
Monte Carlo Algorithms for Time-Constrained General Game Playing

Victor Scherer Putrich,1 Felipe Meneguzzi, 2 1

1 Pontifı́cia Universidade Católica do Rio Grande do Sul (PUCRS)
2 University of Aberdeen

scherer.victor98@gmail.com, felipe.meneguzzi@abdn.ac.uk

Abstract

General Game Playing (GGP) is a complex field for Artifi-
cial Intelligence (AI) agents because it demands the ability
to play varied games without prior knowledge. This paper
introduces two algorithms to enhance move suggestions in
time-limited GGP. Our first strategy is a modification of Se-
quential Halving Applied to Trees (SHOT), a non-exploiting
algorithm. The second strategy is a hybrid version of Up-
per Confidence Tree (UCT) that combines Sequential Halv-
ing and UCB√ to focus more on acquiring information at
the root node. To test how agents perform, we use three dif-
ferent evaluation scenarios. First, we observe how resources
are allocated among the selection policies. Next, we compare
the performance of these strategies over five different board
games with a set number of playouts, and in a competitive
GGP environment where each game is played in one minute.
These tests allow us to analyze the outcomes and implications
of our proposed strategies.

1 Introduction
General Game Playing (GGP) is a research area focused on
developing intelligent agents capable of playing a wide vari-
ety of games without prior knowledge (Genesereth, Love,
and Pell 2005). GGP agents must cope with the rules of
games and play them efficiently without human interven-
tion. Developing general agents and the artificial intelligence
(AI) techniques that support them is essential for creating
real-world agents that can handle unpredictable and novel
situations.

The Upper Confidence for Trees (UCT) (Kocsis,
Szepesvári, and Willemson 2006) algorithm has been effec-
tively utilized in GGP environments. UCT is based on build-
ing a search tree using Monte Carlo Tree Search (MCTS).
MCTS employs Monte Carlo simulations to iteratively build
a game tree, which progressively converge on the best action
as it gathers more statistical information about the domain.

UCT guarantees converging to the best sequence of ac-
tions (Kocsis, Szepesvári, and Willemson 2006), while it
also optimally minimizes the cumulative regret of not fol-
lowing this optimal path. However, this assurance of opti-
mality is not without its costs. Depending on the complexity
of decisions inherent in the given game scenario, UCT might

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

require an impractically long time to produce high-quality
recommendations.

A significant challenge in GGP is designing algorithms
that can efficiently find solutions in a timely manner, par-
ticularly in competitive contexts, where the time required to
find a solution is critical to the agent’s performance. How-
ever, little discussion has been made about building GGP
agents in environments with scarce time resources.

In this paper, we tackle the problem of General Game
Playing with scarce time resources. Specifically, we focus
on the following question: Is it UCT the best option for GGP
environments with scarce time resources?

We are presenting two algorithms designed to outperform
UCT under time constraints. We adapt the Sequential Halv-
ing Applied to Trees (SHOT) algorithm (Cazenave 2014)
for a GGP scenario as our first approach. Our second ap-
proach we present the UCT√

SH algorithm, a hybrid method
based on Simple Regret plus Cumulative Regret (SR+CR)
scheme (Tolpin and Shimony 2012) and the Hybrid MCTS
(H-MCTS) (Pepels et al. 2014) algorithm. Those hybrid ap-
proaches aim to be more exploratory than UCT to avoid
overspending time on the immediate best-rewarded move-
ments while searching through game’s action-space.

To evaluate the capabilities of our agent, we conducted
three distinct experiments. The first experiment involves a
simplified Multi-Armed Bandits (MAB) problem, designed
to compare the way each polices spends its resources in sce-
narios characterized by high and low variance distribution of
rewards. The second experiment evaluates the performance
of the agents across five distinct games, employing a fixed
number of playouts for each move. In the third and final ex-
periment, we assessed the performance of the agents under a
GGP scenario, involving a wide array of games under strin-
gent time constraints. For this purpose, we utilized the Ludii
GGP environment (Piette et al. 2020). We adopted the Kilo-
thon competition scheme, which is one of the tracks of the
GGP competition held on the Ludii platform 1.

The main contributions of our work are as follows: Firstly,
through our MAB, we underscore the importance of more
explorative policies for the context of game playing, when-
ever a promising option has already been found. Under
the second experiment, we shown that UCT√

SH method

1https://github.com/Ludeme/LudiiAICompetition

achieved better performance under all tested games using
different number of playouts, and discuss about the weak
performance of SHOT under those games. Finally, Kilothon
indicates UCT√

SH outperforms UCT when operating under
a GGP scenario with strict time constraints.

2 Game Playing
This section explores the interaction between Artificial In-
telligence and games, specifically focusing on GGP. Game
trees are discussed, serving as a critical structure for rea-
soning in game domains, along with the minimax algorithm,
an essential strategic decision-making process in adversarial
games. The focus then shifts to GGP, which aims to cultivate
AI agents adept at playing a range of games without specific
prior knowledge of the game. The discussion concludes with
an exploration of the Ludii system, a platform designed for
game research and development.

2.1 Games and Game Theory
AI employs games as a practical tool to train and evaluate al-
gorithms. A game, in this context, refers to an activity where
two or more agents, whether human or AI, interact in a struc-
tured and competitive manner to achieve their own victory.
These games can come in various forms, including board
games, card games, puzzles, video games, and so on.

Game Theory (Fudenberg and Tirole 1991) is a vital tool
that enables AI to formalize conflict and cooperation be-
tween agents. It helps identify strategies, decision-making
processes, as well as classify the domain that AI is expected
to deal with.

In this work, we focus specifically on adversarial agents.
In these scenarios, we can’t predict the opponent’s decisions,
so each player must anticipate the potential opponent’s re-
actions to their moves and assess the outcomes’ benefits or
drawbacks. We categorize these games as zero-sum, where
every player’s move results in an advantage that directly
converts into a disadvantage for the opponent. We consider
represent these gains and losses as utility values, where the
player’s gains equate to the opponent’s losses.

Games can have perfect or imperfect information. An
AI agent that plays a game with perfect information has
knowledge of all the components used in the game, while
in games with imperfect information, the agent’s visibil-
ity within the environment is restricted. To give one exam-
ple, most card games are games with imperfect information,
where one player cannot see which cards the opponent has.
Additionally, games can be deterministic or stochastic. De-
terministic games ensure that whenever an action is taken
into a specific state, the environment is modified always in
the same way. On the other hand, stochastic games do not
offer such a guarantee. To given one example, using dices
makes some aspects of the game uncertain, where in many
cases, the number displayed by the dice dictates how the ac-
tion will modify the environment.

2.2 Game Trees and Game Tree Complexity
A game tree serves as a representation on the possible out-
comes of a game. A complete game tree includes all poten-

tial game progressions, from the initial position to every pos-
sible conclusion. Each path from the root to a leaf is a full
match that could happen within the game. The tree grows
through a searching algorithm in its state-space. In certain
cases, a complete game tree might be infinite if the game is
unbounded, or if the game rules permit infinite repetitions of
looped movements [Chapter 5.1](Russell and Norvig 2020).

Each node contains a game state, while each edge denotes
a valid move that transitions from one state to its successor.
The tree’s leaves represent the final outcomes, such as a win,
loss, or draw. The root node corresponds to the current con-
figuration of the ongoing match; in a complete game tree, it
represents the game’s initial state.

The game tree complexity is the number of leaf nodes nec-
essary to solve a game-tree, starting at the initial position of
the game (Allis et al. 1994). For many domains, computing
the entire game-tree is unfeasible, so we estimate it through
an approximation of game depth and branching factor. The
tree “depth”, denotes the maximum number of turns or steps
in a game, and the “branching factor”, represents the average
number of decisions available at each node in the game. We
approximate the game-tree complexity with the branching
factor raised to the power of the depth.

The evaluation of game tree complexity is important as it
signifies the difficulty an AI algorithm will face in evaluating
every possible outcome to decide on which move is the best.
Higher complexity means more potential game states to ex-
amine, thus requiring more computational resources. Hence,
AI algorithms often rely on techniques such as heuristic
evaluation functions, pruning, and approximations to build
and traverse partial game trees, assessing the utility of po-
tential moves to make intelligent decisions.

2.3 Minimax
A fundamental concept in adversarial games is the Minimax
algorithm (Van Der Werf 2004). Minimax operates by re-
cursively evaluating potential game outcomes searching for
the optimal move, which in turn maximizes the minimax
value. This minimax value reflects the utility gained from
following the best path from a given node to a leaf node.
The underlying premise of the algorithm is that every par-
ticipant aims to maximize their own utility values. In the
context of zero-sum games, a player’s gain is the opponent’s
loss; hence, the opponent maximizes its value at the expense
of the player. The minimax tree construction alternates be-
tween player and opponent moves at each level, maximizing
values at the player’s level and minimizing them at the op-
ponent’s.

The minimax algorithm provides an effective solution to
identify optimal strategies in two-player, zero-sum games.
However, in games that don’t match this model, such
stochatis games or games with imperfect information, the
minimax algorithm is not appropriate. For these cases, Min-
imax needs to be modified. For instance, the expectminimax
algorithm models uncertain scenarios by including chance
nodes, computing the expected value of a position instead of
its minimax value [Chapter 5.5] (Russell and Norvig 2020).

Minimax algorithm used in its pure form is very compu-
tational cost for several game domains. For many occasions,

it needs to use enhancements to be a viable strategy (Van
Der Werf 2004). In such cases, one may need to use pruning
methods, like alpha-beta pruning (Knuth and Moore 1975),
to lessen the search space and speed up the algorithm. Usu-
ally, exploring the complete game tree isn’t practical, so the
algorithm should limit the searching to a certain depth. In
case of reaching a non-terminal node limited by depth, the
agent relies on handcrafted heuristic function to evaluate and
compute a score for the node. However, this approach loses
optimality because incomplete trees don’t compute the ac-
tual game outcome in their leaves. Instead, they estimate the
game state’s quality using an evaluation function.

2.4 General Game Playing
General Game Playing (GGP) aims to develop intelligent
computer agents adaptable to a wide variety of games,
thereby eliminating the need for game-specific knowledge
and minimizing human intervention in tackling different do-
main issues. The singular requirement for a GGP agent is
the presence of a well-defined game domain. However, the
agent’s understanding of the game’s rules, objectives, and
strategies is constrained to the information available in the
game description itself.

The GGP concept is highly related to GGP competi-
tions, in order to promote the area and encourage researches
to improve their techniques. The official GGP competi-
tion, proposed by Stanford Logic Group in 2005 (Gene-
sereth, Love, and Pell 2005), focuses on finite combinato-
rial games with perfect information, including board games,
puzzles, and any game that can be represented in a for-
mal logic-based language, called Game Description Lan-
guage (GDL). Swiechowski et. al underscores the crucial
role of International GGP Competitions in incentivize GGP
research (Świechowski et al. 2015).

MCTS has been the main strategy for building GGP
agents, catalyzing significant progress in the field. Recently,
Minimax surged as a viable competitor, combining it with
Deep Reinforcement Learning (DRL) and zero-learning.
The winner of the last edition of the Ludii GGP com-
petition (2022), used DRL with a variation of Minimax
called Unbounded Best-First Minimax (UBFM) (Cohen-
Solal 2020). Other interesting approaches are under re-
search using searching algorithms and reinforcement learn-
ing (Soemers et al. 2019, 2021a; Scheiermann and Konen
2022). However, our work will focus solely on improving
the searching method based on Monte Carlo simulation.

2.5 Ludii
Ludii is a system designed to promote research in the field
of gaming, specifically in the area of general game re-
search (Piette et al. 2020). Ludii is an enviornment for play-
ing a diverse range of games, test AI search algorithms, and
design new games. Some of the key features of Ludii can be
found at Ludii’s documentation2.

One feature of Ludii is to create and replicate historical
games using its GDL. Ludii’s GDL is simple and offers a
wide variety of options for building games. Games are built

2https://ludii.games/downloads/LudiiUserGuide.pdf

through a combination of “ludemes”, which is a term used to
specify tokens that represent conceptual elements of a game.
It is a data unit that allows game designers to describe how
their game works in a meaningful way (Parlett 2016).

The concept of having a common nomenclature among
games has many advantages, such as the ability to propa-
gate elements from one game to another, making it possi-
ble to create variants of existing games and new ones, au-
tomatic generation of game rule sets, comparison of games,
and demonstration of new strategies learned from AI algo-
rithms in a more comprehensible way.

Some GGP research directions using Ludii are:
• Meta Agents: Defining hyper heuristics that choose the

agent that better fits to the game types.
• Transfer Learning: Consists in transferring knowledge

from one game to another where their domains share sim-
ilar characteristics, such as heuristics, value functions or
policies (Soemers et al. 2021b).

• Game Generation: New games can be generated through
a combination of concepts seen in other games. Ludii has
a vast database of games and ludemes making it a tool for
creating new games (Browne 2008).

• Game Reconstruction: There are many historical games
for which the rules are unknown or incomplete. A pro-
cess similar to that of game generation is used to recon-
struct rules of incomplete games (Browne 2020).

• Heuristic Prediction: Based on a game description, is
it possible to learn which heuristics are important to
use along with its respective weights (Stephenson et al.
2021).

By providing a friendly environment for GGP research,
Ludii promotes innovation and collaboration among re-
searchers, game designers, and AI enthusiasts.

3 Monte-Carlo Methods
Monte Carlo techniques employ random sampling to ad-

dress problems that are otherwise intractable. The key idea
behind Monte Carlo methods is to simulate a problem many
times, each time using a different set of random inputs. The
empirical average of the results obtained from these simula-
tions provides an estimate of the true value. As the number
of simulations increases, this estimate converges to the most
likely outcome. In game-playing algorithms, Monte Carlo
methods can be used to evaluate a game-tree node, com-
puting the expected outcome of taking actions on it. This
is achieved by randomly generating and assessing a suffi-
ciently large set of game completions, often referred to as
playouts.

The first algorithm for game playing based on Monte
Carlo simulation was introduced by Abramson (Abramson
1990). Flat Monte Carlo algorithm samples uniformly the
possible movements applicable to the current state of the
game. The problem with the algorithm is its inability to
model adversarial scenarios due to no computing a game-
tree. Using Monte Carlo removes the need of defining func-
tions for evaluating states, making them useful in situations
where defining such heuristics are difficult or computational
costly.

3.1 Regret on Bandits Problem
The Multi-Armed Bandit (MAB) problem involves making
decisions under uncertainty when the rewards and proba-
bilities of success for each action are unknown. Imagine
a casino slot machine with K distinct arms, each with its
own reward distribution. The gambler’s objective is to plan
a strategy that maximizes their overall profit. The challenge
lies in determining the number of times to pull each arm to
maximize returns while learning rewards and probabilities
distributions. The bandits problem presents a trade-off: the
gambler must balance the pursuit of immediate profits by
selecting the currently best-performing arm (exploitation),
against the exploration of lesser-known arms to potentially
uncover higher rewards with more trials (exploration).

In game-playing, the MAB problem can be translated into
the searching challenges faced by agents when they should
decide how Monte Carlo simulations gathers information
about the possible movements. Just as in the MAB prob-
lem, game-playing agents using Monte Carlo to find an op-
timal balance between exploring new moves and exploiting
promising moves.

Measuring performance in MAB problem is made
through the concept of regret, which is defined as the dif-
ference in the reward obtained from the arm pulled and
the optimal arm. We use two important measures of regret
adapted from the definitions at Pepels (Pepels et al. 2014)
and Bubeck (Bubeck, Munos, and Stoltz 2011). Specifically,
we use cumulative and simple regret from Definitions 1
and 2.

Definition 1 Cumulative regret is the accumulated regret
over a set of arm pulls. Let µ⋆ be the best expected reward,
µj be the reward obtained from arm j, and E[Tj(n)] be the
expected number of plays for arm j in the first n trials. Then,
the cumulative regret Rn can be defined as:

Rn =

k∑
j=1

E[Tj(n)](µ
⋆ − µj) (1)

An alternative experimental setup involves finding the op-
timal arm by allowing the gambler to discover the rewards
and probabilities through a simulated version of the prob-
lem, where taking actions has no repercussions on the real
environment. In order to evaluate situations where only the
last arm pull is under consideration, we define Simple Re-
gret.

Definition 2 Simple regret is the expected difference be-
tween the best expected reward µ⋆ and the reward of the
arm pulled µ:

rn = µ⋆ − µ (2)

In the context of Multi-Armed Bandit problems, upper
and lower bounds are used to provide theoretical guarantees
on the performance of a strategy or algorithm, particularly
with respect to regret. These bounds help quantify the effi-
ciency of an algorithm in terms of worst-case and best-case
scenarios:

• Upper bounds: An upper bound on cumulative or simple
regret represents the maximum amount of regret which
an algorithm is expected to experience under the worst-
case scenario. A lower upper bound is preferred as it sug-
gests that the algorithm’s worst-case performance is bet-
ter controlled, signifying that the algorithm, even under
challenging conditions, can limit its deviation from opti-
mal decision-making to a smaller extent.

• Lower bounds: A lower bound on the cumulative or sim-
ple regret represents the minimum amount of regret that
any algorithm can achieve for a given problem. A higher
lower bound suggests a greater level of inherent difficulty
in the problem, as it signifies that even the most optimally
performing algorithm will inevitably experience a certain
degree of regret.

In the study by Bubeck et al. (Bubeck, Munos, and Stoltz
2011), the authors showed a trade-off between minimizing
cumulative regret and simple regret. Specifically, they found
that A smaller upper bound on ERn leads to a higher lower
bound on simple regret Ern, meaning that when an algo-
rithm performs well in terms of cumulative regret (better
upper bounds), it is likely to have a higher minimum sim-
ple regret (worse lower bounds). Conversely, a smaller upper
bound on simple regret would lead to a higher lower bound
on cumulative regret.

This trade-off indicates that no single policy can provide
an optimal guarantee on both simple and cumulative regret
at the same time. Depending on the context of the problem,
one may prioritize either minimizing cumulative regret or
minimizing simple regret.

3.2 Upper Confidence Bound
Upper Confidence Bound (UCB) (Auer, Cesa-Bianchi, and
Fischer 2002) is a exploration policy in MAB problems and
MCTS. A widely adopted variant, UCB1, is favored for its
simplicity and its ability to consistently deliver robust per-
formance outcomes.

The key mechanism behind UCB1 is its computation of
potential rewards for each action. This is accomplished by
establishing a confidence interval for the value of the arm,
a range within which the value can be estimated to lie with
high confidence (Russell and Norvig 2020, Chapter 17.3.3).

The UCB policy is notable for its optimal minimization of
cumulative regret over the course of searching. Importantly,
however, this minimization of cumulative regret is subject
to an inherent limit. Specifically, according to Lai and Rob-
bins (Lai, Robbins et al. 1985), the cumulative regret cannot
grow slower than a logarithmic rate log(n), where n repre-
sents the number of trials. Furthermore, suboptimal moves
in the UCB policy come with a theoretical guarantee of be-
ing selected at most O(log(n)) times.

UCB1 estimates the expected reward for state-action pairs
as follows:

UCB1(s, a) = Qs,a + 2c

√
2 lnNs

ns,a
. (3)

Here, Qs,a is the expected reward received each time ac-
tion a is selected in state s. Ns is the number of visits the

state s received, while ns,a is the number of times action
a has been selected in state s. The square-root term mea-
sures uncertainty in the estimate of a’s value, and parameter
c regulates the exploration term’s weight. Each problem do-
main should fine-tune the c parameter, but a commonly used
value for c is c = 1/

√
2 (Kocsis, Szepesvári, and Willemson

2006).
Whenever action a is taken at state s, our estimate of the

achievable reward, denoted as Qs,a, tends to decrease. This
is because the more we experience a specific action in a
given state, the more confident we become about the esti-
mated reward associated with that action. In other words,
we progressively reduce the uncertainty about our expecta-
tion of Qs,a.

On the other hand, when state s is visited but action a
is not selected, our estimate of the potential reward from
action a increases. The idea is that there might be higher
rewards associated with lesser-explored actions. However,
this increase in potential reward diminishes over time due to
the natural logarithm’s influence on the count of state visita-
tions, Ns.

Finally, in the context of UCB1, the confidence interval
around each action’s reward estimate promotes a balance
between exploration and exploitation. The UCB1 algorithm
typically leans towards exploring actions with high uncer-
tainty, gradually shifting to exploitation as it gains confi-
dence about the best actions.

UCB1 offers a desirable property: the discovery process
can be interrupted at any time, providing an estimate of each
option’s quality based on collected samples. This anytime
property allows for more flexibility in managing computa-
tional resources.

3.3 Sequential Halving
Non-exploitative selection policies3 have been advanced
with the aim of rapidly decreasing simple regret while main-
taining low regret bounds. Considering that UCB1 has an
optimal rate of cumulative regret convergence, and given
the conflicting limits on simple regret bounds pointed by
Bubeck et. al (Bubeck, Munos, and Stoltz 2011), policies
with higher rates of exploration than UCB1 tend to have bet-
ter bounds on simple regret.

In many decision problems in games, there are often only
a few promising moves to identify. As a result, when em-
ploying a uniform selection policy, the majority time is spent
on sampling suboptimal arms. In order to minimize the fre-
quency of selecting inferior arms, a more efficient policy is
essential.

Sequential Halving is a flat, non exploiting, algorithm
which provides better bounds on simple regret than UCB,
and other non exploiting policies (Karnin, Koren, and
Somekh 2013). The algorithm uniformly distributes a prede-
termined budget among all actions and progressively elim-
inates the bottom half in terms of lower performant set of
options.

3Policies without an exploitation phase, they allocate resources
uniformly among a steadily reducing set of options.

Algorithm 1: Pseucode for the Sequential Halving algorithm

1: function SEQUENTIALHALVING(s, B)
2: Input: state s, budget B
3: Output: Recommended action
4: vroot ← ⟨s, ACTIONS(s)⟩
5: C ← ||C(vroot)||
6: k ← C
7: while k > 1 do
8: b← ⌊ B

k×⌈log2 C⌉⌋
9: for v′ ∈ HEAD(C(vroot, k)) do

10: Q(v′)← Q(v′) + PLAYOUT(v′, b)
11: N(v′)← N(v′) + b
12: SORT(C(vroot), k)
13: k = ⌈k/2⌉
14: return C(vroot)[0]

Algorithm 1 illustrates an implementation of Sequential
Halving, in which we use a tree-like structure for consis-
tency with subsequent algorithms. A node v is a 5-tuple
composed by: expected reward Q, number of visits N , set
of applicable actions (given by calling ACTIONS), and a list
children of v (when calling C(v)). We employ an index,
represented as k, to restrict the range of accessible children
starting at position zero up to k. This enables the pruning of
nodes, efficiently limiting their consideration in subsequent
computations, without necessitating their complete removal
from memory.

The algorithm iterates over child nodes using
HEAD(C(vroot), k) to allocate a portion of the budget
B among the available children. It sorts the nodes based on
the data collected from playouts and then halves the value of
k for the upcoming round. The Sequential Halving formula,
mentioned in Line 8, determines the number of times the set
of children can be halved until only two remain, represented
as log2(C(v)), and divides the budget B by this number. To
allocate the budget evenly across the remaining children in
the current round, the algorithm divides B by k.

3.4 Monte-Carlo Tree Search
Monte Carlo simulations have great potential in various
game scenarios, however, flat solutions can pose challenges
in making accurate recommendations. In this context, build-
ing a tree is more effective for designing AI in turn-based
games, as it better models the true dynamics between player
and opponents responses.

Unlike the exhaustive search requirements of Minimax,
Monte Carlo Tree Search (MCTS) employs Monte Carlo
simulations to iteratively build a game tree. MCTS is de-
signed to progressively converge to the best action as it
gathers more statistical information about the domain. This
method form the basis of effective approaches for games
with complex strategies, such as Go, Poker, Chess, Hex,
Othello, Settlers of Catan, and general game-playing envi-
ronments (Świechowski et al. 2022). MCTS is based on two
principles: (1) with sufficient time, the sampled average re-
ward from random simulations converges to the true state
value, and (2) previous samples can guide future searches.

Algorithm 2: Pseudocode for Monte-Carlo Tree Search al-
gorithm

1: function MCTS(s,R)
2: Input: State s, ResourceR
3: Output: Recommended action
4: start r
5: vroot ← ⟨s, ACTIONS(s)⟩
6: while r not achievedR do
7: vk ← SELECTION(vroot, π)
8: vk+1 ← EXPANSION(vk)
9: rw ← SIMULATION(vk+1, π∆)

10: BACKPROPAGATION(vk+1, rw)
11: increase r
12: return RECOMMEND(C(vroot))

Algorithm 2 outlines the MCTS process, starting at the
root node, denoted as vroot. A node v consists of a state s,
the set of untried actions in s, the parent node (null for the
root node), the children from v, and Q and N values for
expected reward and visit count, respectively.

The searching process involves following four steps:

• Selection: Starting from the root of the tree, the selec-
tion phase navigates through the tree using a tree policy
(π) that directs the search towards promising nodes. The
SELECTION function explores the tree until it identifies a
node with untested actions.

• Expansion: The EXPANSION function selects an untested
action at random, removes it from the set of untested ac-
tions, and creates a new child node, appending it to the
existing list of children. This child node is initialized with
new state values, a set of applicable actions, and the par-
ent node defined as vk+1⟨sk+1, ACTIONS(sk+1), vk⟩.

• Simulation: The algorithm runs a playout to reach a re-
sult represented by reward r, following the default policy
(π∆). In a classic Monte Carlo simulation, the game con-
cludes by taking random actions. Various improvements
are employed during this phase to enhance simulations
or estimate the return without the need to complete the
simulation (Świechowski et al. 2022).

• Backpropagation: The algorithm updates each traversed
node from vk+1 up to the root. It updates the expected
reward Q by adding the weighted reward rw, and it in-
creases the visit count N by 1.

The searching continues until it uses up a specified re-
source limit R; which may be defined as number of iter-
ations, memory usage or searching time. After completing
the searching phase, the program select an action to be taken
in the game. The function RECOMMEND(C(vroot)) selects
the best root’s child as a movement to be played in the real
environment according to one specific criteria:

1. Max Child: chooses the child with the highest Q value.
2. Robust Child: chooses the child with the highest N value,

which indicates the number of times it has been tested.
3. Max-Robust Child: combines the previous two criteria,

choosing the child with both the highest Q and N values.

If no child can be selected, the search continues until a
suitable child is found. This ensures that the algorithm
always selects a valid action to play in the game.

When used as a selection policy in MCTS, UCB1 turns
into a recursive version of the MAB problem, where each
node minimizes its internal cumulative regret for selecting
its children. When used in MCTS the algorithm is called
Upper Confidence Bounds applied for Trees (UCT) algo-
rithm (Kocsis, Szepesvári, and Willemson 2006). MCTS and
UCT exhibit an anytime property, allowing them to recom-
mend useful actions even when the search execution is inter-
rupted.

4 Alternatives to UCT
Simple regret minimization is strictly related to choosing a
child node from the root at the recommendation phase, and
the cumulative regret is related to the search process through
the tree. UCB1 has optimal bounds on cumulative regret, but
it is penalized in terms of simple regret. At the root node,
sampling in MCTS/UCT typically focuses on finding the
best move with high confidence. Once UCB1 identifies such
a move, it continues to spend time on it, possibly with low
information gain (Tolpin and Shimony 2012).

In time-sensitive situations, not considering other options
and continuing with the current best choice may be a po-
tential flaw that could be improved. By exploring more, the
agent may quickly switch towards other promising alter-
natives, potentially reaching higher reward regions of the
search tree. The subsequent sections explore three strate-
gies developed in response to this observed characteristic of
UCT.

4.1 Sequential Halving Applied On Trees
Sequential Halving Applied to Trees (SHOT) is an algorithm
that combines the action elimination strategy of Sequential
Halving with a tree-based search approach (Cazenave 2014).
Instead of backing up individual simulations, SHOT back-
propagates groups of simulations. This approach allows the
algorithm to grow its tree almost twice as fast in optimized
environments without re-searching the tree after each simu-
lation (Pepels 2014). Another key advantage of SHOT over
traditional UCT algorithms is its reduced memory require-
ments; Unlike UCT, SHOT does not store leaf nodes, which
significantly reduces the amount of memory required for the
algorithm to operate. SHOT’s pseudocode is provided in Al-
gorithm 1, only the most important steps are considered for
understanding SHOT.

The algorithm starts from the root and expands its nodes
using the EXPAND function. The expansion apply one sim-
ulation for each unvisited child, and discount new node dis-
coveries from budget B. SHOT grows in depth until reaches
a terminal state, or there only one budget left. Visiting a
node differs from using a budget, because reaching a ter-
minal node does not require simulations, then it is not con-
sidered as a budget usage. When nodes have one budget left,
it is recorded a visit and budget spending.

A notable distinction between Sequential Halving and
SHOT is the recursive evaluation. While the Sequential

Algorithm 3: Pseudocode of SHOT algorithm

1: function SHOT(v, B)
2: Input: node v, budget B
3: Output: Searching a game-tree using SHOT
4: if v is terminal then
5: UPDATE values from v
6: return
7: if B = 1 then
8: SIMULATE a random game starting from v
9: UPDATE values from v using SIMULATE

10: return
11: EXPAND unseen children from v
12: repeat
13: for child v′ in v do
14: define b using SHOT budget formula
15: SHOT(v′, b)
16: UPDATE values from v with v′ values
17: SORT children from v
18: ELIMINATE half children from v
19: until one child left
20: return RECOMMEND(C(vroot))

Halving algorithm runs once, SHOT executes multiple cy-
cles of Sequential Halving at the same node. When an in-
ternal node completes a cycle, the values obtained are back-
propagated to its parent. In case the node is revisited, the
previously collected information will be considered in the
follow cycle. After each halve of Sequential Halving, the
algorithm SORT and ELIMINATE half the remain children.
Nodes not eliminated receive a larger portion of B in the
next iteration. The search continues until the root node has
only two children remaining. At this point, the root node se-
lects the child with the highest expected reward.

The budget allocation in SHOT diverges from the original
Sequential Halving by implementing an incremental strat-
egy that distributes uniformly its budget to nodes consid-
ering previous cycles. All the unspent budget, coming from
achieving terminal nodes and from non integer divisions, are
carried over next halves and cycles, so it can be spend in the
follow iterations. The management required for ensure an
equal distribution wont be covered, but is important to keep
in mind that SHOT is quite more complex than Sequential
Halving and MCTS/UCT in its distribution because of those
conditions.

Two concerns regarding SHOT were previously raised
by (Pepels 2014):
1. SHOT cannot be interrupted: A limitation of the

SHOT method is its inability to be halted prematurely, as
it necessitates prior knowledge of the available budget.
Consequently, the pure exploration policy can only offer
a satisfactory low simple regret on recommendations af-
ter all simulations are concluded. It is impossible to stop
the process or request a reasonable recommendation be-
fore reaching the limit.

2. SHOT computes more like an average expected value
of a node, rather than its minimax value: UCT con-
sistently selects the best node and has a formal guarantee

that suboptimal nodes are selected at most O(lnn) times,
ensuring that node values converge to the best-reply over
time. However, with Sequential Halving formula, the
guarantee relies on the available budget and branching
factor, both are considered for Sequential Halving and
SHOT distribution. This method samples the two best
nodes equally, regardless of their reward difference. In
many games, only a few good moves exist for a position,
and evaluating a node requires determining the value of
its move’s best-reply. Sequential Halving’s use through-
out the tree causes values to back-propagate differently
than in UCT, resulting in internal node values being more
like overall averages of their children.

In the experiments conducted by Cazenave (Cazenave
2014), SHOT was compared to UCT in NoGo, achieveving
win-rates between 75% and 100% on both 9x9 and 19x19
boards. The experiments by Pepels (Pepels 2014) involved
SHOT competing in several matches against UCT for var-
ious games, including Amazons, AtariGO, Ataxx, Break-
through, NoGo, and Pentalath, under a fixed budget allo-
cation of playouts. SHOT performs best in games with the
highest branching factors, such as Amazons, AtariGo, and,
to a lesser extent, NoGo. The NoGo results from Cazenave’s
differ from those presented in Pepel’s work due to the dif-
ference in experimental setups, with the former employing
a time constraint for both algorithms and the latter using a
fixed allocation of playouts.

These results reinforce the evidence that SHOT is best ap-
plied in games with high branching factors. In games with
narrow winning-lines, such as Breakthrough and Pentalath,
SHOT’s performance declines significantly against UCT.
However, given SHOT’s speed improvement over UCT, it is
possible that the technique performs better in a time-based
experiment. This suggests that, the choice between SHOT
and UCT may depend on the desired balance between speed
and performance.

4.2 UCB√ and SR+CR
Bubeck et. al (Bubeck, Munos, and Stoltz 2011) shows that
UCB1 exhibits a slow decrease in terms of simple regret,
with the best-case scenario being a polynomial rate decrease.
This can be problematic in game evaluation, as simple re-
gret is closely related to move recommendations. Karning
et. al (Karnin, Koren, and Somekh 2013) suggest that the
so-called non-exploiting policies reduce simple regret more
rapidly given enough time.

UCB1 allocates new samples based on sample means and
often chooses the current top-performing option, leading to
a slow reduction in simple regret and an infrequent explo-
ration of other potentially superior options. Tolpin and Shi-
mony. (Tolpin and Shimony 2012) modify UCB1’s policy
into UCB√ . This policy adjusts the UCB1 formula using
a quicker-growing sublinear function, leading to a faster in-
crease in the upper bound on the reward allocated to nodes.
The new policy changes the lnNs term in UCB1 equation
to
√
Ns, aiming to narrowing the gap between selections of

non-optimal nodes.
Tolpin and Shimony point out that nodes closer to the root

and those deeper in the tree have different levels of impor-
tance. The former is more crucial for move recommenda-
tions. As a result, the search strategy near the root should
prioritize reducing simple regret more quickly, while nodes
deeper in the tree should perceive to match the value of tak-
ing the optimal path, aligning more with prioritizing cumu-
lative regret minimization.

The SR+CR (Simple Regret plus Cumulative Regret)
scheme proposed by Tolpin and Shimony integrates two dif-
ferent policies to strike a balance between minimizing sim-
ple regret and cumulative regret. They introduced two spe-
cific algorithms, both of which combine the UCT policy
with more exploratory strategies.

The first one, UCB√ + UCT, operates by applying the
UCB√ policy at the root node and the UCT policy to all
child nodes. This is indicative of an approach that empha-
sizes different levels of exploration at different stages of
the search. Their second algorithm, 1

2 -greedy + UCT, intro-
duces an even more exploratory policy. The 1

2 -greedy policy
behaves such that it randomly selects a move 50% of the
time, without considering the immediate reward of the ac-
tion. These approaches reflect innovative combinations of
policies, each aiming to optimize the trade-off between sim-
ple and cumulative regret minimization in different ways.

4.3 Hybrid Monte Carlo Tree Search

Hybrid Monte Carlo Tree Search (H-MCTS) is an algorithm
that combines pure exploration strategies with MCTS to im-
prove the performance of Monte Carlo agents (Pepels et al.
2014). This approach aims to minimize both simple and cu-
mulative regret in the search tree, much like the SR+CR
scheme discussed in Section 4.2. It does so by incorporat-
ing the Sequential Halving Applied on Trees (SHOT) algo-
rithm (Cazenave 2014) with MCTS in a hybrid algorithm. In
contrast to the SR+CR scheme, H-MCTS applies the pure
exploration policy not only at the root node but also deep
down the tree according to a specific condition. This al-
lows the algorithm to minimizing simple regret internally for
identifying quicker the best replies to parent moves through-
out the rest of the tree.

Figure 1: Progression of Sequential Halving over UCT in H-
MCTS.

Figure 1 depicts how the progression of Simple Regret
(SR) area under UCT. The search tree initially starts as a
SHOT tree at the root, with UCT trees rooted at its leaves.
The proposed method switches from Sequential Halving cy-
cle to UCT when the computational budget spent in the node
achieves a certain threshold. Since the computational bud-
get per node is initially small, the simple regret tree remains
shallow. As Sequential Halving eliminates nodes from se-
lection, the budget spent increases, causing the SHOT tree
to grow deeper.

Like Sequential Halving and SHOT, H-MCTS has the
drawback of being unable to return a recommendation at any
given time, as it must know its exact computational bud-
get in advance. However, H-MCTS takes advantage of the
speed gains provided by SHOT, caused by multiple playouts
to be executed and back-propagated simultaneously in UCT.
H-MCTS outperforms UCT for various exploration coeffi-
cients (Pepels et al. 2014) and is highly effective in games
with large branching factors, as it prunes low-promising
nodes and directs the search towards the most promising
areas. However, in games requiring tactical strategies with
narrow branching, exploiting strategies might be more suit-
able.

5 Seeking for Overcome UCT Under
Time-Restricted Scenario

In this section, we focus on implementing a refined SHOT
algorithm and adapting it for time-restricted scenarios. We
also propose a variation of the SR+CR algorithm to enhance
recommendations. Finally, we tackle the challenge of effec-
tive time management for these algorithms in unknown GGP
scenarios. All the enhancements and modifications we dis-
cuss are available in our GitHub repository4.

5.1 SHOT Modifications
SHOT algorithm offers an effective alternative to UCT for
handling typical combinatorial games. However, to fit it into
previously unknown domains, we introduce modifications
aimed at simplifying the budget allocation policy.

In our version of SHOT, we opt for a straightforward bud-
get allocation based on the budget distribution of Sequen-
tial Halving. This approach leads to two notable situations:
firstly, nodes with higher rewards receive slightly more vis-
its, leading to an uneven budget distribution. Secondly, un-
spent budgets from earlier cycles aren’t reallocated to sub-
sequent ones.

Algorithm 4 showcases our implementation of SHOT.
SHOT requires an input specifying the number of playouts
it should employ in the search. This requirement can pose a
challenge for a GGP agent since the agent won’t know the
number of playouts to perform. The WARMUP function ex-
pands the first n nodes using depth-first search. After discov-
ering each node, it executes a simulation and stores the time
taken for completion. The thinking time T granted to the
agent make a move is divided by the average time required
for completing the n simulations at the warmup phase.

4For implementation details, please visit our GitHub repository:
https://github.com/schererl/GraduateThesis

Algorithm 4: Pseucode for SHOT agent

1: function SHOTRECOMMENDATION(s, T)
2: Input: State s, Thinking Time T
3: Output: Recommended action
4: vroot ← ⟨s, ACTIONS(s)⟩
5: τwarmup ← WARMUP(vroot, n)
6: B ← T /τwarmup

7: MSHOT(vroot,B)
8: CLEARCYCLE(vroot)
9: b← B − N(root)

10: distribute b among the top s children
11: return RECOMMEND(C(vroot))
12: function MSHOT(v, B)
13: Input: Node v, Budget B
14: Output: Game-tree
15: if TERMINAL(v) ∨ B = 1 then
16: UPDATE(v, SIMULATE(v)× B,B)
17: return
18: if ||UNVISITEDACTIONS(v)|| > 0 then
19: EXPAND(v,B)
20: if spend all B then
21: return
22: k ← ||C(v)||
23: repeat
24: b← B

⌊k×⌈log2 ||C(v)||⌉⌋
25: b′ ← MAX(1, ⌊b/k⌋)
26: for v′ ∈ HEAD(C(v), MIN(b′, k)) do
27: MSHOT(v′, b′)
28: UPDATE(v, QCYCLE(v′), NCYCLE(v′))
29: CLEARCYCLE(v′)
30: SORT(C(v), l)
31: k ← ⌈k/2⌉
32: until k > 1

The original algorithm employs transposition tables
(specifically, hash tables) for node storage, and utilizes vari-
ables with differing scopes using local variables passed
through reference as a way of backpropagate values. Our
approach implements a tree structure that store all variables,
thereby simplifying the management of necessary informa-
tion. We have implemented several enhancements to the
original SHOT algorithm:

1. The original algorithm relies on a single function
that returns the best move after each cycle comple-
tion. However, this leads to multiple unnecessary re-
turns and makes the recommendation intertwined with
searching. To address this, we split the recommenda-
tion (SHOTRECOMMENDATION) from the search pro-
cess (MSHOT).

2. We consider only the number of visits N , rather than dis-
tinguishing with budget spending. This approach simpli-
fies the variables required in the algorithm and combines
the two terminal cases (when a node is terminal and when
it has only one budget left). In case of reaching a terminal
node, the PLAYOUT returns the value of the current node
without making any additional moves.

3. To keep track of the information obtained in the cur-
rent cycle, we use temporary variables, called “cycle”
variables. We store into cycle variables the number of
wins and visits got from the current Sequential Halv-
ing execution. After completing Sequential Halving,
CLEARCYCLE function adds the cycle variables to Q and
N , and reinitialize cycle variables to zero. Before closing
a cycle, the parent node call UPDATE to add the values
obtained from its child to its own cycle variables.

4. In case of a terminal node being reached, we consider
B as the number of times the terminal node is visited
and compute the accumulated reward according to it
(line 16). We found that explicitly addressing this avoids
potential inconsistencies on node’s evaluation 5.

5. We allocate a fixed budget to each node for each cycle,
divided equally among its children (line 24).

6. The budget given to each child b have a minimum value
of 1 (line 25). In case the budget is lower than the num-
ber of children, distribute its budget to b-ith first children
calling HEAD (line 26).

Our method of budget allocation deviates from the orig-
inal policy, primarily because we opt not to carry over un-
spent budget. Instead of transferring unused budget into sub-
sequent iterations, we use at SHOT Recommendation func-
tion. Upon concluding the primary search, we proportionally
distribute the remaining budget to an arbitrary subset of chil-
dren from root.

Though this approach may yield outcomes that differ from
the original version, it should display reducing discrepan-
cies when given a sufficient budget. This is because both
algorithms move towards a uniform distribution, rather than
adhering to a policy that relies on exploitation for selection.

While we understand the rationale behind the use of an
incremental budget, we opt for a simpler, more reproducible
strategy for the sake of simplicity. Therefore, we apply the
modified SHOT as an initial validation of the algorithm’s
effectiveness as a GGP agent.

5.2 UCT√
SH

Although H-MCTS is promising at reducing simple regret,
it requires a predefined budget for the SHOT portion, which
is not possible to estimate for previous unknown environ-
ments. Furthermore, by neglecting the exploitation of nodes,
the agent becomes prone to excessive resource allocation in
unpromising regions. SR+CR uses UCT at CR area, so it
doesn’t benefit from performance gains using pure explo-
ration policies across the entire tree, unlike SHOT.

We develop a different SR+CR method, using Sequential
Halving and UCB√ , as shown in Algorithm 5. We take

5Consider a scenario involving a parent node N which dis-
tributes an equal budget of 100 to node A and node B. A is terminal
and results in a direct win, returning a value of 1. Meanwhile, B
is non-terminal sibling, and wins half of its 100 simulations. In
this case, N would receive significantly more values from B than
A, even though A had a certian winning. This disparity occurs be-
cause the number of backpropagated values from B is greater. Con-
sequently, B would have a more substantial impact on the decision
of node N.

inspiration on SR+CR scheme (Section 4.2) and H-MCTS
(Section 4.3), which aim to enhance recommendations based
on simple regret minimization near the root.

Algorithm 5: Pseudocode of UCT√
SH algorithm

1: function UCT√
SH(s,R)

2: Input: State s, ResourceR
3: Output: Recommended action
4: start r
5: vroot ← ⟨s, ACTIONS(s)⟩
6: C ← |C(vroot)|
7: h← 1; k ← n
8: while r ≤ R do
9: if k > kmin and r > (R h

log2 C) then
10: SORT(vroot, k)
11: h← h+ 1
12: k ← MAX(kmin, k/2)
13: vs ← argmax

v∈HEAD(C(vroot),k)

πUCB√(v)

14: vk ← SELECTION(vs, πUCB1
)

15: vk+1 ← EXPANSION(vk)
16: rw ← PLAYOUT(vk+1, π∆)
17: BACKPROPAGATION(vk+1, rw)
18: update r
19: RECOMMEND(C(vroot))

UCT√
SH prioritize simple regret minimization at root

node by combining UCB√ with Sequential Halving elimi-
nations, and the cumulative regret component uses UCT. In
UCT√

SH , the aim of Sequential Halving is not to converge
to the single best move, but rather to limit the number of
children to search, which allows UCB√ to explore the most
promising areas.

We establish a lower boundary on the number of children,
kmin, for elimination to take place. When an elimination
happens, the algorithm organizes the root’s child nodes in
descending order based on their expected reward. The halve
counter, h, increases and k halves. During the root’s child
selection process, we use k to limit the selection to the first
k-th children, as shown in Line 13.

We employ an iterative methodology to ascertain when to
halve the number of children. This involves dividing h by the
maximum potential number of halving operations, log2 C,
which gives us a ratio representing the fraction of halv-
ing stages already completed. Multiplying this ratio with
the total resource R, we can estimate the resource alloca-
tion required for the next halving operation. When the ac-
tual resource consumption, r, surpasses this expected alloca-
tion, we increment h to reach the subsequent halving stage.
This method ensures the resourceR is consistently allocated
across all log2 C halving stages, proportionally to the ratio
of halving stages completed.

A key distinction from traditional MCTS lies in the sepa-
rate treatment of root selection. The root selection, depicted
at line 13, chooses the child that maximizes πUCB√ , iterat-
ing over the first k-th children.

5.3 Clock Bonus Time
GGP agents face the challenge of playing games without
prior knowledge. Certain GGP situations provide agents
with a fixed time budget to play an entire game, necessitat-
ing a decision on how much time to allocate to each move.
In contests like the Kilothon, if an agent exhausts its total
time budget, subsequent moves are randomly selected as a
form of penalty.

We propose a methodology for estimating the time to allo-
cate for each move in a GGP environment. Our model runs a
specific number of simulations during the search process to
gather data about the game. A minimum ”thinking” time is
designated, and for games where the agent can afford more
time, we grant a ”thinking time” bonus. The formula for our
Clock Bonus Time (cbt) is:

cbt = max(τmin,min(τmax, G/m))− τmin . (4)

In Eq. 4, G represents the total game time, while τmin

and τmax stand for the minimum and maximum permitted
thinking times per move, respectively. The bonus time is cal-
culated as G divided by the estimated number of moves the
player have left, m, which we determine using Monte Carlo
simulations. The max and min functions guarantee that the
agent commits to at least the minimum thinking time and
prevents it from overestimating its available time. The final
time calculation subtracts τmin, as it represents a bonus ad-
dition to the minimum thinking time.

To incorporate cbt into MCTS, one approach involves
calling cbt once half of τmin has elapsed, or when r ≥ R/2.

6 Prize Box Selection Experiment
The Prize Box Selection Experiment 6 is a simplified MAB
where there are K boxes containing a deterministic amount
of money. The money for each box is pre-selected from a
Gaussian distribution N(µ, σ). We test different policies for
a given number of trials and boxes, recording how often the
policy selects each box during the experiment.

6.1 30-Prize Box Experiment
The 30-box experiment evaluates UCB1, Sequential Halv-
ing, UCB√, and UCT√

SH selection policies with 10000 tri-
als, under low and high variance scenarios. In the low vari-
ance case, µ = 0.3 and σ = 0.05, limited to [-0.5, 0.5]. For
the high variance case, µ = 0.3 and σ = 0.5, limited to
[-1,1].

Figure 2 depicts the low variance scenario, showing only
the 20 boxes with the highest rewards (i.e., boxes 1-10 have
the lowest reward and are omitted).

In this low variance situation, UCB√ exhibits the greatest
spread of trials among all boxes, followed by UCB1. In such
an environment, the use of elimination strategies drives the
policies adopting them towards a smaller subset of boxes,
yielding higher rewards.

Figure 3 depicts the high variance test. In this context,
both UCB1 and UCT√

SH show a marked preference for the

6https://tinyurl.com/selectionboxexperiment

Figure 2: Box selection frequency under low variance reward distribution.

Figure 3: Box selection frequency under high variance reward distribution.

arm with the highest reward. On the other hand, UCB√ and
Sequential Halving demonstrate more similar frequencies of
selection, indicating their preference for exploration over the
more exploitative UCB1 policy. Notably, Sequential Halv-
ing, due to its non-exploitative nature, preserves a constant
budget allocation regardless of reward distribution.

Despite UCT√
SH displaying a notable preference for the

box yielding the highest reward, it ensures a more even dis-
tribution of trials across other boxes compared to UCB1.
This tactic prevents over-investing trials in the best box in
high-variance scenarios, which can be seen as a beneficial
characteristic for the minimization of Simple Regret. In the
pursuit of maximizing rewards, exploitation is generally ad-
vantageous. Nevertheless, according to SR+CR argument,
exploration in the root node is often a more desirable trait,
after achieving a certain level of confidence in identifying a
movement.

6.2 2-Prize Box Experiment
2-Prize Box Experiment illustrates the evaluation problem
of Sequential Halving approach in situations with high vari-

ance. We define a smaller experiment using two boxes and
2000 trials. These boxes contain rewards of -1 and 1.

In the context of a policy whose aim is to compute the ex-
pected reward given a set of choices, this scenario parallels
the search process in a Monte Carlo tree. Each node in this
tree has an empirical average of the rewards received during
search of its child nodes. Assuming that the best strategy for
internal nodes is to shift towards evaluating the best moves
of players and anticipates responses of opponents. This rea-
soning guides actions under a scenario where all players
strive to maximize their own expected rewards, where ex-
ploratory policies diverges from this assessment, because
they don’t exploit moves.

Table 1: 2-Box Experiment comparing UCB1 and Sequential
Halving.

Policies Box1 Box2
UCB1 2 1998
Seq Halving 1000 1000

Table 1 shows the results comparing Sequential Halving
and UCB. Box1 have a reward of -1, and Box2 +1. Sequen-
tial Halving evaluates this situation in a unrealistic way com-
puting the expected reward to 0, where UCB1 clearly moves
the expected reward towards 1. Sequential Halving perceives
the situation as a draw and cannot consider preference of se-
lecting Box1, that should be preferred as much as possible.

This scenario can be translated in two situations that
are critic for Sequential Halving as a tree search algorithm
(i.e SHOT): the lack of identification of certain winning or
inevitable loss; and for high variance scenarios, may not
quickly eliminate the obvious boxes that should not be taken.
Consequently, it will overspend time on them and even back-
propagate unrealistic evaluations.

7 Arena Experiment
To assess the performance of UCT√

SH and SHOT, we chose
five board games for the agents to compete against each
other. In these cases, SHOT didn’t require the warmup
phase, as we had already specified the budget it was ex-
pected to use. The agents competed in these games with a
fixed number of playouts as their resource. We selected the
same five games that were used in the study conducted by
Pepels (Pepels 2014).

The selected board games are as follows:

• In Amazons, played on a 10x10 chessboard, each player
commands four Amazon pieces that move in the same
way as chess queens. Each turn consists of a movement
action and the shooting of an arrow to block a square on
the board. The game is won by the last player capable of
making a move.

• AtariGo, or first-capture Go, is a Go variant where the
first player to capture any stones is declared the winner.
These experiments were performed on a 9x9 board.

• Breakthrough is played on an 8x8 board where each
player starts with 16 pawns. The goal is to move one of
these pawns to the opponent’s side.

• NoGo has the opposite rules of Go. Captures are disal-
lowed and the first player who can’t make a move due
to this rule loses the game. These experiments were con-
ducted on a 9x9 board.

• Pentalath is a connection game on a hexagonal board.
The objective is to place 5 pieces in a row. A player’s
set of pieces can be captured by surrounding them com-
pletely.

We conducted three experimental setups of UCT√
SH

against UCT, each setup, agents played 100 matches. Ta-
ble 2 showcases the results of UCT√

SH vs UCT. In this
specific setup, we carried out tests for 1000, 5000, and
10000 playouts for each move recommendation. Across
all games tested, UCT√

SH consistently outperformed UCT
with a higher win rate. Generally, we did not observe a
substantial performance differences of UCT√

SH over UCT
when increasing the number of iterations used, excepting for
AtariGo which we observed a consistent win rate decreas-
ing, in total 15% drop from 1000 playouts to 10000.

Table 2: Results for UCT√
SH over UCT.

Game 1000 pl 5000 pl 10000 pl
Pentalath 64%± 9% 59%± 9% 63%± 9%
AtariGo 70%± 9% 64%± 9% 55%± 9%
NoGo 68%± 9% 71%± 8% 68%± 9%
Breakthrough 59%± 9% 52%± 9% 51%± 9%
Amazons 56%± 9% 50%± 9% 58%± 9%

Table 3 presents the results between SHOT and UCT
for 1000 and 5000 iterations. On the whole, with 1000 it-
erations, SHOT appears to outpace UCT in nearly every
game except for Amazons, demonstrating win rates exceed-
ing 50% in all games. However, when we raise the num-
ber of playouts to 5000, SHOT’s performance significantly
declines across all games. This pattern could suggest a po-
tential scalability issue in SHOT algorithm and indicate that
1000 iterations may not be enough for UCT to find superior
strategies.

Table 3: Results for SHOT over UCT.

Game 1000 playouts 5000 playouts
Pentalath 74%± 8% 20%± 7%
AtariGo 77%± 8% 41%± 9%
NoGo 63%± 9% 18%± 7%
Breakthrough 58%± 9% 46%± 9%
Amazons 47%± 9% 21%± 8%

In Table 4, which illustrates the results of SHOT vs
UCT√

SH for the same iteration counts and game numbers,
a similar downward trend is observed when increasing from
1000 to 5000 iterations. In all games except Breakthrough,
the win rate for SHOT declines, with the most drastic de-
crease observed in the NoGo game. Breakthrough is the only
game in which SHOT maintains similar performance with an
increase in iterations as its win rate improves.

Table 4: Results for SHOT over UCT√
SH .

Game 1000 playouts 5000 playouts
Pentalath 50%± 9% 25%± 8%
AtariGo 65%± 8% 32%± 9%
NoGo 51%± 9% 5%± 4%
Breakthrough 42%± 9% 52%± 9%
Amazons 38%± 9% 32%± 9%

Our assessment of SHOT against UCT showed inferior
results when compared with Pepels work, particularly in
the game of Amazons. In Pepels’s research, SHOT exhib-
ited a 60% win rate in Amazons and 53% in AtariGo with
10000 playouts. Our results varied greatly from these when
we escalated the number of playouts from 1000 to 5000.
Our data does not suggest that this trend would change if
we double the number of playouts to 10000. The proba-
bility of SHOT surpassing UCT as the number of playouts
increases appears low. In the game NoGo, SHOT had the

weakest performance, with UCT√
SH achieving a win rate of

95% at 5000 playouts, while UCT recorded an 82% win rate.
With the same number of playouts, UCT√

SH outperformed
UCT with a win rate of 71%. In comparison, UCT√

SH ap-
proach demonstrates superior performance over both UCT
and SHOT.

8 Kilothon Competition
In July 2022, Ludii hosted a competition to promote GGP re-
search and demonstrate the capabilities of the Ludii platform
as a competition environment. The competition focused on
games implemented using Ludii’s GDL from Ludii 1.3.2,
with specific properties that defines the scope of games in-
cluded:
• Turn-based: Games in which players take turns to make

their moves, ensuring a clear order of play.
• Adversarial: Games that involve direct competition be-

tween players, where the success of one player is often at
the expense of another.

• Sequential: Games where players make a series of
moves, one after another, and the outcome of the game
is determined by the sequence of actions taken.

• Fully observable: Games where all players have com-
plete information about the game state, and no hidden
information is present.

The Kilothon track, one of the three tracks in the compe-
tition, involves competing agents in every game available in
the Ludii framework.

Table 5 display the official results of Kilothon competi-
tion:

PARTICIPANT AGENT NAME PAYOFF
CyprienMD UBFM Contender 0.231
perrierludo MCTimeS 0.031
Victor Putrich SHOT-br -0.034
Jingyang Zeng Zkealinvo -0.456

Table 5: Kilothon Results.

Kilothon participants play 1094 games against an imple-
mentation of UCT algorithm native from Ludii. Each agent
has a strict one-minute time limit to play each game in its en-
tirety. When the one-minute time limit is reached, the agent
must resort to random moves until the game concludes. The
UCT agent from Kilothon operates with a fixed thinking
time of 0.5 seconds per move. The c value from UCB1 is
set to

√
2, and simulations are limited to 500 moves for each

player, meaning that when the simulation is interrupted, the
playout is considered a draw. To enhance its performance,
the Kilothon agent incorporates two modifications to the
pure UCT algorithm: Tree Reuse enables the agent to store
the search tree from previous plays and reusing it in the fu-
ture, and Open Loop (Perez Liebana et al. 2015) for deal-
ing with stochastic games, by re-applying actions into states
whenever a non-deterministic node is found.

8.1 Kilothon Experimental Settings
For our Kilothon experiments, we implemented our UCT
without tree reuse, neither open loop, to compare with
UCT√

SH . For both we utilize the c parameter of 1/
√
2 (see

Eq. 3), and a budget of 500 simulations. We tested UCB and
UCT√

SH using cbt method.
We conduct 10 Kilothon trials for each agent, computing

the overall payoff and the average performance to evaluate
their effectiveness in Kilothon.

We pay special attention to the “Board” games category,
which contains 1006 of 1116 Kilothon games at Ludii’s ver-
sion 1.3.4. Ludii board games are classified according to
(Brice 1954; Parlett 1999) into the following classes: hunt,
where a player controls more pieces and aims to immobi-
lize the opponent; race, where the first to complete a course,
with moves controlled by dice or other random elements,
wins; sow or mancala, where players sow seeds to specific
positions and capture opponent seeds; space, where players
place and/or move pieces to achieve a specific pattern, with
possibility of blocks and captures; and war, where the goal
is to control territory, immobilize or capture all opponent’s
pieces. The performance of our agents in these game cate-
gories gives us a informative view on specific agent abilities.

8.2 Kilothon Results
This section presents the results of our agents in Kilothon.
We evaluate our baseline UCT and UCT√

SH with and with-
out cbt.

Table 6 presents the average payoff of our tested agents,
along with the maximum payoff achieved by each of them.

AGENT PAYOFF ± MAX

UCTcbt√
SH

0.1512± 0.0176 0.1984

UCTcbt 0.0813± 0.0334 0.1489
UCT√

SH 0.0672± 0.0196 0.1019
UCT −0.0063± 0.0168 0.0157

SHOT −0.0198± 0.0121 −0.0053

Table 6: Average payoff in Kilothon.

The results from Table 6 highlights the performance of
UCT√

SHmethod over UCT, which achieves better scores
than UCT, including when adding the cbt method in both.
UCTcbt√

SH
had the highest score, that could achieve second

place in the official competition. In the official competition,
the first place achieved 0.231 and the second 0.031.

SHOT had never been tested under a true GGP envi-
ronment, nor under such time restriction. SHOT achieved
the lowest score, which we will not investigate further,
but we hypothesize it is a combination of three factors:
The warmup model can produce inaccurate estimations for
some domains where it is more challenging to make good
estimations through Monte Carlo simulations; As the 2-box
experiment indicates, states with high variance on the out-
comes could lead Sequential Halving to poor estimations;
SHOT needs more time to start increasing the quality of its
evaluations.

hunt race sow space war
Board Subcategories

0%

10%

20%

30%

40%

50%

60%

70%

W
in

ni
ng

 P
er

ce
nt

ag
e

Winning Percentage x Board Subcategories
SHOT
UCT
UCT-CBT
SR+CR
SR+CR-CBT

Figure 4: Winning percentage in board subcategories for
each agent after 10 Kilothon runs.

Figure 4 presents the winning percentage for each agent,
differentiated by board game subcategories. While board
games are not the sole category in Kilothon, they constitute
a significant portion of the game selection permitted in this
competition. The legend of the figure indicates that “UCT-
CBT” represents a UCT agent utilizing cbt, while SR+CR
agents refer to UCT√

SH. The winning percentage is com-
puted as the ratio of games won to the total games played
(excluding draws), represented as win/(win+loss).

UCT√
SH exhibits higher winning percentages over the

baseline UCT in Sow (+6%), Space (+7%), and War (+4%).
In matches against the Kilothon agent, UCT√

SH managed to
secure at least 50% of wins across all categories, with re-
spective percentages of (56%, 53%, 57%, 55%, 51%).

Sow and Space games display the highest variability be-
tween agents and the top scores attained by UCTcbt√

SH
(69%,

63%). Both Space and Sow games show significant gains
through the cbt method for UCTcbt and UCTcbt√

SH
achieving

winning percentages higher than 60%.

SHOT surpassed the baseline UCT in Space (+2%), War
(+5%), and achieved over a 50% winning percentage against
the Kilothon agent in Hunt (54%), Race (53%), and War
(53%). Nonetheless, SHOT had a considerably lower win-
ning percentage of 30% in Sow.

Our evaluations reveal that UCT√
SH strategy, especially

with the cbt method, outperforms baseline UCT across Kilo-
thon’s game categories. The UCTcbt√

SH
agent got the highest

score, showcasing its improvement over the baseline. These
results suggest that prioritizing information acquisition in
the root node using a hybrid approach improve performance
in a multitude of board games. These outcomes highlight the
effectiveness of UCT√

SH and cbt in enhancing agent perfor-
mance in time-constrained GGP scenarios.

9 Conclusion
This project developed different approaches to address two
key limitations in UCT: (i) the UCT exploitation factor that
ensures asymptotic optimality but limits efficient informa-
tion acquisition under rigid time constraints; and (ii) the
adoption of a fixed time-budget per move which might be
over or underestimated for lengthy and short games respec-
tively.

To address (i), we explored two distinct methodologies:
We propose modifications into SHOT algorithm. Previous
research on SHOT suggests that it can surpass UCT in terms
of search speed, thereby indicating its potential for enhanced
performance in scenarios with limited time. Subsequently,
we introduce UCT√

SH , a novel MCTS method, that trades
asymptotic optimality for timely decision-making. UCT√

SH
employs the simulation budget in the root node with more
emphasis on exploration, while simultaneously implement-
ing continuous reductions in the range of possible actions. In
response to (ii), we propose the Clock Bonus Time strategy
to improve time distribution per move, given a fixed time
budget for the entire game.

The Prize Box Experiment (Section 6) highlights the dis-
parities in selection strategies, which depend on reward dis-
tributions in high and low variance scenarios. While UCB1

struggled to focus on a select subset of moves, the utilization
of action elimination at Sequential Halving and UCT√

SH
showed a distinct preference for concentrating their efforts
on a smaller, more promising subset of the available possi-
bilities.

Conversely, in the high variance scenario, UCB1 allo-
cated a significantly larger number of its trials to the optimal
box, while alternative strategies displayed more tendency for
exploration. It’s important to note that UCT√

SH displayed
what we consider to be a more desired behavior compared
to UCB1. It demonstrated a clear preference for the most
promising option, but still maintained a substantial level of
exploration among other alternatives.

The arena experiment (Section 7) provides a snapshot of
how the agents perform against each other within a lim-
ited GGP environment, featuring five selected board games.
From the results displayed in Table 2, we generally observed
UCT√

SH securing at least more than than 50% winning
against UCT. For instance, in Atarigo, UCT√

SH secured a
win rate of 70% with 1000 playouts, but this rate fell to 55%
when the playouts increased to 10000. Conversely, Nogo
recorded the highest win rate against UCT over other games,
reaching 68%.

SR+CR scheme aligns with our initial hypotheses for
time-limited games. UCT√

SH outperforms UCT with 1000
playouts, suggesting its suitability for situations requiring
fewer simulation runs. However, while SHOT results (Ta-
ble 3 and 4) also performs well with 1000 playouts, its per-
formance significantly declines when the playouts increase
to 5000.

In the Kilothon competition (Section 8), according to re-
sult presented at Table 6, our method outperforms the base-
line UCT, where cbt more than doubles the score for both
agents, with UCTcbt√

SH
achieving second place in the of-

ficial Kilothon competition. This is noteworthy, given our
agent relies solely on Monte Carlo simulations and uses no
other enhancements or parallelism, like the ones described
at (Świechowski et al. 2022).

SHOT exhibits a weaker performance in both of our
performance experiments. Moreover, the 2-box experiment
(Section 6.2) provided empirical evidence of SHOT’s devi-
ation from Minimax values, which challenges its credibility
as a rational model for adversarial agents.

Our implementation of SHOT deviates from the original,
as outlined in Section 5.1. We define the warmup phase,
enabling SHOT to work in a time constrained GGP envi-
ronment. In addition, we adopted a simplified approach to
budget distribution in an effort to reduce the complexity in-
volved in modeling the algorithm. This divergence could po-
tentially account for the subpar results, thus underscoring the
need for further investigation using the original algorithm to
validate these observations.

Looking ahead, we plan to extend our research on the
UCT√

SH method and apply it to additional domains. Cur-
rently, UCT√

SH is not equipped to handle stochastic games,
as our algorithm constructs a tree without considering non-
deterministic nodes. It would be valuable to refine our agent
to tackle such games, as well as puzzles, which represent
another domain where MCTS algorithms can be better pre-
pared for (Rosin 2011). Furthermore, we aim to assess the
scalability of UCT√

SH beyond simply increasing time and
number of playouts. We are interested in exploring whether
the application of heuristics and optimization of playouts
could further enhance performance. We expect to uncover
more ways to improve and broaden the applicability of the
UCT√

SH method, thereby contributing to the ongoing evo-
lution of efficient general game playing strategies.

References
Abramson, B. 1990. Expected-outcome: a general model
of static evaluation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(2): 182–193.

Allis, L. V.; et al. 1994. Searching for solutions in games
and artificial intelligence. Ponsen & Looijen Wageningen.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing, 47(2): 235–256.

Brice, W. C. 1954. A History of Board-Games other than
Chess. By H. J. R. Murray. Oxford: Clarendon Press, 1952.
Pp. viii 287, 86 text figs. 42s. The Journal of Hellenic Stud-
ies, 74: 219–219.

Browne, C. 2020. AI for ancient games: report on the Digital
Ludeme Project. KI-Künstliche Intelligenz, 34(1): 89–93.

Browne, C. B. 2008. Automatic generation and evaluation of
recombination games. Ph.D. thesis, Queensland University
of Technology.

Bubeck, S.; Munos, R.; and Stoltz, G. 2011. Pure explo-
ration in finitely-armed and continuous-armed bandits. The-
oretical Computer Science, 412(19): 1832–1852.

Cazenave, T. 2014. Sequential halving applied to trees.
IEEE Transactions on Computational Intelligence and AI in
Games, 7(1): 102–105.
Cohen-Solal, Q. 2020. Learning to play two-player perfect-
information games without knowledge. arXiv preprint
arXiv:2008.01188.
Fudenberg, D.; and Tirole, J. 1991. Game Theory. Cam-
bridge, MA: MIT Press. Translated into Chinesse by Renin
University Press, Bejing: China.
Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the AAAI competition. AI magazine,
26(2): 62–62.
Karnin, Z.; Koren, T.; and Somekh, O. 2013. Almost op-
timal exploration in multi-armed bandits. In International
Conference on Machine Learning, 1238–1246. PMLR.
Knuth, D. E.; and Moore, R. W. 1975. An analysis of alpha-
beta pruning. Artificial intelligence, 6(4): 293–326.
Kocsis, L.; Szepesvári, C.; and Willemson, J. 2006. Im-
proved monte-carlo search. Univ. Tartu, Estonia, Tech. Rep,
1: 1–22.
Lai, T. L.; Robbins, H.; et al. 1985. Asymptotically efficient
adaptive allocation rules. Advances in applied mathematics,
6(1): 4–22.
Parlett, D. 1999. The Oxford history of board games.
Parlett, D. 2016. What’sa ludeme? Game & Puzzle Design,
2(2): 81–84.
Pepels, T. 2014. Novel Selection Methods for Monte-Carlo
Tree Search. Master’s thesis, Department of Knowledge En-
gineering, Maastricht University, Maastricht, The Nether-
lands.
Pepels, T.; Cazenave, T.; Winands, M. H.; and Lanctot, M.
2014. Minimizing simple and cumulative regret in monte-
carlo tree search. In Workshop on Computer Games, 1–15.
Springer.
Perez Liebana, D.; Dieskau, J.; Hunermund, M.;
Mostaghim, S.; and Lucas, S. 2015. Open loop search
for general video game playing. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary
Computation, 337–344.
Piette, É.; Soemers, D. J. N. J.; Stephenson, M.; Sironi,
C. F.; Winands, M. H. M.; and Browne, C. 2020. Ludii –
The Ludemic General Game System. In Giacomo, G. D.;
Catala, A.; Dilkina, B.; Milano, M.; Barro, S.; Bugarı́n, A.;
and Lang, J., eds., Proceedings of the 24th European Con-
ference on Artificial Intelligence (ECAI 2020), volume 325
of Frontiers in Artificial Intelligence and Applications, 411–
418. IOS Press.
Rosin, C. D. 2011. Nested rollout policy adaptation for
Monte Carlo tree search. In Ijcai, volume 2011, 649–654.
Russell, S.; and Norvig, P. 2020. Adversarial Search. In
Artificial Intelligence: A Modern Approach. Upper Saddle
River, NJ: Pearson, 4rd edition.
Scheiermann, J.; and Konen, W. 2022. AlphaZero-Inspired
General Board Game Learning and Playing. arXiv preprint
arXiv:2204.13307.

Soemers, D. J.; Mella, V.; Browne, C.; and Teytaud, O.
2021a. Deep learning for general game playing with ludii
and polygames. ICGA Journal, 43(3): 146–161.
Soemers, D. J.; Mella, V.; Piette, E.; Stephenson, M.;
Browne, C.; and Teytaud, O. 2021b. Transfer of fully con-
volutional policy-value networks between games and game
variants. arXiv preprint arXiv:2102.12375.
Soemers, D. J.; Piette, E.; Stephenson, M.; and Browne, C.
2019. Learning policies from self-play with policy gradients
and MCTS value estimates. In 2019 IEEE Conference on
Games (CoG), 1–8. IEEE.
Stephenson, M.; Soemers, D. J.; Piette, É.; and Browne, C.
2021. General game heuristic prediction based on ludeme
descriptions. In 2021 IEEE Conference on Games (CoG),
1–4. IEEE.
Świechowski, M.; Godlewski, K.; Sawicki, B.; and
Mańdziuk, J. 2022. Monte Carlo tree search: A review of
recent modifications and applications. Artificial Intelligence
Review, 1–66.
Świechowski, M.; Park, H.; Mańdziuk, J.; and Kim, K.-J.
2015. Recent advances in general game playing. The Scien-
tific World Journal, 2015.
Tolpin, D.; and Shimony, S. 2012. MCTS based on simple
regret. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 26, 570–576.
Van Der Werf, E. 2004. AI techniques for the game of Go.
Citeseer.

