces embedded system design complexity and renders the
proposed approach a very attractive solution.

During the validation, all execution times were smaller than the deadlines of the
tasks. Furthermore, no WCET underestimation was observed for the evaluated tasks.
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6 Future Work

We have listed below possible future topics that could be addressed in order to
extend the benefits and advantages of the proposed work, they are:

∙ Development and validation of the HDE for other processors. In particular for the
PowerPC 750.

∙ Inclusion of a real-time operating system to run with the critical application.

∙ Development of the HDE for multiple critical cores running concurrently.

∙ The Development or improvement of the current 𝑊𝐶𝐸𝑇𝑅 tool to support the
LEON3 instruction and/or data caches.

∙ Improve existing commercial WCET tools to compute the 𝑊𝐶𝐸𝑇𝑅.
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APPENDIX A – Graph Search Algorithm

This recursive algorithm is responsible for finding the edges and vertices between
a start and an end vertices. It returns true if there is at least one path between the start
and the end vertices. The parameters “vertices” and “edges” contains, when the algorithm
terminates, all the vertices and edges in the path between the start and end vertices. The
parameter “visitedEdges” is a set that keeps track of the already visited edges and is
initially empty.

1: procedure GraphSearch(𝑠𝑡𝑎𝑟𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑒𝑑𝑔𝑒𝑠)
2: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑡𝑎𝑟𝑔𝑒𝑡 then
3: return 𝑡𝑟𝑢𝑒
4: end if
5: 𝑓𝑜𝑢𝑛𝑑← 𝑓𝑎𝑙𝑠𝑒
6: for all 𝑒𝑑𝑔𝑒 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑂𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do
7: if ¬(𝑒𝑑𝑔𝑒 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠) then
8: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠𝐶𝑜𝑝𝑦 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠.𝐶𝑙𝑜𝑛𝑒()
9: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐸𝑑𝑔𝑒𝑠𝐶𝑜𝑝𝑦.𝐴𝑑𝑑(𝑒𝑑𝑔𝑒)

10: if 𝑒𝑑𝑔𝑒.ℎ𝑒𝑎𝑑 ̸= 𝑠𝑡𝑎𝑟𝑡 then
11: result ← GraphSearch(start, edge.head, target, visitedEdgesCopy, ver-

tices, edges)
12: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑡𝑟𝑢𝑒 then
13: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝐴𝑑𝑑(𝑒𝑑𝑔𝑒.𝑡𝑎𝑖𝑙)
14: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝐴𝑑𝑑(𝑒𝑑𝑔𝑒.ℎ𝑒𝑎𝑑)
15: 𝑒𝑑𝑔𝑒𝑠.𝐴𝑑𝑑(𝑒𝑑𝑔𝑒)
16: 𝑓𝑜𝑢𝑛𝑑← 𝑡𝑟𝑢𝑒
17: end if
18: end if
19: end if
20: end for
21: return 𝑓𝑜𝑢𝑛𝑑
22: end procedure
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APPENDIX B – Modification in the LEON3
to Generate the Executed Program Counter

(EPC)

-- -----------------------------------------------------------

-- This file is a part of the GRLIB VHDL IP LIBRARY

-- Copyright (C) 2003 - 2008 , Gaisler Research

-- Copyright (C) 2008 - 2014 , Aeroflex Gaisler

--

-- This program is free software ; you can redistribute it and/or

modify

-- it under the terms of the GNU General Public License as

published by

-- the Free Software Foundation ; either version 2 of the License

, or

-- (at your option ) any later version .

--

-- This program is distributed in the hope that it will be

useful ,

-- but WITHOUT ANY WARRANTY ; without even the implied warranty

of

-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the

-- GNU General Public License for more details .

--

-- You should have received a copy of the GNU General Public

License

-- along with this program ; if not , write to the Free Software

-- Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA

02111 -1307 USA

-- ----------------------------------------------------

-- Entity : iu3mod

-- File: iu3mod .vhd

-- Author : Jiri Gaisler , Edvin Catovic , Gaisler Research

-- Modified : Bruno Green , PUCRS

-- Description : LEON3 7-stage integer pipeline

-- ----------------------------------------------------

...
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entity iu3mod is

generic (

...

);

port (

clk : in std_ulogic ;

rstn : in std_ulogic ;

...

sclk : in std_ulogic ;

epc : out std_logic_vector (31 downto 2)

);

...

end;

architecture rtl of iu3mod is

...

epcgp : process (rstn , r.x.ctrl.annul , r.x.ctrl.pc)

variable valid : boolean ;

begin

valid := ((( not r.x.ctrl.annul)) = ’1’);

if (rstn = ’1’) then

if valid then

epc <= r.x.ctrl.pc (31 downto 2);

end if;

end if;

end process ;

...

end;



101

APPENDIX C – AMBA Bus Controller:
support for stand-alone bus mode

The following vhdl snippet is a modification in the AMBA AHB Controller to allow
the stand-alone bus mode, when the signal “force” is ‘1’, the bus enters the stand-alone
mode, and the bus arbitrations are made only for the master 0. Therefore the critical core
must be configured as master 0. It is worth noting that this VHDL snippet code is valid
for any number of N cores, where N is between 2 and 16. The upper limit is due to the
AMBA limitation in the number of masters in the bus.

-- This file is a part of the GRLIB VHDL IP LIBRARY

-- Copyright (C) 2003 - 2008 , Gaisler Research

-- Copyright (C) 2008 - 2014 , Aeroflex Gaisler

--

-- This program is free software ; you can redistribute it and/or

modify

-- it under the terms of the GNU General Public License as

published by

-- the Free Software Foundation ; either version 2 of the License

, or

-- (at your option ) any later version .

--

-- This program is distributed in the hope that it will be

useful ,

-- but WITHOUT ANY WARRANTY ; without even the implied warranty

of

-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the

-- GNU General Public License for more details .

--

-- You should have received a copy of the GNU General Public

License

-- along with this program ; if not , write to the Free Software

-- Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA

02111 -1307 USA

-- -------------------------

-- Entity : ahbctrlmod

-- File: ahbctrlmod .vhd

-- Author : Jiri Gaisler , Gaisler Research

-- Modified : Edvin Catovic , Gaisler Research
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-- Modified : Bruno Green , PUCRS

-- Description : AMBA arbiter , decoder and multiplexer with plug&

play support

...

entity ahbctrlmod is

generic (

...

);

port (

rst : in std_ulogic ;

clk : in std_ulogic ;

...

testsig : in std_logic_vector (1+ GRLIB_CONFIG_ARRAY (

grlib_techmap_testin_extra ) downto 0) := ( others => ’0’);

force : in std_logic --Force bus into standalone mode when ’1’

);

end;

architecture rtl of ahbctrlmod is

...

begin

comb : process (rst , msto , slvo , r, rsplit , testen , testrst ,

scanen , testoen , testsig , force)

...

begin

...

if (split /= 0) then

for i in 0 to nahbmx -1 loop

tmpv(i) := (msto(i). htrans (1) or (msto(i). hbusreq )) and

not rsplit (i) and not r. ldefmst ;

end loop;

if (r. defmst and orv(tmpv)) = ’1’ then arb := ’1’; end if;

end if;

-- ~line 423

--rearbitrate bus with selmast . If not arbitrated one must

--ensure that the dummy master is selected for locked splits .

if force = ’1’ then --stand -alone mode

nhmaster := 0; --force arbitration to master 0

else --shared mode

if (arb = ’1’) then

selmast (r, msto , rsplit , nhmaster , defmst ); -- select the

next master to adquire the bus
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elsif (split /= 0) then

defmst := r. defmst ; -- no masters wants the bus ,

arbitrate to the default master

end if;

end if;

...

end;
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APPENDIX D – Step by Step of a Design
Process

Figure 51 depicts the flowchart of the steps involved in a design process from
compilation of the application to the generation of the HDE.

Figure 51 – Flowchart of a design process.
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Compile Application
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Table

Compute WCETR

Generate HDE
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Figure 52 depicts the flowchart of the steps involved in the compilation of the ap-
plication, having as input the source code (or source codes) and as output the application
binary.

Figure 52 – Flowchart of the steps involved in the compilation of the application.
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Figure 53 depicts the flowchart of the steps involved in the generation of the
timing table. First the application binary is converted to a format that can be read by
the VHDL simulator. The user sets the application input and runs the VHDL simulation
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of the LEON3 processor. Once the simulation is completed, the instructions time tags are
available in the “samples.txt” file. The latencies table is generated from it and from the
critical task end address.

Figure 53 – Flowchart of the steps involved in the generation of the Timing Table.
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The timing table is generated from the instructions latency table (or tables if
several simulations were performed), the coverage1 is then computed from the timing
table and the start and end addresses of the critical task. New simulations with different
inputs must be performed as long as the desired coverage is not achieved.

Figure 54 depicts the flowchart of the steps to compute WCET and 𝑊𝐶𝐸𝑇𝑅 and
generate the HDE VHDL files by using GTT. First the user selects the application binary,
the timing table, and the task start and end addressses. Then the user defines the bound
for each of the loops in the task, and the WCET and 𝑊𝐶𝐸𝑇𝑅 are computed for every
vertex and every possible combination of loop iterations.

The user must then select which vertices should contain reference points, and the
reference points are selected by dividing the WCET into a number of segments chosen
arbitrarily by the user. A 𝑊𝐶𝐸𝑇𝑅 of a vertex is selected to be a reference point if it is
in a distance shorter than a range value defined (also arbitrarily) by the designer.

Figure 55 depicts how the process of selecting a 𝑊𝐶𝐸𝑇𝑅 to be a reference point.
To do so, consider that the WCET is split into two equal segments and assume a range
of 25% (as alternative, consider also a second range of 50%). This range is computed as a
percentage of the segment length. Then, upon analyzing Figure 55, one would select both
𝑊𝐶𝐸𝑇𝑅s (𝑊𝐶𝐸𝑇𝑅1 and 𝑊𝐶𝐸𝑇𝑅2) if the considered range is 50%; otherwise (assuming
range equal to 25%) it would be selected only 𝑊𝐶𝐸𝑇𝑅2. It should be noted that (for
the same vertex) if more than one 𝑊𝐶𝐸𝑇𝑅 is identified under the umbrella of a given
range, only the closest one is selected (in the mentioned example of Figure 55, 𝑊𝐶𝐸𝑇𝑅2).
Finally, for a vertex belonging to a loop, for instance, it would be expected to have more
than one 𝑊𝐶𝐸𝑇𝑅 associated to a given vertex.

Once the reference points are determined and the parameters of deadline (a per-
centage of the estimated WCET) and the turnover 𝑡𝑜𝑣𝑒𝑟 are informed, the HDE VHDL
files are generated.

Figure 56 depicts the flowchart of the steps to compute WCET and 𝑊𝐶𝐸𝑇𝑅

and generate the HDE VHDL files by using IPET. First the user selects the application
binary, the timing table, the task start and end addressses, and then enters the IPET
mode in the tool. Then the user defines the constraint for each of the loops in the task
for the WCET computation. The user then adds as many reference points as needed for
the desired performance of the HDE selecting the vertex and loops constraint of every
reference point. The user informs the deadline (a percentage of the estimated WCET)

1 By “coverage”, we are referring to the metrics used to measure the ratio of the entries of the timing
table to the required entries of the task to compute the WCET and 𝑊𝐶𝐸𝑇𝑅. The full coverage
(coverage of 100%) is achieved when all the entries required to compute the WCET and 𝑊𝐶𝐸𝑇𝑅 are
found in the timing table. The coverage is computed by 𝐶𝑜𝑣 = (1− |𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ∩ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑|

|𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑| )× 100%.
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Figure 54 – Flowchart of the steps involved in the computation of the WCET and
𝑊𝐶𝐸𝑇𝑅 and the generation of the HDE by GTT.
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and the turnover 𝑡𝑜𝑣𝑒𝑟 parameters. Then the WCET and the 𝑊𝐶𝐸𝑇𝑅 of every reference
point are estimated, followed by the generation of the HDE VHDL files.
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Figure 55 – Example of selection of reference points with 2 segments and ranges of 25%
and 50%.

Range = 50%

Range = 
25%

Range = 50%

Range = 
25%

WCETR1 WCETR2



110 APPENDIX D. Step by Step of a Design Process

Figure 56 – Flowchart of the steps involved in the computation of the WCET and
𝑊𝐶𝐸𝑇𝑅 and the generation of the HDE by IPET.
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