

Pontifícia Universidade Católica do Rio Grande do Sul

FACULDADE DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E TECNOLOGIA DE MATERIAIS

DESENVOLVIMENTO DE CÉLULAS SOLARES COM CONTATOS POSTERIORES FORMADOS POR RADIAÇÃO LASER E ANÁLISE DA PASSIVAÇÃO NA FACE POSTERIOR

DANIEL AUGUSTO KRIEGER COUTINHO ENGENHEIRO QUÍMICO

DISSERTAÇÃO PARA A OBTENÇÃO DO TÍTULO DE MESTRE EM ENGENHARIA E TECNOLOGIA DE MATERIAIS

Porto Alegre

Janeiro, 2015

Pontifícia Universidade Católica do Rio Grande do Sul

FACULDADE DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA E TECNOLOGIA DE MATERIAIS

DESENVOLVIMENTO DE CÉLULAS SOLARES COM CONTATOS POSTERIORES FORMADOS POR RADIAÇÃO LASER E ANÁLISE DA PASSIVAÇÃO NA FACE POSTERIOR

DANIEL AUGUSTO KRIEGER COUTINHO

ENGENHEIRO QUÍMICO

ORIENTADORA: Profa. Dra. Izete Zanesco CO-ORIENTADOR: Prof. Dr. Adriano Moehlecke

Dissertação realizada no Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais (PGETEMA) da Pontifícia Universidade Católica do Rio Grande do Sul, como parte dos requisitos para a obtenção do título de Mestre em Engenharia e Tecnologia de Materiais.

Trabalho vinculado ao Projeto "Células Solares de Alta Eficiência com Emissores Seletivos", contrato CEEE-D/9942400, subvencionado pela Companhia Estadual de Distribuição de Energia Elétrica.

Porto Alegre

Janeiro, 2015

Electric power is everywhere, present in unlimited quantities and can drive the world's machinery without the need of coal, oil, gas, or any other of the common fuels. (Nikola Tesla).

AGRADECIMENTOS

Agradeço primeiramente a minha família, em especial minha mãe Cristina Luisa pelo apoio incondicional em todas as horas.

Agradeço à minha orientadora Izete Zanesco e co-orientador Adriano Moehlecke pelo apoio e ajuda que me providenciaram durante todos os meus anos no NT-Solar.

Agradeço à todo o grupo do NT-Solar, em especial à Angélica Cenci, ao Sérgio Boscato Garcia e Vanessa Alves Gonçalves pela ajuda na criação dessa dissertação e ao Moussa Ly pela metalização de minha primeira lâmina de silício.

Agradeço a todos os demais que me ajudaram, meus amigos e minha namorada Liziane Rafaela Brasil, que me motivou nos últimos meses do projeto.

Também agradeço as faculdades de Física e Engenharia da PUCRS.

SUMÁRIO

AGRADECIMENTOS	4
SUMÁRIO	5
LISTA DE FIGURAS	7
LISTA DE TABELAS	10
LISTA DE SÍMBOLOS	14
RESUMO	15
ABSTRACT	16
1. INTRODUÇÃO E OBJETIVOS	17
1.1. Considerações Iniciais	17
1.2. Objetivos	22
2. CÉLULAS SOLARES COM CONTATOS FORMADOS POR RADIAÇÃO LASE	ER
	24
2.1. A Célula Solar	24
2.2. Processo de Fabricação de Células Solares	28
2.3. Células Solares com Deposição de Alumínio por Evaporação	32
2.4. Células Solares com Deposição de Pasta de Alumínio por Serigrafia	35
3. METODOLOGIA	37
3.1. Processo de Fabricação	37
3.1. Texturação	39
3.2. Processos de Limpeza	40
3.3. Deposição de Resina e Ataque do Óxido	41
3.4. Oxidação e Difusão de Fósforo	41
3.5. Deposição de Filme Antirreflexo e Alumínio	42
3.6. Metalização e Recozimento	42
3.7. Formação do Contato e Difusão em Pontos por Radiação Laser	43

4.	DESENVOLVIMENTO DE CÉLULAS SOLARES COM CONTATOS
POS	STERIORES FORMADOS POR RADIAÇÃO LASER E ANÁLISE DA
INFL	-UÊNCIA DA PASSIVAÇÃO46
4.1.	Otimização experimental da Potência e da Frequência do Sistema Laser .46
4.2.	Influência da Temperatura de Recozimento
4.3.	Influência da Velocidade de Esteira Durante o Recozimento
4.4.	Influência da Distância entre Pontos61
4.5.	Influência da Área do Contato64
4.6.	Substrato de Alta Qualidade69
4	4.6.1. Temperatura de Difusão de Fósforo de 855 °C69
4	4.6.2. Temperatura de Difusão de Fósforo de 865 °C72
4	4.6.3. Temperatura de Difusão de Fósforo de 875 °C73
4	4.6.4. Temperatura de Difusão de Fósforo de 885 °C76
4	4.6.5. Análise do Tempo de Vida dos Portadores de Carga Minoritários79
4.7.	Análise da Passivação na Face Posterior82
4	4.7.1. Influência da Espessura do Óxido na Face Posterior
4	4.7.2. Comparação da Passivação com SiO ₂ e TiO ₂ em Substrato de PV-Si-FZ83
4	4.7.3. Comparação da Passivação com SiO ₂ e TiO ₂ em Substrato de Si-Cz86
5. C	ONCLUSÕES E SUGESTÕES DE CONTINUIDADE
6 P	
0. K	EFERENGIAJ DIDLIUGRAFIGAJ

LISTA DE FIGURAS

Figura 1 – Previsão de produção de energia elétrica por meio de centrais hidroelétricas [3]19
Figura 2 - Produção de energia por meios de centrais eólicas até 2050 [4]20
Figura 3 – Produção de energia elétrica por meio de sistemas fotovoltaicos até 2050 [8]21
Figura 4 - Célula PERL [12]22
Figura 5 – (a) Módulo fotovoltaico constituído de células solares e (b) módulos fotovoltaicos formando o painel [5]25
Figura 6 - Estrutura básica de uma célula solar de silício [1]
Figura 7 - Curva I-V identificando a tensão de circuito aberto e a corrente de curto- circuito [16]27
Figura 8 - Curva I-V demonstrando o fator de forma [16]28
Figura 9 - Influência da (a) resistência em série e (b) resistência em paralelo nas células solares [19]29
Figura 10 – Comparação do método com fotolitografia e o método LFC para o processamento de células solares com região posterior passivada [21].30
Figura 11 – Esquema da estrutura PERL [22]31
Figura 12 - Visão lateral do corpo de teste para o processo LFC [24]
Figura 13 – Vista (a) externa e (b) interna do sistema laser utilizado para produzir o contato/difusão na face posterior das células solares
Figura 14 - Célula solar desenvolvida com contato/difusão de alumínio em pontos formados por radiação laser
Figura 15 - Superfície da lâmina de silício monocristalino, após texturação com KOH com aumento de (a) 730 e (b) 2500 vezes40
Figura 16 - Lâminas de silício na evaporadora utilizada para a deposição do filme AR e do alumínio42

Figura 17 - Representação da malha de pontos formada pelo laser43
Figura 18 - Sistema automatizado utilizado na medição das células solares44
Figura 19 - Equipamento WCT-120 utilizado para medição do tempo de vida dos portadores de carga minoritários45
Figura 20 - Representação Ilustrativa da posição das células solares na lâmina de silício
Figura 21 - Curvas da densidade de corrente em função da tensão aplicada das melhores células solares para cada potência, e respectivas frequências para a temperatura de recozimento de 300 °C
Figura 22 - Curvas J-V das melhores células solares para cada potência e com temperatura de recozimento de 350 °C49
Figura 23 – Fotos dos pontos formados por laser de duas células solares com (a) 13 W e 80 kHz e com (b) 15 W e 80 kHz, obtidas com o microscópio óptico.50
Figura 24 - Curva J-V das melhores células solares para cada potência e frequência com temperatura de recozimento de 400 °C52
Figura 25 - Curva J-V com as melhores células solares para temperatura de recozimento, em potência de 15 W e frequência de 80 kHz
Figura 26 - Valores médios da (a) V _{OC} , (b) J _{SC} , (c) FF e (d) η em função da temperatura de recozimento
Figura 27 - Curva J-V das melhores células solares para as diferentes velocidades de esteira e temperatura de recozimento de 350 °C, potência de 13 W e frequência de 80 kHz
Figura 28 - Valores médios da (a) Voc, (b) Jsc, (c) FF e (d) η em função da velocidade de recozimento para a temperatura de recozimento de 350 °C, potência de 13 W e frequência de 80 kHz
Figura 29 - Curva J-V das melhores células solares para velocidade de esteira, em temperatura de recozimento de 350 °C, potência de 15 W e frequência de 80 kHz
Figura 30 - Valores da (a) V _{OC} , (b) J _{SC} , (c) FF e (d) η em função da velocidade de recozimento das melhores células solares, para V _E de 350 °C, potência de 15 W e frequência de 80 kHz

Figura 31 ·	- Curva J-V com as melhores células solares para altas temperaturas de queima sem laser
Figura 32 -	 Curva J-V das melhores células solares para diferentes distâncias entre pontos, e temperatura de recozimento de 350 °C, potência de 13 W e frequência de 80 kHz.
Figura 33 -	· (a) V _{oc} , (b) J _{sc} , (c) FF e (d) η em função na distância entre pontos, para as melhores células solares do processo 0764
Figura 34 -	 Valores médios da (a) Voc, (b) Jsc, (c) FF e (d) η para as variações na distância entre pontos para o processo 12, quando foi usado um silício Cz de menor qualidade
Figura 35 ·	 Refletância da camada passivadora de SiO₂ e do filme antirreflexo de TiO₂66
Figura 36	- Área de contato formada por laser com potência de 13 W de (a) 2423 μ m ² , (b) 5627 μ m ² e (c) 6895 μ m ² . Imagens obtidas com o microscópio

Figura 37 - Área de contato formada por laser com potência de 15 W de (a) 2900 μm², (b) 7230 μm² e (c) 10432 μm². Imagens obtidas com o microscópio

óptico......66

Figura 38 - Valores médios da (a) Voc, (b) Jsc, (c) FF e (d) η para diferentes áreas

LISTA DE TABELAS

- Tabela 2 Comparação dos resultados de células solares de silício com a técnica LFC e com o processo convencional PERC com ataque químico [21]. .34
- Tabela 3 Características elétricas de células solares processadas em Si-FZ e Si multicristalino [30]......36
- Tabela 4 Resumo dos parâmetros variados para lâminas Si-Cz e PV-Si-FZ......40
- Tabela 5 Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, sem recozimento no forno de esteira......47
- Tabela 6 Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, após o recozimento a temperatura de 300 °C e melhora relativa da eficiência após o recozimento (Δη)......47
- Tabela 7 Parâmetros elétricos das células solares sem recozimento no forno de esteira.

 48
- Tabela 8 Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, após recozimento a 350 °C e melhora relativa da eficiência após o recozimento (Δη)......49
- Tabela 9 Parâmetros elétricos das células solares sem recozimento no forno......51
- Tabela 10 Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, na temperatura de recozimento de 400 °C e melhora relativa da eficiência após o recozimento (Δη)......51

- Tabela 14 Parâmetros elétricos das células solares sem processamento com laser para a temperatura de queima da malha frontal de 650 °C, 700 °C e 750 °C......60
- Tabela 16 Parâmetros elétricos das células solares em função da distância entre pontos, na temperatura de recozimento de 350 °C, potência de 15 W e frequência de 80 kHz para lâminas Si-Cz de pior qualidade......63
- Tabela 17 Refletância média ponderada e espessura da camada passivadora de
SiO2 e do filme antirreflexo......65
- Tabela 18 Parâmetros elétricos das células solares em função da área de contato para temperatura de recozimento de 350 °C, V_E de 70 cm/min, potência de 13 W e frequência de 80 kHz......67

- Tabela 34 Resistência de folha e tempo de vida dos portadores de carga minoritários medidos em lâminas de PV-Si-FZ após diferentes etapas de processamento e temperatura de difusão de fósforo (T_D)......80

- Tabela 36 Comparação dos resultados da resistência de folha e do tempo de vida dos portadores de carga minoritários para o mesmo método de fabricação de Si-Cz......82
- Tabela 37 Parâmetros elétricos das células solares em função do tempo de oxidação para a temperatura de recozimento de 350 °C, velocidade de recozimento de 65 cm/min, potência de 15 W e frequência de 80 kHz..83

- Tabela 42 Parâmetros elétricos das células solares com passivação na face posterior com SiO₂, TiO₂ depositado sobre o SiO₂ e TiO₂, processadas com temperatura de recozimento de 400 °C......87

LISTA DE SÍMBOLOS

2DS – <i>Two degree system</i> – Sistema de dois graus	
AM1,5G - Air mass 1,5 global - Massa de Ar 1,5 espectro solar globa	al
BSF – Back surface field – Campo retrodifusor	
D _P – Distância entre pontos	mm
FF – Fator de forma	
IMP – Corrente no ponto de máxima potência	mA
Isc – Corrente de curto-circuito	mA
J – Densidade da corrente elétrica	mA/cm ²
Jsc – Densidade de corrente de curto-circuito	mA/cm ²
LFC – Laser fired contacts – Contatos formados por laser	
P _{MP} – Potência máxima	W
PECVD - Plasma enhanced chemical vapour deposition - Deposição	química de
vapor aprimorada por plasma	
PERC - Passivated emitter and rear cell - Célula solar com emissor p	assivado e face
posterior passivada	
PERL - Passivated emitter with rear locally difused - Emissor passiva	do e com
difusão posterior localizada	
QSSPC - Quasi-steady-state photoconductance - Regime quase-per	manente da
fotocondutância	
R _P – Resistência em paralelo	Ω
Rs – Resistência em série	Ω
R□ – Resistência de folha	Ω/\Box
RCA – Radio Corporation of America	
T _D – Temperatura de Difusão de Fósforo	°C
to – Tempo de Oxidação	min
T _Q – Temperatura de Queima	°C
T _R – Temperatura de recozimento	°C
V _E – Velocidade de esteira	cm/min
V _{MP} – Tensão no ponto de máxima potência	mV
Voc – Tensão de circuito aberto	mV
η – Eficiência	%
au – Tempo de vida dos portadores de carga minoritários	μs

RESUMO

COUTINHO, D.A.K. Desenvolvimento de Células Solares com Contatos Posteriores Formados por Radiação Laser e Análise da Passivação na Face Posterior. Porto Alegre. 2015. Dissertação (Mestrado em Engenharia e Tecnologia de Materiais). Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL.

Neste trabalho foram desenvolvidas células solares de silício com contatos formados por radiação laser e passivação na face posterior. Para isso, foram desenvolvidos processos para produção de células solares a partir de lâminas de silício tipo p de dois tipos diferentes de substrato. O objetivo foi desenvolver um processo de fabricação de células solares com contato e difusão posterior formado em pontos por radiação laser e alumínio depositado por evaporação bem como avaliar a passivação na face posterior. Em lâminas de Si-Cz, a difusão de fósforo foi realizada a 865 °C. Da otimização experimental da potência e da frequência do sistema laser em lâminas de Si-Cz, constatou-se que a eficiência de 13,1 % foi obtida com a potência de 15 W e frequência de 80 kHz. Obteve-se a eficiência de 14,5 % para a temperatura de recozimento 350 °C e a velocidade de esteira de 66 cm/min. A otimização experimental da distância entre pontos e da área dos pontos de contato, resultou na eficiência de 14,1 %, para a distância entre pontos de 0,5 mm e área dos pontos de contato de 7230 µm². Para substratos de PV-Si-FZ, a melhor temperatura de difusão de fósforo foi de 875 °C e obteve-se a eficiência de 14,0 %. Constatou-se que a eficiência foi similar para células solares processadas em lâminas de Si-Cz e PV-Si-FZ, devido o baixo tempo de vida dos portadores de carga minoritários. A deposição de um filme de TiO₂ na face posterior resultou em um aumento no fator de forma e da eficiência, porém o aumento da camada de óxido de silício reduziu a eficiência dos dispositivos.

Palavras-Chaves: Células solares, contato posterior por laser, passivação posterior.

ABSTRACT

COUTINHO, D.A.K. Development of Solar Cells with Laser Fired Contacts and Analysis of the Back Surface Passivation Analysis. Porto Alegre. 2015. Dissertation. Post-Graduation Program in Materials Engineering and Technology, PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL.

This work was focused on the development of silicon solar cells with laser fired contacts and rear face passivation. Several processes were developed based on two different p-type silicon substrates. The objective was to develop a solar cell manufacturing process with laser fired contacts and aluminum deposited by evaporation, as well as to assess the rear passivation. In Si-Cz wafers, the phosphorus diffusion was performed at 865 °C. From the power and the frequency experimental optimization in Si-Cz wafers, it was found that the efficiency of 13.1 % was obtained with 15 W of power and 80 kHz of frequency. The efficiency of 14.5 % was achieved from the annealing temperature of 350 °C and belt speed of 66 cm/min. The experimental optimization of the distance between the dots and the contact area of the dots resulted on 14.1 % efficiency, for the distance between dots of 0.5 mm and the dot area contact of 7230 µm². For the PV-Si-FZ substract, with the best diffusion temperature of 875 °C, the efficiency of 14.0 % was obtained. It was found that the efficiency for Si-Cz and Si-FZ solar cell was similar, due to the low minority charge carrier lifetime. The deposition of a TiO₂ film on the rear side resulted in an increase of the fill factor and efficiency, however the increase of the silicon oxide layer reduced the efficiency of the devices.

Key-words: Solar cells, laser fired contact, rear cell passivation.

1. INTRODUÇÃO E OBJETIVOS

1.1. Considerações Iniciais

Energia é a fonte de toda a atividade humana. A energia movimenta nossos corpos, cozinha nossa comida, aquece nossas casas, etc. Um adulto em geral precisa de 2600 quilocalorias por dia para sobreviver, o que equivale a 1100 kWh por pessoa por ano. Entretanto, o consumo global de energia por pessoa por ano é em torno de 18500 kWh, quase 17 vezes mais que o necessário para a sua sobrevivência, comprovando que o ser humano é um grande consumidor de energia. Mundialmente, 80 % de toda a energia utilizada é de origem fóssil, e sua grande exploração impõe uma ameaça ao meio ambiente. Além disso, o mercado industrializado utiliza 80 vezes a energia necessária para a África subsaariana. Um quarto da população mundial utiliza três quartos da energia mundial. Os problemas observados pelo sistema de energia atual tornou-o inadequado para o desenvolvimento de longo prazo [1].

Muitas previsões sobre reservas de petróleo recuperáveis sugerem que a produção de petróleo deve estagnar nas primeiras décadas deste século, gradualmente caindo em um período de escassez de suprimentos e altos preços. As reservas de gás devem durar mais de 200 anos e as de carvão em torno de 3000 anos, considerando as taxas de consumo atuais. Com essas estimativas conclui-se que é necessária uma política de conservação do petróleo imediatamente [2].

Considerando os riscos de poluição, o gás é consideravelmente mais limpo que outros combustíveis, como o petróleo e o carvão, um dos mais poluentes. Estas fontes de energia causam três problemas de poluição atmosférica: aquecimento global, poluição do ar e acidificação do meio ambiente. Alguns dos mais ricos conglomerados industriais podem possuir a capacidade econômica e tecnológica para tratar de tais problemas, mais a maioria dos países não a possui. Esses problemas estão se espalhando particularmente em regiões tropicais e subtropicais, mas as consequências econômicas, sociais e políticas ainda não são consideradas nestas sociedades. Com a exceção do gás carbônico, os componentes de combustíveis fósseis que poluem o ar podem ser removidos com custos menores que os custos causados pelo dano que provocam. Mesmo assim, os riscos de aquecimento global demonstram o quão problemático é o grande uso e dependência dos combustíveis fósseis [2].

Fontes de energia renováveis podem, em teoria, suprir até 13 TWh, o atual consumo anual de energia. Hoje em dia estas fontes de energia disponibilizam 2 TWh anualmente, representando em torno de 21 % da energia consumida mundial, da qual 15 % é a energia provinda da biomassa e 6 % de hidroelétrica. Entretanto, a maior parte da biomassa é na forma de madeira para combustível e de dejetos da agricultura e de animais. A utilização mundial de energias renováveis cresce mais de 10 % ao ano desde 1970, mas levará muito tempo antes que represente uma porção significativa da distribuição energética mundial [2].

As centrais hidroelétricas vêm se expandindo a quase 4 % anualmente, e mesmo que centenas de milhares de megawatts de energia tenham sido obtidos de tal maneira, o potencial energético restante é imenso, podendo revolucionar o suprimento de energia de países da África [2]. Esse tipo de energia pode dobrar sua contribuição até 2050, como mostra a Figura 1, alcançando a produção de 2000 GW em nível global. Neste período, prevê-se a emissão de até três bilhões de toneladas de CO₂ resultantes do uso de combustíveis fósseis [3].

A energia eólica é utilizada há séculos, principalmente para bombear água. Seu uso tem crescido rapidamente em regiões como a Califórnia e a Escandinávia. Nestes casos, turbinas eólicas são usadas para produzir energia elétrica. Vários países possuem essa tecnologia, mas grande parte do potencial energético eólico não é utilizado [4].

Figura 1 – Previsão de produção de energia elétrica por meio de centrais hidroelétricas [3].

Mesmo assim, a energia eólica demonstrou grande crescimento no início do século, gerando 238 GW em nível global no final de 2011, ao contrário dos 18 GW no fim de 2000. Nos últimos anos, essa energia tem sido mais explorada na Ásia, e não na Europa e América do Norte, onde sua utilização era inicialmente maior. A China tornou-se a líder global em termos de infraestrutura eólica em um curto período de tempo, passando dos Estados Unidos em 2010. Uma estimativa do crescimento da energia eólica até 2050 pode ser vista na Figura 2. O sistema 2DS (*two degree system*) considera que até 2050 há uma estimativa de 80% de que a temperatura média global aumentará em 2 °C, levando em conta as emissões de CO₂. O sistema 2DS-hiRen, que é similar ao 2DS, considera o desenvolvimento de energia nuclear mais lento [2].

O Sol distribui a energia necessária para a vida em nosso planeta. Em uma hora, a Terra recebe energia suficiente do Sol para suprir suas necessidades energéticas por quase um ano, ou seja, em torno de 5000 vezes a quantidade de energia proveniente de todas as outras fontes de energia [5].

A utilização de células solares para a produção de energia elétrica vem crescendo nas últimas décadas. A simplicidade e a característica modular dos sistemas fotovoltaicos permitem o uso em diversas aplicações e em diversos ambientes, como utilização em telhados de edifícios e casas [6].

Figura 2 - Produção de energia por meios de centrais eólicas até 2050 [4].

A grande maioria das células solares usadas em sistemas fotovoltaicos são baseadas no silício cristalino. Avanços continuam nas tecnologias baseadas em silício mono e multicristalino, visando a redução de custos e obtenção de maiores eficiências. Dispositivos baseados em filmes finos alcançaram a produção em larga escala, mas somente um percentual pequeno do mercado é ocupado por sistemas fotovoltaicos com módulo de filmes finos [6].

Entre 2000 e 2011, a energia solar fotovoltaica foi a fonte de energia renovável com o maior crescimento mundial, chegando a produzir 65 GW no final de 2011, comparado com apenas 1,5 GW em 2000. Em 2011, a Alemanha e a Itália representaram mais da metade do potencial global de sistemas fotovoltaicos instalados, seguidos pelo Japão, Espanha, Estados Unidos e China [7]. Em 2013, a capacidade instalada em sistemas fotovoltaicos foi de 37 GW, com crescimento de 35 % em relação a 2012. A potência total instalada no mundo é de 136,7 GW, que corresponde a quase 10 vezes a potência da central hidrelétrica de Itaipu [8]. Estima-se que até 2050, os sistemas fotovoltaicos poderão suprir 11 % da energia global requerida e evitar a emissão de 2,3 bilhões de toneladas de gás carbônico por ano. Na Figura 3 apresenta-se a estimativa da produção de energia elétrica por meio de sistemas fotovoltaicos [9].

Os sistemas fotovoltaicos residenciais e comerciais podem atingir paridade com a rede elétrica até 2020 em diversas regiões, isto é, o custo do kWh será similar ao custo do kWh consumido nas residências. Neste caso, a tecnologia

Figura 3 – Produção de energia elétrica por meio de sistemas fotovoltaicos até 2050 [8].

Atualmente, silício multi ou monocristalino é a matéria prima mais utilizada para a produção de células solares. Utilizando lâminas de silício, a indústria oferece módulos fotovoltaicos por 4-5 US\$ por watt. A eficiência de conversão energética de células solares de silício está entre 11 % e 17 %. Infelizmente, a energia gerada por células solares de silício ainda é mais cara que energia elétrica convencional, limitando sua aplicação em larga escala [9].

A indústria de células solares de silício está baseada em dispositivos com campo retrodifusor posterior de alumínio (AI-BSF) formado por metalização por serigrafia com pasta de alumínio depositada em substratos tipo p, crescidos pelo método Czochralski (Si-Cz). A eficiência média de células solares industriais é de 16,5 % [10]. A tecnologia de passivação por AI-BSF limita a eficiência, especialmente em substratos finos [11]. A pasta de alumínio depositada causa abaulamento na lâmina, mas, para evitar esse problema, um método de fabricação de células solares é baseado na passivação da face posterior e formação do contato e difusão de dopante em pontos.

Com estas características, a célula solar de 25 % apresentada por Green [12], foi produzida com emissor passivado e com difusão posterior localizada, denominada de PERL (*passivated emitter with rear locally difused*), que é apresentada na Figura 4. Esta eficiência é elevada, quando comparada com a

primeira célula solar, que foi fabricada em 1941, que tinha menos de 1 % de eficiência.

Figura 4 - Célula PERL [12].

Para se obter uma célula solar de silício com alta eficiência (maior ou igual a 20 %) é importante passivar ambas as faces da célula. A passivação consiste em diversos métodos que têm como objetivo reduzir a recombinação dos portadores de carga minoritários. Com boa passivação das superfícies, o comprimento de difusão dos portadores de carga minoritários na célula solar excede a espessura da lâmina de silício [12].

1.2. Objetivos

O objetivo desta dissertação foi desenvolver um processo para produção de células solares com passivação na face posterior com contato e difusão realizados por radiação laser em pontos bem como avaliar a influência da passivação na face posterior. A malha metálica na face frontal será formada pela metalização por serigrafia, típica da indústria de células solares.

Os objetivos específicos foram:

- Desenvolver um processo de fabricação de células solares com contato e difusão posterior formados por radiação laser e alumínio depositado por evaporação;
- Otimizar experimentalmente a potência e a frequência do sistema laser;
- Otimizar experimentalmente a temperatura e a velocidade de esteira durante o recozimento;

- Avaliar a influência da distância entre pontos e da área dos pontos de contato posteriores nos parâmetros elétricos das células solares;
- Otimizar a temperatura de difusão de fósforo para células solares processadas em silício crescido pela técnica da fusão zonal flutuante, específico para células solares (PV-Si-FZ);
- Comparar células solares desenvolvidas em substrato de Si-Cz, grau solar e em lâminas de silício PV-Si-FZ;
- Comparar células solares com passivação da face posterior com óxido de silício com diferentes espessuras e com óxido de titânio.

2. CÉLULAS SOLARES COM CONTATOS FORMADOS POR RADIAÇÃO LASER

2.1. A Célula Solar

A conversão da energia solar (radiação eletromagnética) em energia elétrica é um fenômeno físico conhecido como o efeito fotovoltaico. Quando materiais semicondutores são expostos à radiação solar, os fótons incidentes podem transferir sua energia para os elétrons de valência do material. Sempre que um fóton quebra uma ligação, um elétron se liberta, deixando uma lacuna na rede cristalina. As lacunas comportam-se como partículas similares aos elétrons, mas com carga positiva. A separação das lacunas e dos elétrons em um material semicondutor produz uma corrente elétrica e uma diferença de potencial. A separação dos portadores de carga é realizada por meio de um campo elétrico, e desta forma, evita-se que os elétrons e as lacunas formadas se recombinem. Porém, antes da separação sempre há probabilidade de recombinação dos portadores de carga.

Considerando-se o semicondutor silício, uma das regiões, denominada tipo n, é dopada com fósforo, que possui cinco elétrons de valência. Como o fósforo possui um elétron a mais que o silício na última camada, a região dopada possui uma concentração de elétrons maior que a concentração de lacunas. A outra região, denominada tipo p, é dopada com boro, possuindo um elétron a menos que o silício na última camada, ou seja, a concentração de lacunas é maior que a de elétrons. Entre as regiões tipo p e tipo n forma-se um campo elétrico direcionado da região tipo n para a região tipo p [1].

Uma célula fotovoltaica típica da indústria produz da ordem de 4 a 5 watts com aproximadamente 0,5 – 0,6 V [13], em tensão contínua, sendo necessárias

várias células solares associadas em um sistema série-paralelo, como esquematizado na Figura 5(a). Associando-se eletricamente as células solares e proporcionando a devida proteção às intempéries, obtém-se o módulo fotovoltaico, com a potência desejada (de 10 W a 350 W) O conjunto de módulos fotovoltaicos forma o painel fotovoltaico, como se pode ver na Figura 5(b).

Como os módulos fotovoltaicos produzem energia somente quando incide radiação solar, nos sistemas fotovoltaicos isolados emprega-se um sistema de armazenamento de energia. Baterias são os dispositivos mais comuns para essa tarefa. Porém, os sistemas interligados à rede elétrica, não necessitam de um sistema de armazenamento de energia e utilizam a rede elétrica para injetar energia, quando há radiação solar, e obter energia durante a noite ou quando o consumo é maior que a produção [5].

Figura 5 – (a) Módulo fotovoltaico constituído de células solares e (b) módulos fotovoltaicos formando o painel [5].

A estrutura da célula solar de silício é composta por uma base de silício dopado, o emissor, o campo retrodifusor, eletrodos metálicos nas duas faces da célula solar e uma camada de filme antirreflexo para diminuir a reflexão da radiação solar, como é apresentado na Figura 5 [14].

Figura 6 - Estrutura básica de uma célula solar de silício [1].

A curva característica de uma célula solar (curva I-V) é obtida aplicando uma diferença de potencial variável, enquanto é medida a corrente elétrica gerada pela mesma, resultando em um gráfico da corrente elétrica (I) em função da tensão aplicada (V). As condições padrão para a obtenção da curva I-V são: irradiância de 1 kW/m², espectro solar AM1,5G e temperatura de 25 °C da célula solar. A partir da curva I-V se obtém os valores de tensão de circuito aberto (V_{oc}), corrente de curtocircuito (I_{sc}), tensão no ponto de máxima potência (V_{MP}), corrente no ponto de máxima potência (I_{MP}), potência máxima (P_{MP}), fator de forma (FF) e eficiência (η). Há outra maneira de representar o gráfico, podendo ser da densidade da corrente elétrica (J) em função da tensão aplicada. A densidade de corrente de curto-circuito (Jsc) representa a razão entre a corrente elétrica de curto-circuito e a área da célula solar [15].

A tensão de circuito aberto, destacada na Figura 7, representa a máxima tensão disponível da célula solar, sem corrente elétrica. Influenciada pela corrente de saturação no escuro e pela corrente fotogerada assim como pela temperatura da célula solar, a V_{oc} está diretamente relacionada com a recombinação dos portadores de carga minoritários no dispositivo. A corrente de curto-circuito, também identificada na Figura 7, é a corrente que flui através da célula solar quando a tensão na mesma é zero. A I_{sc} ocorre devido à geração e coleta dos portadores de carga gerados pela incidência de radiação solar. Em uma célula solar ideal, a I_{sc} e a corrente fotogerada são iguais. A I_{sc} é o maior valor de corrente gerada pela célula solar [16].

Figura 7 - Curva I-V identificando a tensão de circuito aberto e a corrente de curto-circuito [16].

A Voc e Isc são os valores máximos de tensão elétrica e corrente elétrica, respectivamente, de uma célula solar, mas a potência nos dois pontos é zero. O fator de forma, indicado na Figura 8, em conjunto com a Voc e Isc, determina a potência máxima de uma célula solar. O fator de forma é a razão da potência máxima da célula solar pelo produto de Voc e Isc. A eficiência da célula solar é definida como a razão entre a energia elétrica produzida pela célula e a energia solar incidente. A eficiência depende do espectro da radiação solar e da temperatura da célula solar, sendo necessário fixar tais parâmetros para comparar células solares [16].

Além dos parâmetros já mencionados, pode-se mencionar as resistências em série (R_s) e em paralelo (R_P). A resistência em série é causada por cinco fatores: resistência lateral do emissor, as resistências de contato frontal e posterior, a resistência das trilhas metálicas e a resistência do metal da barra coletora [17].

A R_S reduz o fator de forma, mas valores muito altos também reduzem o valor da corrente de curto-circuito, como pode ser observado na Figura 9(a) [16].

Tensão elétrica

Figura 8 - Curva I-V demonstrando o fator de forma [16].

A resistência em paralelo ocorre devido a fatores como fuga de corrente pelas bordas da célula, difusões ao longo de discordâncias ou contornos de grãos, pequenos curtos-circuitos metálicos, etc. Baixa resistência em paralelo provoca perda de potência nas células fotovoltaicas, porque fornece um caminho alternativo para a corrente elétrica fotogerada. A resistência em paralelo reduz principalmente a tensão de circuito aberto da célula solar, como mostra a Figura 9(b) [18].

Na Figura 9 pode-se comparar os efeitos dos dois tipos de resistência no comportamento da célula solar. Quanto menor a R_P , menor a V_{oc} e FF, e quanto maior a R_S , menor FF e I_{sc} [19].

2.2. Processo de Fabricação de Células Solares

Um processo típico de fabricação das células solares da indústria envolve a texturação da superfície das lâminas de silício, seguido da limpeza química com a solução RCA, difusão de fósforo, ataque do silicato de fósforo, seguido de outra limpeza RCA, deposição do filme antirreflexo, formação da malha metálica frontal e deposição e difusão de alumínio na face posterior por serigrafia e isolamento das bordas [20].

Figura 9 - Influência da (a) resistência em série e (b) resistência em paralelo nas células solares [19].

Atualmente, a deposição de alumínio por serigrafia na face posterior da célula solar é o método mais utilizado para reduzir a taxa de recombinação dos portadores de carga minoritários nesta região, mas a deformação durante o resfriamento da liga alumínio-silício formada é um problema da técnica. A alternativa é depositar uma camada passivadora na face posterior da célula solar, formando contatos elétricos pontuais no silício, como proposto pela célula solar com emissor passivado e face posterior passivada, denominada PERC (passivated emitter and rear cell). O resultado desta técnica é um dispositivo com maior eficiência, graças à redução da velocidade de recombinação na região posterior, além de evitar a deformação da célula. Além disso, a camada passivadora serve como um espelho, aumentando a refletância na face posterior e, com isso, a eficiência da célula solar. A criação de pontos no silício formados por processos de fotolitografia, seguida da deposição de alumínio por evaporação, utilizada na célula solar PERC, é substituída pela utilização de radiação laser para realizar o contato e a difusão do alumínio evaporado na face posterior. Esta técnica é denominada de LFC (laser fired contact). Uma comparação entre os processos para produzir células solares PERC com fotolitografia e LFC pode ser observada na Figura 10 [21].

Figura 10 – Comparação do método com fotolitografia e o método LFC para o processamento de células solares com região posterior passivada [21].

Além da estrutura PERC, há outro método para produzir células solares com emissor passivado, mas a face posterior com difusão localizada, denominada PERL. Zhao et al. [22] desenvolveram uma célula PERL em substratos criados por crescimento magnético Czochralski com 400 µm de espessura. A maior vantagem da célula solar PERL, apresentada na Figura 11, é a passivação da maior parte da célula com SiO₂ crescido em ambiente com tricloroetano (TCA). Os contatos frontal e posterior foram passivados por difusão de fósforo e boro, respectivamente. As pirâmides invertidas criadas na face frontal e a face posterior que reflete a radiação solar devido à camada de SiO₂ criam um sistema que aprisiona a radiação solar. Por tais fatores, a célula PERL possui valores de V_{oc} e J_{Sc} altos em substratos de Si-FZ. A metalização foi otimizada, visando diminuir as sombras formadas e a perda por resistência em série [22].

A célula solar produzida pelo processo LFC é uma ótima alternativa para realizar a estrutura PERC em escala industrial. Comparando com células solares produzidas com BSF na face posterior, esse método precisa de uma camada de alumínio evaporado na face posterior [23].

Em comparação com o processo com fotolitografia, a técnica LFC simplifica o processo, implementando o contato pontual seletivo com um sistema laser e difundindo o alumínio no silício na face posterior [24].

Figura 11 – Esquema da estrutura PERL [22].

A tecnologia utilizada na passivação posterior resulta em uma eficiência maior em comparação com outras tecnologias, mas para a produção de células solares com LFC, são necessárias mais etapas de processo. Com isto em mente, pesquisas foram realizadas por diversos grupos, visando simplificar a formação da camada dielétrica, e também foi estudada a utilização de diversos tipos de laser para a remoção seletiva da camada dielétrica [25]. Em todos os casos o objetivo foi criar uma camada dielétrica para passivar a superfície do silício na face posterior.

Nos experimentos de Schneiderlöchner et al. [24] foi utilizado um sistema laser com bombeamento por lâmpada *flash*. O laser operou no modo TEM00 com um comprimento de onda de 1064 nm. A frequência e a corrente variaram entre 1 e 30 kHz e 16 e 28 A, respectivamente. As amostras de 2 cm x 2 cm foram obtidas em lâminas de silício crescido pela técnica de fusão zonal flutuante (Si-FZ) tipo p de 0,5 Ω.cm. Na Figura 12 apresenta-se um esquema da formação das amostras. Depositaram um filme passivador, seguido da evaporação de uma camada de alumínio de 2 μm de espessura em ambos os lados e a formação do contato/difusão implementada por laser. Para utilizar como parâmetro, amostras de comparação com contatos criados por fotolitografia, com área de contato variando de 0,25 % a 4 % da área total, foram preparadas [24].

Figura 12 - Visão lateral do corpo de teste para o processo LFC [24].

Parâmetros como o espaçamento entre pontos foram variados e foram comparados os valores de resistência entre a face frontal e posterior das lâminas processadas por LFC e fotolitografia. Metade das lâminas foram passivadas com uma camada de 60 nm de SiNx:H, e a outra metade com óxido de silício de 100 nm de espessura. As células solares processadas com a estrutura PERC foram medidas sob as condições padrão de medição de irradiância de 100 mW/cm², à 25 °C e os melhores resultados são apresentados na Tabela 1 [24]. Nota-se que a melhor célula solar processada com laser atingiu a eficiência de 21,3 %, próxima da eficiência das células solares processadas com fotolitografia. Os melhores resultados foram obtidos com passivação de SiO₂.

2.3. Células Solares com Deposição de Alumínio por Evaporação

Na deposição por evaporação, o alumínio sólido é colocado em um cadinho dentro de uma evaporadora. E, por feixe de elétrons, o material é fundido e deposita-se nas lâminas suspensas [20].

Nekarda et al. [26] avaliaram diferentes técnicas de evaporação, analisando a condutividade e homogeneidade de filmes finos de alumínio, com a finalidade de produzir células solares com contato/difusão posterior com radiação laser.

Passivação Posterior	Tipo de célula	V _{oc} (mV)	J _{SC} (mA/cm²)	FF (%)	η (%)
	Poforôncia	683	39,4	81,1	21,9
SiO ₂ , alumínio depositado por	Referencia	682	39,3	81,5	21,9
feixe de elétrons	LFC	678	38,6	81,1	21,3
		675	39,0	80,3	21,2
SiNx:H, alumínio depositado por		667	36,7	79,0	19,4
feixe de elétrons		665	36,4	79,5	19,3
SiNx:H, alumínio depositado por		661	36,2	79,4	19,0
sputtering		656	36,1	79,6	18,9

Tabela 1 - Melhores resultados para células solares PERC processadas com o método LFC, comparadas com células de referência processadas com fotolitografia [24].

Também avaliaram a qualidade da passivação com óxido de silício de 100 nm de espessura. Com a evaporação por processo térmico e passivação com SiO₂, a reflexão interna na face posterior é similar aos resultados obtidos pela deposição por feixe de elétrons e o tempo de vida dos portadores de carga minoritários foi de 250 µs. Células solares com eficiência similar foram produzidas com as duas técnicas de evaporação. A eficiência alcançada foi de 21 %.

A espessura da camada de alumínio tem uma grande influência na condutividade lateral (*lateral conductivity*) e, por conseqüência, na eficiência da célula solar. Foram feitas análises relacionando a espessura da camada de alumínio, e a eficiência. Foi constatado que com espessuras entre 0,5 µm e 3 µm a eficiência é maior quanto mais espessa a camada de alumínio, sendo que 2 µm é a espessura mínima para se evitar perdas significativas de eficiência [27].

Células solares também foram desenvolvidas com deposição do Al na face posterior por *sputtering* e formação do contato/difusão por radiação laser [28]. Com metalização da face frontal por *sputtering*, foram obtidas células solares de 4 cm² com 21,1 % de eficiência em lâminas de Si-FZ, tipo p. Com este tipo de metalização, foi possível usar um emissor com resistência de folha de 120 Ω/\Box . A passivação foi formada por óxido de silício. Com o mesmo tipo de substrato e área,

Ramanathan e colaboradores [29] desenvolveram células solares com eficiência de 20,1 %, com metalização por serigrafia em ambas as faces. Neste caso, a passivação na face posterior foi formada pela deposição por *spin-on* de um dielétrico e a formação do óxido posterior e do emissor de fósforo, com resistência de folha de 75 Ω/\Box , foi realizada no mesmo processo térmico. A abertura dos pontos no dielétrico foi produzida com uma pasta de ataque depositada por serigrafia.

Para avaliar a utilidade da técnica LFC, Schneiderlöchner et al. [21] prepararam lâminas de silício Si-FZ passivadas com uma camada de 60 nm de nitreto de silício e uma camada de alumínio de 2 µm depositado por feixe de elétrons em ambas as faces. Pontos de contato foram criados por LFC. Os resultados obtidos foram, então, comparados com referências de amostras processadas com fotolitografia e abertura dos contatos por ataque com plasma. Após a otimização dos parâmetros do laser, células PERC de 4 cm² com contatos frontais formados por fotolitografia foram processadas em Si-FZ tipo p. Além da passivação posterior com SiN_x:H por PECVD (*plasma enhanced chemical vapour deposition*), também foram preparadas células solares de silício com SiO₂ crescido termicamente na face posterior. A comparação dos resultados é apresentada na Tabela 2 [21].

Passivação	Tipo de processo	Voc (mV)	J _{SC} (mA/cm²)	FF (%)	ባ (%)
SiO2	Ataque químico	683	39,7	81,3	22,0
0102	LFC	679	38,6	81,1	21,3
	LFC	676	39,1	80,3	21,2
SiNx:H	Ataque com plasma	674	39,4	81,1	21,5
	LFC	665	37,0	79,1	19,5
	LFC	668	36,7	79,0	19,4

Tabela 2 – Comparação dos resultados de células solares de silício com a técnica LFC e com o processo convencional PERC com ataque químico [21].

Com o processo convencional para produzir células solares PERC a eficiência alcançada foi de 22 % em células de 4 cm², metalização por fotolitografia e substrato de alta qualidade (Si-FZ). Utilizando a técnica LFC, a eficiência reduziu-se

em torno de 0,7 %. Porém, se a abertura dos contatos for realizada por ataque com plasma, a eficiência reduz-se em 0,5 %, atingindo o valor de 21,5 %.

2.4. Células Solares com Deposição de Pasta de Alumínio por Serigrafia

A deposição de pasta de alumínio por serigrafia consiste na utilização de um equipamento denominado *screen-printer*. O alumínio em forma de pasta é colocado na máquina, que deposita a malha selecionada sobre a célula, com a ajuda de uma máscara com o formato de malha desejado [23].

Nekarda et al. [23] desenvolveram dois processos e produziram três lotes de células solares para provar a utilidade da deposição por serigrafia e o método LFC. No primeiro processo, um lote foi produzido em lâminas de silício com espessura de 120 µm e área de 125 mm x 125 mm. A eficiência dos dispositivos deste lote foi de no máximo 18 %. No segundo processo, as células solares de 20 mm x 20 mm apresentaram maior eficiência. Neste caso, as lâminas de silício foram crescidas pela técnica de fusão zonal flutuante, com 250 µm de espessura e a passivação da face posterior consistiu de 100 nm de óxido de silício e 2 µm de alumínio, depositados por deposição física em fase vapor (PVD). A eficiência encontrada foi de até 20,6 %. No terceiro lote a face posterior foi modificada, depositando uma camada de 30 nm de oxinitreto enriquecido com silício (SiOxNy) e uma camada de 70 nm de SiN_x. Também foi substituída a deposição de alumínio por PVD pela deposição por serigrafia. A eficiência encontrada foi de 20,5 %, sendo quase igual a eficiência máxima obtida utilizando o método PVD para a deposição do alumínio na face posterior [23].

Nos experimentos de Lee et al. [30], foram utilizadas lâminas de silício monocristalino tipo p com uma espessura de 130 µm crescidas pelo método de fusão zonal flutuante e dopadas com boro. O processo começa com um banho químico para remover danos superficiais na lâmina, seguido da formação de um emissor de 50 Ω / \Box obtido por meio da difusão de fósforo com POCl₃ e remoção da camada n⁺ na face posterior utilizando hidróxido de tetrametilamônia (TMAH). Uma camada dupla de filme antirreflexo foi depositada sobre o emissor por PECVD [30].

Na face posterior, a passivação de SiO_x/SiN_x/SiO_xN_y foi depositada, seguida da deposição de pasta de alumínio por serigrafia. Para comparar as diferentes estruturas posteriores, também foram fabricadas células solares com Al-BSF depositado por serigrafia. Após a serigrafia, os contatos posteriores de alumínio com o silício tipo p foram formados utilizando o laser para completar a célula PERC. A seguir, as células foram queimadas em um forno de esteira. Os resultados das células solares criadas são comparados e apresentados na Tabela 3 [31].

Lâminas de silício 130 μm, 1Ω.cm, tipo p		Jsc (mA/cm ²)	Voc (mV)	FF (%)	η (%)
E7 Qi	PERC	35,6	639	77,3	17,6
FZ-31	AI-BSF	33,2	620	78,0	16,2
Si	PERC	34,9	633	77,8	17,2
multicristalino	AI-BSF	33,2	619	77,5	15,9

Tabela 3 – Características elétricas de células solares processadas em Si-FZ e Si multicristalino [30].

Em ambos tipos de substrato, de alta qualidade (SI-FZ) e de baixa qualidade (Si multicristalino), a melhor eficiência foi obtida em células PERC, devido ao aumento da Jsc e Voc, resultado da melhor passivação na face posterior.
3. METODOLOGIA

3.1. Processo de Fabricação

Foi desenvolvido um processo de fabricação para células solares PERC e metalização por serigrafia, típica de processos industriais. A lâmina de silício após a texturação inicial e limpeza RCA foi colocada em um forno de oxidação (marca Tystar) para formar uma camada de óxido de silício. A face posterior da lâmina foi coberta com resina fotossensível, e o óxido na face frontal foi removido com um ataque químico em HF tampão. Após uma limpeza RCA, as lâminas foram introduzidas no forno para difundir fósforo na face frontal. Depois de retirar o silicato de fósforo na face com fósforo com um ataque químico, foi realizada a limpeza RCA2 e medida a resistência de folha. Por fim, foi depositado um filme antirreflexo de óxido de titânio na face frontal da lâmina. A metalização frontal foi feita por serigrafia, enquanto que na face depositou-se uma camada de 2 µm de alumínio por feixe de elétrons, onde foram implementados os contatos por radiação laser, utilizando um laser da marca FOBA, ilustrado na Figura 13. Após o processamento, as células solares foram caracterizadas eletricamente sob condições padrão de medição. As lâminas de Si foram analisadas a partir da medição do tempo de vida dos portadores de carga minoritários.

Para o desenvolvimento das células solares de 4 cm² de área foram utilizadas lâminas de Si-Cz, tipo p, grau solar, orientação <100>, de 100 cm de diâmetro, espessura de 200 µm, resistividade de base de 1 Ω .cm a 20 Ω .cm e tempo de vida dos portadores de carga minoritários entre 27 µs e 46 µs [33]. As lâminas foram fornecidas pela empresa Amex. Entende-se por silício grau solar o silício de alta pureza (99,999 % a 99,9999 %) empregado na produção de células solares fotovoltaicas. As características das lâminas de PV-Si-FZ, adquiridas da empresa Silicon Quest, são: tipo p, diâmetro de 100 mm, espessura de 255 a 305

 μ m, orientação <100>, resistividade de base de 1 a 5 Ω .cm e tempo de vida dos portadores de carga minoritários maior que 300 μ s. Na Figura 14, mostra-se a célula solar que foi desenvolvida.

(b)

Figura 13 – Vista (a) externa e (b) interna do sistema laser utilizado para produzir o contato/difusão na face posterior das células solares.

Figura 14 - Célula solar desenvolvida com contato/difusão de alumínio em pontos formados por radiação laser.

O processo de fabricação resume-se nas seguintes etapas:

- texturação das lâminas de silício;

- limpeza RCA2;

- oxidação a 1000 °C;

- deposição de resina, ataque do óxido de silício em solução de HF tampão e limpeza da resina;

- limpeza RCA1 e RCA2;

difusão de fósforo a partir de POCl₃;

 - ataque do silicato de fósforo na face frontal em solução de HF e ataque simultâneo das primeiras camadas do óxido de silício na face posterior [37];

- limpeza RCA2;

deposição do filme antirreflexo (AR) de TiO₂;

- metalização por serigrafia na face frontal e queima;

deposição por evaporação de 2 µm de alumínio na face posterior;

- corte das 9 células solares processadas em uma lâmina de Si com o sistema laser;

 formação do contato/difusão em pontos por laser na face posterior e recozimento, em forno de esteira.

O processo de fabricação será desenvolvido a partir da otimização da potência e da frequência do sistema laser, da temperatura e da velocidade de esteira durante o recozimento, da distância entre pontos e do diâmetro dos pontos formados por radiação laser, da temperatura de difusão de fósforo para células solares processadas em substrato de alta qualidade (PV-Si-FZ) e da passivação na face posterior com óxido de silício com diferentes espessuras e com óxido de titânio. Um resumo dos parâmetros variados nos processos, assim como o intervalo das variações pode ser observado na Tabela 4.

3.1. Texturação

A fabricação de células solares de silício começa com o processo denominado de texturação, que representa o ataque químico da lâmina de silício com KOH, para a formação de micropirâmides randômicas na superfície. A texturação possibilita um maior confinamento da radiação solar na célula. A texturação expõe os planos cristalinos (111) do silício, o que diminui a refletância na superfície [34]. O processo é realizado imergindo as lâminas em uma solução de KOH, isopropanol e água deionizada. As micropirâmides resultantes são apresentadas na Figura 15 (a) e 15 (b) com aumento de 730 vezes e de 2500 vezes, respectivamente. Esse processo reduz a refletância na superfície do silício monocristalino para o valor de 12 %, que se reduz a 3-4 % quando um filme AR de TiO₂ é depositado. A variação na refletância final pode ser atribuída por variações na espessura do filme AR e/ou no índice de refração [38].

		Parâmetro	Intervalo
	Passivação de Óxido	Tempo de Oxidação (min)	120 e 240
	Difusão de Fósforo	Temperatura de Difusão (°C)	865
	Deposição do Filme AR	Espessura do filme AR (nm)	70 e 90
Si-Cz		Potência (W)	9 a 15
01 02		Frequência (kHz)	20 a 100
	Sistema Laser	Área do Ponto (um²)	2420 a
			10430
		Distância entre Pontos (mm)	0,2 a 1,0
	Recozimento	Temperatura de Recozimento (°C)	200 a 450
	Passivação de Óxido	Tempo de Oxidação (min)	120 e 240
PV-SI-	Difusão de Fósforo	Temperatura de Difusão (°C)	855 a 885
FZ	Deposição do Filme AR	Espessura do filme AR (nm)	70 e 90
	Recozimento	Temperatura de Recozimento (°C)	300 a 450

Tabela 4 - Resumo dos parâmetros variados para lâminas Si-Cz e PV-Si-FZ.

Figura 15 - Superfície da lâmina de silício monocristalino, após texturação com KOH com aumento de (a) 730 e (b) 2500 vezes.

3.2. Processos de Limpeza

Após certas etapas do processo de fabricação da célula solar de silício monocristalino, neste caso, a texturação, deposição e remoção de resina fotossensível e difusão de fósforo, será necessário realizar uma limpeza química para retirar contaminantes da superfície da lâmina de silício, pois esses degradam a superfície e podem ser difundidos durante as etapas à alta temperatura.

O processo de limpeza mais utilizado denomina-se RCA (*Radio Corporation of America*), largamente utilizado na indústria de semicondutores desde que foi proposto por Kern [36] nos anos 70. Essa limpeza é constituída de duas soluções, denominadas RCA1 e RCA2. A RCA1 consiste de uma parte de água oxigenada, para uma parte de hidróxido de amônio e para cinco partes de água deionizada, sendo utilizada para a remoção de partículas orgânicas. A RCA2 consiste de uma parte de água oxigenada, para uma parte de ácido clorídrico e para cinco partes de água deionizada, sendo utilizada, sendo utilizada para a remoção de partículas orgânicas (36]. Ambas as soluções são aquecidas em um volume de solução o suficiente para possibilitar a imersão total das lâminas de silício.

3.3. Deposição de Resina e Ataque do Óxido

Como a face frontal da lâmina será difundida com fósforo, é necessário remover o óxido nessa face. Para isso utilizou-se um *spinner* para depositar uma resina fotossensível na face posterior da lâmina de silício, sendo em seguida levada a uma estufa para secar a resina por 10 min à temperatura de 85 °C. As lâminas foram, então, mergulhadas em uma solução de HF tampão para remover o óxido da face frontal, processo que leva de 5 a 10 min, deixando a face posterior intacta devido à proteção proporcionada pela resina. A resina foi removida com o auxílio de dimetilcetona e limpa com isopropanol e água deionizada.

3.4. Oxidação e Difusão de Fósforo

Para a obtenção de células solares com alta eficiência é necessária a passivação superficial da lâmina de silício, para diminuir a taxa de recombinação dos portadores de carga minoritários [25]. A passivação foi realizada em um forno, onde as lâminas foram oxidadas durante 120 min ou 240 min, dependendo do processo realizado, à temperatura de 1000 °C. O resultado esperado é uma camada de óxido de 103 nm para o processo de 120 min e de 150 nm para o processo de 240 min.

Depois da retirada da camada de óxido com o ataque químico em HF tampão, as lâminas foram limpas com as soluções RCA1 e RCA2 e levadas ao forno para difusão de fósforo. O líquido utilizado foi o POCI₃, que foi arrastado para o tubo

de quartzo por meio do gás nitrogênio. Levando em conta os tempos de abertura e fechamento do forno, tempos de rampa de variação de temperatura e de difusão, todo o processo leva em torno de 1h e 40 min. A temperatura de difusão foi de 865 °C para lâminas Si-Cz e temperaturas de entre 855 °C a 895 °C para lâminas de PV-Si-FZ [39] [40]. Para caracterizar a difusão, mediu-se a resistência de folha (R□) em 13 regiões da lâmina de silício e calculou-se o desvio padrão.

3.5. Deposição de Filme Antirreflexo e Alumínio

Após a difusão de fósforo, ataque do silicato de fósforo e limpeza RCA2, as lâminas de silício foram colocadas na evaporadora, e por feixe de elétrons foi fundido o dióxido de titânio, que se depositou sobre a face frontal ou em ambas as faces, dependendo do processo realizado. A evaporadora é mostrada na Figura 16. A evaporadora também será utilizada, após a formação da malha frontal por serigrafia, para depositar a camada de alumínio na face posterior.

Figura 16 - Lâminas de silício na evaporadora utilizada para a deposição do filme AR e do alumínio.

3.6. Metalização e Recozimento

Após a deposição do filme antirreflexo, as lâminas de silício foram metalizadas na face frontal, utilizando o equipamento denominado de *screen printer*. Este equipamento é utilizado na serigrafia para a aplicação da pasta de prata PV16A e PV17A, da Dupont, para formar a malha metálica na face frontal. Para secar a pasta de prata, as lâminas passaram pelo forno de esteira, a uma temperatura de 300 °C. Para o processo de queima, foram utilizadas temperaturas de 850 °C a 870 °C para lâminas Si-Cz e 880 °C para as amostras de PV-Si-FZ [39] [40].

Na indústria de semicondutores, lâminas de silício são recozidas de modo que os dopantes, geralmente de boro, fósforo ou alumínio, podem difundir em posições substitucionais na rede cristalina, resultando em mudanças drásticas nas propriedades elétricas do material semicondutor. As lâminas serão recozidas para a difusão dos contatos pontuais no silício a temperaturas de 300 °C a 350 °C para lâminas Si-Cz e 400 a 450 °C para as amostras de PV-Si-FZ.

3.7. Formação do Contato e Difusão em Pontos por Radiação Laser

Após a lâmina ser submetida a todas as etapas descritas anteriormente, ela foi processada com radiação laser. Utilizou-se o equipamento da marca FOBA para a formação dos contatos e difusão do alumínio na face posterior. Diversos parâmetros do processo, como potência e freqüência do laser, tamanho de ponto e distância entre pontos foram otimizados. Um esquema da malha de pontos a ser formada pode ser visto na Figura 17.

Figura 17 - Representação da malha de pontos formada pelo laser.

As lâminas foram posicionadas no sistema laser de uma maneira que a malha de pontos programada no *software* do equipamento esteja alinhada com a lâmina de silício. Foram então selecionados os valores de potência e freqüência do laser, sendo que a velocidade de varredura do laser é constante, de 1000 mm/s, para todos os processos. São necessários 6 s para implementar a malha de pontos em cada lâmina de 4 cm².

3.8. Caracterização das Lâminas de Silício e Células Solares

As células solares de silício serão caracterizadas medindo a curva I-V no simulador solar, por meio da aplicação de uma diferença de potencial e medição da corrente elétrica gerada, em um sistema automático de medição, ilustrado na Figura 18. As condições padrão utilizadas na caracterização são: irradiância de 1000 W/m², espectro solar AM1,5G e temperatura da célula solar de silício de 25 °C. A célula é contatada na base por vácuo e dois eletrodos são posicionados sobre as barras coletoras (*busbar*). A partir da curva I-V, foram obtidos os principais parâmetros elétricos da célula solar: tensão de circuito aberto (V_{oc}), corrente de curto-circuito (I_{sc}), densidade de corrente de curto-circuito (J_{sc}), fator de forma (FF) e eficiência (η).

Figura 18 - Sistema automatizado utilizado na medição das células solares.

Outro parâmetro que será medido é o tempo de vida dos portadores de carga minoritários. Após uma etapa do processamento em alta temperatura, como oxidação, difusão ou queima das pastas de metalização, o tempo de vida dos portadores de carga minoritários pode aumentar ou diminuir. A partir da medição do tempo de vida dos portadores de carga minoritários é possível avaliar se etapas do processo que contribuirão para melhorar ou degradar o substrato de silício. O

equipamento WCT-120 da *Sinton,* mostrado na Figura 19, por meio do método QSSPC (estado quase-estacionário da fotocondutância), mede tempos de vida dos portadores de carga minoritários menores que 50 µs.

Figura 19 - Equipamento WCT-120 utilizado para medição do tempo de vida dos portadores de carga minoritários.

Com este método obtém-se a intensidade da radiação *versus* o tempo, durante o decaimento exponencial do pulso luminoso que é convertido em densidade de portadores de carga minoritários. A amostra deve ser passivada na superfície para evitar a recombinação dos portadores de carga minoritários. Para isso, utilizou-se uma solução de ácido fluorídrico com concentração de 48 %.

4. DESENVOLVIMENTO DE CÉLULAS SOLARES COM CONTATOS POSTERIORES FORMADOS POR RADIAÇÃO LASER E ANÁLISE DA INFLUÊNCIA DA PASSIVAÇÃO

4.1. Otimização experimental da Potência e da Frequência do Sistema Laser

Para encontrar os melhores parâmetros do sistema laser foram utilizadas lâminas de Si-Cz. A tensão de circuito aberto, a densidade de corrente de curtocircuito, o fator de forma e a eficiência das células solares em função da potência e da frequência do sistema laser são apresentados nas Tabelas 5 e 6 para dispositivos sem e com recozimento, respectivamente. Para as análises iniciais foi utilizada a temperatura de recozimento (T_R) no forno de esteira de 300 °C, com base nos processos realizados no NT-solar [37]. Em todas as tabelas as células são referidas como PXXLYYZ, onde PXX representa o número do processo, LYY o número da lâmina na qual a célula solar foi produzida e Z uma letra de A a I, representando a região da lâmina de silício onde a célula solar foi produzida, conforme mostra a Figura 20.

Figura 20 - Representação Ilustrativa da posição das células solares na lâmina de silício.

Potência (W)	Célula	Frequência (kHz)	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
0	P06L03C	60	537,8	27,5	0,287	4,3
9	P06L03A	80	529,7	13,0	0,264	1,8
11	P06L03G	60	539,6	31,6	0,409	7,0
	P06L03F	80	537,9	30,5	0,319	5,2
13	P06L02F	100	566,3	31,9	0,497	9,0
	P06L02G	50	566,2	31,2	0,595	10,5
15	P06L02H	80	567,2	31,4	0,607	10,8
	P06L02I	100	565,6	31,6	0,626	11,2

Tabela 5 – Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, sem recozimento no forno de esteira.

Tabela 6 - Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, após o recozimento a temperatura de 300 °C e melhora relativa da eficiência após o recozimento (Δη).

Potência (W)	Célula	Frequência (kHz)	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)	Δη (%)
0	P06L03C	60	560,1	32,2	0,319	5,8	34,9
9	P06L03A	80	552,2	18,6	0,278	2,9	61,1
11	P06L03G	60	570,8	35,1	0,461	9,2	31,4
11	P06L03F	80	571,6	34,7	0,355	7,1	36,5
13	P06L02F	100	585,2	34,0	0,479	9,5	5,6
	P06L02G	50	589,0	32,7	0,583	11,2	6,7
15	P06L02H	80	593,9	33,4	0,612	12,2	13,0
	P06L02I	100	593,2	33,8	0,627	12,6	12,5

Comparando a Tabela 6 com a Tabela 5, nota-se que com o recozimento a eficiência das células solares aumenta, devido ao aumento da J_{SC} e V_{OC}, mas especialmente do FF. Isso ocorre porque o recozimento repara danos causados pelo laser no silício [41]. No entanto, para as potências menores que 13 W, a eficiência foi inferior a 9,5 %. Conforme pode-se ver na curva J-V na Figura 21, o fator de forma foi baixo para as potências menores que 13 W, devido à resistência em série. Observa-se que as maiores eficiências foram alcançadas com a potência de 15 W e quanto maior a frequência, maior foi a eficiência. A maior eficiência alcançada foi de 12,6 % para a frequência de 100 kHz. Na Tabela 7 são mostradas as características dos dispositivos antes do recozimento. Na Tabela 8 compara-se a influência da frequência do sistema laser para as potências de 13 W e 15 W e temperatura de recozimento de 350 °C.

Figura 21 - Curvas da densidade de corrente em função da tensão aplicada das melhores células solares para cada potência, e respectivas frequências para a temperatura de recozimento de 300 °C.

Potência (W)	Célula	Frequência (kHz)	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)
	P06L03I	50	542,8	31,5	0,521	8,9
	P06L04A	80	542,7	31,3	0,445	7,6
13	P06L02E	80	568,1	31,3	0,668	11,9
	P06L04B	100	540,1	30,8	0,349	5,8
	P06L02F	100	566,3	31,9	0,497	9,0
	P06L04C	50	542,5	31,1	0,562	9,5
	P06L02G	50	566,2	31,2	0,595	10,5
15	P06L02H	80	567,2	31,4	0,607	10,8
15	P06L04D	80	543,9	31,8	0,499	8,6
	P06L04E	100	540,5	31,8	0,487	8,4
	P06L02I	100	565,6	31,6	0,626	11,2

Tabela 7 - Parâmetros elétricos das células solares sem recozimento no forno de esteira.

Novamente o recozimento aumenta a eficiência das células devido ao aumento nos valores de seus parâmetros elétricos. Observa-se que a J_{SC} e V_{OC} antes do recozimento são relativamente similares para as duas potências e todas as

frequências do sistema laser. No entanto, o FF varia de uma célula para outra, mesmo que processadas com a mesma potência e frequência. Comparando a Tabela 6 com a Tabela 8, notam-se melhores resultados com a temperatura de recozimento de 350 °C. Entretanto, a eficiência foi menor que 9,1 % para 13 W e 100 kHz e 50 kHz devido ao menor valor do FF. Como pode-se observar na Figura 22, os melhores resultados tanto para a potência de 13 W e 15 W foram para 80 kHz. A melhor eficiência, de 13,8 %, foi obtida para a potência de 13 W.

Potência (W)	Célula	Frequência (kHz)	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)	Δη (%)
	P06L03I	50,00	565,3	34,5	0,444	8,7	-2,2
	P06L04A	80,00	581,2	35,2	0,550	11,3	48,7
13	P06L02E	80,00	598,4	34,7	0,663	13,8	16,0
	P06L04B	100,00	573,9	34,3	0,341	6,7	15,5
	P06L02F	100,00	580,6	34,6	0,453	9,1	1,1
	P06L04C	50,00	575,3	34,6	0,562	11,2	17,9
	P06L02G	50,00	589,3	33,3	0,576	11,3	7,6
45	P06L02H	80,00	596,3	34,1	0,599	12,2	13,0
15	P06L04D	80,00	582,3	36,0	0,628	13,1	52,3
	P06L04E	100,00	581,3	36,0	0,485	10,1	20,2
	P06L02I	100,00	594,3	34,4	0,609	12,5	11,6

Tabela 8 - Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, após recozimento a 350 °C e melhora relativa da eficiência após o recozimento ($\Delta\eta$).

Figura 22 - Curvas J-V das melhores células solares para cada potência e com temperatura de recozimento de 350 °C.

Observa-se que para ambas as potências obtêm-se um FF similar, com apenas 0,7 % de diferença na eficiência das melhores células solares de 13 W e 15 W. Para comparar os pontos formados com as potências de 13 W e 15 W e frequência de 80 kHz, foi realizada uma análise com o microscópio óptico. O resultado está mostrado na Figura 23. Nota-se que o ponto formado é maior para a maior potência, representando maior área com difusão do alumínio na face posterior.

Figura 23 – Fotos dos pontos formados por laser de duas células solares com (a) 13 W e 80 kHz e com (b) 15 W e 80 kHz, obtidas com o microscópio óptico.

Como os parâmetros das células solares melhoraram com o aumento da temperatura, outro grupo de células foi processado, com temperatura de recozimento de 400 °C. Foram processadas células solares com potências de laser de 9 W e 11 W para verificar se 13 W e 15 W sempre resultam nos melhores resultados. Os dados são apresentados nas Tabelas 9 e 10.

Novamente o recozimento melhora as células solares para todas as combinações de potência e frequência em todos os parâmetros elétricos medidos. A eficiência foi menor que 8,4 % para 9 W, 11 W e 13 W, somente para as frequências 20 kHz e 100 kHz, como em resultados anteriores, devido a menores valores do fator de forma. Conclui-se que para baixas potências e/ou frequências se realiza um contato pouco eficaz.

Observa-se alta resistência em série para células solares com potência inferior a 11 W. Estas potências praticamente não estabelecem o contato na face posterior. A redução da resistência em série ocorre para as potências de 13 W e 15 W. Para estas potências o aumento da temperatura de recozimento, que, mesmo reduzindo defeitos causados pelo laser na célula e aumentando a difusão do alumínio nos pontos, também aumenta a resistência em série, causando reduzido valor de fator de forma, visto na Figura 24, na comparação das curvas J-V das células solares mais eficientes.

Potência (W)	Célula	Frequência (kHz)	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)
9	P06L03C	60	537,8	27,5	0,287	4,3
11	P06L03G	60	539,6	31,6	0,409	7,0
	P06L03F	80	537,9	30,5	0,319	5,2
	P06L01C	20	517,0	14,0	0,242	1,8
12	P06L01G	50	515,6	8,6	0,254	1,1
15	P06L02E	80	568,1	31,3	0,668	11,9
	P06L02F	100	566,3	31,9	0,497	9,0
15	P06L02G	50	566,2	31,2	0,595	10,5
	P06L02H	80	567,2	31,4	0,607	10,8
	P06L02I	100	565,6	31,6	0,626	11,2

Tabela 9 - Parâmetros elétricos das células solares sem recozimento no forno.

Tabela 10 - Parâmetros elétricos das células solares em função da potência e da frequência do sistema laser, na temperatura de recozimento de 400 °C e melhora relativa da eficiência após o recozimento ($\Delta\eta$).

Potência (W)	Célula	Frequência (kHz)	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)	Δη (%)
9	P06L03C	60	548,1	29,3	0,307	4,9	14,0
44	P06L03G	60	571,2	34,8	0,426	8,5	21,4
	P06L03F	80	572,6	33,3	0,329	6,3	21,2
	P06L01C	20	516,4	7,9	0,227	0,9	-50,0
13	P06L01G	50	562,9	36,6	0,487	10,0	809,1
15	P06L02E	80	597,8	34,9	0,651	13,6	14,3
	P06L02F	100	566,6	34,8	0,427	8,4	-6,7
15	P06L02G	50	583,6	33,4	0,541	10,6	1,0
	P06L02H	80	594,1	34,5	0,533	10,9	0,9
	P06L02I	100	589,3	34,7	0,578	11,8	5,4

4.2. Influência da Temperatura de Recozimento

Para avaliar a influência da temperatura de recozimento nos parâmetros elétricos das células solares, selecionaram-se primeiramente a potência e frequência

do sistema laser de 15 W e 80 kHz, respectivamente. Foram realizados processos com temperatura de recozimento entre 200 °C a 400 °C e comparados os resultados entre sem e com o recozimento. Os parâmetros elétricos das células solares são apresentados na Tabela 11.

Figura 24 - Curva J-V das melhores células solares para cada potência e frequência com temperatura de recozimento de 400 °C.

Observa-se que quando os dispositivos foram recozidos com a temperatura de 200 °C e 250 °C, todos os parâmetros elétricos praticamente não foram afetados. A eficiência média foi inferior a 10,8 % para os processos com T_R de 300 °C, e notou-se um aumento da eficiência média de 1 % com o recozimento. Os resultados para o recozimento a 350 °C e 400 °C foram similares. Em ambos os casos verificou-se um aumento na eficiência média de 2,3 %. Os resultados também foram similares para as melhores células solares, como se pode ver na Figura 25. Observa-se um aumento de todos os parâmetros elétricos até a T_R de 350 °C e 400 °C.

Na Figura 26 apresentam-se os parâmetros médios elétricos das células solares em função da temperatura de recozimento. Nota-se que a V_{OC} e J_{SC} aumentam com a T_R de forma significativa a partir de 350 °C. A V_{OC} cresce de valores próximos a 580 mV para valores maiores que 600 mV. Da mesma forma a J_{SC} aumenta de 33 mA/cm² para valores da ordem de 36 mA/cm².

Recozimento	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
Sem	P07L01A	567,0	30,9	0,439	7,7
T _R = 200 ° C	P07L01A	567,1	31,4	0,535	9,5
Sem	P07L01B	568,1	31,3	0,434	7,7
T _R = 250 ° C	P07L01B	568,1	31,9	0,451	8,2
	P07L01C	569,2	31,4	0,529	9,5
Sem	P07L01F	568,7	30,9	0,501	8,8
	P07L01G	568,6	31,0	0,630	11,1
	Média	$568,8 \pm 0,4$	31,1 ± 0,3	0,55 ± 0,08	9,8 ± 1,2
	P07L01C	587,9	34,4	0,544	11,0
T _R = 300 ° C	P07L01F	582,7	33,2	0,503	9,7
	P07L01G	572,8	32,4	0,631	11,7
	Média	581 ± 8	33,4 ± 1,1	$0,60 \pm 0,07$	10,8 ± 1,0
	P07L01D	568,3	31,1	0,556	9,8
	P07L01H	569,7	31,3	0,607	10,8
Sam	P07L01I	568,4	31,2	0,638	11,3
Sem	P07L02C	568,1	31,9	0,590	10,7
	P07L02D	566,8	31,7	0,646	11,6
	P07L02E	564,4	29,8	0,341	5,7
	Média	567,6 ± 1,8	31,2 ± 0,7	0,56 ± 0,11	10,0 ± 2,2
	P07L01D	605,8	35,4	0,562	12,0
	P07L01H	604,9	36,0	0,622	13,6
T 250 ° C	P07L01I	607,7	35,8	0,649	14,1
$I_R = 350^{-1} C$	P07L02C	603,3	36,3	0,599	13,1
	P07L02D	601,2	35,9	0,647	14,0
	P07L02E	596,6	33,0	0,344	6,8
	Média	603 ± 4	35,4 ± 1,3	0,58 ± 0,12	$12,3 \pm 2,8$
	P07L01E	565,3	31,4	0,391	6,9
	P07L02A	565,2	31,5	0,625	11,1
Som	P07L02B	566,9	32,0	0,535	9,7
Sem	P07L02F	569,1	31,6	0,492	8,8
	P07L02G	566,5	31,3	0,638	11,3
	P07L02H	567,2	31,7	0,620	11,2
	Média	566,7 ± 1,4	31,6 ± 0,3	0,55 ± 0,10	9,8 ± 1,7
	P07L01E	599,2	35,5	0,417	8,9
	P07L02A	605,8	36,3	0,619	13,6
T _ 400 °C	P07L02B	606,5	36,8	0,543	12,1
$I_R = 400$ °C	P07L02F	611,0	35,7	0,480	10,5
	P07L02G	606,5	35,7	0,640	13,9
	P07L02H	608,6	36,2	0,631	13,9
	Média	606 ± 4	$36,0 \pm 0,5$	0,57 ± 0,10	12,1 ± 2,1

Tabela 11 – Parâmetros elétricos das células solares em função da temperatura de recozimento do forno de esteira, na potência de 15 W e frequência de 80 kHz.

Figura 25 - Curva J-V com as melhores células solares para temperatura de recozimento, em potência de 15 W e frequência de 80 kHz

O fator de forma apresenta um comportamento similar, tendendo a aumentar com a T_R , porém de forma menos significativa e permanece aproximadamente constante para as T_R maiores que 300 °C. Em todos os casos, o fator de forma limitou a eficiência. Constata-se que a maior eficiência média ocorreu para a T_R de 350 °C.

4.3. Influência da Velocidade de Esteira Durante o Recozimento

Considerando que o melhor conjunto de resultados foi encontrado com as potências de 13 W e 15 W e temperatura de recozimento de 350 °C, o próximo parâmetro avaliado foi a velocidade de esteira durante o recozimento (V_E), sendo variada entre 30 cm/min e 80 cm/min. Os resultados se encontram na Tabela 12 e 13.

Figura 26 - Valores médios da (a) V_{OC} , (b) J_{SC} , (c) FF e (d) η em função da temperatura de recozimento.

Nota-se uma pequena influência da V_E nos parâmetros elétricos da célula solar para a potência de 13 W, também observado na Figura 27, com insignificante mudança no FF. Os maiores valores médios de eficiência ocorreram entre 50 cm/min e 75 cm/min. Um valor baixo de V_E resulta em maior tempo de recozimento, causando danos na malha de pontos formada por laser na face posterior, enquanto um valor alto de V_E, isto é, um tempo curto de processamento, provavelmente não resultou na re-estruturação cristalina do silício onde foi danificado pelo laser [41] e/ou não causou um contato adequado nos pontos.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)
	P12L04E	567,1	31,1	0,646	11,4
30	P12L04G	562,0	31,0	0,621	10,8
	Média	564 ± 4	31,09 ± 0,07	0,634 ± 0,018	11,1 ± 0,4
	P12L04A	560,6	31,0	0,624	10,8
50	P12L04C	567,5	30,9	0,677	11,8
50	P12L04H	567,4	31,2	0,639	11,3
	Média	565 ± 4	31,0 ± 0,1	0,647 ± 0,027	11,3 ± 0,5
	P12L04B	565,2	30,9	0,646	11,2
66	P12L04D	568,2	31,1	0,647	11,4
00	P12L04F	565,5	31,2	0,661	11,6
	Média	566,3 ± 1,6	31,0 ± 0,2	0,651 ± 0,008	11,4 ± 0,2
	P12L04I	565,7	31,0	0,663	11,6
70	P12L07H	560,4	31,3	0,632	11,0
70	P12L08B	566,4	30,4	0,684	11,7
	Média	564 ± 3	30,9 ± 0,5	0,660 ± 0,026	11,4 ± 0,4
	P12L07B	564,3	31,0	0,644	11,2
75	P12L07E	565,5	31,2	0,645	11,3
	Média	564,9 ± 0,9	31,1 ± 0,1	0,645 ± 0,001	11,3 ± 0,1
	P12L07C	557,1	31,1	0,658	11,4
80	P12L07F	563,8	31,2	0,649	11,4
00	P12L07I	556,1	31,2	0,627	10,8
	Média	559 ± 4	31,17 ± 0,06	0,645 ± 0,016	11,2 ± 0,3

Tabela 12 – Parâmetros elétricos das células solares em função da velocidade de esteira para a temperatura de recozimento de 350 °C, potência de 13 W e frequência de 80 kHz.

Figura 27 - Curva J-V das melhores células solares para as diferentes velocidades de esteira e temperatura de recozimento de 350 °C, potência de 13 W e frequência de 80 kHz.

Da Figura 28, verifica-se que para a V_E maior que 66 cm/min a V_{oc} cai, porém a J_{Sc} praticamente não é afetada pela V_E. Além disso, a J_{Sc} é menor que os resultados apresentados na Figura 26(b), para T_R de 350 °C. Por outro lado, o FF aumenta para V_E igual a 70 cm/min. Consequentemente, a eficiência é pouco afetada pela V_E, e a maior eficiência média ocorreu para V_E de 70 cm/min. A menor J_{Sc} pode ter sido resultado da baixa qualidade do substrato de Si.

Figura 28 - Valores médios da (a) V_{oc}, (b) J_{sc}, (c) FF e (d) η em função da velocidade de recozimento para a temperatura de recozimento de 350 °C, potência de 13 W e frequência de 80 kHz.

Para comparar estes resultados, os parâmetros elétricos das células solares processadas com a potência do laser de 15 W são apresentados na Tabela 13.

Para a potência de 15 W, os melhores valores médios da eficiência foram encontrados para as velocidades de esteira de 50 cm/min e 66 cm/min. Porém, os melhores valores de fator de forma foram encontrados para a V_E de 70 cm/min, 75 cm/min e 80 cm/min, como se pode ver na Figura 29. Verifica-se pela curva J-V das

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)
	P07L05D	618,7	36,7	0,580	13,3
	P07L05F	619,2	37,1	0,580	13,4
33	P12L02E	557,2	31,1	0,578	10,0
	P12L02G	562,8	31,0	0,664	11,6
	Média	589,5 ± 34,1	34,0 ± 3,4	0,601 ± 0,042	12,1 ± 1,6
	P07L01D	605,8	35,4	0,562	12,0
	P07L01H	604,9	36,0	0,622	13,6
	P07L01I	607,7	35,8	0,649	14,1
	P07L02C	603,3	36,3	0,599	13,1
50	P07L02D	601,2	35,9	0,647	14,0
	P12L02A	565,2	31,1	0,642	11,3
	P12L02C	563,7	30,8	0,670	11,7
	P12L02H	553,0	31,1	0,634	10,9
	Média	588,1 ± 23,1	34,1 ± 2,5	0,628 ± 0,034	12,6 ± 1,3
	P07L05G	611,6	35,9	0,650	14,3
	P07L05H	613,1	36,2	0,650	14,5
66	P12L02B	560,1	31,0	0,649	11,3
00	P12L02D	564,0	31,1	0,600	10,5
	P12L02F	560,3	31,1	0,595	10,4
	Média	581,8 ± 27,9	33,1 ± 2,7	0,629 ± 0,029	12,2 ± 2,0
	P12L02I	554,6	30,8	0,651	11,1
70	P12L03F	565,1	31,6	0,667	11,9
70	P12L03H	566,6	31,5	0,669	11,9
	Média	562,1 ± 6,5	31,3 ± 0,4	0,663 ± 0,010	11,6 ± 0,5
	P12L03B	563,3	30,9	0,667	11,6
75	P12L03D	568,6	31,6	0,670	12,0
75	P12L03I	562,4	31,2	0,666	11,7
	Média	564,7 ± 3,3	31,3 ± 0,4	0,668 ± 0,002	11,8 ± 0,2
	P12L03C	562,9	30,9	0,676	11,8
80	P12L03E	564,5	31,6	0,657	11,7
00	P12L03G	565,9	31,5	0,669	11,9
	Média	564,4 ± 1,5	31,4 ± 0,4	0,667 ± 0,010	11,8 ± 0,1

Tabela 13 - Parâmetros elétricos das células solares em função da velocidade de esteira na temperatura de recozimento de 350 °C, potência de 15 W e frequência de 80 kHz.

Na Figura 30 apresentam-se os parâmetros elétricos das melhores células solares, processadas em diferentes V_E. Observa-se que a V_{OC} e J_{SC} são maiores para a V_E menor ou igual que 66 cm/min, atingindo o valor máximo em 33 cm/min. Porém, o FF foi inferior a 0,7 em todos os casos, e o menor valor ocorreu para a V_E

de 33 cm/min. Portanto, concluiu-se que a melhor V_E está entre 50 cm/min e 66 cm/min.

Figura 29 - Curva J-V das melhores células solares para velocidade de esteira, em temperatura de recozimento de 350 °C, potência de 15 W e frequência de 80 kHz

Os valores de fator de forma não foram altos como o esperado para nenhuma das células solares, podendo haver problemas com a malha metálica de prata na face frontal da célula solar. Para averiguar esta hipótese, foram processadas células solares sem a criação dos contatos posteriores formados por laser, e com queima da malha frontal com temperaturas de queima (T_Q) de 650 °C, 700 °C e 750 °C. Desta forma, ocorrerá a difusão do alumínio em toda a face posterior, apesar da existência do óxido de silício nesta face.

Os resultados são mostrados na Tabela 14. Pode-se notar que há um aumento no FF, porém a Voc diminuiu, devido ao aumento da recombinação dos portadores de carga minoritários na face posterior. Na Figura 31 apresentam-se as curvas J-V das melhores células solares com difusão de alumínio em toda a face posterior. Verifica-se que não há problemas de resistência em série, pois o FF foi de 0,74 a 0,77. A eficiência das melhores células solares foi de 13,5 % a 13,7 %.

Figura 30 - Valores da (a) V_{oc}, (b) J_{sc}, (c) FF e (d) η em função da velocidade de recozimento das melhores células solares, para V_E de 350 °C, potência de 15 W e frequência de 80 kHz.

Tabela 14 - Parâmetros elétricos das células solares sem processamento com laser para a temperatura de queima da malha frontal de 650 °C, 700 °C e 750 °C.

Recozimento	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P07L02l	569,9	30,9	0,776	13,7
T650 °C	P07L03A	545,6	31,3	0,753	12,9
1Q=050 C	P07L04D	571,4	31,0	0,703	12,5
	Média	562,3 ± 14,5	30,9 ± 0,2	0,744 ± 0,037	13,0 ± 0,6
	P07L03B	552,6	32,5	0,668	12,0
	P07L03C	552,2	32,4	0,694	12,4
T _Q =700 °C	P07L04A	572,8	31,1	0,744	13,3
	P07L04I	571,7	30,9	0,773	13,7
	Média	562,3 ± 11,5	31,7 ± 0,8	0,720 ± 0,047	12,8 ± 0,8
	P07L03D	556,1	32,7	0,741	13,5
T _Q = 750 °C	P07L04B	564,3	31,9	0,672	12,1
	P07L04C	545,1	31,7	0,615	10,6
	Média	555,2 ± 9,6	32,1 ± 0,5	0,676 ± 0,063	12,1 ± 1,4

Figura 31 - Curva J-V com as melhores células solares para altas temperaturas de queima sem laser.

4.4. Influência da Distância entre Pontos

A distância entre os pontos formados pela radiação laser (D_P), foi otimizada para a potência de 15 W, frequência de 80 kHz e T_R de 350 °C, definidos como os melhores parâmetros para a produção das células solares. A V_E usada foi de 50 cm/min. A D_P foi variada entre 0,3 mm e 0,9 mm, e os valores dos parâmetros elétricos das células solares são apresentados na Tabela 15.

Os maiores valores médios de eficiência ocorreram para a D_P de 0,3 mm e de 0,5 mm e o maior valor de eficiência foi de 14,1 % para D_P de 0,5 mm. Porém, a D_P de 0,5 mm apresentou maior variação nos valores de eficiência, com um desvio padrão de 0,8 % (absoluto) quando comparado com o valor de 0,4 % para a D_P de 0,3 mm. Mesmo que a D_P de 0,3 mm resulte em valores de J_{SC} e V_{OC} médios menores aqueles obtidos com D_P de 0,5 mm, os valores maiores de FF foram encontrados com 0,3 mm. No entanto, como se pode ver na Figura 32, o FF cai drasticamente para a D_P de 0,9 mm.

D _p (mm)	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P07L03G	581,4	34,4	0,658	13,2
0.2	P07L03H	584,9	35,2	0,650	13,4
0,3	P07L03I	587,7	35,2	0,672	13,9
	Média	584,7 ± 3,2	34,9 ± 0,4	0,660 ± 0,011	13,5 ± 0,4
	P07L01D	605,8	35,4	0,562	12,0
	P07L01H	604,9	36,0	0,622	13,6
0.5	P07L01I	607,7	35,8	0,649	14,1
0,5	P07L02C	603,3	36,3	0,599	13,1
	P07L02D	601,2	35,9	0,647	14,0
	Média	604,6 ± 2,5	35,9 ± 0,3	0,616 ± 0,036	13,4 ± 0,8
	P07L04G	609,6	35,6	0,612	13,3
0.7	P07L04H	608,9	36,0	0,611	13,4
0,7	P07L04I	616,0	36,4	0,522	11,7
	Média	611,5 ± 3,9	36,0 ± 0,4	0,582 ± 0,052	12,8 ± 0,9
0.0	P07L05A	611,8	27,2	0,275	4,6
	P07L05B	615,9	29,1	0,282	5,1
0,9	P07L05C	617,2	33,0	0,304	6,2
	Média	615,0 ± 2,8	29,8 ± 2,9	0,287 ± 0,015	5,3 ± 0,8

Tabela 15 - Parâmetros elétricos das células solares em função da distância entre os pontos, para a temperatura de recozimento de 350 °C, potência de 15 W e frequência de 80 kHz.

Na Figura 32 são apresentados os parâmetros elétricos em função da distância entre pontos das células solares com as maiores eficiências. A Voc tende a crescer com o aumento da distância entre pontos, pois a área com difusão/contato de alumínio diminui e, consequentemente, diminui a área com recombinação dos portadores da carga minoritários. A maior Voc foi de 617 mV. O valor máximo de Jsc foi em torno de 36,3 mA/cm² e ocorreu para D_P de 0,7 mm. Para a maior distância, de 0,9 mm, a Jsc caiu significativamente. O FF diminuiu com o aumento da D_P, reduzindo o valor a 0,304 para a maior D_P. Como resultado do comportamento dos três parâmetros elétricos, as melhores eficiências ocorrem para as menores distâncias entre pontos. A maior eficiência foi de 14,1 % e ocorreu para D_P de 0,5 mm.

Processaram-se células solares com pontos formados por radiação laser em substratos de Si-Cz, porém de menor qualidade que os anteriormente utilizados, para verificar se a distância entre pontos apresenta a mesma influência nos parâmetros elétricos das células solares. Comparando a Tabela 16 com a Tabela 15, verifica-se que a eficiência dos dispositivos diminuiu, devido à redução na Voc e Jsc. Porém, na Figura 34 nota-se que o comportamento dos quatro parâmetros elétricos é similar ao apresentado na Figura 33.

Figura 32 - Curva J-V das melhores células solares para diferentes distâncias entre pontos, e temperatura de recozimento de 350 °C, potência de 13 W e frequência de 80 kHz.

Tabela 16 - Parâmetros elétricos das células solares em função da distância entre pontos, na temperatura de recozimento de 350 °C, potência de 15 W e frequência de 80 kHz para lâminas Si-Cz de pior qualidade.

D _p (mm)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
0,3	P12L08H	566,5	30,7	0,715	12,4
	P12L10E	568,2	31,5	0,693	12,4
	Média	567,4 ± 1,2	31,1 ± 0,6	0,704 ± 0,016	12,4
	P12L10B	566,5	31,3	0,670	12,0
0,5	P12L10F	564,2	31,5	0,670	11,9
	Média	565,3 ± 1,7	31,38 ± 0,14	0,670	11,9
	P12L10D	569,0	31,4	0,599	10,7
0,7	P12L10H	555,5	31,5	0,587	10,3
	Média	562 ± 9	31,45 ± 0,04	0,593 ± 0,009	10,5 ± 0,3
	P12L10C	567,8	31,0	0,563	9,9
0,9	P12L10G	564,8	31,0	0,468	8,2
	P12L10I	569,0	31,4	0,525	9,4
	Média	567,2 ± 2,1	31,10 ± 0,21	0,52 ± 0,05	9,2 ± 0,9

Figura 33 - (a) V_{oc}, (b) J_{sc}, (c) FF e (d) η em função na distância entre pontos, para as melhores células solares do processo 07.

4.5. Influência da Área do Contato

Nesta etapa, avaliou-se a influência da área do contato (A_c) dos pontos formados por laser nos parâmetros elétricos das células solares com passivação na face posterior. Inicialmente, determinou-se a espessura da camada passivadora de dióxido de silício na face posterior e do filme antirreflexo de TiO₂ na face frontal, a partir da medição da refletância em uma lâmina sem malha metálica ou formação dos pontos de contato/difusão por radiação laser. Na Tabela 17 apresenta-se a refletância média ponderada e a espessura calculada da camada de SiO₂ e do filme antirreflexo em 5 regiões da amostra. A refletância do filme de TiO₂ é de 1,7 % e a espessura é de 65,6 nm. A espessura da camada de SiO₂, crescida em processo térmico seco foi de 103 nm. Na Figura 35 compara-se a refletância do filme antirreflexo e da camada de SiO₂ e, como se esperava, a camada de SiO₂ apresenta maior refletância média de 2,2 % com o mínimo em 620 nm.

Figura 34 – Valores médios da (a) V_{oc}, (b) J_{sc}, (c) FF e (d) η para as variações na distância entre pontos para o processo 12, quando foi usado um silício Cz de menor qualidade.

Tabela 17 -	 Refletância 	média	ponderada	е	espessura	da	camada	passivadora	de	SiO ₂	e d	lo i	filme
antirreflexo.													

	Região	Refletância (%)	Espessura calculada (nm)	
	Região 1	1,8	66	
Região	Região 2	1,7	64	
TiO	Região 3	1,7	67	
1102	Região 4	1,7	64	
	Região 5	1,9	66	
	Média	$1,7 \pm 0,3$	65,4 ± 1,3	
SiO ₂	-	2,2	103	

Conforme ilustram as Figuras 36 e 37, aumentou-se a área de contato, com a potência do sistema laser de 13 W e 15 W, respectivamente. As áreas de contato dos pontos foram entre 2400 μ m² e 6900 μ m² para 13 W e entre 2900 μ m² e 10345 μ m² para 15 W. As áreas foram medidas a partir do programa computacional

Analyzing Digital Images. Os resultados dos parâmetros elétricos das células solares processadas com 13 W são apresentados na Tabela 18.

Figura 35 – Refletância da camada passivadora de SiO₂ e do filme antirreflexo de TiO₂.

Figura 36 - Área de contato formada por laser com potência de 13 W de (a) 2423 μm², (b) 5627 μm² e (c) 6895 μm². Imagens obtidas com o microscópio óptico.

Figura 37 - Área de contato formada por laser com potência de 15 W de (a) 2900 μm², (b) 7230 μm² e (c) 10432 μm². Imagens obtidas com o microscópio óptico.

Á _c (μm²)	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P12L04I	565,7	31,0	0,663	11,6
	P12L07H	560,4	31,3	0,632	11,1
2423	P12L08B	566,4	30,4	0,684	11,8
	Média	564,2 ± 3,3	30,9 ± 0,5	0,659 ± 0,026	11,5 ± 0,4
	P12L08A	566,3	30,6	0,679	11,8
5607	P12L08E	567,7	30,0	0,701	11,9
5027	P12L08G	548,5	30,9	0,674	11,4
	Média	560,8 ± 10,7	30,5 ± 0,4	0,685 ± 0,014	11,7 ± 0,3
	P12L08C	567,2	30,3	0,714	12,3
6895	P12L08F	568,7	30,0	0,718	12,3
	Média	568,0 ± 1,1	30,18 ± 0,22	0,716 ± 0,003	12,3

Tabela 18 - Parâmetros elétricos das células solares em função da área de contato para temperatura de recozimento de 350 °C, V_E de 70 cm/min, potência de 13 W e frequência de 80 kHz.

Da Tabela 18 e da Figura 38, novamente observa-se que com o aumento da área de contato total na face posterior, aumenta a eficiência, devido ao aumento do FF. O melhor resultado foi de 12,3 %, com V_{oc} de 567,2 mV e FF de 0,718. Porém, o melhor valor de J_{SC} foi para a menor área, de 31,3 mA/cm² e a J_{SC} apresenta uma tendência de diminuir com o aumento da área de contato, como se pode ver na Figura 38 (b). Isso ocorre devido a maior área com passivação e, consequentemente, menor recombinação na face posterior.

Na Tabela 19 mostram-se os resultados para a potência do sistema laser de 15 W. Neste caso, observa-se que a eficiência tende a crescer até a área de 7230 μ m², devido a tendência de aumento do FF. O valor máximo da eficiência foi de 12,6 %, com V_{OC} de 568 mV, FF médio de 0,702, e J_{SC} de 31,6 mA/cm². A Voc e o FF são similares aos obtidos para a potência de 13 W. Somente a J_{SC} é um pouco maior, resultando no aumento de 0,3 % na eficiência. A resistência em série continua alta, sendo menor para a maior A_C, conforme se pode notar na Figura 39.

Figura 38 - Valores médios da (a) V_{oc}, (b) J_{sc}, (c) FF e (d) η para diferentes áreas de contato formadas com a potência de 13 W.

Tabela 19 - Parâmetros elétricos das células solares em função da área dos pontos, para temperatura de recozimento de 350 °C, V_E de 75 cm/min, potência de 15 W e frequência de 80 kHz.

Α _c (μm²)	Célula	Voc (mV)	Jsc (mA/cm2)	FF	Eficiência (%)
	P12L03B	563,3	30,9	0,667	11,6
2000	P12L03D	568,6	31,6	0,670	12,0
2900	P12L03I	562,4	31,2	0,666	11,7
	Média	564,8 ± 3,4	31,3 ± 0,4	0,668 ± 0,002	11,8 ± 0,2
	P12L09F	568,7	31,6	0,702	12,6
7230	P12L09I	568,3	31,4	0,702	12,5
	Média	568,5 ± 0,3	31,5 ± 0,1	0,702	12,6 ± 0,1
	P12L09C	565,3	31,3	0,687	12,1
10432	P12L09E	567,8	31,5	0,709	12,7
	P12L09H	568,3	31,6	0,715	12,8
	Média	567,1 ± 1,6	31,4 ± 0,2	0,704 ± 0,015	12,5 ± 0,4

Figura 39 - Curva J-V das melhores células solares com diferentes áreas dos pontos e temperatura de recozimento de 350 °C, potência de 15 W e frequência de 80 kHz.

4.6. Substrato de Alta Qualidade

4.6.1. Temperatura de Difusão de Fósforo de 855 °C

Para o desenvolvimento de células solares em substratos de silício de alta qualidade (PV-Si-FZ), otimizou-se a temperatura de difusão de fósforo (T_D) com base em trabalhos previamente realizados pelo NT-Solar [37]. Para o processo de recozimento utilizou-se o melhor intervalo da velocidade de esteira e temperatura do forno de esteira encontrado para substratos de Si-Cz. Esta etapa foi iniciada com a T_D de 855 °C e foram utilizadas as V_E de 65 cm/min e 75 cm/min para a T_R de 350 °C e as V_E de 65 cm/min, 75 cm/min e 85 cm/min para a T_R de 400 °C e 450 °C. Os resultados são apresentados nas Tabelas 19, 20 e 21. A resistência de folha média medida em 13 regiões em uma lâmina de silício após a difusão de fósforo para formar o emissor foi de 63 Ω/\Box .

Os maiores valores médios foram todos encontrados para a V_E de 65 cm/min, devido a maior V_{OC} de 570,9 mV, resultando na eficiência de 12,6 %. No entanto, a diferença dos resultados para as duas velocidades de recozimento é pequena.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P19L10A	573,1	30,7	0,721	12,7
	P19L10F	571,0	31,3	0,714	12,7
	P19L10H	570,6	30,5	0,716	12,5
65	P19L11A	569,0	30,6	0,727	12,7
	P19L11F	571,1	30,2	0,725	12,5
	P19L11H	570,7	29,7	0,728	12,3
	Média	570,9 ± 1,3	30,5 ± 0,5	0,722 ± 0,006	12,6 ± 0,2
75	P19L12A	562,86	30,57	0,723	12,4
	P19L12F	566,22	30,84	0,712	12,4
	P19L12H	565,45	30,52	0,703	12,1
	Média	567,3 ± 3,6	$30,4 \pm 0,4$	0,718 ± 0,010	12,3 ± 0,2

Tabela 19 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 350 °C, temperatura de difusão de 855 °C, potência de 15 W e frequência de 80 kHz.

Tabela 20 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 400 °C, temperatura de difusão de 855 °C, potência de 15 W e frequência de 80 kHz.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P19L08A	572,1	31,2	0,655	11,7
	P19L08F	575,4	31,2	0,681	12,2
	P19L08H	574,0	31,0	0,687	12,2
	P19L10B	571,8	30,7	0,725	12,7
C.E.	P19L10D	575,2	30,6	0,735	12,9
CO	P19L10I	573,0	30,8	0,733	12,9
	P19L11B	567,1	30,4	0,725	12,5
	P19L11D	574,3	29,9	0,741	12,7
	P19L11I	570,3	29,9	0,741	12,7
	Média	572,6 ± 2,7	30,6 ± 0,5	0,714 ± 0,031	12,5 ± 0,4
	P19L08B	572,8	31,0	0,672	11,9
	P19L08D	575,7	31,3	0,67	12,1
	P19L08I	575,6	31,1	0,698	12,5
75	P19L12B	567,3	30,2	0,72	12,4
	P19L12D	570,7	30,5	0,724	12,6
	P19L12I	566,3	30,8	0,717	12,5
	Média	571,4 ± 4,0	30,8 ± 0,4	0,700 ± 0,024	12,3 ± 0,3
	P19L08C	572,8	31,3	0,673	12,1
85	P19L08E	572,5	31,1	0,679	12,1
05	P19L08G	576,3	31,0	0,7	12,5
	Média	573,9 ± 2,1	31,1 ± 0,2	0,684 ± 0,014	12,2 ± 0,2

Confirma-se a tendência de diminuição da eficiência em função do aumento da V_E, devido à redução do FF. A melhor eficiência média de 12,5 % foi similar a obtida para a TR de 350 °C, onde a V_{OC} média foi de 572,3 mV e, novamente, ocorreu para a V_E de 65 cm/min.

Tabela 21 - Parâmetros elétricos das células solares em função da velocidade de recozimento para a temperatura de recozimento de 450 °C, temperatura de difusão de 855 °C, potência de 15 W e frequência de 80 kHz.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P19L07A	576,8	31,0	0,668	12,0
	P19L07F	571,6	31,5	0,674	12,1
	P19L07H	573,0	31,1	0,673	12,0
	P19L10C	573,0	31,4	0,724	13,0
65	P19L10E	571,2	30,8	0,716	12,6
05	P19L10G	574,2	30,3	0,734	12,8
	P19L11C	565,0	30,4	0,735	12,6
	P19L11E	573,1	30,0	0,735	12,6
	P19L11G	573,2	29,7	0,738	12,6
	Média	572,3 ± 3,2	30,7 ± 0,6	0,711 ± 0,030	12,5 ± 0,4
	P19L07B	567,5	31,2	0,679	12,0
	P19L07D	576,9	31,1	0,682	12,2
	P19L07I	572,6	31,1	0,691	12,3
75	P19L12C	566,2	30,9	0,717	12,6
	P19L12E	566,3	30,6	0,704	12,2
	P19L12G	566,5	30,5	0,721	12,5
	Média	569,3 ± 4,4	30,9 ± 0,3	0,699 ± 0,018	12,3 ± 0,2
	P19L07C	573,6	31,3	0,689	12,3
95	P19L07E	574,4	31,2	0,668	12,0
00	P19L07G	574,2	30,9	0,686	12,2
	Média	574,1 ± 0,4	31,1 ± 0,2	0,681 ± 0,011	12,2 ± 0,2

Comparando-se as Tabelas 19, 20 e 21, observa-se que a eficiência é similar para cada V_E. Para a V_E de 65 cm/min a eficiência média foi de 12,6% – 12,5%, para a V_E de 75 cm/min foi 12,3% e para a V_E de 85 cm/min a eficiência foi de 12,2%, confirmando a tendência de redução da eficiência em função do aumento da V_E, devido à diminuição do FF. Por causa do menor tempo de processamento para a maior V_E, provavelmente não ocorre um bom contato, aumentando a resistência em série. A melhor eficiência média ocorreu para a T_R de 350 °C, porém os melhores valores, de 12,9% e 13,0 % ocorreram para a T_R de 400 °C e 450 °C.

4.6.2. Temperatura de Difusão de Fósforo de 865 °C

Com o objetivo de reduzir a resistência de folha do emissor, isto é aumentar a quantidade de fósforo difundido na face frontal da lâmina de silício, aumentou-se a T_D para 865 °C. Neste caso, a resistência de folha média do emissor foi de 60 Ω/\Box . Novamente utilizou-se a T_R de 350 °C, 400 °C e 450 °C e V_E de 65 cm/min, 75 cm/min e 85 cm/min. Os dados obtidos são apresentados nas Tabelas 22, 23 e 24.

Para esta temperatura de difusão e T_R de 350 °C e 400 °C, não se observa uma tendência de redução da eficiência com o aumento da V_E e os demais parâmetros elétricos também aumentaram, contradizendo os resultados anteriores. Somente para a T_R de 450 °C, a eficiência reduz-se com o aumento da V_E.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P13L10A	579,8	32,0	0,637	11,8
65	P13L10F	574,7	32,1	0,650	11,9
	Média	577,3 ± 3,6	32,1	0,644 ± 0,009	11,9 ± 0,1
75	P13L10B	579,1	32,2	0,656	12,2
	P13L10D	578,3	32,1	0,614	11,3
	P13L10I	576,7	31,8	0,665	12,1
	Média	578,0 ± 1,2	32,0 ± 0,2	0,645 ± 0,027	11,9 ± 0,5
85	P13L10E	577,3	32,2	0,639	11,8
	P13L10G	578,8	32,2	0,677	12,6
	P13L10H	581,2	32,8	0,662	12,6
	Média	579,1 ± 2,0	32,4 ± 0,4	0,659 ± 0,019	12,3 ± 0,5

Tabela 22 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 350 °C, temperatura de difusão de 865 °C, potência de 15 W e frequência de 80 kHz.

Observa-se um crescimento da J_{SC} com o aumento da T_R , alcançando o valor médio de 33,3 mA/cm², para as duas maiores temperaturas de recozimento. O melhor valor da V_{OC} média foi de 591,3 mV e ocorreu para a T_R de 400 °C, que associado ao aumento da J_{SC} resultou na melhor eficiência média de 13,6 % para a V_E de 85 cm/min. A melhor eficiência ocorreu para estes parâmetros de recozimento e o valor foi de 13,9 %, provocada pela V_{OC} de 594,9 mV e J_{SC} de 33,8 mA/cm². Da
mesma forma que para células solares em Si-Cz, somente o fator de forma foi baixo para todos os casos, sendo inferior a 0,70.

Comparando as Tabelas 19, 20 21 com as Tabelas 22, 23 e 24 nota-se que com o aumento da temperatura de difusão de fósforo ocorreu um aumento da eficiência para as T_R de 400 °C e 450 °C. Especificamente para a T_R de 400 °C, observa-se um aumento da Voc e da Jsc com o aumento da temperatura de difusão de fósforo devido a formação de um emissor mais profundo. No entanto, o FF é baixo para as duas T_D , indicando que a resistência em série não é provocada pela resistência de contato entre a malha metálica frontal e a superfície do emissor. Portanto, pode-se concluir que a concentração em superfície do dopante não é baixa e não provoca a alta resistência em série.

Tabela 23 ·	- Par	âmetros	elétrico	os das	célu	Ilas	solares	em	função	velo	cidac	le d	e recozim	ento	o pa	ara	а
temperatura	a de	recozim	ento de	e 400	°C, t	tem	peratura	de	difusão	de	865	°C,	potência	de	15	W	е
frequência o	de 80) kHz.															

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P13L11A	592,3	32,9	0,691	13,4
65	P13L11F	590,4	33,5	0,681	13,4
05	P13L11H	587,9	33,4	0,678	13,3
	Média	590,2 ± 2,2	33,3 ± 0,3	0,683 ± 0,007	13,4 ± 0,1
	P13L11B	591,9	33,9	0,675	13,5
75	P13L11D	593,5	33,8	0,686	13,7
75	P13L11I	587,1	32,8	0,701	13,4
	Média	590,8 ± 3,3	33,5 ± 0,6	0,687 ± 0,013	13,5 ± 0,2
	P13L11C	585,1	32,8	0,687	13,1
85	P13L11E	594,9	33,8	0,692	13,9
	P13L11G	594,0	33,5	0,694	13,7
	Média	591,3 ± 5,4	33,3 ± 0,5	0,691 ± 0,004	13,6 ± 0,4

4.6.3. Temperatura de Difusão de Fósforo de 875 °C

Como uma maior temperatura de difusão resultou em células solares mais eficientes, avaliou-se a influência da T_D de 875 °C nos parâmetros elétricos das células solares, utilizando as temperaturas de recozimento de 300 °C, 400 °C e 450 °C. A resistência de folha média após a difusão de fósforo foi de 53 Ω / \Box . Os resultados obtidos são apresentados nas Tabelas 25, 26 e 27.

Tabela 24 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 450 °C, temperatura de difusão de 865 °C, potência de 15 W e frequência de 80 kHz.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P13L12A	584,3	32,9	0,685	13,1
65	P13L12F	581,1	33,6	0,668	13,1
	Média	582,7 ± 2,3	33,2 ± 0,6	0,677 ± 0,012	13,1
	P13L12B	578,9	33,1	0,67	12,8
	P13L12D	576,4	33,2	0,643	12,3
75	P13L12I	585,6	33,2	0,697	13,5
	Média	580,3 ± 4,8	33,2	0,670 ± 0,027	12,9 ± 0,6
	P13L12C	585,9	33,6	0,672	13,2
95	P13L12E	584,3	33,6	0,627	12,3
65	P13L12G	579,1	32,7	0,691	13,1
	Média	583,1 ± 3,6	33,3 ± 0,5	0,663 ± 0,033	12,9 ± 0,5

Tabela 25 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 300 °C, temperatura de difusão de 875 °C, potência de 15 W e frequência de 80 kHz.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P14L13F	582,8	33,7	0,664	13,1
65	P14L13H	582,0	33,5	0,683	13,3
	Média	582,4 ± 0,6	33,6 ± 0,1	0,674 ± 0,013	13,2 ± 0,2
	P14L13B	568,0	33,5	0,682	13,0
	P14L13D	579,4	33,5	0,678	13,2
75	P14L13I	583,0	33,9	0,689	13,6
	Média	581,2 ± 2,5	33,6 ± 0,2	0,683 ± 0,005	13,2 ± 0,3
	P14L13E	578,7	33,3	0,664	12,8
85	P14L13G	575,6	33,1	0,673	12,8
	Média	577,2 ± 2,2	33,2 ± 0,2	0,668 ± 0,006	12,8

Para a T_R de 300 °C a maior eficiência média foi de 13,2 % e ocorreu para as duas menores V_E. Porém, a maior eficiência de 13,6 % ocorreu para V_E = 75 cm/min. Este valor foi similar a maior eficiência, de 13,7 %, encontrada para a T_R de 400 °C. Para esta temperatura não se observa uma influência clara da V_E nos resultados.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P14L14A	591,6	33,9	0,674	13,5
65	P14L14F	582,8	34,1	0,677	13,4
05	P14L14H	584,7	34,2	0,685	13,7
	Média	586,4 ± 4,6	34,1 ± 0,1	0,679 ± 0,006	13,6 ± 0,1
	P14L14B	588,4	34,2	0,667	13,4
75	P14L14D	583,8	34,1	0,650	12,9
75	P14L14I	583,4	33,7	0,691	13,6
	Média	585,1 ± 2,8	34,0 ± 0,3	0,669 ± 0,021	13,3 ± 0,3
	P14L14C	580,8	33,5	0,672	13,1
85	P14L14E	589,8	34,2	0,679	13,7
	P14L14G	586,2	34,0	0,688	13,7
	Média	586,6 ± 4,5	33,9 ± 0,4	0,680 ± 0,008	13,5 ± 0,4

Tabela 26 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 400 °C, temperatura de difusão de 875 °C, potência de 15 W e frequência de 80 kHz.

Tabela 27 - Parâmetros elétricos das células solares em função da velocidade de recozimento para a temperatura de recozimento de 450 °C, temperatura de difusão de 875 °C, potência de 15 W e frequência de 80 kHz.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P14L16A	589,5	33,8	0,694	13,8
65	P14L16F	584,8	34,0	0,688	13,7
05	P14L16H	581,6	33,4	0,683	13,3
	Média	585,3 ± 4,0	33,7 ± 0,3	0,688 ± 0,005	13,6 ± 0,3
	P14L16B	589,9	34,2	0,688	13,9
75	P14L16D	587,8	34,1	0,687	13,8
75	P14L16I	588,0	33,8	0,690	13,7
	Média	588,6 ± 1,2	34,1 ± 0,2	0,688 ± 0,001	13,8 ± 0,1
	P14L16C	579,6	33,1	0,698	13,4
85	P14L16E	589,3	34,2	0,693	14,0
	P14L16G	589,0	33,6	0,699	13,8
	Média	586,0 ± 5,5	33,6 ± 0,6	0,697 ± 0,003	13,7 ± 0,3

Para a T_R de 450 °C a eficiência é similar para as diferentes velocidades de recozimento, porém a maior eficiência média de 13,8 % ocorreu para a V_E de 75 cm/min e apresentou o menor desvio padrão. No entanto, verificou-se que a maior eficiência, de 14,0 %, ocorreu para a maior V_E com V_{OC}, J_{SC} e FF de 589,3 mV, 34,2 mA/cm² e 0,693, respectivamente.

Comparando os parâmetros elétricos dos dispositivos processados com a T_D de 865 °C com os processados com a T_D de 875 °C, nota-se que a J_{SC} aumentou.

Para quantificar este aumento, pode-se comparar a J_{SC} média de 33,3 mA/cm² obtida com a T_D de 865 °C com a J_{SC} de 34,0 mA/cm² obtida com a T_D de 875 °C.

4.6.4. Temperatura de Difusão de Fósforo de 885 °C

Para avaliar a influência do aumento da temperatura de difusão de fósforo, processaram-se células solares com a temperatura de difusão de 885 °C e repetiu-se a metodologia nas três temperaturas e velocidades de recozimento. Neste caso, a resistência de folha média do emissor foi de 44 Ω/\Box . Os resultados são apresentados nas Tabelas 28, 29 e 30.

Tabela 28 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 350 °C, temperatura de difusão de 885 °C, potência de 15 W e frequência de 80 kHz para o processo 15.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P15L01A	563,1	29,9	0,564	9,5
65	P15L01F	577,1	30,6	0,644	11,4
05	P15L01H	576,2	30,5	0,633	11,1
	Média	572 ± 8	30,3 ± 0,4	0,61 ± 0,04	10,7 ± 1,0
	P15L01B	577,4	30,4	0,599	10,5
75	P15L01D	577,1	30,4	0,631	11,1
75	P15L01I	575,3	30,3	0,394	6,9
	Média	576,6 ± 1,2	30,37 ± 0,03	0,54 ± 0,13	9,5 ± 2,3
	P15L01C	577,5	30,4	0,633	11,1
85	P15L01E	576,9	30,6	0,622	11,0
	P15L01G	575,5	30,0	0,528	9,1
	Média	576,6 ± 1,1	30,3 ± 0,3	0,59 ± 0,06	10,4 ± 1,1

Percebe-se uma significativa redução na eficiência das células solares, chegando a valores tão baixos quanto 6,9 %. Enquanto a V_{OC} apresentou valores similares aos encontrados com as menores T_D , o fator de forma e a J_{SC} sofreram uma redução. Para verificar se o problema foi da T_D ou de algum problema durante o processamento e/ou do uso de substrato com problemas, foram processadas novamente células solares com a mesma metodologia. Os resultados são apresentados nas Tabelas 31, 32 e 33.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P15L02A	585,3	31,6	0,623	11,5
65	P15L02F	581,1	31,4	0,613	11,2
05	P15L02H	577,7	31,0	0,639	11,5
	Média	581,4 ± 3,8	31,4 ± 0,3	0,625 ± 0,013	11,4 ± 0,2
	P15L02B	581,4	31,3	0,604	11,0
75	P15L02D	580,8	31,2	0,509	9,2
75	P15L02I	576,8	31,0	0,571	10,2
	Média	579,7 ± 2,5	31,2 ± 0,1	0,561 ± 0,048	10,1 ± 0,9
	P15L02C	579,9	31,2	0,488	8,8
85	P15L02E	580,4	31,2	0,640	11,6
	P15L02G	580,2	30,8	0,659	11,8
	Média	580,2 ± 0,3	31,1 ± 0,2	0,596 ± 0,094	10,7 ± 1,7

Tabela 29 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 400 °C, temperatura de difusão de 885 °C, potência de 15 W e frequência de 80 kHz para o processo 15.

Tabela 30 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 450 °C, temperatura de difusão de 885 °C, potência de 15 W e frequência de 80 kHz para o processo 15.

V _E (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P15L04A	572,9	31,8	0,614	11,2
65	P15L04F	581,6	32,2	0,631	11,8
05	P15L04H	578,3	32,0	0,595	11,0
	Média	577,6 ± 4,4	32,0 ± 0,2	0,613 ± 0,018	11,3 ± 0,4
	P15L04B	581,2	32,3	0,526	9,9
75	P15L04D	584,5	32,0	0,615	11,5
75	P15L04I	580,6	31,6	0,628	11,5
	Média	582,1 ± 2,1	32,0 ± 0,3	0,590 ± 0,056	11,0 ± 0,9
	P15L04C	572,5	31,7	0,612	11,1
85	P15L04E	581,8	32,2	0,589	11,0
	P15L04G	580,8	31,4	0,627	11,4
	Média	578,4 ± 5,1	31,7 ± 0,4	0,609 ± 0,019	11,2 ± 0,2

Enquanto os parâmetros elétricos são mais homogêneos quando comparados com os resultados apresentados nas Tabelas 31, 32 e 33 entre si, verifica-se que a eficiência sofre uma importante redução, quando comparam-se estes resultados com os obtidos para a T_D de 875 °C. Considerando que os dois experimentos foram realizados utilizando a mesma metodologia, pode-se afirmar que a queda no valor de eficiência deve-se ao aumento na temperatura de difusão, que aumenta a profundidade do emissor de fósforo, reduzindo principalmente a J_{SC}. A V_{OC} também foi reduzida. Este fato deve-se ao aumento da recombinação dos portadores de carga minoritários no emissor.

Tabela 31 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 350 °C, temperatura de difusão de 885 °C, potência de 15 W e frequência de 80 kHz para o processo 18.

V _R (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P18L01A	575,0	29,0	0,683	11,4
65	P18L01F	574,6	29,6	0,682	11,6
05	P18L01H	575,7	29,4	0,699	11,8
	Média	575,1 ± 0,6	29,3 ± 0,3	0,688 ± 0,009	11,6 ± 0,2
	P18L01B	575,6	29,2	0,682	11,5
75	P18L01D	572,6	29,0	0,692	11,5
75	P18L01I	575,3	29,6	0,696	11,8
	Média	574,5 ± 1,7	29,3 ± 0,3	0,690 ± 0,007	11,6 ± 0,2
	P18L01C	577,3	29,6	0,683	11,7
85	P18L01E	574,7	29,3	0,690	11,6
	P18L01G	574,9	28,9	0,706	11,7
	Média	575,6 ± 1,5	29,3 ± 0,3	0,693 ± 0,012	11,7 ± 0,1

Tabela 32 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 400 °C, temperatura de difusão de 885 °C, potência de 15 W e frequência de 80 kHz para o processo 18.

V _R (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P18L02A	575,7	29,6	0,693	11,8
65	P18L02F	576,7	30,0	0,686	11,9
05	P18L02H	575,6	29,4	0,681	11,5
	Média	576,0 ± 0,6	29,7 ± 0,3	0,687 ± 0,006	11,7 ± 0,2
	P18L02B	578,5	29,7	0,681	11,7
75	P18L02D	578,2	29,5	0,688	11,8
75	P18L02I	575,4	29,7	0,708	12,1
	Média	577,4 ± 1,7	29,7 ± 0,1	0,692 ± 0,014	11,9 ± 0,2
	P18L02C	576,3	30,0	0,696	12,0
85	P18L02E	578,0	29,6	0,691	11,8
	P18L02G	574,6	29,2	0,711	11,9
	Média	576,307 ± 1,7	29,6 ± 0,4	0,699 ± 0,010	11,9 ± 0,1

Portanto, concluiu-se que, para substratos de PV-Si-FZ, a temperatura de difusão adequada é de 875 °C e a temperatura do processo de recozimento é de 450 °C, com VE entre 75 cm/min e 85 cm/min. A máxima eficiência alcançada foi de 14,0 %, similar ao maior valor de 14,1 %, obtido em substrato de Si-Cz. Os parâmetros elétricos desta célula solar com PV-Si-FZ foram: com Voc = 589,3 mV, $J_{SC} = 34,2 \text{ mA/cm}^2$ e FF = 0,693. Em Si-CZ, os parâmetros elétricos da melhor célula solar foram: $V_{OC} = 607,7 \text{ mV}$, $J_{SC} = 35,8 \text{ mA/cm}^2$ e FF = 0,649. Este resultado foi obtido com a potência de 15 W, frequência de 80 kHz, temperatura de recozimento de 350 °C e velocidade de esteira de 50 cm/min.

Tabela 33 - Parâmetros elétricos das células solares em função velocidade de recozimento para a temperatura de recozimento de 450 °C, temperatura de difusão de 885 °C, potência de 15 W e frequência de 80 kHz para o processo 18.

V _R (cm/min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P18L04A	577,0	30,3	0,686	12,0
65	P18L04F	581,9	30,6	0,693	12,3
05	P18L04H	576,9	29,9	0,694	12,0
	Média	578,6 ± 2,9	30,3 ± 0,3	0,691 ± 0,004	12,1 ± 0,2
	P18L04B	579,5	30,3	0,690	12,1
75	P18L04D	579,7	30,1	0,694	12,1
75	P18L04I	574,6	30,1	0,706	12,2
	Média	578,0 ± 2,9	30,2 ± 0,2	0,697 ± 0,008	12,2 ± 0,1
	P18L04C	574,6	30,2	0,687	11,9
85	P18L04E	580,3	30,2	0,695	12,2
	P18L04G	577,2	29,4	0,706	12,0
	Média	577,4 ± 2,9	29,9 ± 0,4	0,696 ± 0,010	12,0 ± 0,1

4.6.5. Análise do Tempo de Vida dos Portadores de Carga Minoritários

Os resultados obtidos em substrato de PV-Si-FZ não foram melhores que os resultados encontrados com lâminas de Si-Cz. Para entender este resultado, foram realizadas medições do tempo de vida dos portadores de carga minoritários (τ), após as etapas de processamento em alta temperatura. A oxidação para a passivação na face posterior foi realizada durante 240 minutos, resultando na espessura do óxido de silício de 150 nm, 50 % maior que o resultado obtido com 120 minutos de processo. Os resultados são apresentados na Tabela 34.

Conforme esperado, a resistência de folha diminui com o aumento da T_D, porém para as temperaturas de 855 °C e 865 °C os valores são próximos. A melhor eficiência foi obtida para a T_D de 875 °C, que resultou na resistência de folha de 53 Ω / \Box . Para a T_D = 885 °C, notou-se uma importante variação da resistência de folha em diferentes processos realizados na mesma temperatura, indicando que o processo não é repetitivo. Tabela 34 - Resistência de folha e tempo de vida dos portadores de carga minoritários medidos em lâminas de PV-Si-FZ após diferentes etapas de processamento e temperatura de difusão de fósforo (T_D).

	T _D = 855 °C	T _D = 865 °C	T _D = 875 °C	$T_{\rm D} = 8$	85 °C
	Processo 19	Processo 13	Processo 14	Processo 15	Processo 18
Resistência de folha (Ω/□)	63 ± 11	60 ± 5	53 ± 6	44 ± 7	28 ± 6
τ Inicial em HF (μs)	-	28	-	-	-
τ Após Difusão com SiO₂ (µs)	1	9	15	14	13
τ Após Difusão sem SiO₂ (µs)	3	8	12	13	11
τ Após Difusão sem SiO₂ e em HF (µs)	1	12	16	13	10
τ Após Difusão sem Junção em HF (μs)	1	21	31	21	30

O tempo de vida dos portadores de carga inicial, de 28 μ s, é muito baixo para lâminas de PV-Si-FZ, que justifica a eficiência de 14 %, similar aos substratos de Si-Cz. O valor esperado do τ inicial para PV-Si-FZ deveria ser superior a 300 μ s. Para a T_D de 855 °C o τ é muito baixo e similar a incerteza da medição, não sendo possível avaliar os resultados.

Para as temperaturas de difusão de fósforo de 865 °C, nota-se que após a difusão de fósforo, o tempo de vida dos portadores de carga minoritáriosda base (medido com as lâminas imersas em HF) cai praticamente pela metade, indicando que os processos de oxidação e/ou difusão degradaram o material e a difusão de fósforo não realizou *gettering*. Além disso, a camada de SiO₂ não é de qualidade, pois o τ medido em HF é maior que o medido com a camada de óxido de silício. Esta conclusão é confirmada também pela medição do τ com e sem a camada de óxido, pois os dois valores são similares. O tempo de vida na base (sem junção) após o processamento das lâminas de Si é menor que o tempo de vida inicial, indicando que há contaminação do material durante o processamento.

Os resultados do tempo de vida para as T_D de 875 °C e 885 °C confirmam que a camada de SiO₂ posterior não é de qualidade, pois os valores do τ com e sem

SiO₂ são similares. Em todos os casos, como esperado, observa-se que o tempo de vida dos portadores de carga minoritários, medido em HF, sem junção é maior que o medido com junção, pois o emissor é uma região de recombinação. No entanto, o τ na base (sem junção) é baixo para substratos de PV-Si-FZ.

Para comparar os resultados obtidos em lâminas de PV-Si-FZ e de Si-Cz, foram processadas lâminas de Si em dois processos com o mesmo método (T_D = 865 °C e espessura do óxido de silício de 150 nm), um usando PV-Si-FZ e outro Si-Cz. Os resultados das medições de tempo de vida dos portadores de carga minoritários são mostrados na Tabela 35.

Não se observam diferenças entre os resultados obtidos com PV-Si-FZ e Si-Cz. A resistência de folha após a difusão de fósforo é similar. O tempo de vida dos portadores de carga minoritários é baixo e similar para ambos os tipos de substratos, com valores entre 23 μ s (Si-Cz) e 28 μ s (PV-Si-FZ). Salienta-se que as células solares são processadas com o τ "após difusão com SiO₂" e, neste caso, o valor é inferior a 10 μ s. Também se confirma que, para ambos os tipos de substrato, a camada de passivação de SiO₂ é da baixa qualidade, pois os resultados com e sem SiO₂ são similares. Também se confirma que o processo degrada os dois tipos de substratos, pois o tempo de vida dos portadores de carga minoritários sem junção é inferior ao inicial. Neste caso o valor medido para substrato de PV-Si-FZ e Si-Cz foi da ordem de 20 μ s e 10 μ s, respectivamente.

	PV-Si-FZ	Si-Cz
Resistência de folha (Ω/□)	60 ± 5	62 ± 8
τ Inicial em HF (μs)	28	23
τ Após Difusão com SiO₂ (μs)	9	9
τ Após Difusão sem SiO₂ (μs)	8	7
τ Após Difusão sem SiO ₂ e em HF (μs)	12	9
au Após Difusão sem Junção em HF (µs)	21	11

Tabela 35 – Comparação dos resultados da resistência de folha e do tempo de vida dos portadores de carga minoritários em PV-Si-FZ e Si-Cz, processadas com o mesmo método de fabricação.

4.7. Análise da Passivação na Face Posterior

4.7.1. Influência da Espessura do Óxido na Face Posterior

A espessura da camada de óxido de silício foi aumentada de 100 nm (120 minutos de processo térmico) para 150 nm (240 min) visando melhorar a passivação e para avaliar o resultado no tempo de vida dos portadores de carga minoritários. Primeiramente, foram comparados os resultados do tempo de vida dos portadores de carga minoritários em lâminas de Si-Cz medidos em dois processos de fabricação. A temperatura de difusão de fósforo foi de 865 °C. Os parâmetros de produção de ambos os processos foram os mesmos, com o tempo de oxidação (to) de 240 minutos. Na Tabela 36 apresentam-se os valores obtidos.

Novamente, nota-se que a resistência de folha varia de processo para processo. Neste caso, o valor foi entre 50 Ω/\Box e 65 Ω/\Box . Confirma-se que o tempo de vida dos portadores de carga minoritários inicial é baixo, da ordem de 20 µs, e que o processo para passivação a 1000 °C não degrada o substrato, pois o τ inicial de 23 µs aumenta para 42 µs, quando medido nas mesmas condições em HF. No entanto, a camada de SiO₂ é de baixa qualidade não passivando a superfície. Esta conclusão é confirmada pelo valor de 0,4 µs medido com a camada de passivação e pelo valor de 12 µs sem a camada de passivação.

	Temperatura de 865 °C		
	Processo 13	Processo 20	
Resistência de folha (Ω/\square)	62 ± 8	52 ± 3	
au inicial em HF (µs)	23	-	
τ Após oxidação com SiO₂ (μs)	0,4	-	
τ Após oxidação sem SiO₂ (μs)	12	-	
τ Após Oxidação e em HF (μs)	42	-	
au Αpós Difusão e com SiO ₂ (µs)	9	24	
au Após Difusão e sem SiO ₂ (µs)	7	24	
au Após Difusão e com junção, em HF (µs)	9	13	
au Após Difusão e sem Junção, em HF (µs)	11	49	

Tabela 36 – Comparação dos resultados da resistência de folha e do tempo de vida dos portadores de carga minoritários para o mesmo método de fabricação de Si-Cz.

Para verificar o efeito da espessura do óxido depositado na face posterior da lâmina de silício nos parâmetros elétricos das células solares foram comparados dois processos com tempo de oxidação de 120 min (103 nm) e de 240 min (150 nm). Os resultados obtidos são apresentados na Tabela 37.

Tabela 37 - Parâmetros elétricos das células solares em função do tempo de oxidação para a temperatura de recozimento de 350 °C, velocidade de recozimento de 65 cm/min, potência de 15 W e frequência de 80 kHz.

t _o (min)	Célula	Voc (mV)	Jsc (mA/cm ²)	FF	Eficiência (%)
	P12L04B	565,2	30,9	0,646	11,2
120	P12L04D	568,2	31,1	0,647	11,4
120	P12L04F	565,5	31,2	0,661	11,6
	Média	566,3 ± 1,7	31,0 ± 0,2	0,651 ± 0,008	11,4 ± 0,2
240	P20L13A	537,2	30,7	0,411	6,8
	P20L13F	536,9	30,8	0,394	6,5
	P20L13H	539,5	30,9	0,470	7,8
	Média	537,9 ± 1,4	30,8 ± 0,1	0,425 ± 0,040	7,0 ± 0,7

Observou-se que o processo com 120 min de oxidação apresentou melhores resultados para todos os parâmetros elétricos médios. A menor diferença ocorreu na J_{SC}, com redução de apenas 0,7 %. A V_{OC} reduziu-se em 5 % com o aumento do tempo de oxidação, indicando que provavelmente ocorreu contaminação. O FF sofreu uma redução de 35 %, provavelmente devido ao pior contato na face posterior. Consequentemente, a eficiência diminuiu em 39 %, com o aumento da espessura do óxido de silício.

4.7.2. Comparação da Passivação com SiO₂ e TiO₂ em Substrato de PV-Si-FZ

A fim de comparar a passivação na face posterior com diferentes materiais foram implementados processos utilizando um filme de TiO₂ para a passivação na face posterior em lâminas de PV-Si-FZ. A temperatura de difusão foi de 885 °C e a espessura do óxido de silício na face posterior foi de 150 nm. A comparação dos parâmetros elétricos das células solares com SiO₂ (crescido termicamente), deposição de TiO₂ sobre a camada de SiO₂ e deposição de TiO₂ diretamente no silício na face posterior encontram-se nas Tabelas 38, 39 e 40.

Tabela 38 - Parâmetros elétricos das células solares com passivação na face posterior com SiO₂, TiO₂ depositado sobre o SiO₂ e TiO₂, processadas com temperatura de recozimento de 350 °C e velocidade de recozimento de 75 cm/min.

Passivação posterior	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P15L01B	577,4	30,4	0,599	10,5
8:0	P15L01D	577,1	30,4	0,631	11,1
5102	P15L01I	575,3	30,3	0,394	6,9
	Média	576,6 ± 1,2	30,37 ± 0,03	0,541 ± 0,129	9,5 ± 2,3
	P15L05A	576,6	30,8	0,665	11,8
SiO. a TiO.	P15L05F	577,4	31,2	0,657	11,8
310 ₂ e 110 ₂	P15L05H	572,6	31,0	0,663	11,7
	Média	575,5 ± 2,6	31,0 ± 0,2	0,661 ± 0,004	11,8
TiO₂	P15L06A	571,9	30,2	0,724	12,5
	P15L06F	571,8	30,3	0,734	12,7
	P15L06H	571,3	30,4	0,734	12,7
	Média	571,7 ± 0,3	30,30 ± 0,06	0,730 ± 0,006	12,7 ± 0,1

Comparando-se os três diferentes resultados para a T_R de 350 °C, percebe-se que os dispositivos com somente TiO₂ na face posterior apresentaram maior fator de forma. O FF médio é de 0,54 para células com SiO₂, aumenta para 0,66 quando o filme de TiO₂ é depositado sobre a camada de SiO₂ e atinge o valor de 0,73 com a passivação com TiO₂. Portanto, a resistência em série foi reduzida com a substituição da passivação posterior. A Voc apresenta uma tendência de redução, da ordem de 5 mV, com a passivação com TiO₂, indicando que este material passiva pior que o SiO₂. Consequentemente, a eficiência é 3,2 % (absoluto) maior, de 12,7 %, para as células com somente TiO₂, quando comparadas com as células com passivação posterior com SiO₂. Portanto, pode-se concluir que o FF estava limitado pela passivação na face posterior com SiO₂.

Para a temperatura de recozimento de 400 °C, os resultados são similares aos encontrados para a T_R de 350 °C em relação à tendência de crescimento dos parâmetros elétricos. O fator de forma aumenta, de forma similar, em 24 % com a substituição da camada de SiO₂ para camada deTiO₂ e a V_{OC} cai quase 9 mV. Neste caso, a eficiência aumentou em 2,6 % (absoluto).

Tabela 39 - Parâmetros elétricos das células solares com passivação na face posterior com SiO₂, TiO₂ depositado sobre o SiO₂ e TiO₂, processadas com temperatura de recozimento de 400 °C e velocidade de recozimento de 75 cm/min.

Passivação posterior	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P15L02B	581,4	31,3	0,604	11,0
SiO	P15L02D	580,8	31,2	0,509	9,2
5102	P15L02I	576,8	31,0	0,571	10,2
	Média	579,7 ± 2,5	31,2 ± 0,1	0,561 ± 0,048	10,1 ± 0,9
	P15L05B	578,1	30,8	0,634	11,3
	P15L05D	577,7	30,8	0,670	11,9
310 ₂ e 110 ₂	P15L05I	576,0	30,8	0,672	11,9
	Média	577,3 ± 1,1	30,83 ± 0,02	0,659 ± 0,021	11,7 ± 0,4
TiO ₂	P15L06B	572,1	30,3	0,734	12,7
	P15L06D	571,4	30,2	0,737	12,7
	P15L06I	569,4	30,1	0,732	12,5
	Média	571,0 ± 1,4	30,2 ± 0,1	0,734 ± 0,002	12,7 ± 0,1

Tabela 40 - Parâmetros elétricos das células solares com passivação na face posterior com SiO₂, TiO₂ depositado sobre o SiO₂ e TiO₂, processadas com temperatura de recozimento de 450 °C e velocidade de recozimento de 75 cm/min.

Passivação posterior	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P15L04B	581,2	32,3	0,526	9,9
8:0	P15L04D	584,5	32,0	0,615	11,5
5102	P15L04I	580,6	31,6	0,628	11,5
	Média	582,1 ± 2,1	32,0 ± 0,3	0,59 ± 0,06	11,0 ± 0,9
	P15L05C	577,7	31,2	0,652	11,7
	P15L05E	579,8	31,3	0,664	12,1
310 ₂ e 110 ₂	P15L05G	578,0	30,9	0,684	12,2
_	Média	578,5 ± 1,1	31,1 ± 0,2	0,667 ± 0,016	12,0 ± 0,2
TiO ₂	P15L06C	573,2	30,4	0,744	13,0
	P15L06E	574,3	30,6	0,737	12,9
	P15L06G	574,2	30,1	0,742	12,8
	Média	573,9 ± 0,6	30,4 ± 0,2	0,741 ± 0,004	12,9 ± 0,1

Para T_R de 450 °C, confirma-se que a deposição de TiO₂ na face posterior provoca um aumento no fator de forma, neste caso, de 20 %. A eficiência de 12,9 % obtida com a passivação com TiO₂ é 1,9 % (absoluto) maior.

Portanto, se pode concluir que a camada de TiO₂ sobre a camada de SiO₂, resultou no aumento do fator de forma e consequentemente na eficiência das células solares processadas em PV-Si-FZ. Porém os melhores resultados para o

fator de forma e, consequentemente para a eficiência, foram encontrados para as células solares com somente TiO₂ na face posterior, devido a redução da resistência em série. Provavelmente, a resistência de contato é menor quando o filme de TiO₂ é depositado. Também se constatou que a V_{OC} diminuiu, devido a pior passivação produzida pelo óxido de titânio.

4.7.3. Comparação da Passivação com SiO₂ e TiO₂ em Substrato de Si-Cz

Os mesmos processos realizados em lâminas de PV-Si-FZ foram implementados em substratos de Si-Cz, com deposição de TiO₂ na face posterior. A temperatura de difusão foi de 865 °C. Os resultados experimentais com passivação de SiO₂ e TiO₂ em Si-Cz encontram-se nas Tabelas 41, 42 e 43. A camada de óxido de titânio foi depositada sobre a camada de dióxido de silício e diretamente sobre o silício na face posterior.

Passivação posterior	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P20L13B	537,6	30,7	0,375	6,2
SiO	P20L13D	535,5	31,0	0,437	7,3
5102	P20L13I	539,0	30,9	0,430	7,2
	Média	537,4 ± 1,7	30,8 ± 0,2	0,414 ± 0,034	6,9 ± 0,6
	P20L16A	538,4	30,4	0,644	10,5
	P20L16F	538,3	31,1	0,654	11,0
310 ₂ e 110 ₂	P20L16H	538,9	30,1	0,667	10,8
	Média	538,6 ± 0,3	30,5 ± 0,5	0,655 ± 0,011	10,8 ± 0,2
TiO ₂	P20L18A	538,0	30,1	0,636	10,3
	P20L18F	540,5	30,9	0,650	10,9
	P20L18H	541,2	30,2	0,662	10,8
	Média	539,9 ± 1,7	30,4 ± 0,4	0,649 ± 0,013	10,7 ± 0,3

Tabela 41 - Parâmetros elétricos das células solares com passivação na face posterior com SiO₂, TiO₂ depositado sobre SiO₂ e TiO₂, processadas com temperatura de recozimento de 350 °C.

Comparando-se os resultados, da mesma forma que para substratos de PV-Si-FZ, observou-se que camada de TiO₂ na face posterior provocou um aumento do fator de forma, de 0,41 para 0,65. No entanto, a combinação do filme de TiO₂ depositado sobre a camada de SiO₂ na face posterior resultou em células com eficiência similar às com deposição do filme de TiO₂ diretamente na face posterior. Para a T_R de 350 °C, o aumento na eficiência média foi de 3,9 % (absoluto). Ao

contrário dos resultados baseados em PV-Si-FZ, em substratos de Si-Cz, a Voc não apresentou uma redução com a deposição de TiO₂, aumentando em média 2,5 mV quando este filme foi depositado.

Passivação posterior	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P20L14B	540,8	31,2	0,376	6,3
8:0	P20L14D	539,9	31,2	0,388	6,5
5102	P20L14I	539,4	31,0	0,441	7,4
	Média	540,0 ± 0,7	31,12 ± 0,06	0,402 ± 0,035	6,8 ± 0,6
SiQ a TiQ	P20L16B	537,7	30,5	0,636	10,4
	P20L16D	538,1	30,2	0,661	10,7
3102 6 1102	P20L16I	539,8	30,4	0,665	10,9
	Média	538,5 ± 1,1	30,4 ± 0,2	0,654 ± 0,015	10,7 ± 0,2
TiO ₂	P20L18B	539,3	30,5	0,617	10,1
	P20L18D	539,2	30,2	0,653	10,6
	P20L18I	542,5	30,6	0,656	10,9
	Média	540,3 ± 1,9	30,4 ± 0,2	0,642 ± 0,022	10,6 ± 0,4

Tabela 42 - Parâmetros elétricos das células solares com passivação na face posterior com SiO₂, TiO₂ depositado sobre o SiO₂ e TiO₂, processadas com temperatura de recozimento de 400 °C.

Para uma maior temperatura de recozimento, o fator de forma, e por consequência a eficiência, continuam sendo maiores para a combinação de SiO₂ e TiO₂ depositados na face posterior. O fator de forma aumentou em média quase 39 % para o fator de forma e a eficiência de forma similar ao resultado obtido para a T_R de 350 °C. Ao contrário que os resultados apresentados na Tabela 41, a V_{OC} média praticamente não foi alterada com a deposição do filme de TiO₂.

O aumento da temperatura de recozimento não melhorou a eficiência para células solares com deposição de filme de TiO₂ na face posterior, permanecendo a eficiência entre 10,4 % e 10,7 %, com a maior eficiência média para a célula solar com o filme de TiO₂ depositado sobre o SiO₂.

Portanto, para células solares processadas em Si-Cz, constatou-se que a camada de TiO₂ depositada na face posterior, melhorou o fator de forma e a eficiência, sendo os melhores resultados para a combinação do SiO₂ posterior com o filme de TiO₂ depositado sobre ele.

Passivação posterior	Célula	Voc (mV)	Jsc (mA/cm²)	FF	Eficiência (%)
	P20L16C	537,6	30,8	0,622	10,3
	P20L16E	542,3	30,6	0,658	10,9
SIO ₂ e TIO ₂	P20L16G	540,2	30,2	0,660	10,8
	Média	540,0 ± 2,4	30,5 ± 0,3	0,647 ± 0,021	10,7 ± 0,3
TiO ₂	P20L18C	540,1	30,3	0,616	10,1
	P20L18E	540,4	30,5	0,644	10,6
	P20L18G	540,7	29,8	0,658	10,6
	Média	540,4 ± 0,3	30,2 ± 0,4	0,639 ± 0,022	10,4 ± 0,3

Tabela 43 - Parâmetros elétricos das células solares com passivação na face posterior com SiO₂, TiO₂ depositado sobre o SiO₂ e TiO₂, processadas com temperatura de recozimento de 450 °C.

5. CONCLUSÕES E SUGESTÕES DE CONTINUIDADE

O objetivo dessa dissertação foi desenvolver um processo de produção de células solares com passivação na face posterior e contato/difusão formado por radiação laser pontual bem como avaliar a influência da passivação na face posterior. Com esse fim foram produzidas 828 células solares em dois diferentes substratos: Si-Cz e PV-Si-FZ, sendo 477 em Si-Cz e 351 em PV-Si-FZ.

Em relação aos parâmetros relacionados ao sistema laser e a formação dos contatos pontuais posteriores no Si-Cz, os melhores resultados foram encontrados com a combinação da potência de 13 W e da frequência de 80 kHz produzindo uma célula solar com 13,8% de eficiência máxima e a potência de 15 W resultou na eficiência máxima de 13,1 %

Após a otimização dos parâmetros do sistema laser, a distância entre os pontos de 0,5 mm combinada com a área de contato de 7230 µm² resultaram em uma célula solar com eficiência máxima de 14,1 %.

Da otimização do processo de recozimento no forno de esteira, constatouse que a temperatura de recozimento de 350 °C, combinada com a velocidade de esteira de 66 cm/min, resultou em dispositivos com a eficiência máxima de 14,5%, em substratos de Si-Cz.

Em relação ao substrato de alta qualidade PV-Si-FZ, a temperatura ótima de difusão foi de 875 °C, resultando na eficiência máxima de 14,0 %. Contudo, comparando-se os resultados das células solares processadas em Si-Cz e PV-Si-FZ, constatou-se que a eficiência obtida foi similar, pois o tempo de vida dos portadores de carga minoritários é baixo para os dois tipos de substratos. Após o

processamento, o tempo de vida dos minoritários na base é da ordem de 10 μ s e 20 μ s, para Si-Cz e PV-Si-FZ, respectivamente.

Em relação à passivação da face posterior, foi verificado que o tempo de oxidação de 120 min, que resultou em uma camada da ordem de 100 nm, resultou nos melhores valores de eficiência. A eficiência reduziu-se de 11,4 % para 7,0 % com o aumento da espessura da camada de SiO₂ para 150 nm, devido à redução de todos os parâmetros elétricos.

Em substratos de PV-Si-FZ, a deposição do filme de TiO₂ diretamente sobre a face posterior resultou em um aumento da eficiência média de 11,0 % para 12,9 %, devido ao aumento no fator de forma médio de 0,59 para 0,74. Em lâminas de Si-Cz, a deposição do filme de TiO₂ sobre a camada de SiO₂ resultou em eficiência similares aos valores encontrados com a deposição de TiO₂ diretamente na face posterior. Da mesma forma que para os resultados encontrados com PV-Si-FZ, em Si-Cz a deposição do filme de TiO₂ aumenta o fator de forma.

A melhor célula solar fabricada apresentou a Voc de 613,1 mV, Jsc de 36,2 mA/cm², FF de 0,650, resultando na eficiência de 14,5 %, foi produzida com os seguintes parâmetros de processo: potência de 15 W, frequência de 80 kHz, D_P de 0,5 mm, A_C de 7230 μ m², T_R de 350 °C e V_E de 66 cm/min. A melhor célula solar desenvolvida por Sauaia [37] resultou na Voc de 626,9 mV, Jsc de 36,6 mA/cm², FF de 0,733, resultando na eficiência de 16,8 %.

Para a continuidade deste trabalho, sugere-se:

- Otimizar a espessura de óxido depositado na face posterior;
- Desenvolver células solares em Si-FZ de melhor qualidade;
- Estudar detalhadamente a influência do filme TiO₂ depositado na face posterior sobre no fator de forma;
- Análise da densidade de corrente de saturação, resistência em paralelo e resistência em série;
- Análise da resposta espectral das células solares.

6. REFERÊNCIAS BIBLIOGRÁFICAS

[1] LORENZO, E. Solar Electricity: Engineering of Photovoltaic Systems. 1^a ed.
 Sevilha: Progensa, 1994. 316 p.

[2] Organização das Nações Unidas. Our Common Future, Chapter 7: Energy: Choices for Environment and Development. Official Records of the General Assembly, Forty-second Session, Supplement No, 25 (A/42/25). (1983).

[3] International Energy Agency. **Technology Roadmap: Hydropower – Foldout.** Disponível em: http://www.iea.org/publications/freepublications/publication/technology-roadmap-hydropower---foldout.html Acesso em: 7 de Março de 2013.

[4] International Energy Agency. Technology Roadmap: Wind energy – Foldout.
Disponível em: http://www.iea.org/publications/freepublications/publication/name, 28529,en.html> Acesso em: 7 de Março de 2013.

[5] MESSENGER, R. V., J. Photovoltaic Systems Engineering. 1^a ed. Boca Raton: CRC Press, 2000. 400p.

[6] SEIPPEL, R. G. Photovoltaics. 1^a ed. Reston: Reston, 1983. 234p.

[7] International Energy Agency. **Topic: Solar (PV and CSP).** Disponível em: http://www.iea.org/topics/solarpvandcsp/ Acesso em: 7 de Março de 2013.

 [8] European Photovoltaic Industry Association. Global Market Outlook for Photovoltaics 2014-2018. Disponível em: ">http://www.epia.org/?id=22/>. Acesso em: 7 abril 2013. [9] International Energy Agency. Technology Roadmap: Solar photovoltaic energy – Foldout. Disponível em: http://www.iea.org/publications/freepublications/ publication/name,28528,en.html > Acesso em: 7 março 2013.

[10] FATH, P. et al. Status and perspective of crystalline silicon solar cell production.
In: 34th IEEE Photovoltaic Specialists Conference: 2009, Filadélfia, Proceedings.
Filadélfia : IEEE, 2009, p. 2471-2476.

[11] JOURDAN, J. et al. Formation of boron-doped region using spin-on dopant: investigation on the impact of metallic impurities. **Progress in Photovoltaics: Research and Applications**, v. 16, n. 5, p. 379-387, jan 2008. Disponível em: http://onlinelibrary.wiley.com/doi/10.1002/pip.818/abstract. Acesso em: 13 setembro 2013.

[12] GREEN, M. A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, v. 17, n. 3, p. 183-189, mar 2009. Disponível em: ">http://onlinelibrary.wiley.com/doi/10.1002/pip.892/references>. Acesso em: 27 dezembro 2013.

[13] Yingli Solar. Série de Células PANDA 60. Disponível em:
 http://www.yinglisolar.com/br/products/monocrystalline/panda-60-cell-series/
 Acesso em: 8 maio 2014.

[14] LOPES, N. F. Implementação e Análise de Junção Flutuante em Células Solares Industriais de Silício Tipo n. 2013. 99 p. Dissertação (Mestrado em Engenharia e Tecnologia de Materiais) – Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre.

[15] MARTÍ, A. Fundamentos de la conversión fotovoltaica: la célula solar. In:
 Fundamentos, Dimensionado y Aplicaciones de la Energia Solar Fotovoltaica.
 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas. Madrid, 1995, v. 1 p. 13 – 127.

[16] HONSBERG, C.; BOWDEN, S. **PV CDROM**. Disponível em: http://www.pveducation.org. Acesso em: 28 de Abril de 2014.

[17] MALLMANN, A. P.; ZANESCO, I.; WEHR, G.; MOEHLECKE, A. Análise da largura das trilhas metálicas em células solares de silício com emissor seletivo posterior. In: II Congresso Brasileiro de Energia Solar e III Conferência Latino-Americana da ISES: 2008, Florianópolis. Anais. Florianópolis: ISES, p. 1-12.

[18] WEHR, G. Desenvolvimento e Comparação de Células Solares N⁺PN⁺ e N⁺PP⁺ em Silício Multicristalino. 2011. 136 p. Tese (Doutorado em Engenharia e Tecnologia de Materiais) – Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre.

[19] GREEN, M. A. Solar cells: operating principles, technology e system aplications. Sydney: UNSW Photovoltaics, 1992. 274 p.

[20] CENCI, A. S. Desenvolvimento de Células Solares com Metalização por Serigrafia: Influência do Emissor n⁺. 2013. 149 p. Dissertação (Mestrado em Engenharia e Tecnologia de Materiais) – Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre.

[21] SCHNEIDERLÖCHNER, E et al. Laser-fired rear contacts for crystalline silicon solar cells. Progress in Photovoltaics, Freiburg, v. 10, n. 1, p. 29-34, jan 2002.Disponível em: < http://onlinelibrary.wiley.com/doi/10.1002/pip.422/abstract>. Acesso em: 04 agosto 2013

[22] ZHAO, J.; WANG, A.; GREEN, M.A. 24.5% efficiency silicon PERT cells on mcz substrates and 24.7% efciency PERL cells on FZ substrates. Progress in Photovoltaics, v. 10, n. 1, p. 29-34, jan 2002. Disponível em: < http://onlinelibrary .wiley.com/doi/10.1002/pip.422/abstract>. Acesso em: 04 agosto 2013

[23] NEKARDA, J et al. LFC on screen printed aluminium rear side metallization. In:
24th European Photovoltaic Solar Energy Conference and Exhibition: 2009, Freiburg. Proceedings. Freiburg, IEEE, p. 1441-1445. [24] SCHNEIDERLÖCHNER, E. et al. Laser-Fired Contacts (LFC). In: **17th European Photovoltaic Solar Energy Conference and Exhibition:** 2001, Munique, Proceedings. Munique, IEEE, p. 1303-1306.

[25] PREU, R. et al. Laser ablation: a new low-cost approach for passivated rear contact formation in crystalline silicon solar cell technology. In: **16th European Photovoltaic Solar energy Conference:** 2000, Glasgow, Proceedings. Glasgow, IEEE, p. 1181-1184.

[26] NEKARDA, J. et al. Industrial pvd metallization for high efficiency crystalline silicon. In: **34th IEEE Photovoltaic Specialists Conference**: 2009, Filadélfia, Proceedings. Filadélfia: IEEE, 2009, p. 892-896.

[27] GROHE, A., Einsatz von Laserverfahren zur Prozessierung von kristallinen
 Silizium-Solarzellen. 2007. 251 p. Tese (Doutorado em Ciências Naturais) –
 Faculdade de Física, Universität Konstanz, Konstanz, Alemanha.

[28] REINWAND, D. et al. 21,1% Efficient PERC Silicon Solar Cells on Large Scale by Using Inline Sputtering for Metallization. In: **35th IEEE Photovoltaic Specialists Conference**: 2010, Honolulu, Proceedings. Honolulu: IEEE p. 3582-3586.

[29] RAMANATHAN, S. et al. Understanding and Fabrication of 20% Efficient Cells Using Spin-on-Based Simultaneous Diffusion and Dielectric Passivation. IEEE Journal of Photovoltaics, Atlanta, 12 jan 2012, vol. 2, n. 1, p. 22 – 26. Disponível em: < http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6129470>. Acesso em: 25 Abril 2014.

[30] LEE, D. et al. A new back surface passivation stack for thin crystalline silicon solar cells with screen-printed back contacts. In: **19th IEEE Photovoltaic Specialists Conference**: 2009, Jeju, Proceedings. Jeju: IEEE p. 26-29.

[31] SINTON, R.A.; CUEVAS, A. A Quasi-steady-state open-circuit voltage method for solar cell characterization. In: **16th European Photovoltaic Solar energy Conference:** 2000, Glasgow, Proceedings. Glasgow, IEEE, p. 1152–1155. [32] ABERLE, A.G. Crystalline Silicon Solar cells: Advanced Surface
 Passivation and Analysis. 1^a ed. Sydney: Centre for Photovoltaic Engineering,
 University of New South Wales, 1999. 335 p.

[33] PINTO, J.L. Otimização e Comparação de Processos para Formação do Campo Retrodifusor com Boro em Células Solares. 2012. 130 p. Tese (Doutorado em Engenharia e Tecnologia de Materiais) – Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre.

[34] GOETZBERGER, A.; KNOBLOCH, J.; BERNHARD, V. Crystalline Silicon Solar Cells. 1^a ed. Inglaterra: R. R. Bowker, 1998. 238 p.

[35] DA COSTA, R. DE C. Desenvolvimento e Comparação de Células Solares
Bifaciais Industriais com Deposição de Dopante com Boro por Spin-On. 2013.
119 p. Tese (Doutorado em Engenharia e Tecnologia de Materiais) – Faculdade de
Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre.

[36] KERN, W.; Overview and Evolution of Silicon Wafer Cleaning Technology. In:
 Handbook of Silicon Wafer Cleaning Technology, 2^a ed. Califórnia: William Andrew. p. 3-92

[37] SAUAIA, R.L. Development And Analysis Of Silicon Solar Cells With Laser-Fired Contacts And Silicon Nitride Laser Ablation. 2013. 215 p. Tese (Doutorado em Engenharia e Tecnologia de Materiais) – Faculdade de Engenharia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre.

[38] LY, M. et al. Influência da Espessura do Filme Antirreflexo de TiO₂ nos Parâmetros Elétricos de Células Solares com Base n. In: IV Congresso Brasileiro de Energia Solar (IV CBENS) e V Conferência Latino Americana da ISES: 2012, São Paulo. Anais. São Paulo: ISES, p. 1-8.

[39] ZANESCO, I.; MOEHLECKE, A. Células Solares de Alta Eficiência com Emissores Seletivos. Relatório Técnico. Porto Alegre: CEEE; 2015. [40] ZANESCO, I.; MOEHLECKE, A. Desenvolvimento de Processos Industriais
 para a Fabricação de Células Solares com Pasta de Alumínio. Relatório Técnico.
 Porto Alegre: Eletrosul; 2013.

[41] WOLF, A et al. Pilot processing of 18.6% efficient rear surface passivated silicon solar cells with screen printed front contacts. In: **25th European Photovoltaic Solar energy Conference:** 2010, Valencia, Proceedings. Valencia, IEEE, p. 1391–1395.