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FEATURE SELECTION FOR NEUROIMAGING APPLIED TO

WORD-CATEGORY IDENTIFICATION IN DYSLEXIC CHILDREN

ABSTRACT

Dyslexia is a developmental reading disorder characterized by persistent difficulty to learn

how to read fluently despite normal cognitive abilities. It is a complex learning difficulty that is

often hard to quantify. Traditional methods based on questionnaires are not only imprecise in

quantifying dyslexia, they are also not very accurate in diagnosing it. Consequently, we aim to

investigate the neural underpinnings of this reading disorder in children and teenagers, as part of

a project that aims to unravel some of the neurological causes of dyslexia among children at pre-

literacy age. In this dissertation, we develop a study of brain activation within functional MRI

scans taken when children carried out pseudo-word tasks. Our study expands recently developed

machine learning-based techniques that identify which type of word the study participants were

reading based solely on participant’s brain activation. Because such functional MRI data contains

about 30,000 voxels, we try several feature selection techniques for removing voxels that are not

very helpful for the machine learning algorithm.This procedure is widely used for maximizing the

machine learning algorithm accuracy, and some of these feature selection approaches allowed us to

achieve very accurate results.

Keywords: Functional MRI, Dyslexia, Feature Selection, Classification, MVPA.





FEATURE SELECTION FOR NEUROIMAGING APPLIED TO

WORD-CATEGORY IDENTIFICATION IN DYSLEXIC CHILDREN

RESUMO

Dislexia é um transtorno de aprendizagem de leitura caracterizado pela dificuldade per-

sistente de uma criança a aprender a ler fluentemente, mesmo apresentando outras habilidades

cognitivas normais. A dislexia é uma dificuldade de aprendizado complexo e difícil de diagnosticar.

Métodos de diagnostico tradicionais, como questionários, não são somente imprecisos em quanti-

ficar a dislexia, como também também não são precisos no diagnóstico. Consequentemente, nós

visamos investigar a base neural deste transtorno de leitura em crianças e adolescentes, como parte

de um projeto que tem como objetivo desvendar algumas das causas neurológicas da dislexia entre

crianças em alfabetização. Nesta dissertação, desenvolvemos um estudo da ativação do cérebro

com o uso de exames de imagem de ressonância magnética (IRM) funcional coletados enquanto

as crianças realizavam uma tarefa de pseudo-palavras. Este estudo amplia técnicas de aprendizado

de máquina recentemente desenvolvidas que identificam que tipo de palavra os participantes de um

estudo estavam lendo, baseado somente em sua atividade neural. Como dados de IRM funcional

contem aproximadamente 30.000 voxels, neste trabalho experimentamos com algumas técnicas de

seleção de features para remover voxels que não são relevantes para o algoritmo de aprendizado

de máquina. Esse procedimento é amplamente utilizado para maximizar a acurácia do algoritmo, e

algumas abordagens de feature selection permitem atingir resultados muito precisos.

Palavras-Chave: IRM Funcional, Dislexia, Feature Selection, classificação, MVPA.
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1. INTRODUCTION

Dyslexia is a neurobiological disorder that affects one’s reading and writing skills. Basically,

people with dyslexia have difficulty mapping the glyphs of a word with its sound. Consequently, they

have difficulty in decoding words (pronouncing printed words) and encoding words (spelling words).

Because dyslexia is not a comprehension or intelligence problem, but rather a problem in reading

and spelling words, people with dyslexia do not have trouble understanding texts when they are read

these texts out loud, always having listening comprehension skills higher than reading and writing

skills [Sha08]. The diagnosis of dyslexia involves a complex, multidisciplinary evaluation of reading

performance; cognitive abilities and intelligence; and school and medical history. It takes at least

two years of regular schooling before a child can be diagnosed with dyslexia, and most children are

diagnosed from 8 to 9 years, (see DSM-5 criteria 1), Thus, identifying early indicators of children at

risk for learning disabilities, such as dyslexia, may help understand early signs of reading impairment

and help children develop strategies to cope with this condition.

However, studies have shown that no standard test used today is able to detect or predict

dyslexia precisely [HMB+11]. Thus, new tests are needed in order to fill this gap.

One of the most important new techniques used for identify neuropsychological disorders

is Functional Magnetic Resonance Imaging (fMRI), which is an neuroimaging method that indirectly

measures neural activity over time. Given its non-intrusiveness to patients, fMRI is widely recognized

as a powerful diagnostic tool for conditions with a neurological basis. Many other neuropsychological

disorders such as autism [JKM+12], Alzheimer’s disease [WSN+09] and dementia [WS12] have been

successfully identified using Functional Magnetic Resonance Imaging (fMRI), Here, some neural

activity patterns captured by fMRI data are known to indicate a person’s cognitive state or the

presence of a neuropsychological disorder. Recent research shows that fMRI data, in combination

with machine learning techniques, can be used to predict the cognitive state of subjects [HR06]

[MSC+08] [SMM+08]. Learning disabilities such as dyslexia may be investigated using fMRI to

identify the differences in brain function that may underlie such developmental difficulty. To our

knowlege, there is no work on applyng fMRI data to identify dyslexia.

This work is organized as follows: Chapter 2 describes the application domain in which

we want to use classification, that is fMRI and brains; Chapter 3 describes the applicable machine

learning algorithms used in our research; Chapter 4 describes feature selection methods we use in the

fMRI data; Chapter 5 describes and compares related work on fMRI and machine learning; Chapter

6 presents the experiments and results; finally, we draw conclusions and indicate potential future

work in Chapter 7.

1The Diagnostic and Statistical Manual of Mental Disorders has guidelines for diagnosing someone with a mental
disorder, such as dyslexia [A+13]
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1.1 ACERTA

This study is part of the ACERTA project, which stands for Evaluation of Children at Risk

for Reading Difficulties. The goal of the project is to understand the differences that underpin the

inability of dyslexic children to learn to read fluently, in comparison with their normal reading peers.

To achieve this goal, the project applies Functional Magnetic Resonance Imaging (fMRI) to obtain

brain-imaging data from children with dyslexia and controls. In this work, we take the first steps

towards our overarching objective, which is to use brain imaging data from children with dyslexia to

identify specific cognitive states associated with reading impairment. For this purpose, while in the

MRI scanner, children perform a task in which they read 3 types of words. Regular words, which we

write as we say them (e.g. dinheiro, gelatina livro), irregular words, which we write them differently

than we say them (e.g. sorte, taxi, exemplo) and pseudo words, which are words that appear to be

in Portuguese but have no meaning (e.g. laberinja, prina, cusbe).

1.2 Contribution

There are many difficulties in using classification with raw fMRI data, as the amount of

data generated by a single scan is massive. Consequently, we need to find ways of reducing the

amount of data using feature selection techniques and reaching a reliable classification. The main

contribution of our work is to test and report on different feature selection techniques to improve

the classification accuracy when analyzing fMRI data of dyslexic children. We empirically test these

techniques using fMRI data from children from the ACERTA project and show that we can use

classifiers for discover which type of word they are reading as well as the most important brain

patterns for the classifier to discriminate the category of words. Therefore, the contributions of this

work are:

• We used classification and feature selection methods with fMRI data of children with dyslexia

performing a reading task. Reading brain networks are distributed all over the brain, specially

in children with dyslexia. Thus, show how we identified distributed brain patterns using fMRI

data.

• We find a way to process noisy data and generate cleaner examples for classification. For this

purpose, we transform fMRI data into contrast images.

• Test four feature selection methods and discuss how each one deal with distributed brain

patterns.

• Generate a classifier that can generalize among study participants and yields very good accu-

racies. The accuracy gets better depending on the feature selection we used.
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• We discovered the most important brain regions for the classifier to identify which type of

word children are reading. The brain regions belongs to reading neural networks from both

traditional and dyslexic readers.

1.3 Publications

During this work, we publised the following papers:

• FROEHLICH, Caroline; AURICH, Nathassia; MENEGUZZI, Felipe; BUCHWEITZ, Augusto

and FRANCO, Alexandre R. Categorical and dimensional variable prediction from state fMRI

data, a new example and tutorial for NiLearn. Brainhack Unconference and Hackathon, Sèvres,

France, 2013

• FROEHLICH, Caroline; MENEGUZZI, Felipe; FRANCO, Alexandre R. and BUCHWEITZ,

Augusto. Classifying Brain States for Cognitive Tasks: a Functional MRI Study in Children

with Reading Impairments, In Proceedings of the 24th Brazilian Congress on Biomedical
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2. BACKGROUND

As this is a multidisciplinary work that includes brain functions, neuroimaging, and machine

learning, we review important brain parts in Section 2.1 as well as key points of fMRI imaging data

in Section 2.2.

2.1 Brief overview of brain anatomy

We start by describing the physical areas of the brain, later focusing on areas of particular

interest to this work, namely, language related areas. We start with a major brain division, which are

the hemispheres. The brain is divided in the left and right hemisphere. Both hemispheres have the

same architecture (both contain the same brain divisions), but each brain region in each hemisphere

have distinct functions. Some examples of brain location in left and right hemispheres performing

different tasks are: first, the motor area in the left hemisphere controls the right part of the body,

while the motor area in the right hemisphere controls the left part of the body; second, the language

area, which is typically located in the left hemisphere in most of the right handed people, while the

same areas in the right hemisphere have different functions [Deh09].

Figure 2.1 – The 4 lobes of the brain. The configuration of the lobes in both hemispheres are
replicated. The frontal lobe (green) is related with planning functions. The temporal lobe (red) is
related to language functions and giving meaning to visual inputs. The parietal lobe (blue) is related
to processing sensory inputs and contains the motor areas. The occipital lobe (gray) is related to
visual processing. The two important language-related areas are the Broca’s area (or inferior frontal
gyrus) in yellow, related to speech production and the Wernicke’s area (or superior temporal gyrus)
in purple related to speech processing.

The brain is further divided into four lobes, each one of which is specialized in a specific

task. This subdivision is illustrated in Figure 2.11, which shows a left view of a brain with its

four lobes. Some important language regions in the brain are the Broca’s area (yellow) and the

1This image was kindly provided by Anibal Solon
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Wernicke’s area (purple). Broca’s area is located in the bottom of the inferior frontal part of the

brain (inferior frontal gyrus), and is related to speech production. People with a lesion in this area

are able to understand what other people write and speak, but sometimes are not able to produce

spoken and written language. Wernicke’s area is located in the back of the superior temporal part

of the brain (inferior frontal gyrus), and is related to speech processing. People with lesion in this

area are able to write and speak, but do not understand what other people write and speak.

However, these are not the only areas involved in language processing and production. For

example, the occipital lobe, which process visual input, also processes written symbols and decode

them. Additionally, people with reading difficulties need more processing for properly reading. Thus,

they request more brain areas than traditional readers. Instead of using just Broca’s area in the left

hemisphere, they recruit the same brain region in the right hemisphere as well as some other regions

in the frontal lobe.

2.2 fMRI

Neuroimaging involves different techniques to acquire images of the brain, each of which

have distinct purposes, such as measuring a subject’s brain activation patterns or showing views of

a subject’s anatomical brain structure. Each neuroimaging exam has a distinct spatial and temporal

resolution, and detect different tissues, and highlights different physical processes (e.g. physical,

chemical, structural) taking place in the brain. For example, structural MRI (Magnetic Resonance

Imaging) is a neuroimaging scan that shows a static view of the brain anatomy in detail. MRI data

has a good spatial resolution, showing with millimeter accuracy brain tissue of white matter and

gray matter. With the MRI scanner we can acquire a high resolution 3D image of the brain showing

these tissues.

For this project we are interested in fMRI (functional Magnetic Resonance Imaging)

[HSM04], a 4D functional neuroimage that consists of a time series of 3D images of the brain.

While MRI acquires one high resolution image showing the brain structure, fMRI acquires many low

resolution 3d images in order to detect the activation of brain regions over time, since its purpose is

to map brain activity [BZYHH95]. Compared to EEG (elecyrpemcephalography), another technique

that can measure brain activity, fMRI data has a high spatial resolution (it shows the brain details at

millimeter scale, similar to MRI), and a low temporal resolution (because it takes the MRI scanner

up to a few seconds to acquire each image).

While the purpose of fMRI is to detect neural activity during experiments, it does not

measure neural activity directly. Instead, it measures changes in the magnetic properties of the blood

when neural activity occurs. More specifically, it measures the magnetic properties of hemoglobin,

which is a blood component that carries oxygen from respiratory organs to the other body parts.

While deoxyhemoglobin (hemoglobin without oxygen) creates negative local magnetic resonance

signal, oxyhemoglobin (hemoglobin with oxygen), does not alter the local signal. When someone is
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Figure 2.2 – Differences between brain activation when children are resting and performing the
pseudo-word task. The orange areas indicate where there is ’ activation in the pseudo-word task
than in rest across subjects.

performing a task, the local magnetic signal in the activated area increases. That is because that

area needs more oxygen, then the oxyhemoglobin level increases in order to to supply oxygen. Figure

2.3 illustrates how the oxihemoglobin level changes when some brain area has neural activity. Since

the region gets more oxyhemoglobin, that region has more oxy than deoxyhemoglobin, increasing

the local magnetic resonance signal (deoxyhemoglobin lowers the local signal. So, if we have less

deoxihemoglobin, the local signal increases) [Maz09]. We call this measure of the level of oxy and

deoxyhemoglobin BOLD (Blood Oxygen Level Dependent). Figure 2.4 describes the changes in the

BOLD signal over time.

In MRI, we can observe the brain region’s anatomy in detail. In functional MRI, we can

observe which areas of the brain are functioning together, i.e. which brain region is activated when

performing a specific task and how brain regions work together. For example, we can test which

parts of the brain increase their activity when a subject is performing a task while inside the MRI

scanner, such as moving the left hand or checking a word is real or not. Figure 2.2 is an example of

a task-fMRI experiment that shows brain areas activated when children are reading words. These

areas are activated compared to when the children are resting inside the scanner. fMRI scans allow

us to infer multiple information from the workings of the brain, two examples of what we can infer

from the study of our example are: First, the brain areas related to the cognitive task. Second, it

indicates how these brain parts interact: if they work synchronously (both regions are activated at

the same time), when one is activated, the other deactivate, or if they are not related (the activation

of one is not dependent on the other).

We can perform many analyses with the information provided by fMRI data. First, we can

see the brain function when someone is performing a cognitive or motor task, mapping the regions

where there is more neural activity. Second, we can identify cognitive disorders using fMRI data. We

can find brain activation patterns in patients with the same cognitive disorder by looking for brain

regions that are activating or communicating differently between healthy people and patients. These

patterns form biomarkers, that in this context are a set of characteristics (brain region activations)

that identify a cognitive disorder.
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Figure 2.3 – Differences in the blood flow when a brain region is in rest and activated. In rest
condition, we have the same level of oxy and deoxyhemoglobin. Conversely, when there is neural
activity, the blood flow increases along with the oxyhemoglobin level. That happens in order to
supply local oxygen demands. As the oxyhemoglobin level increases, the deoxyhemoglobin level
decreases, which makes the local magnetic resonance signal increases too. Inspired in [Maz09]
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Figure 2.4 – After brain activity, there is immediate oxygen consumption; 2 seconds later, more
oxyhemglobin arrives in the activated area in order to supply the oxygen demand. As there is more
oxygen (and oxyhemoglobin) than the required area neeeds, the local magnetic resonance signal
increases. The signal reaches the maximum value at 5 seconds, and subsequently returns to the
baseline value at 12 seconds. The BOLD signal changes only 3% when a brain area is activated.

2.2.1 Paradigms

fMRI can answer questions about psychological processes, such as the questions from the

ACERTA project which asked which areas of the brain children with dyslexia use to read. For this

purpose, we need a well defined set of tasks for the children to perform inside de scanner that can

discriminate this network. This set of tasks is called paradigm or experimental design [HSM04]. The
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main goal of the paradigm is to use a stimulus that engages subjects in a specific mental process in

order to measure the changes in the BOLD signal caused by the stimulus in an organized and easy

to analyze way.

A stimulus can be of various types, such as to recognize whether a picture on the screen

shows a face or an object, whether a word is real or not, if a spoken word is a noun or a verb or

if the lights are on or off. The stimulus is expected to activate a brain region necessary to process

it, consequently changing the blood flow and rising the BOLD signal. In this way, we can discover

which parts of the brain the stimulus activates and how strong the BOLD signal is.

We can create a set of stimuli of a specific type (a.k.a. condition). For example, in a

motor study, the conditions can be moving the right hand and/or moving the left hand. In another

study about the difference between the neural representation of nouns or verbs, the conditions are

showing nouns and showing verbs.

We expect that the same stimuli (i.e. moving the right hand) always shows a greater

neural activity in the same regions, while different stimuli (i.e. moving the left hand) shows neural

activation in another region. Thus, stimuli of the same conditions show a greater neural activation

similarity while stimulus of different conditions are supposed to show neural activation differences.

The neural activation differences between conditions are the way we discover brain areas involved in

a specific task.

We divide the paradigm conditions in two types, task condition and baseline condition.

The task condition is the most relevant condition for the study, which is the task we really want

subjects to perform. Conversely, the baseline condition establishes a baseline to compare with the

task condition. Because the brain never ceases activity, data from the baseline condition shows

voxels that are activated when subjects are not performing any task in particular (or at least a task

that is not being prompted by the selected stimulus). Therefore, we subtract baseline condition data

from task data to emphasize the voxels involved in the task.

Besides comprising various conditions, a paradigm also specifies the number of times each

condition is shown to the subject during the experiment. Each time a condition is shown to the

subject is called a trial. For example, in a study about verbs and nouns, we can present as stimulus a

list of different verbs and nouns. The paradigm can be divided into blocks, where each block groups

various trials. For example, we can have a block with 10 nouns and another block with 10 verbs in

a paradigm. Usually, we have a baseline condition block between two task blocks in order to clear

subjects mind and minimize the interferences between two contiguous blocks. The duration of each

block can vary from several seconds to a few minutes.

There are two types of task paradigm depending on how the blocks are organized. The

first one is block design, which shows several trials of the same condition in one block. Figure 2.5

shows a piece of a block design paradigm where the same condition (word) is shown several times

in a block, followed by a brief rest period. We expect the subject to have the same neural response

in every trial of the same condition, so we can model how the brain response to that condition is.

The second one is event related, which mix different task conditions in the same block. Figure 2.5
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shows a piece of a even related block where the different conditions are shown randomly in the same

block.

An additional paradigm which uses no task is being increasingly applied in fMRI studies,

the resting state fMRI (rsfMRI). rsfMRI experiment has no task, instead the subject is required to

look at a black screen for about 7 minutes, and to do not think in anything in particular. Although

rsFMRI does not seem immediately useful as the task-based experiment, because we do not know

what subjects are doing or if they are thinking in something in particular, however, this experiment

can tell us how the functional connectivity of the brain is, that means which brain regions are

communicating to each other brain regions and how they are communicating. This information is

used to detect biomarkers that characterize cognitive disorders [CHHM09].
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Figure 2.5 – Schematic example of 2 different paradigm blocks using the pseudo-word task. In the
block design paradigm, just one condition is is presented in a single block, while in event related all
conditions are presented randomly in a single block. All trials are followed by a few seconds of rest.

2.2.2 fMRI data analysis

After creating the paradigm, running the imaging sessions and preprocessing data, there

are a number of methods we can use to infer useful information from such data. We can perform

various statistical analyses to extract activation patterns in the data of a single patient or a group of

patients (using statistical analysis is more common than using machine learning to analyse fMRI).
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Statistical methods select voxels that show a statistical difference between distinct groups.

These voxels are used to generate images showing which region of the brain has similar activation.

It generally uses a statistical significance test to score each voxel separately and selects the voxels

with higher scores.

In this context, a group can refer to a set of trials of the same condition a single patient

performed or a group of subjects with the same cognitive disorder. In summary, a group contains

similar observations that are intended to show different neural activation from the other groups.

Thus, we can analyse data from single patients as well as data obtained from a group of patients

performing the same paradigm. Figure 2.2 shows an example of a statistical analysis discriminating

the activation between two different conditions in the pseudo-word task: when patients are viewing

a pseudo-word (task condition) and when they are resting (baseline condition).

The statistical methods for analysing fMRI data, also called univariate methods, generally

work as follow. Univariate methods take the same voxel or brain part of the entire group 1 and look

for differences between these voxels and the corresponding voxels or brain parts of the entire group

2. Therefore, univariate methods look for differences between groups analyzing one part of the data

of the hole group at time. Finally, they calculate the differences between each feature of each group

using the t-test method.

Figure 2.6 – ICA algorithm applyed in rsfMRI data, generating 20 components. The image is
generated with the scikit-learn [PVG+11] implementation of ICA

There are many univariate methods, a widely used method is Independent Component

analysis. Independent Component Analysis (ICA) [CAH+03] methods separate different sources or

components of signals that are mixed in the same signal. ICA assumes that each signal source

is independent and its distribution is non Gaussian, and uses statistical methods to separate the

signals. Figure 2.6 shows a result of the ICA algorithm applied to rsfMRI data. The highlighted

areas are clusters of voxels with statistical similarities.
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3. MACHINE LEARNING

Machine learning is a branch of artificial intelligence that aims to make programs that

improve performance from data. It includes algorithms that improve their own performance at some

task through experience, getting better on the task as they receive more and more examples to

learn from. Machine learning algorithms can be used to perform many tasks humans can, except

that they process much more data in a fraction of the time because machine learning algorithms are

better in data intensive tasks. For instance, they can learn to differentiate between spam and ham

emails, and classify emails as being spam or not [Alp04].

There are three types of machine learning, the main difference between them is the type of

data they take as input, each of which changes the process they require to extract information about

the examples. The first is unsupervised learning: in this approach, the algorithm learns using only

the examples that are provided. Because we do not have much control over the learning process,

as we just provide data, these methods make it more difficult to predict what is being learned. The

second is supervised learning: in this approach we provide examples to the algorithm with labels

of what the given example is, so we can control more easily what we want it to learn. The third

is reinforcement learning: we use this kind of algorithm in a specific scenario, where an agent is

required to choose actions and refine its own choices over time based on how its past choices were

evaluated.[TSK05]

In a context where we have a software that deals with lots of data, machine learning

algorithms can be the intelligent part of it, discovering things about these stored data, or improving

modules that are difficult to program. Some modules are hard to program because they have many

rules and exceptions in a way that humans find hard to understand and build. In contrast, an

approach that learns all this knowledge may provide better results and be easier to develop.

3.1 Formalization

We now formalize machine learning before describing specific methods in Section 3.4. In

the training process, the algorithm tries to formalize the concept given in the examples (we call

the set of examples training data), learning a function that defines it (much like function fitting).

The complexity of inputs and outputs induces a hypothesis space, that consists of all the possible

functions that map the inputs to the outputs. Russel [RN10] shows that we can apply these

algorithms in simple applications: given a training set of points generated by an unknown function

f , find a function h that is an approximation of f . h is a hypothesis that tries to generalize how

the points are generated.

Machine learning is formally defined by Mitchel [Mit97] as: “an algorithm that learns from

a set of experiences E with respect to some class or task T and performance measure P , if its

performance at T , as measured by P , improves with experience E.“. In other words, T is the task
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the algorithm is required to perform, for instance, classify an email as spam or ham, or in the function

example, h is the function that performs T . E are the examples the algorithm receives in order to

learn the task; in the function fitting example, the examples are the points generated by f , and in

the task of classifying emails, we can provide emails already classified as spam or ham as examples.

P is how we measure the ability of the algorithm in the learned task, it tells the algorithm how it

performed and allows it to modify and improve its behavior according to this metric to future tasks.

There are many problems we can solve with machine learning, such as working with con-

tinuous variables using regression, predicting the continuous value of an instance, or using clustering

for grouping the examples in the training set by similarity. However, we focus in the supervised

learning classification problem, where we have a discrete and finite set of categories, and assign

some category to new instances.

As an illustrative example adapted from [Mit97], we consider the problem of classifying

emails as spam or ham in more detail, where L is the learning algorithm that creates a classifier

for the emails. DC is the training data of class C. We say that T is the email classifier, DC are

the experiences E and P is the accuracy of the classifier. DC is a collection of emails already

classified, in which the class C represents the possible values the algorithm can give to an email,

{Spam, Ham}. In this formalization, the training data is expressed in the form DC =< x, c(x) >,

where x is an instance (email), and c(x) is the classification for the instance, c ∈ C. We use Dc to

train L to distinguish Spam and Ham emails. L, in turn, is used to create an email classifier after

the training phase. Therefore, L creates a hypothesis h about C, that can classify new instances xi

returning a class c, that is the class the algorithms says xi belongs.

As a consequence, the output that L generates is inductively inferred from DC and xi,

resulting in an inference about xi that will probably not be correct in general. This occurs because

the algorithm requires a set of assumptions to deduce the output based on its inputs, even if the new

instance xi was never seen before (there is no instance like xi in the training data). Consequently,

the deductions of the algorithm are dependent of the training data, and it has a probability of giving

the right answer (we can measure the accuracy of the algorithm).

3.2 Machine learning types

Since the input given to machine learning algorithms defines how they work, we need to

formally model the three types of learning algorithms we mentioned before. Although the generic

learner L always generates the same output c, that is a classification for the new instance xi, each

type of approach processes differently the training data DC , because they have to adapt to the

different structure of DC [Mit97].

In unsupervised learning, the algorithm learns how to classify data by itself, when we

provide as input only a large training data set. The inputs contain unlabeled data, and it does not

know what classes are in the training data, it is in the form DC = {x}. In this approach, there are
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no predefined classes c ∈ C, so the algorithm creates C and splits the training data according to

these new categories, looking at relevant differences between the instances of DC [RN10].

An example of this type of machine learning is a neural network algorithm that is used

to discover high-level concepts in a training data containing images taken from Youtube videos

[LRM+11]. It successfully recognized cats and human bodies, even though it was not told these two

classes were in the dataset.

In supervised learning, in order to train the algorithm, we show each instance of the

training data and the class it belongs to. This approach is divided into two phases. First, we train

the algorithm to recognize each class of C, providing to it the training data. An instance in DC

is a tuple < x, c(x) >, where x is the input and c(x) is the classification for x. Finally, we ask

the algorithm to classify new unlabeled data, xi. If we provide to L a big enough training dataset,

with few misclassified data, and with different and useful examples, the probability of L to give the

right answer for xi increases. Consequently, for any learning algorithm, its accuracy depends on the

training data, so we have to choose carefully the examples in DC [RN10].

The email classifier described in the previous section is an example of supervised learning,

as the algorithms learns what is spam by the emails examples classified as spam or ham. After

processing the training examples, we can ask it the classification of a new email.

In reinforcement learning, the agent performs an action and receives feedback that mea-

sures the outcome of the action, receiving a positive feedback (reward) if it is a good and a negative

feedback (punishment) otherwise. Therefore, the learner refines the choices it makes by collecting

the feedback of past actions, returning a policy with the best moves it has found so far [RN10].

This approach has many applications in games. If we let the algorithm play, it can learn

the game rules and the best moves to choose in each scenario. The algorithm also can adapt its

policy quickly when the game changes [Gho04] [GHG04], [Tay11].

3.3 Using Machine Learning Methods

Using machine learning algorithms is not just about building one classifier. There are

many data transformations and measures we have to perform in order to create a usable classifier.

[PMB09] We describe the 3 steps we follow in the experiments Chapter in order to train and measure

how good our classifier is. First, we generate usable examples transforming data in feature vectors

(transforming data into feature vectors, using feature extraction and preprocessing them). Second,

we train the classifier with examples and test its accuracy. And third, we measure how well the

classifier performed. A complete description of each step is listed below.
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3.3.1 Creating training examples

Transforming data into a feature vector

Data used for machine learning can be of various types, such as images, texts or data

from tables. We want to work with a representation of the data that can be processed by these

algorithms, called feature vector. In the task of classifying emails, we can represent each instance

using a dictionary that contains relevant words, where each word is a feature that counts the

frequency of the word in a given email. We choose words that are relevant to the learning task at

hand. Thus, we can represent an email using a dictionary counting the frequency of some given

words. For instance, the dictionary d has two words, test and email:

d = [test, email]

If we have two emails, e1 and e2:

e1 = This is a test. We are testing the email server. The email server will be unavailable until

tomorrow.

e2 = Test the best email server for free for two years.

The correspondent feature vectors of each email, fv1 and fv2 is:

fv1 = [2, 2]

fv2 = [1, 1]

We can see a feature vector as a point in a Cartesian plane, where each feature is an axis

or a dimension, and all the dimensions in the feature vector form a state space. We can draw fv1

and fv2 in a Cartesian plane, where x axis is the frequency of the first word in d, test, and y axis

is the frequency of the second word in d, server, as we show in Figure 3.1.

If a feature vector is a point in a Cartesian plan, we can calculate the distance between

two points. The distance between fv1 and fv2 may be calculated using the manhattan distance.

Other possibilities to calculate distances are described in Section 3.4.1.

(2 − 1) + (2 − 1)

= 2

We can try to improve the classifier’s accuracy by adding more words to the feature vector,

adding two words to d, server and trial, obtaining the dictionary d′:

d′ = [test, mail, server, trial]
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fv1

fv2

Figure 3.1 – fv1 and fv2 graphic, where x axis is the frequency of the word test and the y axis is
the frequency of the word server

fv1 and fv2 are updated according to d′ to fv1′ and fv2′:

fv1′ = [2, 2, 2, 0]

fv2′ = [1, 1, 0, 0]

Calculating the new distance between fv1′ and fv21 we have:

(2 − 1) + (2 − 1) + (2 − 0) + (0 − 0)

= 4

So far, three things happened when we added more features. First, the state space gets

larger because we increased the number of dimensions. Second, the distance between the two points

fv1 and fv2 increases. Third, we added a useless feature trial. trial does not change the distance

between fv1 and fv2 because it does not appear in any email, but it increased the size of the state

space, as trial becomes a dimension in the cartesian plane. Consequently, adding more features to

the feature vector is not always good, because as we enlarge the state space, the distance between

points increases, and we increase the chance of having useless features.

This issue is called curse of dimensionality and occurs in high dimensional state spaces:

the points in space become more distant as we add more dimensions, because the state space grows

quickly, making all points very distant one from another. That means we need many more emails to

cover all of the state space, because we need many more examples to cover a large enough portion

of the state space. Domingos [Dom12] shows that covering all the state space is unfeasible due to

the required amount of data. If we have a state space with 100 dimensions and a trillion examples,

these examples cover only 10−18 of the state space. Therefore, huge feature vectors are not always

good, because they can cause the curse of dimensionality and add irrelevant features. Increasing

the size of the feature vector can also add noisy features, if we have common words that will always

appear in any email, or redundant features, if we have different words with similar meaning in the

dictionary.
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Feature selection

We have seen that even after transforming data in examples by using the feature vector,

these examples may contain uninformative features or become too large. We address these problems

by reducing the number of features using feature selection techniques [HK00]. Considering that all

examples are in a matrix, where each row is an example and each column is a feature. Feature

selection methods take as input this matrix and output a matrix with the same number of examples

but with fewer columns.

One way of doing that is by manually selecting features that are relevant to the task at

hand. In the email classifier example, in the case where there are several words in the dictionary,

we could get rid of words of restricted domains that usually do not appear in emails, or ignoring

common words that will probably appear in every email, such as “for´´ and “to´´.

In other domains where we cannot decide explicitly how important a feature is, scor-

ing/filtering and wrapper methods are used [GE03]. The first method gives a score for each feature

using a given criterion, evaluating each feature independently. Then, the algorithm selects only the

features that have the best scores. Typically, filter methods use an univariate criterion (t-test) to

evaluate features, and are independent of the final classifiers accuracy. The second method recur-

sively selects a subset of features until find the best subset. It evaluates the accuracy of the classifier

using the selected features and tries to improve the classifier accuracy by changing this subset. This

method is time consuming because it has to evaluate all possible subsets of features, making it

impractical to use without heuristics.

Preprocessing examples

The last step we can perform in order to acquire better examples is to preprocess them.

We usually do it when features have a continuous value. This process reduces the differences

between the features, minimizing the problem of one feature having much more importance than

the others. One way of doing that is to normalize all matrix feature vectors by normalizing each row

separately, so each row has mean 0 and a standard deviation equal to 1 [PMB09]. In this context,

the normalization of a feature vector means subtracting the feature vector mean of each feature and

dividing it by the standard deviation of the feature vector.

For example, if we want to normalize the feature vector fv = [5, 8, 34, 6, 9, 14, 88, 80, 19, 7],

we calculate that the mean of fv is 27 and the standard deviation is 31, and subtract the mean

of each feature and divide it by the standard deviation, obtaining the normalized feature vector

fv′ = [−0.7, −0.7, 0.2, −0.6, −0.5, −0.4, 1.9, 1.6, −0.2, −0.6].
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3.3.2 Training and testing

When the algorithm and the data have been preprocessed, we have to choose a set of

instances in the dataset for the training phase, that is the training set. After the training phase,

we test the algorithm using instances of the dataset again in order to measure the accuracy of the

learner, that is the percentage of correctly classified instances in a given test set. If we use the

same data to train the algorithm and to test it, the success rate should be 100%, because it has

previously seen the data. Therefore, we show to the algorithm data it has never seen before to

evaluate if it learned successfully. There are several methods to split the training data in the training

and testing sets, preventing us to test the accuracy of the algorithm with the data the classifier has

used to learn [HK00]. We describe two methods to split data: cross-validation and bootstrapping.

Cross-validation is widely used to test classifiers accuracy while bootstrapping is used as part of

other algorithms, so we describe cross-validation in more detail than bootstrapping.

The first method is the most common approach for training and testing with different

instances [HTF01]. In the cross validation method, the dataset is equally divided in k folders, and

we run the method k times, keeping one different fold as the test set for each run, and using the

other folds as the training set. The algorithm’s accuracy is the average accuracy for each run, and

the number of folds are usually 10 or 5 (using 10% or 20% of the dataset for testing). For example,

dividing DC in 3 folds, DC0, DC1 and DC2, in the first run we keep DC0 as the test set and train

the machine learning algorithm with DC1 and DC2. In the second run we keep DC1 as the test set

and the training data is DC0 and DC2, and so on, until we run the algorithm 3 times and calculate

the average accuracy. There is a special case of cross-validation called leave-one-out, where k is

equal to the number of instances. Leave-one-out uses all the data to evaluate the classifier, so it is

evaluated more times than others values of k. The accuracy of the generated classifier depends on

the training data size, having more examples is better because it eliminates noise and variability. The

accuracy also depends on how the examples of each class are distributed in the training data. It is

better to have the same number of examples of each class. If we don’t, the classifier tends to predict

new examples of being of the class with most examples. Similarly, when using cross-validation, each

fold must contain examples of all classes [PMB09].

The second method is bootstrapping [Joh01], it selects the test set sampling the dataset

with replacement. That means examples chosen once to be part of the training set are likely to

be selected again. The method works as follow: the dataset has n examples, bootstrapping selects

n times an example to be part of the training set, and one example can be selected many times.

The selected examples are the training set and the not selected ones are the test set. There are

many bootstrapping methods, the most used is the .632 bootstrap method, that selects 63,8% of

the examples to be part of the training set and 36,8% of the examples to be part of the test set.
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3.3.3 Evaluating classifiers

In order to evaluate if a classifier is doing well in the testing set we measure its accuracy,

that is how much times the classifier correctly identified the class of new examples. But we have to

ensure that the classifier performs well in examples outside the dataset. Therefore, we measure its

true accuracy, that is the probability the classifier chooses the right class for a new example, if this

example was generated using the same distribution of the test set [HTF01].

We also can ensure that a classifier c is statistically significant and is not randomly guessing

the classes of new instances. We demonstrate it by proving that an hypothesis such that c correctly

classifies new instances 95% of the time is correct. In statistics, we work with the null hypothesis,

that is the denial of the original hypothesis: c does not correctly classifies new instances 95% of the

time . We accept the original hypothesis by refusing the null hypothesis, using the t-test for proving

it. t-test statistically accepts or rejects the null hypothesis, proving that the classifier is correct for

most of the data. This is based on the assumption that the data have a normal distribution and

form a bell curve, therefore, c is correct for most of the data, but it may be wrong when data belong

to the edges of the bell curve. We set how much we accept the classifier is wrong by setting the

p-value. In the hypothesis, c is wrong 5% of the time, so the p-value is 0.05.

3.4 Machine Learning Algorithms

After describing abstract machine learning algorithms, we present instances of these algo-

rithms.

3.4.1 Nearest neighbors

K-Nearest Neighbor (KNN) is a simple machine learning algorithm that predicts the class

of a new instance looking for the closest instances in the dataset. It returns the k most similar

examples in the training data to a new instance. More formally, it finds the k examples in the

training data DC nearest to the new instance xi. We find the k nearest neighbors of the instance

xi using the notation NN(k, xi).

KNN represents the input space as a Cartesian plane, where an instance is a point in space

represented by a feature vector. The number of dimensions of the state space is the same as the

number of features there are in the feature vector. In order to find the nearest neighbors of the

new instance xi in the Cartesian plane, we measure the distance between xi and all other examples

in Dc. There are multiple methods to calculate the distance between xi and an arbitrary instance

xj, xj ∈ Dc. One possible way of calculating this distance is using the Minowski distance, that

calculates how far xi is from xj considering all dimensions of the instances. We write a feature
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vector as [f1(x), f2(x), .., fn(x)], where fn(x) is the nth feature of instance x., and the distance

between xi and xj is

L(xj, xi) = (
∑

|f(xj) − f(xi)|
p)1/p

The formula basically calculates the differences between each feature of the two instances

and sums all these differences. It is possible to adjust the formula to calculate the distance between xi

and xj in different ways, obtaining well known formulas to measure distances by setting the variable

p. By setting p = 2, we obtain the Euclidean distance. Setting p = 1 we obtain the Manhattan

distance, that is the sum of absolute differences between Cartesian points. And the Hamming

distance by counting the number of different features, that is used to measure the distance between

boolean vectors

In Figure 3.2 we want to classify the new instance xi in gray by measuring the distance

between xi and all other instances. We start by calculating the distance between xi and xj. Using

the Manhattan distance, we have:

L(xj, xi) = |1 − 4| + |1 − 5|

= 7

And using the Euclidean distance, we find a different value:

L(xj, xi) = (|1 − 4|2 + |1 − 5|2)
1

2

= (9 + 16)
1

2

= 5

What KNN algorithm really does is to measure the distance between xi and all other

instances, keeping the k instances with the minimum distances and then returning the class to

which most of the k instances belong. Depending on which method we choose to calculate the

distance between examples the classification of a new instance may change.

There are some problems working with KNN algorithms when the state space is represented

as a Cartesian plane. First, we have curse of dimensionality problems, such as irrelevant features, that

increases the distance between instances and the size of the state space. Second, we have scalability

problems, because for each new instance we want to classify, we have to measure the distance

between all other instances and the new instance. That makes the KNN algorithm complexity

increase linearly the time to classify a new instance as the number of available instances grows.

Third, we need to set the k value. If k is too small,the algorithm will probably overfit the results,

because it will look at a small portion of instances. If k is too large, the results will probably be

underfitted, because it will look at too many instances.
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xi  (1, 1)

xj  (4, 5)

Figure 3.2 – Estimating the class of the new example (gray) by calculating its distance from the
other examples

We have seen that machine learning algorithms learn a function that separates examples

of each class, but KNN is an unusual classifier because it does not learn a function that differen-

tiates between examples of different classes. Therefore, there is no training phase when using this

algorithm. We call it a lazy or instance based algorithm: it just makes estimations when a new

instance must be classified, looking in the entire dataset for the k instances that are closest to the

new instance.

3.4.2 Support vector machine

Support Vector Machine (SVM) [Vap00] is a binary classifier machine learning algorithm.

It represents the input space as a Cartesian plane, and splits the state space in two: one side contains

the positive instances, that we label as 1, and the other side contains the negative instances, that

we label as −1.

Figure 3.3 shows a two-dimensional state space with the negative instances in red and

the positive instances in blue. SVM splits the state space in two trying to divide the positive and

negative instances linearly. It calculates a line in the state space such that all positive instances are

on one side and the negative are on the other, creating two boundaries. The black line separates the

state space in two, while the red line is the boundary that separates the negatives examples from the

rest of the Cartesian plane, and the blue line is the boundary that separates the positive examples.

Consequently, the first problem we want to solve with SVM in the example above is to

calculate a straight line that splits the state space in two in order to separate the positive and

negative examples. Secondly, we want to calculate the two boundaries that are nearest to the first

examples that appear in each side. We need to find a line if the state-space is two-dimensional. If
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- 1 1

Figure 3.3 – Data linearly separable, with the support vectors inside circles. The separating lines are
under the support vectors showing the boundaries between the two classes.

the state-space is three-dimensional we need a plane. And if the state-space is higher-dimensional

we need a hyperplane, that is a generalization of a plane for n-dimensional spaces. More generally,

we need to find a hyperplane that divides the state space in two, independently of the number of

dimensions. There are many hyperplanes that separate the state space, but we want to find the

one that separates best. That is, the hyperplane with the largest margins between the positive and

negative examples, which we call the maximum marginal hyperplane.

- 1 1

Figure 3.4 – Non-linear separable data, separated by the black line

SVM uses the instances located in the boundaries to calculate the lines that separates the

Cartesian plane which we call support vectors. In Figure 3.3, support vectors are represented by the

colored circles within black circles under the separating lines. We can calculate these boundaries

because we suppose there is a gap between the positive and negative examples. The larger the

gap, more accurately SVM can classify new instances because the differences between positive and

negative examples become more clear.

The hyperplane in Figure 3.3 is linear because the instances can be linearly separable, then

we can use a linear SVM. But some state spaces separates better positive and negative instances if

the hyperplane is not linear, for example Figure 3.4, where we cannot draw a straight line to separate

them. In these cases we use a variant of the SVM algorithm, the non linear SVM [BGV92].
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We also can modify SVM to accept n classes, building a multiclass SVM: we train n SVM

classifiers, one for each class, and when we have a new instance, we test it in all classifiers. All of

them will return that the new instance does not belong to the algorithm’s class, except one, that is

the classifier that has the class that the new instance belongs to. This modifications allows SVM

classifiers to have the same power as the other classifiers that accepts n classes.

3.4.3 Naive bayes

Naive Bayes (NB) [Mit97] is a probabilistic classifier that uses the Bayes theorem. We

explain the Bayes theorem and then move on to defining the NB classifier and the gaussian naive

Bayes classifier (GNB).

Bayes theorem calculates the probability some event a is true given that other event b

is true, we express the probability of a given b as P (a|b), and the Bayes theorem is given by the

formula:

P (a|b) = P (b|a)P (a)
P (b)

To illustrate the Bayes theorem, consider that 5% of all emails are spam, and the chance

an email contains the word test given that it is spam is 30%, but the probability of an email contains

the word test is 10%, independent of being spam. The scenario can be summarized in the following

probabilities: P (spam) = 0.05, P (test|spam) = 0.3, P (email) = 0.1. If we want to calculate the

chance of an email being spam given it contains the word test, we use the Bayes theorem

P (spam|test) = P (test|spam)P (spam)
P (test)

= 0.3∗0.05
0.1

= 0.15

We can measure the chance of an email being spam given it contains the word test and

other words, for example email, calculating P (spam|test ∧ email ∧ word1 ∧ word2, ...), expressed

as:

P (X, Y |Z) = P (X|Z)P (Y |Z)

test and email are independent words, but both are caused by spam emails, in other words, the

the words of an spam email are dependent of the spam, but this words are not dependent between

them. Then, we say that test and email are independent variables, and they are conditionally inde-

pendent of the variable spam. In the context of feature vectors, we can say that all features in the

feature vector are independent, that means each feature contribute independently for an instance

classification.
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Given the definition of the Bayes theorem, we now turn to the formalization of the NB, a ma-

chine learning algorithm for classification using probability. It determines the probability that an

instance x, or a feature vector, belongs to a class c, that we write as c(x). We describe each feature

of x as f(x), where fn(x) is the nth feature of x:

P (c(x)|f1(x), f2(x)...fn(x))

In the email example, each feature of x defines if a given email contains a word, test and email

are features in x. It is assumed that each feature of x is independent of its classification C(x) and

of other features, we say that x is conditionally independent of C(x). To classify a new instance,

the algorithm calculates the probability of x belongs to each class cj ∈ C, and returns the most

probable class that x belongs to, called cMAP . Using the features of x, cMAP is calculated by:

cMAP = arg maxcj(x)∈C P (cj(x)|f1(x), f2(x)...fn(x))

We can rewrite this expression using Bayes theorem:

cMAP = arg maxcj∈C
P (f1(x),f2(x)...fn(x)|cj(x))P (cj(x))

P (f1(x),f2(x)...fn(x))

= arg maxcj∈C P (f1(x), f2(x)...fn(x)|cj(x))P (cj(x))

Based on the training data, it is easy to estimate each P (cj(x)) by counting the fre-

quency it appears. But estimating P (f1(x), f2(x)...fn(x)|cj(x)) is not feasible, because the number

of these terms is equal to the number of possible instances (the number of features) times the

number of possible target values (cj(x)). To solve this issue, the NB assumption is that the

attribute values are conditionally independent of the given target value. That means the prob-

ability of f1(x), f2(x)...fn(x) is just the product of the probabilities for the individual features,

P (f1(x), f2(x)...fn(x)|cj(x)) =
∏

i P (fi(x))|cj). Substituting this into equation, we have the NB:

[Mit97]

cNB = arg maxcj(x)∈C P (cj(x))
∏

i P (fi(x)|cj(x))

To apply the email classifier example in the NB, consider the training examples in the Table

3.1, that shows in each row if an email is spam or ham and if it contains the words test and email.

The column Email has the values spam, ham for different emails, and is to be predicted based on

the other columns, that shows if a word appears in a given email. To calculate the prediction if a

new instance x that contains the words test and email is spam, we use the NB formula

cNB = arg maxcj∈spam,ham P (cj(x))
∏

i P (fi(x)|cj(x))

cNB = arg maxcj∈spam,ham P (cj(x))P (test|cj(x))P (email|cj(x))
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To calculate cNB, the formula requires some probabilities that can be estimated from the

training data.

P (spam) = 3/5 = .6

P (ham) = 2/5 = .4

P (test|spam) = 3/3 = 1

P (test|ham) = 1/2 = .5

P (email|spam) = 1/3 = .33

P (email|ham) = 1/2 = .5

With this probabilities, we can estimate the class of the new instance

P (spam)P (test|spam)P (email|spam) = .198

P (ham)P (test|ham)P (email|ham) = .1

The NB classifier returns spam for the new instance, based on the estimations calculated

from the training data.

test email Email
1 1 spam
0 0 ham
1 0 spam
1 0 spam
0 1 ham

Table 3.1 – Training examples for email classifier

Gaussian Naive Bayes [Mit97] is a variation of NB that assumes the likelihood of a feature

is Gaussian. Then, in order to build a GNB classifier, we must calculate the mean (µ) and the

variance (σ2) of each class in the dataset and apply the normal distribution formula.
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4. FEATURE SELECTION FOR FMRI DATA

In Section 3.3.1, we discuss how to create generic examples of any domain for classification.

We viewed how to reduce dimensionality of any type of data for increasing classification accuracy

using feature selection algorithms, which can be implemented in a number of ways. Because we

work with a very specific type of data, instead of describing traditional feature selections algorithms

that are useful for various domains, we work with feature selection algorithms widely used with fMRI

data and classification.

The data of each patient is composed of over 30,000 voxels, most of which are not involved

in the neural activity regarding the pseudo word task performed by patients from ACERTA. Since

such irrelevant voxels do have activation values, they can interfere with the training of the classifier.

Consequently, we want to remove irrelevant voxels from the dataset before using the classifier in

order to generate cleaner results. Thus, instead of using all of the 30,000 voxels, we use feature

selection methods in order to transform the fMRI data into relevant features for the classifier. All

the feature selection methods we use in the experiments in Chapter 6 are detailed below.

4.1 Most Stable Voxels

In the first feature selection approach we evaluate what was proposed by Buchweitz’s et al.

[BSM+12] by selecting a fixed number of most stable voxels [PMB09]. By stable voxel we mean a

voxel that has a minimal standard deviation value for its activation over the times when patients are

seeing words within the time series. We describe this technique in further detail in Section 5.3. This

means that these voxels are consistently activated throughout the tasks. Following this approach,

this method consists of selecting voxels to be more or less evenly distributed throughout the brain

instead of being clustered in just a few brain locations (otherwise, activation tends to cluster around

the occipital lobe, due to the nature of a visual task). Therefore, we partition the brain into 4

lobes (occipital, temporal, parietal, frontal) and find the n most stable voxels in each lobe, resulting

in n ∗ 4 most voxels distributed over the brain which will be used as features for the classification

algorithm.

Although the number of chosen voxels is arbitrary, classifier accuracy does not increase

much as we increase the number of chosen voxels. For example, Buchweitz [BSM+12] et al. argues

there is no need for choosing more than 2000 voxels, and in that case, 120 voxels were enough for

the classifier to perform above chance.
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4.2 Region of Interest

A Region of Interest (ROI) in the context of neuroimaging is a defined portion of the brain

that is important for the study at hand. We separate a ROI from the rest of the brain by defining

the voxels that belong to the ROI. For example, Figure 4.1 shows voxels selected from the inferior

frontal region of the brain. This ROI is adequated for neuroimaging studies about reading, as in

most people this brain region is known to be used for reading.

fMRI studies hypothesize that the voxels from a specific region have a different pattern of

activation from the other brain areas when patients are performing a task. Thus, by separating the

brain in ROIs, we can answer various questions about our study. If we are investigating the brain

anatomy, we can use the voxels of specific ROIs to answer questions such as ’is region x involved

in task a?’ or ’can a classifier using only voxels from region x differentiate between tasks a and b?’

[EGK09].

In order to separate the voxels from one ROI to the rest of the brain, we need to define

where that ROI is located. There are several approaches to define a ROI. We can manually extract

the voxels that belong to a ROI in the data of each patient, setting the boundaries of the voxels that

belong to an ROI. This method is very precise, because the brain anatomy varies and the same ROI

can be in slightly different locations in each patient. One drawback of this method is that we need

a brain anatomy specialist to define the ROIs. Nevertheless, there are easier ways of separating the

ROIs, such as using atlases that calculate the location of a ROI in a single subject based on statistical

brain maps [FHW+94], or using masks that already define where each brain region is located, such

as the masks in Figure 4.2, which divides the brain in anatomical and functional regions.

Figure 4.1 – Example of a Region of Interest. This ROI covers all voxels from the inferior frontal
part of the brain, which is involved in the language production task. Thus, it is appropriate for
neuroimaging studies about reading, as ACERTA project.

After defining the ROI, we use it to generate features for the classifier examples. The

simplest way of extracting features is to use all voxels from the ROI and convert each voxel in a

feature. Because classifiers often need no more than 500 voxels for achieving reliable accuracy, if the

ROI is large and contains many voxels, we can choose only a subset of them to use in classification

[EGK09]. Further, because each patient has a different head size, not all patients data have all
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the voxels in an ROI, specially if that ROI is located on the edges of the brain (although some

preprocessing, as spatial normalization, can fix that problem by making all the patinets head of the

same size). For this reason, choosing a fixed number of voxels in a ROI is reasonable when we want

all feature vectors to have the same number of features, so we can compare the data of different

patients.

The last step of working with ROIs is to prove the classification result is reliable. For that

reason, we use the same classifier with features of a second ROI that should not be involved in the

task. If the first ROI provides a better classification than the ROI not involved in the task, we say it is

unlike that the voxels from a region not involved in the task provide a better classification than voxels

involved in the task, proving the significance of the classifier result [EGK09]. For example, when

using ACERTA data, in which children perform a written word task, we expect the classification

using voxels from inferior frontal gyrus (related to language production) to have better accuracy

than using the voxels from auditory cortex, since the only sound children hear during scanning is the

noise of the MRI machine.

4.3 Parcellations

Parcellations are brain masks that define how the voxels in the brain are divided into smaller

regions. For example, Figure 4.2 shows 3 different parcellations and how they divide brain regions

into smaller parts (AAL, cc200 and cc400). To generate the activation of a single parcellation, we

calculate the average activation of all voxels inside the parcellation. The problem of measuring the

activation of individual voxels is that they are noisy and often do not represent the main activation of

one specific brain region. Thus, we expect that increasing the feature selection granularity using the

average activation of many voxels results in an increase in the reliability of the resulting examples,

although we lose most of the information that the voxels in that brain portion contains.

We use this feature selection method when we want to study the whole brain and the

interaction between brain regions. For example, we can answer questions such as ”can we find the

brain regions that integrate the neural network involved in task a?” or ”can we find the brain regions

that make the classifier differentiate between tasks a and b?”

There are important differences between ROI and parcellations feature selection, although

both can use the same mask for defining brain regions or ROIs. When using ROI feature selection,

we have an a priori hypothesis about the brain functions involving a task, and test only that region

in detail. Conversely, parcellation feature selection does not assume which brain areas are involved

in the task, summarising (calculating the mean of all voxels) and testing all the brain areas.

In this work, we test 3 different masks, and each mask contains its own parcellations defi-

nitions. The first mask is the AAL mask [AGMGVH06], which divides the brain into 116 anatomical

regions (first line of Figure 4.2). From these regions, we remove the ROIs that belong to the cere-

bellum (which is known to have no important activation for cognitive tasks, and is not scanned
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Figure 4.2 – 3 types of parcellations: AAL divides the brain in 116 anatomical regions, cc200 divides
the brain in 200 functional regions and cc400 divides the brain in 400 functional regions. From
Craddock et al. [CJH+12]

in the scan session), obtaining 90 parcellations for the experiments. The second mask is cc200

[CJH+12] (second line of Figure 4.2). cc200 mask contains 200 regions divided functionally. That

means the voxels are clusterized by activation similarity, differently from AAL, which is parcellated

by anatomical similarity. The third mask is cc400 [CJH+12] (third line of Figure 4.2), which group

voxels by similarity as cc200, but divides the brain in more parcellations (400). The authors of cc200

and cc400 recommend using cc200 when we want more readability in the results, as there fewer

brain areas to interpret in this mask. Conversely, when we want more accuracy in our results, cc400

is recommended [CJH+12].

4.4 ReHo

Regional Homogenity (ReHo) [ZJL+04] is a feature selection algorithm commonly used

with rsfMRI data [LLL+06] . It measures brain activity by calculating the similarity between a

single voxel and its nearest neighbors. This method is based on the hypothesis that brain activity is

concentrated in voxel clusters instead of just a single voxel.

Applying ReHo to rsfMRI is appropriate because it makes no prior assumption of how the

BOLD signal is. As we have seen in Section 2.2, in task-based fMRI we know what subjects are

doing inside the MRI scanner, so we are able to model the hemodynamic response related to the

task, while in rsFMRI, we do not know what subjects are doing, then we cannot model the BOLD

signal (which means guessing in what time the BOLD signal will be higher and lower, as we show

in Figure 2.4). By not supposing how the BOLD signal is, ReHo can gather more information than
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methods that requires a predefined model of the BOLD signal. Because we cannot predict what

subjects are doing inside MRI scanner, then we cannot predict the resulting BOLD signal. As a

consequence, ReHo identifies unexpected BOLD signal patterns, because we are not looking for any

pattern in particular. Although this algorithm is designed for rsfMRI, it can be used for task-related

fMRI data when using block design or slow event related paradigms.

To calculate similarity between voxels, we use Kendall’s coefficient concordance (KCC)

[Ken90]. KCC is a statistical test that compares similarity between any number of group of voxels.

Its values are in a range between 0 and 1, where 1 means all voxels in a group are equal, indicating

great similarity. KCC is different from the t-test method described in Section 2 because it compares

any number of voxel clusters and does not assume data has a normal distribution.

Figure 4.3 – The shape of the cluster ReHo algorithm analyzes to find clusters with high similarity.
Each cube is a voxel. from C-PAC [SCK+14]

The number of voxels ReHo algorithm cluster can be set as 7, 19 and 27, as shown in

Figure ??. That means the algorithm looks for clusters of voxels of the determined size that have a

similar activation. Figure 4.3 shows the different results we can obtain by choosing the cluster size.

As we increase the number of contiguous voxels we analyse the similarity, less areas with a higher

KCC we get.

4.5 Whole Brain

This is the simplest feature selection we use in this work. It consists of extracting from

the fMRI data all voxels that are inside the brain with a binary mask (Figure 4.4) and use them as

features. This set up results in examples with about 30,000 features, which are approximately the

number of voxels inside the brain. The advantage of this technique is that it allows the classifier

to look for patterns that are spatially distributed across the brain instead of using feature selection

methods that assumes a predetermined hypothesis about where those patterns are. Although using

all the voxels of the brain from classification seems to produce noisy examples, it can outperforms

other feature selection methods, such as getting only voxels from an ROI [HMB+11].

We can simply use raw voxels as features, but there are many ways of extracting more

information of each voxel by transforming each one in multiple features. For example, instead of

extracting all the voxel time series, we can calculate the maximum voxel time series, the average
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Figure 4.4 – Binary mask used for extracting all the voxels that are inside the brain.

time series and maximum and minimum correlation coefficient between the voxel and its neighbours

[SC14].

4.6 ANOVA

Analysis of Variance (ANOVA) is a standard approach when analysing fMRI data, and is

frequently used with classification for reducing the number of voxels [SEVA09] [ABMSP12]. It is a

statistical method for separating groups that are mixed, which compares the means of two groups to

ensure they were generated by different sources. ANOVA is a reliable method because it performs

multiple statistical tests to validate the data can be split in groups. When using ANOVA with fMRI

data, we say each group is a condition (e.g. words and pseudo words are different conditions).

For example, a voxels that always have variance equal to 2 when a patient is reading a word, and

always have variance 20 when a patient is reading a pseudo-word probably can help the classifier

to distinguish what type of word the patient is reading. This method is adequated for fMRI data

because different conditions are supposed to generate different BOLD signal, and consequently,

generate distinct variances.

When studying ANOVA In more detail,we notice it returns a statistical measure called f-

score for each voxel, which indicates the level of variance of that voxels between groups. A common

approach for choosing voxels with this method is to get the voxels with higher f-score [HHS+09].

For example, in this work we use as features the 5% voxels with higher f-score.
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5. RELATED WORK

We have surveyed related work on the application of machine learning to fMRI data and

have found 4 techniques we consider to be related to our work. In this chapter, we study these

techniques and compare them with our work. The first application tries to improve a classifier error

rate by developing two new feature selection methods and comparing these methods with two well

known feature selection methods. This analysis is performed on the data of patients with major

depressive disorder [CHHM09].

The key similarity between this work to ours is that they use clinical subjects to identify

a neurocognitive disorder. In the same way, they try many feature selection algorithms to compare

the final SVM acuracy using each one. Finally, they use a connectivity map as the feature vector,

which is an experiment we try with our data. The second application predicts which children with

developmental dyslexia improves their reading skills after a certain number of years using the support

vector machine classifier [HMB+11]. Both works use data from children with dyslexia to train support

vector classifiers. Thus, we expect to obtain similar results, especially the most important cortical

locations for the classifier. The third describes a feature selection single-subject method we use

in the experiments [BSM+12]. The feature selection consists of choosing just a few number of

voxels from a task fMRI data in order to train a GNB. Finally, the last reports an fMRI study on

the differences between good and poor early readers [PTP+01]. This work emphasizes how fMRI

data analysis and behaviour measures correlate, and gives a description about current finding about

reading difficulty neural basis. We expect to find the same cortical locations hiper and hipo activated

in our data.

5.1 Improving classifiers accuracy by using different feature selection methods

Craddock et al. [CHHM09] propose a technique to detect major depressive disorder using

support vector machine classifier. In this study, the resting state fMRI (rsfMRI) data of 20 healthy

subjects and 20 patients with major depressive disorder and no other clinical disorder was acquired

in order to use different feature selection methods and a machine learning methods to differentiate

between patients and controls. This work develops two new feature selection methods and compares

these methods with two state-of-the-art methods. The final classifier accuracy varies according to

the feature selection method, demonstrating that choosing the right feature selection for the data

is critical for the resulting classifier accuracy.

In order to prepare data for the feature selection algorithm and the machine learning

algorithm, functional connectivity (FC) maps are created for each subject. FC maps show which

brain areas communicate with which other areas, highlighting the correlations between spatially

remote brain activity. An example of FC is figure 5.1, which shows a matrix where rows and
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columns are ROIs of the brain, demonstrating brain areas that have different connectivity patterns

between groups, depressed vs. controls.

If two areas have the same connectivity pattern, we say that they are correlated (yellow

squares).

Conversely, they have different connectivity patterns, we say they are anti correlated (blue

squares). Differences between brain networks of controls and patients serve as markers for diseases.

State-of-the-art resting state FC (rsFC) analysis is divided in two parts. First, a subject-

specific FC map is generated using univariate methods, such as correlation analysis and ICA that we

have seen in Section 2.2.2. Second, a second level statistical analysis (t-test) compares the FC map

between groups. Because of the drawbacks of univariate methods, the authors propose to analyse

rsFC with multivoxel pattern analysis (MVPA). MVPA is a classifier that uses at all voxels at the

same time, in contrast to univariate methods, that use just one voxel at time. A SVM is used in

this application, as it is sensitive to spatially distributed patterns of FC and is less sensitive to noise.

Four feature selection methods are used in order to increase the SVM accuracy, where a feature is

an FC value between two brain regions (one cell of the rsFC matrix). In this context, each brain

region is represented by a voxel chosen by a brain anatomy specialist.

Figure 5.1 – From [CHHM09]. Connectivity matrix showing how 15 brain regions communicate. The
connectivity matrix varies according to the feature selection method. Yellow squares show positive
correlation between two areas while blue squares show negative correlation. Gray squares show no
correlation between areas.
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The purpose of the study is to apply two new feature selection methods in order to improve

SVM accuracy when using rsfMRI data. A filter method (reliability filter) and a wrapper method (re-

liability reverse feature elimination) are created and compared to standard feature selection methods

(TF and RFE) (see Section 3.3.1).

• TF ( t-test filter) is a filter method that uses t-test to determine which features differentiates

between two groups, eliminating features with lower scores.

• RF (reliability filter) is a filter method that uses bootstrap methods (see Section 3.3.2) to

split the data between training set and test set. It uses the test set to train an SVM and

selects features that are chosen as support vectors. Consequently, RF selects a set of features

that really make sense for machine learning algorithms, because it choose the features that

separate the data between two classes (the features that are support vectors are in the edge

of the hyperplane that splits the cartesian plane in 2, dividing the examples of each class).

• RFE (reliability reverse feature elimination) is a wrapper method that is used iteratively with

bootstrap methods. It ranks features according to the final classifier accuracy using that set

of features in each iteration and excludes 10% of the features with lowest ranks.

• RRFE (reliability reverse feature elimination) is similar to the RFE method, but it calculates

the reliability of features in order to select the ones that will be removed in each iteration.

SVM distinguished better between controls and patients using the RF feature selection

method, with 95% accuracy. With no feature selection, SVM accuracy dropped to 62.5%, while

state-of-the-art methods are not able to distinguish between patients and controls. Figure 5.1 shows

the matrix generated by each feature selection described above. We want to highlight that as

this matrix represents a few brain regions, it is not just computer readable. Anyone with brain

anatomy knowledge can interpret it and have insights about the cognitive disorder of the study.

Additionally, the classifier accuracy can give us a deeper understanding of which feature selection

method generated the most reliable connectivity map.

5.2 Predicting Dyslexia

The work by Hoeft et al. [HMB+11] investigates the brain mechanism that children

with dyslexia use to improve reading skills using SVM classifiers. Some children and adults with

dyslexia can compensate their poor learning abilities and achieve reasonable reading scores over

time, although they do not reach standard scores. It is unknown why some people with dyslexia

can develop this compensation while others others cannot, as well as the brain parts involved in

that compensatory mechanism. No behavioral measure (standard reading and writing tests) is able

to predict improvement in reading skills of dyslexic children above chance, that’s why studying the

neural basis of this compensation can lead to a better understanding of how this mechanism works.
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Studies on patients with dyslexia using fMRI and reading tasks reported hypoactivation in

the left parietotemporal and occipitotemporal regions, and hyperactivation in left and right inferior

frontal gyri (IFG) [PTP+01] [SMvdM+08]. This hyperactivation may indicate the compensatory

mechanism children with dyslexia develop in order to improve their poor reading skills, as they are

not found in controls and they grow over time in children with dyslexia.

In order to understand such compensatory mechanism that improves over time, 25 children

with dyslexia and 20 healthy controls performed three types of tests. First, they performed a written

rhyme word task in an fMRI experiment. Second, subjects underwent to Diffusion Tensor Imaging

scans. Finally, they took other tests to provide reading behavioral measures. Two and a half years

later, the behavioral tests were taken again to measure improvements on the children reading skills.

Two analyses were made with the SVM classifier to predict if a child with dyslexia would improve its

reading scores after 2.5 years: univariate analysis and multivariate pattern analysis (MVPA). Both

used the fMRI data taken when children were performing the rhyme task at the beginning of the

experiment.

For the univariate analysis, two possible compensatory areas for children with dyslexia were

used, the left and right IFG. The results show that the behavioral measure of a single word reading

correlated positively with the right IFG activation. Moreover, when using the data of the whole

brain the only positive correlation found was with the right IFG for children with dyslexia; the same

correlation was not found in the control group.

For the MVPA analysis, children with dyslexia were separated into two groups: one in

which children increased the single word reading measure after 2.5 years, and another the group

where children did not improve. A whole-brain MVPA was performed using the voxel intensity of the

contrast image (i.e. signal change between rhyme task and resting state) with a linear SVM classifier

using leave one out cross-validation. The results show 92% accuracy when classifying whether a

single child would improve its reading skills or not. When using the two ROIs (right and left IFG)

instead of the whole brain, the accuracy decreases to 72%. Further, the classifier indicates that the

voxels that contributed more to the classification are located in the right IFG, left prefrontal cortex

and left parietotemporal region. Finally, the results reported that even though the classifier accuracy

is high when using only fMRI data, adding behavioral measures to the examples leads to a decrease

in the classifier accuracy.

The authors conclude the univariate and MVPA results show evidence that the right IFG

exhibits a greater activation while children with dyslexia perform the rhyme task, and this hyper

activation correlates positively with reading scores. Therefore, we can say that the right IFG plays

an important role in the improvement of reading skills specifically for children with dyslexia, as

these pattern activations and correlations were not found in the controls. Furthermore, the results

show the MVPA analysis predicted improvement in reading skills much better than the behavioral

measures, and the analyses with the whole brain are more precise than using just specific ROIs.
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5.3 Most stable voxels feature selection

The work of Buchweitz et al. [BSM+12] aims to understand brain pattern activations

associated with the semantic representation of nouns in bilinguals (speakers of portuguese and

english). More specifically, the authors investigated whether the brain pattern activation for one

noun in one language is similar to the pattern activation for the same noun in another language.

They hypothesize that if a classifier can identify the word a subject is reading when trained in one

language (L1) and tested in other (L2), then the semantic representation of the word is independent

from language.

For this purpose, participants that are natural Portuguese (L1) speakers and learned English

(L2) later were chosen for the study. They were instructed to read 14 concrete nouns in Portuguese

in one scan session and the same nouns in English in a separate scan session. Each scan session

is separated in 6 blocks, in which the 14 words are presented in random order. Thus, a word is

presented 6 times in L1 and 6 times in L2. The duration of the stimulus is 3 seconds, followed by 7

seconds rest.

A classifier was trained in one language and then tested in other language. We highlight

3 key points used to generate the examples. First, as there is a huge amount of voxels in the scan

data, feature selection was performed. The 120 most stable voxels of each patient were chosen

in order to create the examples. In this context, stable voxel means a voxels that have a minimal

standard deviation while participants are seeing a word. Second, while creating one example per

word, the authors used the average percent signal change of the chosen voxels when participants

see that word. Then, they skip the first 4 images when a participant started to see a word, and use

average of the next 4 images to create an example. Notice that skipping some images and taking

the average of imgages taken some seconds later is a reliable method for using only the images

where the BOLD signal should be activated, as we have seen in Section 2.2. Finally, the examples

are normalized, so the average is 0 and the standard deviation in 1. Normalizing the examples make

all features have the same importance.

For the classification, a gaussian naive bayes method is used, and the examples are divided

in 14 classes (one class for each noun). As there are many classes in this experiment, rank-accuracy

is used to measure the prediction accuracy of the classifier. That mean instead of the classifier

predicts a class that an example belong, it return the probability of the example being of eahc class,

creating a rank indicating which class is the most probable for the example. Two classifiers are

trained for each participant, the within language classifier (the classifier is trained and tested in the

same language) and the across language classifier (the classifier is trained and tested in the same

language). When measuring the accuracy of the within language classifier, k-fold cross validation

was used, leaving 2 examples out from the 6 examples of each word. The average accuracy of each

fold was calculated, and the final classifiers accuracy is the average accuracy of all folds. For the

across language classifier, all the examples in one language were used as the training set while the

examples of the other language was used as the test set.
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In the across language classification, the classifier was able identify which of the 14 words

the participant was reading. When training the classifier in L2 and testing in L1, the classifier

accuracy is 68%, while when training in L1 and testing in L2, the classifier accuracy increase to

72%. The most stable voxels chosen for this classifier are located mainly in the left hemisphere

of the brain, more precisely in the frontal and occipital lobe. Additionaly, an overlap was found

in between the most stable voxels of L1 and L2. For within language classification, the classifier

accuracy in L1 and L2 are 60%. A correlation between the classifier accuracy of the across language

and withing language classification was found within subjects.

5.4 Dyslexia network

Most children with reading disabilities have problems with phonological awareness (PA),

which is the knowlege that spoken words are formed by smaller sound (syllabes and phonemes).

PA can be measured by phoneme deletion and blending tasks, and has a strong correlation with

word reading outcome in early readers (this task can predict the future reading measure of children).

Consequently, there is a strong relation between PA and reading acquisition, poor readers often have

low scores on those tests. PA helps in the deveopment of visual word recognition for two reasons.

First, PA helps in the development of visual word recognition, as it prepares children to recognize

the small pieces of spoken words. Second, PA supports the association of visual representation of

words (grapheme) with the phoneme they represent, that is the key skill for reading. Grapheme to

phoneme conversion is measured by pseudoword reading task, that is strongly correlated with PA

and is a predictor of word reading outcome. Thus, Poldrack et al. [PTP+01] tries to correlate those

measures with fMRI activation patterns in early readers.

fMRI studies often show the differences between typical readers and poor readers in the left

hemisphere regions, in which the language network is located in typical readers. More specifically,

those differences are located in the left hemisphere posterior areas, where poor readers show under-

activation in tempoparietal and occipitotemporal locations. Further, poor readers show evidences of

a compensatory mechanism to their poor skills by hyperactivating the posterior regions of the right

hemisphere and in the left and right frontal lobe.

Besides the language processing impairments, the authors also investigate if the PA deficit

can be explained by visual motion processing and auditory processing, what could increase the

complexity of the well known reading network. Additionally, a brain region that plays an important

role in early reading and could differentiate reading difficulty (RD) and traditional development (TD)

is the thalamus, which is involved in learning tasks. In summary, the authors hypothesize the early

reading network is wider than we expect and that this network can differentiate between TD and

RD.

For this purpose a fMRI study with 62 English speaking children was performed, the

subjects were beginner readers with and without RD. Behavioral measures of reading and listening
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were also taken. The fMRI paradigm consists of a mach/mismatch judgment where subjects viewed

a picture and read or listened a word or a pseudoword and judged if the picture and the word match.

Figure 5.2 – From [PTP+01]. Brain areas activated during the print word stimulus that correlate
with writing behavioral measures. That means poor readers activate less the highlighted areas than
good readers. The left hemisphere is at the right side of the image.

When analysing the fMRI data, the authors reported that while reading printed words, the

most important activated brain regions are: left superior temporal gyrus, left fusiform gyrus and left

thalamus. The activation of these regions are correlated with behavioral measures and are shown

in Figure 5.2. Moreover, while listening to spoken words, the most activated brain areas are: left

inferior frontal gyrus, left precuneus and posterior cingulate gyrus. A smaller activation was found

in the right superior temporal gyrus, thalamus and fusiform gyrus.

The authors discuss that the neural reading network of skilled early readers is wider than

the network of RD readers. That means skilled readers recruit more brain areas than poor readers.

This network is composed by the brain regions described above. A positive correlation was found

between behavioral speaking and listening scores and the activation of the following regions: left

temporarietal and occiptotemporal regions, left inferiorfrontal gyrus, precuneus, posterior thalamus,

prefrontal cortex and right parietal and temporal networks. The reading neural network in early

readers is more distributed than in proficient late readers. Because early readers need more support

for the reading task, more brain regions are recruited. Therefore, as early readers become more

skilled, the network becomes more efficient. Additionally, the brain locations recruited for the

reading and listening task in the study shows that PA in early readers involves more networks than

just the language network.
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5.5 Discussion

The works described in this chapter demonstrate how fMRI studies can provide good

evidence of how the brain perform daily tasks or to get a deeper understanding of cognitive diseases.

The tree first works use machine learning to analyse the fMRI data in different ways. The first one

shows that the feature selection methods we choose for the data can change dramatically the results

we get for the feature vector (see the differences between the feature vectors generated by the 4

feature selection methods in Figure 5.1) and later from the classifier accuracy. The second uses

SVM algorithms to predict reading skills gains in dyslexic children, in a context in which behavioral

measures are not enough to do the same task. Besides not predicting reading skills gain, those

behavioral measures decrease the classifier accuracy when added to the feature vector. Further, the

paper shows the classifier accuracy is maximized when we use the whole brain to do the classification

instead of using just some regions of interest. This statement complies with the idea that the brain

works with networks rather than individual regions, and we must use classifiers to analyse many brain

regions at the same time in order to find those distributed networks. The third work describes a

feature selection technique used in our experiments and details how to deal with fMRI data, such as

what part of the time series we need to average to generate the examples for the classifier. The last

work does not use classifier for the fMRI analysis, instead it discriminates the brain areas involved in

the PA in early readers. Additionally, the study shows correlations between some behavioral measures

and activation level in some brain regions. In our experiments, we should find some of the brain

areas reported in this study, as the authors point those areas are found in many other neuroimaging

language studies.
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6. EXPERIMENTS AND RESULTS

We now describe the experiments we conducted on fMRI data from ACERTA project. Our

ultimate goal is to discover which brain activation patterns children with reading impairments use for

reading and discriminating between words and pseudo words. In this sense, we use a Linear Support

Vector Machine classifier, detailed in Section 3.4.2, to discover those patterns and test some of the

feature selection algorithms from Chapter 4. We aimed to test whether feature selection algorithms

can provide a better classification accuracy as well as more reliable results about the brain regions

involved in the pseudo word task. We describe how data was collected in the scanning session and

preprocessed in Section 6.1, how we generate examples for classification from the pre-processed data

in Section 6.2.

We divide our experiments into two types. Initially we test the classification algorithms on

the data of single patients in Section 6.3. However, we are interested in the brain patterns children

with reading impairments use rather than the brain patterns of individuals. Thus, the second set

of experiments use the data of all patients together in Section 6.4, testing the same classification

and feature selection techniques to discriminate the brain patterns underlying the reading task,

generalizing the classifier to be trained with data from some patients and identifying tasks on other

patients. Note that we do not use Reho and Most Stable Voxels methods because we were only able

to apply these methods in the single subject experiments. That is because these methods choose

voxels using the time series data of a single subject, selecting voxels in different locations in each

subject’s data. For performing the cross subject classification, we need the feature selection to

choose voxels that will work in the exact same brain regions throughout all the subjects. Figure 6.1

shows a schematic view of how the whole experiment was performed: image acquisition, processing,

generating cleaner images for the classifier (contrast images, in cross subject experiments) using

feature selection and classification. Finally, we discuss the results in Section 6.5.

scanning processing feature 
selection

classification
raw fMRI data contrast images examples

important 
brain regions

Figure 6.1 – Schematic view of experiments from data acquisition through identifying the important
brain regions for reading. First, in the scanning session, children read a list of words while the MRI
machine acquire the raw fMRI data. Second, the raw data is processed, cleaning the noisy fMRI data
and generating contrast images. Third, the contrast image is used in the feature selection algorithm.
In this example, we use the whole brain feature selection, in which all voxels in yellow (that are inside
the brain) are chosen. The feature selection algorithm generates examples for classification. Finally,
we use the examples with the SVM classifer, which show us the important regions for reading.
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6.1 Data

We briefly describe the data from the ACERTA project we use in this work. Some study

parameters reported here are out of the scope of this work and are not detailed further (but see

[HSM04]). Nevertheless, the specific parameters must be described in any fMRI study in order to

allow reproducibility.

Participants Children with complaints of persistent reading difficulties after two years of formal

schooling were selected for the ACERTA project. Participants undergo a psychological and

medical evaluation (I.Q. and medical history), and a series of reading and writing evaluations

with a speech therapist. After the evaluation, children diagnosed with dyslexia were scanned at

the Brain Institute: 10 participants (4 female ); mean age 10.2 years (SD = 1.68, range = 8 -

13). Right and left handed people has different brain configurations. While most right-handed

people has language related brain regions in the left hemisphere, most left-handed people has

the same language region in the right hemisphere. Because is easier to analyse fMRI data if all

participants have the same brain configuration, specially the language related regions, in this

study we only use right-handed children. The present study was approved by the Pontifical

Catholic University Research and Ethics Committee (process number 3629513.0.0000.5336).

At this moment, we have a number of patients with reading difficulties, but only a few healthy

controls. For this reason, in this work we only use data from children with reading difficulties.

Nevertheless, in the future, when we acquire the same number of scan of children with reading

difficulties and controls, we want to compare the reading brain patterns from the two groups.

Paradigm An event-related experiment was conducted using a word and pseudo word reading task.

The set of stimuli is controlled for regularity of letter-sound association, word length (long and

short words), and frequency (frequent and infrequent). The reading task contains 20 regular

words, 20 irregular words and 20 pseudo words. The 60 stimuli were divided in 2 runs with

30 trials each. Each stimulus was presented on a screen for 7 seconds with the question “is

this a real word?”, and the participant had to answer “yes” or “no” by pressing a button. The

inter stimulus interval ranged from 1 to 3 seconds. The 2 baseline conditions consisted of the

presentation of a white cross in the middle of a black screen for 30 seconds.

Scanning All data was collected on a GE HDxT 3.0T MRI scanner. Patients underwent a T1

structural scan (TR/TE = 6.16/2.18ms, isotropic 1mm3 voxels) and then, a two 5min 26sec

functional FMRI EPI sequence, which was performed with the following parameters: TR =

2000ms, TE = 30ms, 29 interleaved slices, slice thickness = 3.6mm matrix size = 64x64,

FOV = 216x216mm3, voxel size = 3.4x3.4x3.6mm3.

Preprocessing The data for the single subject and cross subject experiment underwent different

preprocessing steps. For the single subject experiment, functional data was upsampled to have

a TR=1 time resolution. The first 6 seconds of each functional run was discarded to eliminate
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T1 equilibrium effects and subsequently concatenated. Data was then despiked, slice-time

and motion corrected, blurred with a 6mm full width-half-max Gaussian kernel, and aligned

to a standard space (MNI152) using the T1 structural volume for improving the registration.

Finally, in order to further remove noise from the data, a general linear model was calculated

using the motion estimation parameters as nuisance variables. All prepossessing was performed

using the AFNI software.

For the cross subject data, Statistical analysis was performed using the statistical parametric

mapping software (SPM8) and images were preprocessed for slice-time correction, realignment,

coregistration, normalisation and smoothing. A first level multiple regression was performed

with the 3 task conditions (words) and baseline.

6.2 Example generation for fMRI data

When generating examples for the classification experiments, we need to reduce the 640

seconds of data into a format suitable for processing in the specific machine learning approaches we

use in this work. For single subject experiments, we use two approaches to transform each of the 60

stimuli into one example, while in the cross subject experiment we use one technique to transform

the the time series of a single patient into one example of each class (regular word, irregular word,

pseudo word).

6.2.1 Mean 4 Seconds

In the first method for generating examples we follow Buchweitz et al. [BSM+12] (dis-

cussed in Section 5.3) and other studies [SMM+08] [MSC+08]. In our study, each word remained

on the screen for seven seconds. The brain imaging data used consists of the average activation of

four seconds of a voxels for images collected two seconds after the moment each word was presented

and the images in the following four seconds; if the stimulus starts in time point 1, we use the time

points 3,4,5,6. In this sense, we try to average the activation time points where the BOLD signal is

at its maximum, as , as illustrated by the activation graph from Figure 2.4 in Section 2.2

6.2.2 Betas

When using data from an event related paradigm, as we use in our experiments, sometimes

the signal of two tasks overlap because they are too close and there is no time for the BOLD signal to

return to baseline, Figure 6.2 illustrate how the BOLD signal of two tasks can overlap. Consequently,

averaging the BOLD signal in this case is not helpful. For overcoming this problem, we can estimate

a single value for each stimulus separately. Because we have 60 stimuli, we get 60 values which
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represent the activation in a voxel without interference of near tasks. Instead of each voxel having

640 time points (since scanning session has 640 seconds) we reduce this number to 60 time points,

one for each task.

Task A

Task B

Task A + B

Figure 6.2 – Two tasks of different conditions can generate different BOLD signals (tasks A and
B). Task B starts right after task A, but the BOLD signal of task A do not have en ought time to
return to baseline before task B starts. When the tasks are too close in time, the resulting BOLD
signal of the two tasks sum (Task A + B).

A common approach for estimating one value for a single task is using beta series regression,

which is a type of general linear model [RGD04]. Beta series regression calculates one beta value

for each task. There are a number of ways of calculating betas. We tried 2 approaches described

in the work of Mumford et al. [MTAP12], namely, LS-A and LS-S. LS-A is a traditional approach

while LS-S is a new approach they developed and reported as providing better classification accuracy

when compared with traditional methods. However, in our experiments we obtained almost identical

results using both techniques. Thus, we report only results from the traditional LS-A technique.

6.2.3 Contrast between conditions

For the cross subject experiment, instead of using the time series fMRI data with 640 time

points, we use contrast images, that is, a 3D matrix. Contrast images show the intensity difference

between two conditions. In this context, we have 4 conditions, regular word, irregular word, pseudo

word and baseline. For example, we can create a 3D image that shows the intensity difference

between children seeing regular words and seeing irregular words. In this image, each voxel contains

a single value which is the intensity difference between the two conditions, regular and irregular

words. We call this image regular > irregular. Notice image regular > irregular is different

from image irregular > regular. We can create additional contrast images showing the difference

between when children are performing any task (summing up the task conditions regular, irregular

and pseudo word) and when they are resting: all > baseline and baseline > all. Figure 6.3 details
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how contrast images are generated, using all > baseline and baseline > all images as example.

This set up results in the following contrast images, which are the main input data for the classifier:

all > baseline, baseline > all, regular > irregular, irregular > regular, regular > pseudo,

pseudo > regular, irregular > pseudo and pseudo > irregular 1.

All

Baseline

All > Baseline

Baseline > All

Figure 6.3 – Schematic example of contrast images all > baseline and baseline > all generation.
First, we calculate the average activation in conditions all and in condition baseline. In this example,
in the left figures, there is more activation in the back of the brain in all and more activation in
the right hemisphere in baseline. Second, we subtract one condition from another, generating the
contrast images in the right. For generating all > baseline image, we subtract all from baseline.
Conversely, for generating baseline > all image, we subtract baseline from all.

6.3 Single Subject Experiments

We performed an initial set of experiments classifying tasks within a single subject in order

to ensure it is possible to use the feature selection methods in the data. In these experiments, we

used feature selection methods from Chapter 4 combined with two different example generation

techniques: averaging 4 seconds of the activation images when children are performing a task and

performing a beta series regression in the data. As the cross subject experiment is the final deliverable

of this work, in this set of experiments we tested only the feature selection methods we can use in

both cross subject and single subject experiments.

For this purpose, we used a 3 class Linear Support Vector Machine provided by pyMVPA

[HHS+09], which is a toolbox in python for classification on fMRI data. The 3 classes are regular,

irregular and pseudo word. Children read 20 words of each class in the scanning session, consequently,

we have 20 examples of each class, summing 60 examples. We used leave one out cross validation,

training with 57 examples and letting 1 example of each class out.

1The contrast images were kindly provided by Luiz Fernando Dresch
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The results of these experiments are summarized in Table 6.1. First, for the Parcellation

feature selection, described in Section 4.3, we used cc200 mask and AAL mask, which divided the

brain in 190 and 90 features respectively. Second, the whole brain feature selection, described in

Section 4.5, extracts all 33697 voxels from the brain and use them as features in the classification.

Third, the ROI feature selection, described in Section 4.2, extracts all voxels from each one of the

90 regions of interest defined in AAL mask. The mean classification accuracy of the 10 participants

for each ROI is shown in Table A.1 and the average classification accuracy of all ROIs is described

in Table 6.1. Finally, the ANOVA feature selection, described in Section 4.6, chooses the 5% most

relevant voxels from the brain as features.

Parcellations – cc200 Parcellations – AAL Whole Brain ROI ANOVA

mean 4 sec 34% 34% 36% 34% 36%
betas 42% 40% 42% 40% 42%

Table 6.1 – Average classification accuracy using data of 10 subjects. The two methods for generating
examples are averaging 4 seconds of task and generating betas. The feature selection methods are
Parcellations using cc200 and AAL mask (Section 4.3), Whole brain (Section 4.5), ROI (Section 4.2)
and ANOVA (Section 4.6).

6.4 Cross Subject Experiments

We performed the final set of experiments classifying different tasks conditions between

patients. As in the single subject experiments, we use feature selection methods from Chapter 4

and generated examples from contrast images.

Data from each one of the 10 patients generates 8 contrast images. We created 4 binary

classifiers that were trained to distinguish between each pair of different conditions: All x Baseline,

Regular x Irregular, Regular x Pseudoword and Irregular x Pseudoword. For this purpose,

we used contrast images such as (condition1 > condition2 and condition2 > condition1), as

described in Table 6.2. For training the classifiers, we use 2 contrast images for each patient,

summing up 10 contrast images from one class and 10 contrast images from the other class, totalizing

20 images that we transform later in examples.

The classification was performed using leave one patient out cross validation. We trained

the classifier with data from 9 subjects and tested it with the data of the remaining subject. We

used a Linear Support Vector Machine provided by pyMVPA [HHS+09].

The results of these experiments are summarized in Table 6.3. First, for the Parcellation

feature selection, described in Section 4.3, we used cc200 mask and AAL mask, which divides the

brain in 190 and 90 features respectively. The 10 most important areas for the classification with the

best accuracy (cc200) are shown in Table 6.5, these areas are highlighted in Figure 6.4. Second, the

whole brain feature selection, described in Section 4.5, extract all the 33697 voxels from the brain

and use them as features in the classification. The locations of the most important voxels for the



65

classifier class 1 class 2

All x Baseline all >baseline baseline >all
Regular x Irregular regular >irregular irregular >regular
Regular x pseudoword regular >pseudo pseudo >regular
Irregular x Pseudoword irregular >pseudo pseudo >irregular

Table 6.2 – Name of classifiers used in the Cross Subject experiments and the contrast files each
classifier uses as examples.

Parcellations – cc200 Parcellations – AAL Whole Brain ROI ANOVA

All x Baseline 100% 100% 100% 80% 100%
Regular x Irregular 90% 50% 100% 61% 90%
Regular x Pseudo 70% 50% 90% 60% 60%
Irregular x Pseudo 90% 80% 80% 90% 90%

Table 6.3 – Average classification accuracy using leave one patient out cross validation with data of 10
subjects. The feature selection methods are Parcellations using cc200 and AAL mask (Section 4.3),
Whole brain (Section 4.5), ROI (Section 4.2) and ANOVA (Section 4.6).

classification are listed in Table 6.5, these areas are highlighted in Figure 6.5. Third, the ROI feature

selection, described in Section 4.2, extracted all voxels from each 90 region of interest defined in

AAL mask. The classification accuracy for each ROI is described in the appendix in Table A.2 and

the average classification accuracy of all ROIs is described in Table 6.3. The average classification

accuracy of all ROIs using the 4 classifiers is visually described in Figure 6.6. The accuracy of

each classifier is shown separately in Figures 6.6 , 6.7, 6.8, 6.9, 6.10. Finally, the ANOVA feature

selection, described in Section 4.6, choose the 5% most relevant features from the brain as features.

6.5 Discussion

The single subject experiments did not show promissing results in all example generation

and feature selection method combinations, for example,the generation method of averaging 4

seconds of task yield poor results independently of the feature selection method used. Indeed, the

accuracy for a 3-class classifier is so poor as to be similar to random guessing (33%). The betas

generation method yield somewhat better results, which are slightly better than chance than the

former technique. However, we could not reach results we consider acceptable with these example

generation methods using any feature selection. As we use data from a fast event related paradigm,

in which the stimulus duration is 7 seconds and the interval between two stimulus is from 1 to 3

seconds, the BOLD signal does not have time to decay completely after a stimulus is presented,

making the BOLD signal of near stimulus overlap. We speculate that the beta generation method

provides better results because it obviates the need to separate overlapped signals, making the

generated example cleaner. It is known that beta series regression is more suitable for event related

data than averaging some data time points [MTAP12].
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From the single subject experiments we discovered that the example generation methods

create noisy examples. This is because when creating an example, we use the BOLD signal generated

when children are reading one word, as we have 60 words, we create 60 examples. However, averaging

the BOLD signal of several tasks makes the examples cleaner [BSM+12]. For example, we could

have averaged two tasks for creating one example, and use 30 cleaner examples for classification.

Thus, for the cross subject experiments we use several trials in order to generate cleaner results: each

patient generates 1 example of each class using all trials of each class when creating the contrast

images. In the cross subject experiment we use 4 classifiers for comparing all different conditions,

including the All condition summing up all times children are performing a task and Baseline,

when they are resting. Using the contrast images, we obtained much better accuracy in the cross

subject experiments. This result indicates that if the examples are fine, performing feature selection

in the data can help in the classification

When analyzing only the classifier results regardless the feature selection used, we supposed

the All x Baseline classifier would provide the best accuracy. This is the easiest classification in

the experiment, used just as sanity check, as the difference between brain patterns when people are

resting or performing some task is huge. In the same way, we supposed the Irregular x Pseudoword

classifier would return the worst result, as those type of words are more difficult to children with

dyslexia read. The results in Table 6.3 show a higher accuracy in the All x Baseline classification,

and surprisingly, a lower accuracy in the Regular x Pseudoword classification. The All x Baseline

result is the highest and the Regular x Pseudoword is the lowest in both single and cross subject

experiments, showing consistency between the experiment results.

When comparing the feature selection results we can draw a few conclusions about them.

First, in the parcellations methods, the results are better with the cc200 mask than with the AAL

mask. We speculate that it is because the cc200 mask has double the number of regions of the

AAL mask, and because the brain division of cc200 was specifically designed to be used for fMRI

data classification. Second, the whole brain feature selection shows the best accuracy of all feature

selection methods. This may be due to the broad and sparse reading network configuration. It is

known that the reading network in children is not completely formed, and they need to recruit more

brain areas than adults for reading task. Further, children with dyslexia recruit even more brain

regions for reading tasks than age matched controls. For example, the pseudo word task involves

the occipital region for visualizing and decoding a word; the inferior frontal area (Broca’s area) for

accessing the meaning of the word and deciding if it is a real word or not; the superior temporal

and parietal regions to access the pronunciation and articulation of the word; the motor planning

area for deciding if one should press the right button if the word is real and the left otherwise;

and finally, the motor area for actually pressing a button [Deh09]. Thus, we believe that as several

sparse regions in the brain are used for reading, having more voxels from all across the brain provides

a better classification accuracy. Third, the ROI feature selection seems not to provide very good

results. However, as this result is the average accuracy of all brain ROIs, we need to analyze the

results in more detail. For example, although all classifiers have at least one region that returns
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100% accuracy, no ROI provides 100% for all 4 classifiers. In fact, the only region that returns 100%

accuracy in more than one area is the left insula in the All x Baseline and Regular x Irregular

classifiers. Thus, the ROI feature selection gives us an insight about the brain regions involved in

each condition in spite of providing poorer results if used as the only feature for all classification

tasks. Fourth, the ANOVA feature selection returns an average result, this might be caused because

ANOVA selects only 5% of the voxels from the brain for using in classification. Comparing the

ANOVA and whole brain results, we can infer that, in this context, more voxels give us a better

classification accuracy. This is the only method that performed well in the single subject experiments

and worse in the cross subject experiments.

The important brain regions for all feature selection methods are similar, we enumerate

the results that stand out in each classifier.

All x Baseline We expect the All x Baseline classifier to choose more vision related regions (in

the occipital lobe) as those regions are more requested when children are reading any type

of word. The All x Baseline classifier chose more occipital regions in both hemispheres

independently of the feature selection used, although the chosen regions vary with the fea-

ture selection technique. For example, cc200 chose 80% occipital regions, while whole brain

and ANOVA chose equally distributed occipital, frontal e superior parietal regions in both

hemispheres. All feature selection methods chose left precentral (motor) and inferior frontal

(Broca) regions.

Regular x Irregular The Regular x Irregular classifier chose more superior parietal and medial

frontal regions in both hemispheres. All feature selections chose left or right precentral and

inferior frontal regions. The whole feature selection, which had a better accuracy than cc200

and ANOVA, chose more occipital regions in both hemispheres than the other methods.

Regular x Pseudo The Regular x Pseudoword classifier, which had the worse accuracy in all

feature selection method, chose distinct regions form the previous classifiers. The whole brain

method chose much more distributed regions, most of them are in the left parietal region.

The left and right cingulate regions were chosen, which were not chosen before, along with

the right frontal and basal ganglia regions and left and right occipital regions. cc200 chose

similar regions than whole brain feature selection: left parietal and cingulate regions and right

basal ganglia regions. An impressive region chosen by cc200 is the right supramarginal gyrus,

which in the left hemisphere is known as Wernicke area. ANOVA chose large clusters in fewer

regions: left and right precentral, occipital and parietal regions. From the classification results,

we can infer that the left and right cingulate and frontal regions and the right basal ganglia

regions are important for differentiating between regular and pseudo words, as the whole brain

and cc200 feature selection achieved a better accuracy (80% and 70%) using those regions

than ANOVA (70%). These results support the idea of a reading network distributed all over

the brain, as the classifiers which choose more brain regions obtain better accuracy.
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Irregular x Pseudo The Irregular x Pseudoword classifiers chose less regions as the most

important. All feature selection algorithms chose cingulate and basal ganglial regions in both

hemispheres. The whole brain feature selection, which achieved the best accuracy, also chose

middle frontal areas ain bothe hemispheres.

All x Baseline Regular x Irregular Regular x Psedoword Irreugal x Pseudoword

L Lingual L Calcarine R Precentral R Thalamus
R Lingual L Precuneus L Precuneus R Precentral
L Precentral R Precuneus L Calcarine L Mid. Orbital
L Fusiform L Sup. Parietal lobule L Inf. Parietal lobule R Lingual
R Fusiform R Mid. frontal R Postcentral R Angular
L Sup. Occipital R Inf. Frontal (triangularis) L Sup. Frontal L Mid. Temporal
L Inf. Frontal L Sup. Parietal lobule R Supramarginal gyrus L Ant. Cingulate Cortex
L Mid. Occipital R Inf. Frontal (opercularis) L Sup. Medial L Thalamus
R Inf. Occipital R Postcentral R Hippocampus L Caudate Nucleus
R Mid. Occipital R Precentral L Ant. Cingulate Cortex L Anterior Cingulate Cortex

Table 6.4 – List of the 10 parcellations that contribute the most to classification using cc200
parcellations.

All x Baseline Regular x Irregular Regular x Psedoword Irreugal x Pseudoword

L Inf occipital L Precuneus R precuneus L sup medial
L Calcarine R Precuneus L lingual R sup medial
L Lingual L sup parietal R lingual L ant cingulate
R inf occipital R sup parietal Thalamus R ant cingulate
R Calcarine L calcarine L post cingulate L mid orbital
R Lingual L mid occipital R posteriro cingulate R mid orbital
L Precentral R inf Occipital L precentral L precuneus
L Postcentral R Calcarine L postcentral L precentral
L Temporal pole R mid frontal R superior frontal L postcentral
L Inf Frontal R inf frontal R middle frontal L thalamus
L Precuneus L precentral R middle orbital R thalamus
R Precuneus L Inferior frontal L inf parietal R sup frontal
L Sup frontal L sup medial L sup occipiral R angular
R Superior Frontal R sup medial
L Medial Frontal
R Medial Frontal

Table 6.5 – Location of the brain regions that contribute the most for classification using voxels
from the whole brain. The regions are the 5% most important voxels that belongs to clusters of at
least 100 voxels.
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All x Baseline Regular x Irregular Regular x Psedoword Irreugal x Pseudoword

R Inf occipital L Sup Parietal R Prencetral R Inf Frontal
L Inf occipital R Sup Parietal R Postcentral R Precentral
L Cuneus L Precuneus L Lingual L Ant Cingulate
R Cuneus R Precuneus R Lingual R Ant cingulate
L Calcarine L Lingual L Precentral L Postcentral
R Calcarine R Lingual L Postcentral R Precentral
L Lingua R Inf Frontal L Inf Parietal R sup Parietal
R Lingual L Precentral R Thalamus
R Precuneus L Inf Frontal
L Precuneus L Sup Medial
L Precentral R Sup Medial
L Sup Temporal
L Inf Frontal
L Precentral
L Postcentral
L Sup frontal
R Sup frontal
R Medial Frontal

Table 6.6 – Location of the brain regions that contribute the most for classification using ANOVA
feature selection. The regions are the 5% most important voxels that belongs to clusters of at least
100 voxels.
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Figure 6.4 – Location of the 10 parcellations that contribute the most to classification from the
cc200 parcellations.
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Figure 6.5 – Brain regions that contribute the most for classification using voxels from the whole
brain. The regions are the 5% most important voxels that belongs to clusters of at least 100 voxels.
Top left: All x Baseline classification; Top right: Regular x Irregular classification; Bottom left:
Regular x Pseudo classification; Bottom Right: Irregular x Pseudo classification.
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Figure 6.6 – Average classification accuracy from the 4 classifiers defined in Table 6.2. The classifi-
cation is done in each region of interest defined by AAL mask. Red areas have 100% accuracy and
green areas have 0% accuracy. The areas with higher average accuracy are left and right precentral
and lingual regions and right postcentral region.
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Figure 6.7 – Accuracy from all x baseline classifier. The classification is done in each region of
interest defined by AAL mask. Red areas have 100% accuracy and green areas have 0% accuracy.
The areas with higher average accuracy are left and right occipital and parietal areas, left insula and
inferior frontal operculum.
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Figure 6.8 – Accuracy from regular x irregular classifier. The classification is done in each region of
interest defined by AAL mask. Red areas have 100% accuracy and green areas have 0% accuracy.
The areas with higher average accuracy are left and right occipital areas, left pallidum and insula
and right frontal region.
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Figure 6.9 – Accuracy from regular x pseudo classifier. The classification is done in each region of
interest defined by AAL mask. Red areas have 100% accuracy and green areas have 0% accuracy.
The areas with higher average accuracy are right inferior frontal, parahipocampal and anterior
cinglulum and left and right parietal regions.
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Figure 6.10 – Accuracy from irregular x pseudo classifier. The classification is done in each region of
interest defined by AAL mask. Red areas have 100% accuracy and green areas have 0% accuracy.
The areas with higher average accuracy are left and right thalamus, right precentral and lingual
regions.
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7. CONCLUSION

In this work, we have given the initial steps in the development of an fMRI-based technique

to diagnose the cognitive states associated with dyslexia. In order to accomplish this, we have

researched techniques to process fMRI data so that machine learning techniques can be employed

with high accuracy to detect such cognitive states. The techniques we investigated are known

as feature selection, which we have systematically used to generate classifiers for word recognition

tasks. We empirically tested the techniques using fMRI data from dyslexic children from the ACERTA

project. In the experiments we tested which feature selection techniques work better with our data,

as well as 3 methods for generating examples. We performed initial experiments using data from

one subject at a time in the single subject experiments, and then proceeded to running the cross

subject experiment, which is the most significant part of our work. In the cross subject experiments,

we tested if our classifier could generalize among subject data and indicate the most important brain

regions the classifier use to discriminate the type of word children are reading.

Our results show that it is difficult to use the data of single subjects with classification

because the generated examples are too noisy, regardless of the example generation approach.

Moreover, the cross subject results show it is easier to work with summarized data of patients by

using contrast images, as they generate cleaner examples. We learned that the reading network of

our subjects is broad and distributed all over the brain. Consequently, using several voxels from all

over the brain, as the whole brain feature selection does, is the best approach for classifying what

category of word subjects are reading.

As future work, we plan to use the same data of children with dyslexia along with data form

age-matched controls. We aim to use the same classification and feature selection techniques that

provided good results in this work to identify differences between the reading network of children

with dyslexia and controls. Further, as many neural networks were identified using resting state,

including the reading network [BFH+99], we want to use the resting state data from children with

dyslexia and controls to identify and point the differences between the reading network of both

groups.
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APPENDIX A – CLASSIFICATION ACCURACY IN EACH ROI

Table A.1: Average classification accuracy of single subject

classification using all voxels of each region of interest. ROIs

are defined in AAL mask. Two methods are used to generate

examples: betas and averaging 4 seconds of stimulus.

label betas mean 4 s

Precentral L 0.43 0.34

Precentral R 0.44 0.37

Frontal Sup L 0.41 0.33

Frontal Sup R 0.39 0.34

Frontal Sup Orb L 0.39 0.34

Frontal Sup Orb R 0.41 0.34

Frontal Mid L 0.39 0.34

Frontal Mid R 0.40 0.34

Frontal Mid Orb L 0.41 0.31

Frontal Mid Orb R 0.42 0.35

Frontal Inf Oper L 0.40 0.37

Frontal Inf Oper R 0.40 0.35

Frontal Inf Tri L 0.44 0.32

Frontal Inf Tri R 0.38 0.33

Frontal Inf Orb L 0.42 0.37

Frontal Inf Orb R 0.39 0.35

Rolandic Oper L 0.39 0.36

Rolandic Oper R 0.43 0.34

Supp Motor Area L 0.43 0.37

Supp Motor Area R 0.40 0.36

Olfactory L 0.37 0.31

Olfactory R 0.39 0.35

Frontal Sup Medial L 0.41 0.36

Frontal Sup Medial R 0.41 0.35

Frontal Mid Orb L 0.41 0.35

Frontal Mid Orb R 0.42 0.35

Rectus L 0.40 0.34

Rectus R 0.40 0.37

Insula L 0.40 0.34

Insula R 0.40 0.35

Continued on next page
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Table A.1 – continued from previous page

label betas mean 4 s

Cingulum Ant L 0.38 0.36

Cingulum Ant R 0.36 0.35

Cingulum Mid L 0.42 0.33

Cingulum Mid R 0.40 0.38

Cingulum Post L 0.41 0.35

Cingulum Post R 0.41 0.35

Hippocampus L 0.42 0.36

Hippocampus R 0.40 0.34

ParaHippocampal L 0.42 0.37

ParaHippocampal R 0.38 0.37

Amygdala L 0.40 0.34

Amygdala R 0.40 0.35

Calcarine L 0.43 0.34

Calcarine R 0.41 0.34

Cuneus L 0.41 0.34

Cuneus R 0.38 0.35

Lingual L 0.41 0.36

Lingual R 0.39 0.32

Occipital Sup L 0.42 0.32

Occipital Sup R 0.41 0.37

Occipital Mid L 0.40 0.33

Occipital Mid R 0.37 0.33

Occipital Inf L 0.41 0.25

Occipital Inf R 0.39 0.31

Fusiform L 0.42 0.33

Fusiform R 0.40 0.30

Postcentral L 0.42 0.36

Postcentral R 0.44 0.34

Parietal Sup L 0.40 0.32

Parietal Sup R 0.37 0.37

Parietal Inf L 0.39 0.35

Parietal Inf R 0.40 0.37

SupraMarginal L 0.40 0.34

SupraMarginal R 0.42 0.34

Angular L 0.44 0.31

Angular R 0.41 0.34

Precuneus L 0.40 0.34
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label betas mean 4 s

Precuneus R 0.41 0.35

Paracentral Lobule L 0.40 0.37

Paracentral Lobule R 0.39 0.33

Caudate L 0.41 0.33

Caudate R 0.41 0.33

Putamen L 0.41 0.35

Putamen R 0.42 0.35

Pallidum L 0.38 0.32

Pallidum R 0.39 0.31

Thalamus L 0.41 0.36

Thalamus R 0.39 0.35

Heschl L 0.41 0.33

Heschl R 0.41 0.30

Temporal Sup L 0.43 0.30

Temporal Sup R 0.38 0.34

Temporal Pole Sup L 0.39 0.31

Temporal Pole Sup R 0.40 0.36

Temporal Mid L 0.44 0.33

Temporal Mid R 0.38 0.34

Temporal Pole Mid L 0.40 0.31

Temporal Pole Mid R 0.42 0.32

Temporal Inf L 0.41 0.33

Temporal Inf R 0.42 0.33

mean 0.40 0.34

Table A.2: Classification accuracy of cross subject classifi-

cation using all voxels of each region of interest. 4 classifiers

are used. ROIs are defined in AAL mask.

label All x Bas. Reg. x Irr. Irr. x Pse. Reg. x Pse. Mean

label All x Baseline Regular x Irregular Irregular x Pseudo Regular x Pseudo Mean

Precentral R 1 0.8 0.9 0.8 0.875

Lingual R 1 0.8 0.9 0.6 0.825

Precentral L 1 0.7 0.7 0.9 0.825

Lingual L 1 0.7 0.8 0.8 0.825
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Table A.2 – continued from previous page

label All x Bas. Reg. x Irr. Irr. x Pse. Reg. x Pse. Mean

Postcentral R 1 0.8 0.6 0.9 0.825

Cingulum Ant L 0.9 0.8 0.7 0.8 0.8

Calcarine L 0.9 1 0.6 0.7 0.8

Cuneus L 0.9 1 0.6 0.7 0.8

Postcentral L 1 0.7 0.8 0.7 0.8

Precuneus L 1 0.8 0.7 0.7 0.8

Putamen L 0.9 0.9 0.7 0.7 0.8

Occipital Mid L 1 0.9 0.7 0.6 0.8

Frontal Sup Medial R 0.8 0.8 0.8 0.7 0.775

Hippocampus L 0.9 0.7 0.8 0.7 0.775

Temporal Sup L 0.9 0.7 0.8 0.7 0.775

Supp Motor Area R 1 0.8 0.8 0.5 0.775

Hippocampus R 0.9 0.8 0.8 0.6 0.775

Occipital Inf L 1 0.9 0.6 0.6 0.775

Pallidum L 0.9 1 0.7 0.5 0.775

Supp Motor Area L 1 0.7 0.7 0.6 0.75

Frontal Sup Medial L 0.8 0.7 0.8 0.7 0.75

Insula L 1 1 0.8 0.2 0.75

Occipital Sup R 0.9 1 0.4 0.7 0.75

Parietal Sup L 0.9 0.8 0.8 0.5 0.75

Angular L 0.8 0.9 0.8 0.5 0.75

Insula R 0.9 0.7 0.8 0.5 0.725

Frontal Inf Oper R 0.8 0.6 0.6 0.9 0.725

Rolandic Oper L 0.9 0.8 0.9 0.3 0.725

Temporal Mid L 0.9 0.9 0.8 0.3 0.725

Cingulum Ant R 0.8 0.4 0.6 1 0.7

Frontal Mid R 0.7 1 0.6 0.5 0.7

Frontal Inf Tri L 0.8 0.7 0.5 0.8 0.7

Frontal Inf Orb L 0.9 0.4 0.8 0.7 0.7

Heschl L 0.8 0.9 0.8 0.3 0.7

Frontal Inf Tri R 0.7 0.8 0.5 0.7 0.675

Cingulum Post R 0.9 0.6 0.5 0.7 0.675

Occipital Sup L 1 0.7 0.5 0.5 0.675

Fusiform L 1 0.2 0.7 0.8 0.675

Caudate R 0.7 0.7 0.8 0.5 0.675

Putamen R 0.9 0.7 0.6 0.5 0.675

Frontal Sup R 0.7 1 0.6 0.4 0.675
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