
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

RENATO BARRETO HOFFMANN FILHO

IMPACTS OF PARALLEL PROGRAMMING ON
LIMITED-RESOURCE HARDWARE

Porto Alegre

2023

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

IMPACTS OF PARALLEL
PROGRAMMING ON
LIMITED-RESOURCE

HARDWARE

RENATO BARRETO HOFFMANN FILHO

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Dalvan Jair Griebler
Co-Advisor: Prof. Dr. Luiz Gustavo Leão Fernandes

Porto Alegre
2023

RENATO BARRETO HOFFMANN FILHO

IMPACTS OF PARALLEL PROGRAMMING ON
LIMITED-RESOURCE HARDWARE

This Master Thesis has been submitted in

partial fulfillment of the requirements for

the degree of Master in Computer Science,

of the Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul

Sanctioned on March 30th, 2023.

COMMITTEE MEMBERS:

Prof. Dr. Patrizio Dazzi (University of Pisa)

Prof. Dr. César Augusto Mission Marcon (PPGCC/PUCRS)

Prof. Dr. Luiz Gustavo Leão Fernandes (PPGCC/PUCRS- Co-Advisor)

Prof. Dr. Dalvan Jair Griebler (PPGCC/PUCRS - Advisor)

ACKNOWLEDGMENTS

I want to thank many people that contributed to this work. First, I would like to

thank my advisors for their valuable guidance. Second, my peers and colleagues in our re-

search group for the valuable feedback and discussions and for helping me on many occa-

sions. Third, PUCRS University, its professors, and all its collaborators during my formative

years. This research is partially funded by MCTIC/CNPq call 25/2020 (No 130484/2021-0)

and SAP enterprise.

IMPACTS OF PARALLEL PROGRAMMING ON LIMITED-RESOURCE

HARDWARE

ABSTRACT

Limited resource hardware devices are more affordable and energy efficient than

high-end hardware. Despite their reduced size, these devices are increasingly complex,

with many now featuring multiple processing cores, GPGPU accelerators, and larger RAM

capacity. To fully utilize their computational capacity, software developers must exploit

parallelism, but this adds an extra layer of complexity because they must balance com-

putational constraints and performance demands. Therefore, choosing the appropriate

parallelism strategy and parallel programming interface is crucial to achieving the best

hardware performance. To tackle this problem, we defined research objectives to guide

our work in finding the most appropriate parallelism strategies and programming inter-

faces for limited-resource hardware regarding performance and energy consumption. We

experimented with 12 applications using three devices and seven parallel programming

interfaces. This thesis introduces new metrics, additional applications, various parallelism

interfaces, and extra hardware devices. We developed a structured set of research ob-

jectives to evaluate parallelism, providing a methodology to organize many parallelism

considerations. In summary, this study concludes that parallel computing is beneficial

in limited-resource hardware, and higher-level of abstraction parallel programming inter-

faces are viable options. Our results on target architecture and specific parallelism models

indicate that parallelism benefits limited-resource hardware, reducing total energy con-

sumption by up to 63.53% and increasing throughput by up to 112.54%. Additionally,

power peak differences are up to 24.98% between programming techniques. Another indi-

cation is that there are estimated software complexity differences between programming

interfaces of up to 858.33%. Overall, this thesis contributes to understanding the impacts

of parallel programming on limited-resource hardware and provides insights into optimiz-

ing parallel programs for such hardware. Our findings can be helpful for researchers, de-

velopers, and engineers working on parallel programming for limited-resource hardware.

Keywords: limited resource hardware, parallelism, energy consumption, embedded sys-

tems, benchmarking.

IMPACTOS DA PROGRAMAÇÃO PARALELA EM DISPOSITIVOS COM

RECURSOS LIMITADOS

RESUMO

Dispositivos de hardware com recursos limitados são mais acessíveis e energe-

ticamente eficientes do que hardware de ponta. Apesar de seu tamanho reduzido, esses

dispositivos estão cada vez mais complexos, muitos agora apresentando vários núcleos

de processamento, aceleradores GPGPU e maior capacidade de RAM. Para aproveitar ao

máximo sua capacidade computacional, os desenvolvedores de software devem explorar

o paralelismo, mas isso adiciona uma camada extra de complexidade, pois eles devem li-

dar com as restrições computacionais e as demandas de desempenho. Portanto, escolher

a estratégia de paralelismo apropriada e a interface de programação paralela é crucial

para obter o melhor desempenho do hardware. Para enfrentar esse problema, foram defi-

nidos objetivos de pesquisa para orientar a pesquisa sobre as estratégias de paralelismo

e interfaces de programação mais adequadas para hardware com recursos limitados em

relação ao desempenho e consumo de energia. Foram realizados experimentos com 12

aplicações usando três dispositivos e sete interfaces de programação paralela. Esta tese

apresentpu novas métricas, diferentes aplicações, várias interfaces de paralelismo e dife-

rentes dispositivos de hardware. Foi desenvolvido um conjunto estruturado de objetivos

de pesquisa para avaliar o paralelismo, fornecendo uma metodologia para organizar vá-

rias considerações de paralelismo. Em resumo, este estudo concluiu que a computação

paralela é benéfica em hardware com recursos limitados. Além disso, interfaces de pro-

gramação paralela de nível mais alto de abstração são opções viáveis. Os resultados em

dispositivos e interfaces específicas indicaram que o paralelismo beneficia o hardware

com recursos limitados, reduzindo o consumo total de energia em até 63,53% e a vazão

em até 112,54%. Além disso, as diferenças de pico de energia são de até 24,98% en-

tre as técnicas de programação. Outra indicação é que existem diferenças estimadas de

complexidade de software entre as interfaces de programação de até 858,33%. Em geral,

esta tese contribuiu para a compreensão dos impactos da programação paralela em hard-

ware com recursos limitados e fornece insights para otimizar programas paralelos para

esse hardware. Nossas descobertas podem ser úteis para pesquisadores, desenvolvedo-

res e engenheiros que trabalham com programação paralela para hardware com recursos

limitados.

Palavras-Chave: recursos de hardware limitados, paralelismo, consumo de energia, sis-

temas embarcados, testes.

LIST OF FIGURES

Figure 2.1 – MapReduce algorithm. Vector addition example. 20

Figure 2.2 – High-Level SPar Usability. 29

Figure 2.3 – SPar language Face Recognition example. 29

Figure 2.4 – SPar language attributes example. 30

Figure 2.5 – SPar compilation process flow. 32

Figure 2.6 – Parallel Face Recognizer visualization of the necessary code with

FastFlow. 34

Figure 2.7 – Parallel Face Recognizer visualization of the necessary code with TBB. 34

Figure 2.8 – Parallel Face Recognizer visualization of the necessary code with

OpenMP. 35

Figure 2.9 – Parallel Face Recognizer visualization of the necessary code with

Threads. 36

Figure 3.1 – Search string on Scopus scientific database. 37

Figure 4.1 – Stream processing applications execution flow. 45

Figure 4.2 – Data processing applications execution flow. 47

Figure 4.3 – MapReduce. 50

Figure 5.1 – Experimental methodology using the research objectives. 54

Figure 5.2 – SPBench applications SLOC. 57

Figure 5.3 – NPB applications SLOC. 58

Figure 5.4 – EP application on multiple devices. 62

Figure 5.5 – FT on multiple devices. 63

Figure 5.6 – MG on multiple devices. 64

Figure 5.7 – CG on multiple devices. 65

Figure 5.8 – LU on multiple devices. 66

Figure 5.9 – BT on multiple devices. 67

Figure 5.10 – SP on multiple devices. 68

Figure 5.11 – Odroid proof for a correct thread-to-core mapping. 69

Figure 5.12 – Raspberry device. 70

Figure 5.13 – correlation between execution time and energy consumption on data

processing applications. 72

Figure 5.14 – Example of the problem in SPar code generation. 77

Figure 5.15 – Odroid device graphs. 78

Figure 5.16 – Ferret application: correlation between performance and energy

consumption. 82

LIST OF TABLES

Table 3.1 – Criteria for selecting documents in the Literature Review process. . . . 37

Table 3.2 – Comparing related work with this Master’s thesis research. 41

Table 4.1 – Low-resource hardware configurations and kernel version. 43

Table 5.1 – Classification of Research Objectives. 53

Table 5.2 – Parallel Programming Interfaces main characteristics comparison. . . 55

Table 5.3 – Normalized Halstead for SPBench applications. 59

Table 5.4 – Normalized Halstead for NPB applications. Normalized values. 59

Table 5.5 – Execution time for NPB applications. For parallel versions, green and

red high- light the best and worst observed results, respectively. 61

Table 5.6 – Energy consumption for NPB. The maximum observed standard de-

viation is 0.034. For parallel versions, green and red highlight the best and

worst observed results respectively. 73

Table 5.7 – Power dissipation for NPB. The maximum observed standard devia-

tion is 0.61. For parallel versions, green highlights the best and red the

worst results. 75

Table 5.8 – Latency measurements for all SPBench applications. The standard

deviation can vary between 0.0003 and 0.45. For parallel versions, green

and red highlight the best and worst observed results respectively. 77

Table 5.9 – throughput of all SPBench applications. The maximum observed

standard deviation is 0.92. For parallel versions, green and red highlight

the best and worst observed results respectively. 79

Table 5.10 – Energy consumption of all SPBench applications. The maximum ob-

served standard deviation is 0.00089. For parallel versions, green and red

highlight the best and worst observed results respectively. 82

Table 5.11 – Power dissipation of all SPBench applications. The maximum ob-

served standard deviation is 0.31. For parallel versions, green and red

highlight the best and worst observed results respectively. 83

Table 5.12 – Memory consumption of all SPBench applications. For parallel ver-

sions, green and red highlight the best and worst observed results respec-

tively. 84

Table 5.13 – Matrix Multiplication Metrics. The greatest standard deviations are

3.58 for the CPU and 2.21 for GPU. 85

Table 5.14 – Metrics for NPB applications with CUDA GPGPU. 87

LIST OF ACRONYMS

API – Application Programming Interface

AST – Abstract Syntax Tree

BT – Block Tri-diagonal solver

BZ2 – Bzip2

CG – Conjugate Gradient

CPU – Central Processing Unit

CUDA – Compute Unified Device Architecture

CINCLE – Compiler Infrastructure for new C/C++ Languages Extensions

DSP – Digital Signal Processing

DSL – Domain-Specific Language

EP – Embarrassingly Parallel

FE – Ferret

FR – Face Recognizer

FPGA – Field-Programmable Gate Array

FT – Fast Fourier Transform

GCC – Gnu Compiler Collection

GMAP – Parallel Applications Modeling Group

GPGPU – General Purpose Graphics Processing Unit

ILP – Instruction Level Parallelism

IS – Integer Sort

ISO – International Organization for Standardization

LD – Lane Detection

LU – Lower-Upper Gauss-Seidel solver

MG – Multi Grid

MPI – Message Passing Interface

OS – Operational System

PPI – Parallel Programming Interface

RO – Research Objectives

SIMD – Single Instruction Multiple Data

SLOC – Source Lines of Code

SLO – Service Level Objective

SP – Scalar Penta-diagonal solver

SPAR – Stream Parallelism

STL – Standard Template Library

TBB – Threading Building Blocks

TLP – Thread Level Parallelism

UAV – Unmanned Aerial Vehicle

CONTENTS

1 INTRODUCTION . 16

2 BACKGROUND . 19

2.1 PARALLELISM . 19

2.1.1 PARALLEL PROGRAMMING INTERFACES . 20

2.2 STREAM PROCESSING . 22

2.3 EMBEDDED SYSTEMS . 23

2.3.1 OPTIMIZATIONS AND TECHNIQUES . 24

2.4 SPAR . 28

2.4.1 SPAR LANGUAGE . 28

2.4.2 SPAR COMPILER . 31

2.4.3 SPAR RESEARCH . 32

2.5 EXAMPLES OF PARALLEL PROGRAMMING . 33

2.5.1 FASTFLOW . 33

2.5.2 THREADING BUILDING BLOCKS . 33

2.5.3 OPENMP . 35

2.5.4 THREADS . 35

3 RELATED WORK . 37

3.1 RELATED RESEARCH . 38

3.2 COMPARISON WITH THIS WORK . 40

4 METHODOLOGY . 42

4.1 RESEARCH OBJECTIVES . 42

4.2 HARDWARE AND SOFTWARE ENVIRONMENT . 43

4.3 APPLICATIONS . 43

4.3.1 STREAM PROCESSING . 44

4.3.2 DATA PARALLELISM . 45

4.4 METRICS . 48

4.4.1 PERFORMANCE . 48

4.4.2 CONSUMPTION . 48

4.4.3 PROGRAMMING PRODUCTIVITY . 49

4.5 PARALLEL PROGRAMMING INTERFACES . 51

4.6 EXECUTION AND GRAPHS . 51

4.6.1 INPUT DATA . 52

5 RESEARCH OBJECTIVES’ ANALYSIS . 53

5.1 RO1: EVALUATING PROGRAMMING FEATURES FOR THE PARALLEL PROGRAM-

MING INTERFACES . 54

5.2 RO2: EVALUATING PROGRAMMABILITY METRICS FOR THE PARALLEL PROGRAM-

MING INTERFACES . 56

5.3 RO3: EVALUATING PERFORMANCE METRICS FOR DATA PROCESSING APPLICA-

TIONS . 59

5.3.1 RO3.1: ANALYSIS OF MAPREDUCE WITH NO DATA DEPENDENCIES 60

5.3.2 RO3.2: EVALUATING MAP WITH MEMORY CONTENTION 61

5.3.3 RO3.3: EVALUATING DATA LOCALITY ON MAPS . 62

5.3.4 RO3.4: EVALUATING MAP WITH DATA DEPENDENCY . 64

5.3.5 RO3.5: ANALYZING MEMORY BANDWIDTH AS A PARALLELISM BOTTLENECK . . . 65

5.3.6 RO3.6: EVALUATING BIG.LITTLE ARCHITECTURE PERFORMANCE FEATURES . . . 67

5.3.7 RO3.7: ANALYSIS OF THE IMPACT OF HARDWARE TEMPERATURE ON PERFOR-

MANCE . 68

5.4 RO4: EVALUATING CONSUMPTION METRICS FOR DATA PROCESSING APPLICA-

TIONS . 71

5.5 RO5: EVALUATING PERFORMANCE METRICS OF STREAM PROCESSING APPLICA-

TIONS . 74

5.5.1 RO5.1: ASSESSING THE EFFECT OF BLOCKING VS. NON-BLOCKING COMPUTA-

TION ON PERFORMANCE METRICS . 79

5.5.2 RO5.2: EVALUATING COMPUTATIONAL RESOURCE ALLOCATION STRATEGIES IN

PARALLELISM TECHNIQUES . 80

5.6 RO6: EVALUATING CONSUMPTION METRICS FOR STREAM PROCESSING APPLI-

CATIONS . 81

5.6.1 RO6.1: ANALYSIS OF MEMORY CONSUMPTION FOR PARALLEL STREAM APPLICA-

TIONS . 83

5.7 RO7: EVALUATING MATRIX MULTIPLICATION IN LIMITED-RESOURCE HARDWARE 84

5.8 RO8: EVALUATING GPGPU PARALLELISM FOR DATA PROCESSING APPLICATIONS 86

6 SUMMARY OF FINDINGS . 88

7 CONCLUSION . 92

REFERENCES . 95

16

1. INTRODUCTION

Limited-resource hardware refers to systems or devices with constraints on pro-

cessing capabilities, energy consumption, available memory, and storage. Firstly, they

are more affordable and accessible than high-end hardware systems. Secondly, limited-

resource hardware is more energy efficient [84, 35], leading to financial and environmen-

tal benefits in energy bill savings and lower carbon footprints. These devices are prevalent

in embedded systems that perform specific functions such as mobile computing, industrial

automation, and robotics [59]. In addition, there has also been a growing demand for more

powerful and flexible embedded systems that can perform a broader range of functions,

especially in the edge computing research area [49].

Limited-resource hardware is also an option for low-end general-purpose compu-

tational systems [35]. These devices have become increasingly sophisticated, with many

now featuring multicore processors and accelerators such as GPGPUs. On the other hand,

this evolution puts pressure on software developers; to use modern devices fully, develop-

ers must be proficient in parallel programming, possess good hardware knowledge, han-

dle heterogeneous environments, write efficient and optimized code, and handle software

portability [76].

Programming for limited-resource hardware typically involves lower-level and

compiled languages such as C/C++ [13, 59]. Furthermore, selecting an appropriate PPI

(parallel programming interface) adds an extra decision layer. Fortunately, there already

exist several C++ solutions that offer suitable abstractions for this purpose [81, 60]. How-

ever, these interfaces have different design goals and implementation strategies. Some

interfaces perform better than others under specific circumstances [54, 1]. Therefore,

developers must understand the main implications and underlying effects on the perfor-

mance of the available PPIs to make an informed decision.

Parallel computing researchers have proposed numerous solutions and algorithms

to address various aspects of parallelism, including data, task, pipeline, and hybrid paral-

lelism, each with unique characteristics and requirements [60, 4]. Meeting the demands of

these applications requires decisions on computing resource allocation, synchronization,

communication, and workload distribution strategies. For instance, it is possible to adopt

a dynamic or static approach to parallelism, which dramatically changes the application’s

computational flow and ultimately impacts performance outcomes [18].

Programmability is another crucial characteristic of PPIs [7]. Good programmabil-

ity is especially relevant at the project decision layer, where consideration of available re-

sources, programmer qualifications, and time-to-deploy is essential. Different abstraction

levels, expressiveness, and programming models can impact the productivity of a given

PPI. For instance, some interfaces may adopt code annotations that leverage domain-

17

specific knowledge and do not offer much space for customization. In contrast, other PPIs

might adopt an explicit approach that allows full customization but may be more cumber-

some for simple recurrent tasks. Therefore, another essential decision layer is selecting

a PPI that provides a comfortable and adequate abstraction layer between the developer

and the low-level concepts of parallelism on limited-resource hardware [27].

Assessing the effectiveness of different parallelism algorithms and PPIs depends

on the specific context and goal of the applications. The primary goal of parallelism is to in-

crease computational performance. In this context, data processing applications execute

as quickly as possible; real-time applications require low latency; stream processing ap-

plications focus on optimizing throughput [8]. In addition to performance improvements,

there is a growing awareness of the need to reduce energy consumption and associated

costs. Therefore, assessing the impact of parallelism on average and peak power loads

is becoming increasingly important, especially for energy grid maintainers [34]. Under-

standing the effects of parallelism on these aspects is critical for optimizing performance

while minimizing energy consumption and costs.

The main goal of this Master’s thesis is to assess parallelism techniques in the

limited-resource hardware environment. This assessment may guide developers when

choosing parallelism strategies or interfaces for their applications. Another benefit is to

help create new parallel programming interfaces for limited-resource hardware. We start

out an assessment with the following question: what parallelism techniques and interfaces

work well for limited-resource hardware? To that end, we create eight leading research

objectives to assess parallel programming in limited-resource hardware. We experiment

with 12 parallel applications using six parallel programming interfaces on three limited-

resource devices. This methodology allows us to assess multiple parallelism strategies in

various circumstances. From there, we asses performance in execution time, energy con-

sumption, and programmability. Therefore, the three leading scientific contributions of

this Master’s thesis are the following:

• Methodology to evaluate the impact of parallelism on limited-resource devices using

eight research objectives. This methodology structures parallelism features into pro-

grammability, performance in execution time, and energy consumption evaluations.

Each research objective presents context, forces, discussion, and threats to the va-

lidity of its associated research objective. This methodology can be used by other

researchers that aim to structure many tests for parallelism on limited-resource de-

vices.

• A detailed parallelism assessment on multiple limited-resource devices. The dis-

cussion is part of our research methodology that goes in-depth about parallelism

features and explains the results and behaviors we observe for programmability,

performance, and energy consumption.

18

• Summary of findings in guidelines for efficient parallel programming on limited-

resource hardware. We summarize the content of the in-depth discussion into some

guidelines or conclusions that can guide the decision-making of parallelism strate-

gies on limited-resource hardware.

The remainder of this document is organized as follows. Chapter 2 provides back-

ground information about parallelism, embedded systems, and parallelism interfaces.

Chapter 3 discusses related work and the differences between them and this Master’s

thesis research. Chapter 4 explains the research methodology and experimental setup.

Subsequently, Chapter 5 presents an in-depth analysis of this research objectives. The

summary of findings and guidelines are presented in Chapter 6. Finally, Chapter 7 dis-

cusses final remarks and future works.

19

2. BACKGROUND

In this Chapter, we present background concepts. We describe details about

parallelism and available options in Section 2.1 and explain stream processing in Section

2.2. Then, Section 2.3 explains some embedded systems characteristics and their relation

with limited-resource hardware. Finally, we describe SPar in Section 2.4, a high-level DSL

we use in our experiments.

2.1 Parallelism

Advances in hardware technology have led to highly transistor-dense chips [83].

The transistor size and spacing could consistently decrease, resulting in increased logical

gates in the same silicon area [20, 83]. Clock frequency also increased with each new

hardware iteration. However, due to physical constraints such as heat dissipation, current

leakage, and high energy consumption, frequency scaling slowed considerably. Manu-

facturers had to rethink their products’ evolution strategy to cope with these challenges.

Hardware replication was employed to obtain additional computational power, leading to

the rise of multicore processors [4, 36]. Consequently, parallel programming has become

essential [76].

Parallelism is a computational method to execute multiple operations simultane-

ously, leveraging a more significant portion of hardware resources to increase the perfor-

mance of the computation. Data parallelism, task parallelism, and hybrid are standard

methods to classify parallelism. Data parallelism distributes previously known data to

parallel computing elements that perform the same operation. Task parallelism applies

different operations to different pieces of data simultaneously with a series of data depen-

dencies. Hybrid parallelism is a combination of both, commonly when data parallelism is

one of the task parallelism operations.

The most popular algorithm for data parallelism is MapReduce [63]. We demon-

strate the execution flow of a vector addition example parallelized using the MapReduce

algorithm in Figure 2.1. In this case, the input vector is divided among the parallel threads

(1 up to 4); this is the Map phase. Supposing the input vector is larger, the remaining

threads can move on to computing other elements. Eventually, the algorithm starts the it-

erative Reduce phase. After each iteration, the number of computations is reduced in half

until only the final output remains. This example is a simple algorithm representation; real

PPIs significantly optimize this process.

Despite its importance, parallel programming is a complex endeavor. Its chal-

lenges include managing parallel processing units, distributing and balancing data access,

20

1 2 3 4 5 6 7 8

1 + 2 3 + 4 5 + 6 7 + 8

11 + 153 + 7

10 + 26

36

Thread 1

Thread 2

Thread 3

Thread 4Reduce

Map

Time

Output

Input

Figure 2.1 – MapReduce algorithm. Vector addition example.

synchronization, control mechanisms, and debugging. Parallel programming complexity

is a known challenge in the literature, and, fortunately, many PPIs exist to help ease this

burden; however, choosing between may still pose a challenge. Next, we explain the

characteristics of some of the existing PPIs in Section 2.1.1.

2.1.1 Parallel Programming Interfaces

PPIs (parallel programming interfaces) help enable parallel processing in their

target languages, architectures, and environment. Furthermore, even when they target

the same architecture, each PPI has its complexity level, expressiveness, limitations, and

performance results. For instance, OpenMP [67] has lower complexity and flexibility than

Pthreads [43]. Different runtime parallel systems might perform better in applications

with specific computational characteristics since they have different design goals and im-

plementation strategies. Therefore, selecting the appropriate PPI is an important decision

that may be specific to each situation.

One strategy widely adopted by PPIs is the structured or parallel patterns ap-

proach. They use patterns to codify correct programming practices for specific recur-

ring problems [60]. Examples that adopt this strategy are Intel TBB (Threading Building

Blocks) [75], FastFlow [4], Microsoft PPL [62], and some algorithms from the standard

C++ STL (Standard Template Library). To the programmer, structured patterns PPIs pro-

vide building blocks to instantiate ready-to-use parallel patterns (e.g., Map, Reduce, and

Pipeline). These patterns may be nested or mixed to form other more complex parallel

patterns. For instance, a user may deploy a pipeline with a Map as one of its internal

stages. Most patterns are C++ templates. The user must then refactor the code into their

chosen target PPI pattern. Selecting the pattern that best fits the application’s computa-

21

tional characteristics is essential. PPIs may also adopt a non-structured approach. Unlike

the structured approach that restricts programming to specific and well-defined patterns,

with the unstructured approach, the programmer can create code freely if it respects the

PPI’s syntax and semantics. OpenMP and Pthreads are within this category, but many

other examples exist. The flexibility, expressiveness, and complexity may drastically vary

between different unstructured PPIs.

DSLs use expert knowledge to provide higher-level abstractions by isolating a

specific domain. The language each DSL provides can describe applications expressively

and concisely. They can capture specific domain characteristics and use them to develop

efficient parallelism while hiding the lower-level architectural and system-dependent de-

tails from the developer. The main idea is that the DSL can significantly simplify the

process of developing parallel applications by knowing the target hardware and domain

characteristics. For the stream processing domain, we can cite Streamit [88] and SPar

(detailed later in Section 2.4). From another domain, HIPAcc [61] is a prominent example

of an image processing DSL.

CUDA (Compute Unified Device Architecture) [65] is a PPI for parallel comput-

ing on NVIDIA GPUs. It allows developers to perform general-purpose computing as well

as graphics processing. Programming in CUDA involves creating kernels, which are GPU

functions, and host code, which runs on the CPU. The host code transfers data to the kernel

and then launches it. Kernels execute on the GPU by potentially hundreds or thousands of

threads, which benefits massive parallelism.

The OpenCL (Open Computing Language) [64] PPI is a standard cross-platform

heterogeneous parallel programming model. With OpenCL, developers can write a single

program that can run on embedded systems and supercomputers. It uses kernels to de-

scribe computations that may be compiled and offloaded to different accelerators such

as CPU, GPGPU, FPGA, or DSP units. Even though this approach delivers high portabil-

ity, it also exposes low-level hardware details. Using a generalized and verbose API, the

programmer must explicitly define the platform and how work is scheduled onto different

devices. Therefore, its language is heavily focused on generalization because its primary

design goal is to abstract the underlying hardware to create portable code that can run

both on mobile devices and high-end servers. These characteristics make OpenCL an

optimal target for higher-level abstractions.

Message-passing programming communicates multiple computing nodes via a

network. OpenMPI is an open-source message-passing interface library for distributed

computing. It is a standard tool for high-performance distributed programming in C++.

The developers create and manage processes and send and receive messages between

processes. It is similar to Threads programming because the developer must handle most

parallelism algorithmic strategies explicitly. There are other higher-level options for dis-

tributed programming, such as Flink [21], a powerful PPI for unified batch and stream

22

processing. Flink may be suitable for distributed dataflow environments to handle data-

parallel, event-driven, and pipeline execution flows. Flink may run on a single node and

distributed clusters with thousands of processing cores while managed as a local cluster

or by resource managers such as Yarn or Kubernetes. Another solution is Storm [86]: a

distributed real-time computation system for unbounded streams.

2.2 Stream Processing

The necessity for the stream processing paradigm arises from the constantly

growing demand for information-driven or automated digital systems. To meet these

demands, industry and academia have made efforts towards developing and deploying

stream processing applications in healthcare, transportation, logistics, stock-market, tele-

phony, and many others [8]. Despite the diversity of technologies, these applications

share some inherent essential characteristics. They have a constant and potentially infi-

nite data stream flowing through a sequence of independent processing filters. In com-

puter science, applications that consume input to generate an output, like an assembly

line, are called pipelines. This paradigm is studied under the stream processing frame-

work.

Stream processing is a paradigm that encompasses the gathering, processing, fil-

tering, and analysis of high-volume, heterogeneous, continuous data streams [8]. Its goal

is to reveal valuable information that the data might contain and report back insights,

statistics, or suggested courses of action, often with real-time constraints. Failing to meet

these constraints may degrade or even destroy the quality of the stream processing ap-

plication results. Therefore, parallel programming techniques are essential to delivering

the highest quality results [88].

Typical stream processing applications can exhibit data, task, and pipeline par-

allelism, a recurrent subclass of task parallelism. In this case, data parallelism is in-

side stream processing filters [55]. Data parallelism in stream processing is completely

known input data that is divided and processed by parallel agents (i.e., parallel for from

OpenMP or the MapReduce pattern). Task parallelism may be lightweight and short-lived

tasks representing work that may be executed asynchronously according to an executor

policy. Pipeline parallelism is an assembly line or sequence of independent filters where

each filter consumes the data produced by the previous filter as input.

Although there is an abundance of parallelism in stream processing applications,

the synchronization and communication costs may eclipse the gains from parallel exe-

cution. Choosing the appropriate strategy for each scenario is essential to achieve the

promised benefits from parallelism [25]. Regarding stream processing strategies, the

main variants are reactive, DataFlow, and stream parallelism. Some scientists must better

23

distinguish between them since they share motivations, goals, main characteristics, and

principles. However, the resulting system from them may have slightly different implica-

tions.

For reactive stream processing, each actor in the system propagates information

and reacts when they receive new data to process. An example may be a web service that

must handle click events. This system must handle multiple click sources and react to

them immediately. Therefore, parallelism strategies focus on lower latency, data scaling,

failure tolerance, and failure recovery.

The DataFlow, also called DataStream, is a flexible model that permits runtime

systems to extract parallelism information and act on it based on the available resources,

data dependencies, and runtime data. For that, the programmer uses a DAG (Directed

Acyclic Graph) programming model to describe the flow of data through the processing

filters explicitly. The graph represents data flow as edges and processing filters as ver-

texes. In this case, the model is highly data-dependent because the data flow within the

graph may vary depending on the input. Depending on the data flow, the scheduler could

make different scheduling decisions. Examples of PPIs that provide this model are Intel

oneAPI [41] with FlowGraph features, OpenStream [73], and ompSS [66] OpenMP exten-

sions, among others.

Stream parallelism describes an explicit execution flow. In this case, computa-

tions are a sequence of independent stages or kernels where the previous stage always

produces the data for the subsequent stage. The operations inside each stage must be

sequential. In contrast to the DataFlow model, the stream parallelism flow is determinis-

tic, significantly simplifying the task scheduler’s implementation. Additionally, the system

does not need to reason about data globally, which can improve data locality. Stream

parallel applications typically prioritize high throughput rates, where examples may be

network packet routing, image processing, and data encryption. SPar (later described in

Section 2.4) considers only the stream parallelism model.

2.3 Embedded Systems

Embedded systems combine hardware and software designed for a dedicated

function [13, 59]. They are in various applications, such as automotive, industrial con-

trol, medical devices, smart homes, and mobile devices. Embedded systems possess a

different set of requirements and purposes. Some features are computational intensity,

memory requirements, energy consumption needs, reliability, and operation lifetime. No

hardware configuration fulfills every requirement for all embedded systems. However,

one common denominator is the presence of limited-resource hardware.

24

One of the critical challenges in embedded systems is meeting the performance

constraints, often real-time, of the application while also maintaining low instant power

drainage. In some systems, computational resources are sacrificed as a trade-off for lower

energy consumption or manufacturing price. On the other hand, embedded systems have

also become increasingly sophisticated, with many now featuring multicore processors

and accelerators such as GPGPUs. Therefore, the embedded systems developer must be

proficient in parallel programming, possess good hardware knowledge, write optimized

code, and handle software portability, as embedded systems often operate in limited-

resource and heterogeneous computational environments.

There has been a growing demand for more powerful and flexible embedded sys-

tems that can perform a broader range of functions, specifically in the edge computing

research area. The definition of limited-resource hardware may significantly vary. For the

scope of this document, we define limited-resource hardware as any single-board com-

puting device equipped with at least one ARM Cortex family processor. The reasoning

is twofold: ARM RISC technology is known for its energy efficiency [68]; the Cortex fam-

ily provides variants for embedded systems focusing on real-time, energy consumption

efficiency, micro-controllers, and performance [69]. Next, we discuss possible limited-

resource hardware parallel programming optimizations and techniques in Section 2.3.1.

2.3.1 Optimizations and Techniques

This Section examines research that presents optimizations and techniques de-

signed primarily for limited-resource hardware. We consider applications such as cryptog-

raphy, robotics path-finding, computer vision algorithms, and neural networks. We do not

focus on the algorithmic strategies but on the parallelism optimizations or techniques.

Enforcing SLO agreements is a relevant and prevalent topic in the literature.

Nornir [82] is a self-adaptive framework to handle the dynamic selection of resources

to allocate to the parallel application to enforce performance and energy consumption

constraints in shared-memory multicore environments. It goes alongside FastFlow appli-

cations and their self-adaptation policies altered by experienced algorithm developers.

They monitored throughput and energy consumption with an overhead lower than 1%.

They observed that often, depending on the application’s stability (data spikes), there is

no universally optimal algorithm, and some trade-offs fall onto the programmers’ respon-

sibility.

Hsieh et al. [40] presented SURF (Self-aware Unified Runtime Framework) to unify

scheduling in the heterogeneous environment from mobile devices. They build on top of

OpenMP and OpenCL languages to enable dynamic task mapping to heterogeneous re-

sources based on their system evaluation, runtime measurements, and predictions. The

25

users create SURF tasks that permit dynamic runtime scheduling of computing units (e.g.,

offload specific tasks to GPGPU or DSP units). Their strategy permitted up to 24% perfor-

mance improvement over the static alternative on a Qualcomm Snapdragon board (em-

bedded CPU, GPU, and DSP unit). However, there is no abstraction layer since the user

must still provide the task source code or binary with the appropriate underlying interface

(OpenMP, OpenCL, or DSP code). It focuses mainly on scheduling multiple existing tasks to

utilize the available resources better. Their solution is better suited for multiple concurrent

tasks.

Aldegheri et al. [3] studied performance improvement methods for computer vi-

sion applications on low-energy embedded systems. They combined OpenMP, PThreads,

OpenVX, OpenCV, and CUDA programming models to exploit heterogeneous resources

available in the system. They propose a template wrapper framework focused on com-

puter vision that encapsulates communication and synchronization features that may be

used across their supported programming models. The default Linux scheduler and the

GPU scheduling by the OpenVX framework perform the CPU task scheduling. They tested

their solution with a robust localization and mapping application for RGB camera sensors.

Combining CPU and GPU computations achieves the best energy consumption and perfor-

mance.

Jubertie et al. [46] evaluated the impact of vectorization and multithreading in

Nvidia Jetson boards. They combine software and hardware optimizations to achieve the

best trade-off between energy efficiency and performance. They consider multithread-

ing and vectorization implementations on the software and hardware sides, dynamic fre-

quency, and voltage scaling. Considering two Jetson boards, they have measured total

energy consumption and speedup in two applications: grayscale conversion and matrix

multiplication. However, the GPGPU was not used. They discovered that automatic vec-

torization could be more reliable for a systematic and coherent speedup. Furthermore,

they have found that vectorizing yields superior performance and energy consumption

compared to multithreading. However, combining both yields the best results. It is nec-

essary to balance the memory controller and CPU frequency for hardware configurations

depending on whether the application is compute- or memory-bound.

Stokke et al. [85] studied the impact of balancing multimedia application work-

loads between CPU and GPU for energy efficiency. They discovered that saving 5% of

energy per frame is possible, while it sometimes degrades energy efficiency. The com-

bination, however, introduced a large amount of extra work with several possible points

of failure during the development process. Overall, their findings indicate it is better to

select the most suitable processor (CPU or GPU) for each application, which is often only

possible to know after development and deployment. In addition, they stated that the

best energy efficiency results show when manually stating SIMD instructions. Finally, the

26

optimal results also required finding the minimum operating frequency for the CPU, GPU,

and memory controller module that still delivers the specified quality of service.

Lorenzon et al. [53] explored the optimal trade-off between energy consumption

and performance considering different thread parallelism levels, number of processes,

communication models, and parallel programming interfaces. Energy consumption was

estimated based on instruction counters and manufacturer specifications instead of real

measurements. Another point is that the dynamic and static power configurations analysis

was theoretical, as these are characteristics inherent to hardware manufacturing technol-

ogy. The authors state that embedded processors are less suitable for ILP (Instruction

Level Parallelism) than general-purpose processors but can exploit nearly as much TLP

(Thread Level Parallelism). Both TLP and ILP may reduce execution time but increase en-

ergy consumption because of extra dynamic power associated with ILP due to extra inter-

nal processing units; TLP due to fewer accesses to lower levels of the memory hierarchy.

In short, the experiments revealed that an optimal combination does not exist that consis-

tently achieves the best performance with the lowest energy consumption. Selecting the

appropriate communication model is often the best alternative.

There are multiple applications targeting embedded system devices. In Artificial

Intelligence, Ghadani et al. [2] studied the YOLO CNN Neural Network object detection

inference operations and strategies to offload it to embedded GPGPU using an Nvidia TX2

board and Nvidia’s TensorRT CUDA SDK. The leading optimization was reducing the mem-

ory footprint to the detriment of accuracy. Similarly, Koo et al. [91] parallelized the same

application but using OpenCL instead of CUDA achieving a lower performance. Lee et al.

[50] provided an efficient SIMD implementation for Convolutional Neural Networks (CNN)

targeting limited-resources embedded CPUs. Their optimizations focused on maximizing

the use of vectorization instructions using ARM NEON features. Very closely related, an-

other CNN strategy for ARM processors is developed by Zhou et al. [92], where they also

used NEON instructions and memory reuse strategies.

Applied to agriculture, the task of retrieving Talreja et al. [87] studied the crop’s

biophysical parameters. They used an NVIDIA Jetson TK1 board embedded GPGPU to ac-

celerate their application code in R language. On the very particular topic of embedded

devices applied to space exploration platforms, Gretok et al. [26] studied OpenMP paral-

lelized applications and their performance in a series of radiation-hardened space-grade

processors with shared-memory and multicore characteristics. They used frequency scal-

ing methods, multithreading implementation, and scheduling policy selection to decrease

energy consumption and increase performance.

Other critical applications are related to data security. Bahrami et al. [10] pro-

vided a parallel implementation of a lightweight data privacy encryption model suiTable

for mobile cloud users. They used CUDA to offload it to GPGPU, where they described a 2D

array of processes to generate multiple pseudo-random numbers. In this case, they did

27

not care about energy consumption but solely about data security. Another data security

study is conducted by Widianto et al. [70] to provide a parallel intrusion detection sys-

tem based on GPGPU and OpenCL. They concluded that the CPU handles low throughput

periods more efficiently while higher throughput spikes should be processed in the GPGPU.

On robotics, Tianji et al. [56] studied an embedded GPGPU solution for autonomic

navigation robot field and positioning. They process a stream of data frames captured by

a camera positioned in front of the robot using CUDA and an NVIDIA Jetson TX2 board.

The main challenge was handling large amounts of data in a limited data storage envi-

ronment. Related to image processing in robotics, Xie et al. [90] studied a stereo vision

algorithm that generates a stream of images to be processed in parallel on low-cost ARM

processors. They reduced image sizes by half to the detriment of accuracy and concluded

that processing single images at a time instead of batching was beneficial in their case.

Essential for robotics or autonomous driving, scene flow applications estimate object ge-

ometry and motion based on a set of stereoscopic images. Long Chen et al. [17] studies

methodologies to parallelize this type of application on embedded off-the-shelf hardware

using OpenCL. They showed the viability of combining data and stream parallelism using

a pipeline strategy and achieved near real-time (25 fps) on mobile ARM Mali GPGPU.

In medicine and healthcare, Maheshwari et al. [58] studied an OpenCL-based ap-

proach for mapping read operations from genome analysis applications for embedded sys-

tem devices. This application must typically handle many fragmented reads and present

a unique challenge. Their leading optimization was based on dynamic programming fil-

tration techniques to prevent the memory footprint from increasing. The authors further

state that it is possible to save energy by moving genomics computing from high-end

servers and workstations to embedded systems without losing accuracy and comparable

performance.

Boitumelo et. al. [79] parallelized a stereo vision application for UAV (Unmanned

Aerial Vehicle). They focus on systems combining embedded ARM processors and GPG-

PUs, such as NVIDIA Jetson series boards. They combine CUDA-enabled GPGPU paral-

lelism, SIMD instructions using ARM NEON intrinsics, and thread-level CPU parallelism.

However, the accuracy results are inconclusive, where one of the benchmarks displays

state-of-the-art accuracy and another with 35% error rates. The processing speed and en-

ergy consumption were inferior to that of FPGA solutions, partially explained by the FPGA’s

more efficient data transfer model. However, the development and deployment cycle of

the GPGPU is shorter than that of an FPGA. Furthermore, the authors concluded that the

SIMD approach uses less energy but sacrifices performance compared to GPGPU. Consid-

ering the UAV scenario, where the parallel processing sums up to 1% of the total energy

consumption (including UAV rotor), the trade-off of performance per watt of GPGPUs is

better than CPU SIMD.

28

Considering the limited-resource hardware environment, we highlight the main

findings and the research that assisted us in inferring them below in no particular order:

• For GPGPU, reducing the memory footprint is of great importance. ([2, 56, 58])

• Certain applications or situations are more suitable to be executed on CPU and others

on GPU. ([79, 85, 70])

• Multithreading is important. ([3, 11, 26, 46, 58, 79, 90])

• SIMD (vectorization) is essential for optimal energy consumption and performance.

([46, 50, 79, 85])

• Lower frequencies are generally best for energy consumption, but the appropriate

threshold must be established based on application requirements. ([3, 26, 46, 85])

• It is necessary to balance between compute-bound and memory-bound application

requirements. ([40, 46])

• Selecting the appropriate communication model is important. ([53])

• Energy can be measured as total consumption in Wh or J, and average power in W.

Performance can be measured as execution time, speedup, latency (ms), or through-

put (e.g., frames per second). ([3, 10, 46, 85, 70])

2.4 SPar

SPar (an acronym for Stream Parallelism) is a C++ Domain-Specific Language [28].

Figure 2.2 demonstrates a high-level perspective on SPar’s usability. In it, the user inserts

high-level code annotations in the source code that are automatically interpreted and

transformed by SPar to generate the final parallel executable. This methodology aims to

provide high-level abstractions for parallel stream processing applications to increase pro-

ductivity and portability. To better understand SPar, we separate into two concerns: SPar

language and SPar compiler (see Figure 2.2). The former is described in Section 2.4.1 and

the latter in Section 2.4.2. We finalize by describing ongoing and related SPar research in

Section 2.4.3.

2.4.1 SPar Language

The user uses the SPar language to describe essential stream parallelism using

source code annotations. This annotation system is the SPar language. The SPar language

29

User Code
Annotations

Parallel
Executable

SPar Language SPar Compiler

Figure 2.2 – High-Level SPar Usability.

can express standard parallel stream processing application configurations using a basic

set of 5 attributes. Data parallelism with SPar (GPGPU or multicore) includes two extra

attributes. Default C++ supports the attribute mechanism since C++11 ISO release [42].

These attributes are used within an annotation, delimited by double brackets, and take a

list of attributes as input [[attr-list]].

The C++ standard grammar states that annotations can go almost anywhere in

the code. This way, SPar language allows describing parallelism while mostly retaining

the original sequential code structure. Annotations are an excellent advantage over other

lower-level approaches that require sequential code to be re-structured. Regarding the

attributes, it is essential to salient that its implementation, in this case, described by the

SPar language, will determine its syntax and semantics. Each C++ compiler may support

different attributes and implementations for these attributes. Therefore, the need for a

compiler to parse the SPar language arises, which will be described in Section 2.4.2. How-

ever, every compiler must be able to parse the attributes and place them in the syntax

tree, whether it can recognize them. Even if a compiler does not support SPar language,

it may still generate regular standard C++ sequential code. Hence, the portability argu-

ment.

Capture Detector Recognizer
2 31 4

Writer

Stage 1 Output Stage 2 Output Stage 3 Output

Figure 2.3 – SPar language Face Recognition example. Adapted from [30].

30

To exemplify the use of SPar language, suppose a SPar user wants to parallelize

a face recognition application such as the one presented in Figure 2.3. It receives a video

stream as input, detects faces in each frame, recognizes if that face belongs to a person

of interest, and then finally writes the output back to the user. The basic sequential code

for this example is demonstrated in the top left corner of Figure 2.4. According to SPar

good practices guide [27], the user must first examine the sequential code and determine

independent stream regions. In this case capture, detector, recognizer and writer

functions. Secondly, the user must discover which regions may be parallelized or repli-

cated. These are stages that do not share data and are stateless. Stateless stages do not

maintain data from previous executions or states. In our example, only the detector and

recognizer functions may be parallelized since capture and writer perform sequential IO

operations.

[[spar::ToStream]]
 while(image = capture()){
 [[spar::Stage, spar::Input(image),
 spar::Output(image), spar::Replicate(2)]]
 {
 detector(image);
 }
 [[spar::Stage, spar::Input(image),
 spar::Output(image), spar::Replicate(4)]
 {
 recognizer(image);
 }
 [[spar::Stage, spar::Input(image)]]
 {
 writer(image);
 }
}

while(image = capture()) {
 detector(image);
 recognizer(image);
 writer(image);
}

Attribute Description

ToStream Defines stream region

Stage Computation inside stream

Input Data consumed by

Output Data produced by

Replicate Parallelism degree
Parallel Code

Seq Code

Figure 2.4 – SPar language attributes applied in a Face Recognition code example.

To parallelize the Face Recognition application with SPar language, the user must

use a combination of the five attributes briefly described in the Table inside Figure 2.4.

To use these attributes, the user inserts as arguments an attribute list inside C++ anno-

tations ([[attr-list]]). This is demonstrated in the right part of Figure 2.4, where the Face

Recognition code is parallelized. As a rule, every attribute list must begin with either a

ToStream or a Stage attribute, which SPar described as identifier attributes. Respectively,

they describe the stream region and a computational region inside the stream. Every

other attribute is auxiliary and is used as a complement of an identifier.

The stream scope is simply defined by the while loop capturing the images. So

the ToStream is inserted directly above it. The code that generates the data for the rest of

the stream (capture function) does not need a particular Stage and is the only code that

can be left outside the scope of a Stage inside the ToStream. As they are computational

31

stages inside the stream, detector, recognizer, and writer functions are annotated

with Stage identifier attribute. Also, all of them consume the image, so they all add to

their complementary list the Input attribute with image as an argument.

As in Figure 2.3, detector outputs its result to recognizer, which in turn out-

puts its computations to the writer function. Therefore, the detector and recognizer

must have an Output attribute with image as an argument. Finally, as the user cleverly

discovered, detector and recognizer may be parallelized, which is achieved by using

the Replicate attribute with an integer as an argument representing the desired degree

of parallelism or how many replicas of that code may exist. Otherwise, every stage that

does not have a Replicate is considered sequential.

2.4.2 SPar Compiler

The second part of SPar is the compilation process. In short, it receives the an-

notated code with the SPar language, interprets it, and generates the final parallel code.

If there are errors, it reports them back to the user. For these purposes, SPar uses CIN-

CLE compiler infrastructure support [27]. CINCLE (Compiler Infrastructure for new C/C++

Languages Extensions) is a compiler infrastructure for generating new C/C++ embedded

DSLs (Domain-Specific Language). It is not a compiler but a support tool that provides ba-

sic features and a simple interface to enable AST (Abstract Syntax Tree) transformations,

semantic analysis, and source-to-source code generation.

Figure 2.5 depicts the SPar Compiler part of the SPar methodology (see Fig-

ure 2.2). Once the user annotates the code with SPar language attributes, the GCC com-

piler performs a semantic and syntax analysis of default C++ features. Next, CINCLE’s

scanner forwards the tokens from the original code to the parser. The parser then creates

the AST, which is fully accessible and modifiable. This AST contains all of the sequential

code and the SPar language attributes. Subsequently, the first SPar module performs the

semantic analysis. This step checks the AST for semantic errors in the annotation schema.

If present, inconsistencies are reported back to the developer, and the compilation pro-

cess aborts.

CINCLE’s features allow freely removing, shifting, or adding AST nodes, which

allows any possible code transformation during compilation time; this is one of the main

advantages of CINCLE since GCC and CLANG compilers do not provide direct AST trans-

formations [27]. In a high-level perspective of the transformation phase in Figure 2.5, the

SPar compiler removes the annotation nodes and swaps them with nodes containing the

appropriate underlying runtime parallel code. However, this step requires extensive at-

tention to the C++ ISO [42], as any error may result in critical failure. On the other hand,

regular nodes that describe other application operations remain in their original positions

32

Binary
Generation

Scanner
Parser

Annotation
Analysis

A

B C

D E

AST

A

B F

D G

Transformations

CINCLE

SPar

Regular Node

Runtime Node

Annotation Node

Figure 2.5 – SPar compilation process flow. Regular orange lines represent CINCLE’s mod-
ules, and blue dotted lines represent SPar’s modules. Additionally, Regular nodes repre-
sent the stream operators or filters, Annotation nodes represent SPar’s language annota-
tions, and Runtime nodes are the de facto parallel code.

in the tree. A set of transformation rules guide this entire process which is unique for

each underlying runtime parallel system. There are specific rules for FastFlow [28, 55],

TBB [38], OpenMP [39], distributed [72], and GPGPU [77]. The final step of the compila-

tion process is the binary code generation from the resulting AST, which uses the system

GCC compiler.

SPar also has compilation flags that change the behavior of the stream process-

ing. They are: 1) spar_ondemand which changes the scheduling policy from default round-

robin to on-demand; 2) spar_ordered specifies that a stream region must retain its origi-

nal generation order (i.e., necessary for video frames that must retain the original order);

3) spar_blocking to enable blocking behavior for the FastFlow runtime.

2.4.3 SPar Research

SPar was first developed as a research proof of concept inside the GMAP re-

search group [24] as a doctoral dissertation in 2016 [27]. Over the years, research

with SPar has advanced in many directions. Real-world stream processing applications

were developed and confirmed to display comparable performance to state-of-the-art so-

lutions [30, 32, 31]. Research with SPar was also conducted to enable support for different

underlying runtime and target architectures. For multi-core, it was initially developed with

FastFlow [28] and later enabled TBB [38] and OpenMP [39] support. For multicore, efforts

were also made to combine data and stream parallelism [51]. Other work enabled SPar

support for clusters with DSParLib [52] and GPGPUs with GSParLib [78] runtimes. In the

field of self-adaptive parallelism, studies explored an autonomic number of replicas man-

agement [89] and service level objectives via annotations [33, 29]. Within the GMAP re-

search group, the work on this Master’s thesis is the first to consider limited-resource hard-

33

ware. It can be a stepping stone for research on parallel computing on limited-resource

hardware, particularly expanding the GPGPU parallelism support.

2.5 Examples of Parallel Programming

This Section summarizes programming considerations with all the PPIs we evalu-

ate in this Master’s thesis. It helps understand the programmability analysis from Chapter

5. We complement the explanation about SPar from the previous Section 2.4 taking as

the basis of example the sequential code for the Face Recognition application. We do not

provide an explanation or tutorial of parallelism with each interface. Instead, we describe

the fundamentals and provide a visual depiction of the required features. We go into more

detail in Chapter 5. In Sections 2.5.1, 2.5.2, 2.5.3, and 2.5.4, we exemplify parallelism

using FastFlow, TBB, OpenMP, and Threads.

2.5.1 FastFlow

FastFlow [4] is an academic C++ library that adopts a structured approach to

parallel programming in multicore, manycore, message-passing, and heterogeneous ar-

chitectures. FastFlow is built around concurrency patterns such as parallel pipelines, task

farms, and data parallelism loops. These patterns allow developers to express parallelism

at a high level without worrying about low-level parallelism details. Furthermore, they can

combine these patterns to create increasingly complex applications. FastFlow also permits

customization of its internal algorithms, such as load balancing.

Figure 2.6 showcases a visual representation of the necessary code to develop

a parallel Face Recognizer application using FastFlow. The goal is not to showcase the

implementation in detail but to provide a visual representation. Using FastFlow, there

are two main steps: 1) organizing the stage code into FastFlow’s nodes; 2) creating the

parallel patterns on the Main, populating them with the processing nodes, configuring the

patterns, and then running them.

2.5.2 Threading Building Blocks

TBB (Threading Building Blocks), or oneTBB, is an Intel library for parallel pro-

gramming on multicore systems [75]. Similarly to FastFlow, it adopts a structured ap-

proach to parallel programming that allows users to code at a higher level with pipeline,

34

Write

Rec

Main

Capture

Detect

Figure 2.6 – Parallel Face Recognizer visualization of the necessary code with FastFlow.

graph, and data parallelism loops. It adopts a task-based approach to parallel program-

ming that dynamically allocates computational resources and distributes the workload.

Figure 2.6 represents visually the necessary code to develop a parallel Face Rec-

ognizer application using TBB. Using TBB is very similar to FastFlow.

Write

RecMain

Capture

Detect

Figure 2.7 – Parallel Face Recognizer visualization of the necessary code with TBB.

35

2.5.3 OpenMP

OpenMP uses a set of directives, runtime libraries, that enable the programmer

to specify how a parallel program is divided among multiple processing elements [67].

Therefore, it is well suited for data processing applications, although it has limited support

for task and stream parallelism [73, 39]. OpenMP parallelism is achieved using pragma

notations on the code that are then interpreted by a compiler that implements the OpenMP

standard.

Figure 2.6 showcases a visual representation of the necessary code to develop

a parallel Face Recognizer application using OpenMP. For stream processing applications

like Face Recognizer, the user has to define the communication protocol [37] and data re-

ordering algorithm [31]. Other than that, OpenMP requires embedding the communication

protocol into the default application logic and spawning Sections of asynchronous tasks on

the main function. The extras represent support codes for re-ordering and communication.

Write

Rec

Main
Comm

Capture

Extras

Detect

Figure 2.8 – Parallel Face Recognizer visualization of the necessary code with OpenMP.

2.5.4 Threads

Thread [43] programming is present in most modern languages and is used to

develop multithreaded applications. Threads allow developers to write code that can

perform multiple tasks simultaneously, leveraging multicore computers. However, de-

velopers have to explicitly define algorithms for parallelism, directly controlling resource

36

creation, communication, load balancing, and synchronization. For that, programmers are

equipped with tools for creating, managing, and synchronizing threads, including thread

pools, locks, semaphores, and barriers. The vast customization space permits highly-

specialized code; however, it permits every pitfall of parallel programming, such as race

conditions, deadlocks, and unoptimized implementation strategies.

Figure 2.6 showcases a visual representation of the necessary code to develop

a parallel Face Recognizer application using Threads. Using Threads, developers have to

specify all aspects of parallelism. In this case, the most costly implementations are re-

ordering and communication protocols, which are the same as OpenMP. Then, the user

must also define the functions each thread will execute. Finally, it spawns and joins a

static number of threads on the main function.

Detect

Capture

Write

Rec

Main

Extras
Comm

Figure 2.9 – Parallel Face Recognizer visualization of the necessary code with Threads.

37

3. RELATED WORK

This Chapter discusses related work to this Master’s thesis research. We elect

the Scopus scientific literature database. Figure 3.1 showcases our final search string. It

searches titles, abstracts, and keywords for parallelism evaluations on limited-resource

hardware considering energy, performance, or programmability and limits to benchmark-

ing evaluations on the computer science sub-area. We also consider research from 2016

onward. To exclude or include articles, we use a set of inclusion criteria (IC) and exclusion

criteria (EC) summarized in Table 3.1. A document must pass all the CI to be evaluated

in detail. However, if even one of the CE is applicable, the document in question is dis-

regarded. Out of 51 documents found within our parameters, using our IC and EC, we

include only seven documents that passed our screening. We include research not listed

in our initial literature review search to complement and enhance our related work.

TITLE-ABS-KEY (("Parallel*")
AND ("Cortex" OR "ARM")
AND ("energy" OR "performance")
AND ("assessment" OR "benchmark"))
AND PUBYEAR > 2015 AND PUBYEAR < 2024
AND (LIMIT-TO (SUBJAREA , "COMP"))
AND (LIMIT-TO (LANGUAGE , "English"))
AND (LIMIT-TO (EXACTKEYWORD , "Benchmarking"))

Figure 3.1 – Search string on Scopus scientific database.

Table 3.1 – Criteria for selecting documents in the Literature Review process.
ID Inclusion Criteria
IC-1 Considers data or stream applications
IC-2 Considers parallel computing
IC-3 Experiments with ARM-based hardware
IC-4 Measures performance or energy
ID Exclusion Criteria
EC-1 Simulated hardware
EC-2 Duplicated research
EC-3 Brief summary
EC-4 Unable to access research

Next, we discuss related research in Section 3.1 and then compare them with this

Master’s thesis research in Section 3.2.

38

3.1 Related Research

Clemons et al. [19] introduced MEVBench, a benchmark suite designed to eval-

uate mobile embedded vision architectures through various workloads. The authors eval-

uate the performance of MEVBench on various platforms and processors to gain insights

into possible future mobile-embedded vision architectures. The authors highlight the ne-

cessity and performance improvements of data parallelism computations but do not con-

sider stream parallelism algorithms. They also assess the cache miss rate and the impor-

tance of optimal data access patterns. They do not assess power dissipation or energy

consumption but measure performance using clock cycles.

Magnussem et al. [57] present OSCAR, a compiler for automatic parallelization.

They describe their compiler strategy, which generates OpenMP parallel code. They also

perform experiments on a series of traditional HPC and limited-resource hardware. Using

four cores on the limited-resource hardware, they achieved speedups of 2.87 for the CG

program of the NAS parallel benchmarks and 2.64 and 1.86 for other data processing

benchmarks. Ultimately, they observe that their compiler can generate efficient OpenMP

code for limited-resource hardware.

Canizzaro et al. [16] evaluates the performance and power dissipation of RISC-V

architectures compared to ARM Cortex A9 and A53. The RISC-V architecture demonstrates

competitive single-core performance, high efficiencies in CoreMark, and average multi-

core performance results when evaluated under embedded system-focused workloads,

including SpaceBench and GKSuite. The study also observes that the RISC-V architec-

ture’s dynamic power and energy consumption show mixed results, with high dynamic

energy consumption during many SpaceBench algorithms and good power dissipation re-

sults during CoreMark application benchmarking tests.

Amiri et al. [5] present two scheduling algorithms for simultaneous multiprocess-

ing using an ARM Cortex A53 with an FPGA setup. The algorithms are evaluated using four

benchmarks with different exceptional features. They use TBB to enable parallelism on

the A53 side and offload some of the computation to the FPGA. To balance computation

between CPU and FPGA, they proposed two algorithms. However, their main limitation is

that they must compare their solution with the sequential or parallel CPU versions.

Belloch et al. [14] study the feasibility of combining multiple processing units of

system-on-chip hardware to accelerate image-based applications. Combining ARM Cortex

A53 and R5 with an FPGA in imaged-based applications, they achieve an acceleration

factor of 12x in the number of frames per second. The results show that the ARM Cortex-

A53 performs best regarding MFlops per second for matrix multiplication computation. At

the same time, the GPU is better suited for graphic processing tasks, respectively. The

39

study also evaluates the performance of A53 using the OpenBLAS library and optimized

parallel code for matrix multiplication, achieving up to 12 Gflops.

Chronaki et al. [18] evaluated Parsec benchmark applications (data and stream

processing) on ARM with BIG.little architectural features. Their main goal is to evaluate

the portability of the traditional HPC applications to the BIG.little architecture features. To

that end, they evaluate OS scheduling (10% improvement) and custom runtime schedul-

ing (23% improvement). They evaluate speedup, energy consumption, and power dissipa-

tion on an Odroid-XU4 device containing Cortex A15 and Cortex A7; however, they do not

explain their methodology to collect energy measurements. They conclude that current

implementations of parallel applications using Pthreads are not ready to fully leverage

BIG.little architectural features, except for applications with highly sophisticated paral-

lelization strategies. The study also shows better solutions than a highly sophisticated

asymmetry-aware OS scheduler for scheduling parallel applications. On the other hand, a

task-based solution, even if it is asymmetry-unaware, is the most appropriate as it allows

dynamic load balancing and eliminates thread migration costs.

Simula et al. [84] presented a study on the computational cost and power effi-

ciency of neural simulations on a series of hardware, including a limited-resource cortex

A53 cluster. Parallelism is developed with OpenMPI support. However, their energy mea-

surements are estimated. They report that the DPSNN simulator running on ARM A53

requires about 3× less energy consumption than Intel but is about 5× slower. The main

limiting factor to parallelism scalability was the interconnect speed.

Görtz et al. [35] study the viability of using a cluster of 40 Cortex A53 devices

to assess its computational and energy efficiency compared to an Intel cluster. Experi-

menting with NPB, they report up to 70% less energy than an Intel-based reference server

system, which leads to an increase in efficiency of up to 425%. They also highlight that

keeping an ideal operating temperature is a challenge. Khasanov et al. [48] present an

extension to the KPN model (calculates Mandelbrot set) and a simple execution strategy

for data parallelism. They evaluate their approach on an ARM big.LITTLE architecture.

However, they do not provide many details about the parallelism interfaces used.

Junior et al. [47] evaluated energy consumption and performance of the NPB

benchmark on two clusters, one containing 8 Cortex A7 and the other containing 4 Cor-

tex A15. Similar to our experiments, they executed NPB’s five kernels and two pseudo-

applications with input class B and used OpenMP for parallelism. Their results indicated

that the Cortex A15 mounted on a Jetson board with 2 GB of ram outperformed cortex A7 in

energy- and time-to-solution. In contrast, we focus on analyzing the impact of parallelism

in the NPB benchmark and include different parallel APIs. In addition, we also use two

different more up-to-date hardware configurations that are standalone shared-memory

processors that are not bound to a desktop-controlled cluster.

40

Schmid et al. [81] studied the feasibility of task model parallelism on a system

with 8 Cortex A7 processors and 2 GB of RAM. They experimented with TBB and their

lightweight task parallelism model emphasizing minimizing memory space consumption.

They executed FFT (Fast Fourier Transform) and matrix multiplication applications. How-

ever, their experiments could have provided a more precise performance comparison be-

tween parallel versions.

Rauber et al. [74] evaluated performance and energy consumption in two bench-

mark suites that combine applications from multiple domains. Their analysis combines

frequency scaling and thread parallelism, emphasizing energy consumption. They tested

on an ARM A15 and A7 big.LITTLE setup with 2 GB of RAM. They only executed some of

the applications on the ARM setup since they used it as a complementary study. They

observed lower energy costs for multi-thread use but higher overall execution time and

energy consumption. In contrast to our work, they did not assess parallelism features.

Jubertie et al. [46] evaluated vectorization and multithreading in an ARM Cortex

A15 board. They experimented with two applications: grayscale conversion and matrix

multiplication. They discovered that combining vectorization and multithreading yields

the best results in energy consumption and execution time. Similarly, Lee et al. [50], and

Zhou et al. [92] experimented with Convolutional Neural Networks (CNN). They focused

on generating vectorized ARM NEON instructions and minimizing memory usage. They did

not experiment with multiple parallelism interfaces.

Xie et al. [90] studied a stereo vision algorithm that generates a stream of im-

ages to be processed in parallel on low-cost ARM processors. They reduced image sizes by

half to the detriment of accuracy and concluded that processing single images at a time

instead of batching was beneficial in their case. In medicine and healthcare, Maheshwari

et al. [58] studied an OpenCL-based approach for mapping read operations from genome

analysis applications for embedded system devices. These applications must typically

handle many fragmented reads and present a unique challenge. Their leading optimiza-

tion was based on dynamic programming filtration techniques to prevent the memory

footprint from increasing. The authors further state that it is possible to save energy by

moving genomics computing from high-end servers and workstations to embedded sys-

tems without losing accuracy and comparable performance.

3.2 Comparison with this work

Table 3.2 summarizes the differences between our research and previously dis-

cussed related work. The Data and stream fields indicate each research experiment’s

data and stream processing applications. For stream, FE is Ferret, BZ2 is Bzip2, LD is Lane

Detection, and FR is Face Recognizer. Parallelism indicates the parallel interfaces eval-

41

uated and Architecture specifies hardware used in the experiments and Accelerator

highlights if that research considers GPGPU or FPGA accelerators. Metrics summarizes

the measurements taken into consideration, where time performance is related to the total

application execution time, energy is the total consumption in Wh, and programmability

assesses estimated development complexity.

Table 3.2 – Comparing related work with this Master’s thesis research.
Research Data Stream Parallelism Architecture Accelerator Metrics

Ours NPB
FE, BZ2,
LD, FR

OpenMP, Threads,
Intel TBB, FastFlow,

SPar, CUDA, and OpenCL

Cortex A57
Cortex A72
Cortex A53
Cortex A73

Maxwell Tegra
Mali G52

Time & Energy &
Programmability

[47] NPB None OpenMP
Cortex A7

A15 Clusters
None Time & Energy

[81]
FFT &

Matrix Mult
None TBB Cortex A7 None Time

[74] None
Partial
Parsec

Pthreads
Cortex A15
Corte A7

None Time & Energy

[46]
Grayscale

Matrix Mult
None - Cortex A15 None Time & Energy

[50] CNN None Neon & OpenMP Cortex A53 None Time & Energy
[92] CNN None Neon Cortex A17 None Time
[90] Stereo Vision None OpenMP Odroid XU4 None Time
[58] Genomic None OpenCL Cortex A73 & A53 None Time & Energy

[19] MEVBench None -
Cortex A9
Intel Atom

None Time

[57]
Partial NPB

& More
None OpenMP

NVIDIA Carmel
ARMv8

None Time

[16]
SpaceBench

GKSuiteCoreMark
None OpenMP

Cortex A53
Cortex A9

None Time & Energy

[5]
AES, HotSpot,
Nbody, GEMM

None TBB Cortex A53 FPGA Time & Energy

[14]
Image-processing

Matrix Mult
None

OpenMP
OpenCV

(TBB, OpenMP)

Cortex A53
Cortex R5

FPGA
GPU

Time

[18] Parsec Parsec
OpenMP
Pthreads

Cortex A15
Cortex A7

None Time & Energy

[84] Neural Network None OpenMPI Cortex A53 Cluster None Time
[35] Partial NPB None - Cortex A53 Cluster None Time & Energy

[48] Mandelbrot None -
Cortex A15
Cortex A7

None Time

In Table 3.2, our research and [18] are the only ones to experiment with data and

stream parallelism applications on limited-resource hardware. Few related work study

stream processing applications, and the ones that do only use two Parsec applications. On

the other hand, our research uses four applications, which we describe in greater detail

in Section 4.3. Regarding parallelism, we are the only researchers using more than two

parallelism interfaces. This study experiments with OpenMP, Threads, Intel TBB, FastFlow,

SPar, CUDA, and OpenCL. Additionally, OpenMP is the most common interface other re-

searchers use. Our research is the only test with multiple hardware configurations on the

target architecture side, as well as two GPGPU accelerators. For metrics, we include data

and stream processing typical metrics such as execution time, energy, and latency. Not

highlighted in the Table, our work is the only one that provides detailed Research Objec-

tives to assess parallelism on limited-resource hardware and concisely summarizes them

in a summary of findings.

42

4. METHODOLOGY

This Chapter describes this Master’s Thesis research methodology. First, we out-

line our Research Objectives in Section 4.1. Then we describe the hardware and software

environment we use for our analysis in Section 4.2. Section 4.3 describes every applica-

tion we use to experiment with our research objectives, while Section 4.4 describes and

explains the metrics we use in our assessment. We also explain the parallel application

interfaces we use in Section 4.5 and describe the experimental execution methodology

and graph patterns in Section 4.6.

4.1 Research Objectives

The primary goal of this Master’s thesis is to assess parallelism techniques in

limited-resource hardware. We start with the leading research question: What parallelism

algorithms and interfaces are best for limited-resource hardware? Then, we formulate

Research Objectives (ROs) to direct our experimental analysis and draw relevant con-

clusions. Following this paragraph, we list each RO we examine in greater detail in the

next Chapter 5. We have eight original leading ROs; some ROs have derived ROs, which

we created as the research progressed to separate concerns about the leading RO better.

• RO1: Evaluating Programming features for the parallel programming interfaces

• RO2: Evaluating Programmability metrics for the parallel programming interfaces

• RO3: Evaluating Performance metrics for data processing applications

• RO3.1: Analysis of MapReduce with no data dependencies

• RO3.2: Evaluating Map with memory contention

• RO3.3: Evaluating data locality on Maps

• RO3.4: Evaluating Map with data dependency

• RO3.5: Analyzing memory bandwidth as a parallelism bottleneck

• RO3.6: BIG.little architecture performance features

• RO3.7: Analysis of the impact of hardware temperature on performance

• RO4: Evaluating consumption metrics for data processing applications

• RO5: Evaluating performance metrics of stream processing applications

43

• RO5.1: Assessing the effect of blocking vs. non-Blocking computation on perfor-

mance metrics

• RO5.2: Evaluating computational resource allocation strategies in parallelism tech-

niques

• RO6: Evaluating consumption metrics for stream processing applications

• RO6.1: Analysis of memory consumption for parallel stream applications

• RO7: Evaluating matrix multiplication in limited-resource hardware

• RO8: Evaluating GPGPU parallelism for data processing applications

These ROs permit us to assess parallelism’s programmability, performance, and

energy consumption with different PPIs across two main parallelism models of data and

stream. In the following Sections, we set the conditions for assessing each RO.

4.2 Hardware and Software Environment

We summarize the hardware configurations and kernel versions in Table 4.1 for

the experimental phases. A common feature between all hardware is a 64 GB MicroSD

card permanent storage with 104 MB/s. Other relevant software versions are GCC 9.4.0,

Intel TBB(2020.1), and FastFlow (3.0.0). Additionally, we always use the -O3 compilation

optimization flag to improve performance.

Table 4.1 – Low-resource hardware configurations and kernel version.

Device CPU
CPU Freq

(MHz)
GPU RAM Kernel

Jetson
Quad-core
Cortex-A57

1479
128-core NVIDIA

Maxwell
4 GB LPDDR4

SDRAM
4.9.253-tegra

Raspberry
Quad-core
Cortex-A72

2200 Integrated
8 GB LPDDR4

SDRAM
5.4.0-1065-raspi

Odroid-N2

Quad-core
Cortex-A73
& Dual-core
Cortex-A53

1908
&

2208
Mali G52 GPU

4 GB LPDDR4
SDRAM

4.9.277-122-odroid

4.3 Applications

This Section explains the applications we use in this Master’s thesis. To that end,

Section 4.3.1 explains the stream processing applications, and Section 4.3.2 showcases

the data parallelism applications.

44

4.3.1 Stream Processing

In this Master’s thesis, we specifically focus on real-world stream processing ap-

plications that explore Pipeline parallelism. For our experimental analysis, we consider

four real-world applications: Ferret, Bzip2, Lane Detection, and Face Recognition. Figure

4.1 depicts the execution data flow of all applications. We further summarize their main

characteristics as follows:

• Ferret [15] is a content similarity search application for feature-rich data such as

video, audio, and images. In this case, the version we use is an adaptation for image

search. The parallel version has six stages. The first stage implements sequential

input, and the final is sequential output. The four middle stages execute the bulk of

the processing and are all parallel.

• Bzip2 [23] is a compression program in Linux-based distributions. It has independent

modules for compression and decompression. The original Pthreads implementation

models a three stages pipeline and has a handwritten reordering algorithm in the

output filter to maintain the integrity of the compressed data.

• Lane Detection [31] reads an input video stream from a camera recording the whole

lane in front of the vehicle. Then, it outputs the detected lanes after a sequence

of filters. It utilizes the Canny filter and Hough transformations, which the OpenCV

C++ image processing library provides. The parallel implementation technique uses

a three stages pipeline where the first and last stages perform sequential I/O, and

the central one collapses all processing filters in Parallel. The frame order must be

guaranteed to keep the integrity of the video.

• Face Recognition [31] reads a video input stream from a camera positioned before

a point of interest. Then, it detects faces and uses an image database to recognize

if that face belongs to a specific person. This database is pre-processed and de-

rives from a series of training images from that face of interest. The OpenCV image

processing runtime also supports this application. The parallelism implementation

consists of a pipeline with three stages where the middle stage is parallel, and the

writer stage must also reorganize the output video frames before outputting them.

Beyond the data flow, these applications have different characteristics. Lane

Detection is higher-throughput than the logically similar Face Recognition implementation.

Bzip2 has high disk and memory usage, and the parallel version of Ferret typically spawns

multiple threads that vastly oversubscribe the available number of cores in a system.

45

Source Compress/
Decompress Sink Source Detect SinkRecognize

Source Segment Canny HoughT HoughP Bitwise Canny

Canny Canny Sink

Source Seg. Extract Vect Rank Sink

Lane Detection

Ferret

Bzip2 Face Recognition

Figure 4.1 – Stream processing applications execution flow. Solid green circles are sequen-
tial, and red crossed ones are parallel. Arrows indicate data dependencies.

4.3.2 Data Parallelism

The goal of NAS Parallel benchmarks is to measure and compare parallel hard-

ware objectively [12]. They are popular in the research community since they serve as

a representative set of real-world workloads. Therefore, considerable research uses the

NPB to evaluate their novel algorithms, optimization strategies, parallelism concepts, and

many others [54].

NPB’s applications come from the CFD (computational fluid dynamics) field. The

benchmark suite contains five kernels representing core mathematical methods and three

pseudo-applications using similar operations to represent closer to real-world CFD appli-

cations. Each application poses different computational characteristics, such as irregular

memory accesses, complex data dependencies, and intensive data communications. We

briefly describe these kernels below:

• Embarrassingly Parallel (EP) computes pairs of Gaussian random deviates ac-

cording to a specific scheme. EP is useful to measure the peak floating-point opera-

tion performance of a given platform [12].

46

• Multi Grid (MG) uses a V-cycle MultiGrid method to compute the solution of the

3-D scalar Poisson equation while continuously alternating between fine and coarse

grids. MG tests both short and long-distance data movement[44].

• Conjugate Gradient (CG) approximates the smallest eigenvalue of a large, sparse,

unstructured matrix. CG tests data communication mechanisms, memory locality,

and cache [44].

• Discrete 3D Fast Fourier Transform (FT) computes a Fast Fourier Transform of

a 3D partial differential equation in an iterative loop. FT simulates intensive long-

distance communications [12].

• Integer Sort (IS) sorts integer values from a sparse set with a bucket-sorting algo-

rithm. IS measures integer computations and data movements [44].

We fully experiment and test with Block Tri-diagonal solver (BT), Scalar Penta-

diagonal solver (SP), and Lower-Upper Gauss-Seidel solver (LU). In summary, they

solve three sets of uncoupled systems of partial differential equations that describe a flow

of incomprehensible fluids. They stress multiple features of the target architecture and

are closer to real-world applications since they combine different computational methods.

The NPB has different workload sizes that express classes. Classes S and W are

suitable for quick and small tests; classes A, B, and C are the standard tests, where the

complexity of each one increases four times between one class and the next. Classes D,

E, and F are for heavy tests, with a 16 times complexity increase between classes.

The illustration in Figure 4.2 displays the execution flow of NPB. Solid-lined rounded

rectangles represent these programs’ functions, while routines are dotted rectangles.

Routines are a series of functions. The function that consumes the most computation time

within each benchmark is highlighted with blue dashed borders. Meanwhile, the parallel

functions are solid green.

Each benchmark starts with an initialization step and concludes with a verification

procedure that checks the correctness of the results. In between, the benchmark performs

its primary computations as part of an iterative process. EP benchmark is an exception

since its most time-consuming function does not fall within an iteration logic. Furthermore,

EP and IS are the only benchmarks with a single primary function. The measurement of

the total execution time begins immediately after the initialization step and terminates

immediately at the start of the verification function.

All kernels and applications exhibit various features that pose significant chal-

lenges for parallelization. These features include tasks with non-uniform computation,

multi-dimensional arrays with up to five dimensions requiring distinct data access pat-

terns, data dependencies requiring strategies to eliminate or minimize performance degra-

dation, and large data chunks. From now on, we refer to the NPB set of kernels and pseudo-

47

n

n

n

n

n

n

n

k

k

k

Caption

most expensive function

verificationverificationverification

verificationverification verification verification

add

ysolve

xsolve

txinvr

rhs

h) SP

rhs

buts

blts

ssor

g) LU

add

zsolve

ysolve

xsolve

rhs

f) BTe) MG

norm2u3

resid

norm2u3

resid

rank

d) IS

ftz

fty

ftx

evolve

setup

c) FTb) EP

ep

a) CG

initialization

conj grad

find the

normalize z

verification

initialization initialization initialization

initialization initialization initialization initialization

checksum

mg3p

initialize data

norm of r

q = A.p

obtain p.q

obtain z and r

norm of r

p = r + beta*p

||r|| = ||x - A.z||

r contains A.z

conj grad

indexmap

conditions

init

setup

rprj3

zero3

psinv

zero3

interp

resid

psinv

interp

resid

psinv

mg3p

Parallel Block

zsolve

function

Figure 4.2 – Data processing applications execution flow. Extracted from [9].

48

applications simply as applications. All applications are parallelized with a variation of the

MapReduce pattern, as is typical in most data processing applications. We use an existing

parallel implementation available in OpenMP, TBB, and Fastflow [54], proven to perform

nearly identically to the original Fortran version. Additionally, the CUDA versions of NPB

are proven to perform well on HPC GPGPUs [9].

4.4 Metrics

This Section explains the metrics we use to measure the efficiency and effective-

ness of the parallel computing features derived from our research questions. We explain

the performance metrics in Section 4.4.1 and the consumption metrics in Section 4.4.2.

Finally, we also explain programmability metrics in Section4.4.3

4.4.1 Performance

For performance, we measure latency, throughput, and execution time. Latency

represents the time a data element takes to reach its destination or target processing

element; in other words, latency is the response time between an event generation and

the completion of its computation. Throughput represents the average number of data

elements completed per second. Execution time represents the total time in seconds it

takes for the application to execute from start to finish. All performance metrics derive

from time measurements taken within the source code using the standard C++ Chrono

library.

Even though latency and execution time are related, they might not be directly

correlated. For instance, potentially to the detriment of the other metric, real-time sys-

tems require close-to-zero latency while training machine learning models would strive

for a shorter execution time. Conversely, throughput is a metric most relevant to stream

processing systems that operate based on time windows.

4.4.2 Consumption

For consumption metrics, we measure energy, power, and memory. Energy is

the accumulated total amount of Watt-hour consumed from start to finish of the test pe-

riod. Power is the average watts consumed from start to finish of any test period; we

measure it by summing all instant readings from start to finish of the execution and then

dividing by the number of samples. Memory is the highest consumption of MB of RAM

49

observed at any point from the start to finish of the test period. The test period is the

execution time.

Energy consumption in computer science is a critical financial and environmental

challenge. It should be the lowest possible to reduce costs. Power dissipation measures

the system’s instant current and voltage demand. Ideal power dissipation should be con-

sistently low and free from sudden increases in power demands. We monitor power peaks

to detect potential surges. RAM consumption is also essential to assess the impact of par-

allel programming and its viability on limited-resource hardware. However, if the system

has excess memory, its significance decreases, although it should ideally be as low as

possible.

Some limited-resource hardware includes counters for energy consumption, but

this capability is only sometimes present. Some energy measurement systems estimate

energy consumption based on hardware counters instead of actively measuring it [84].

A standard method to measure energy consumption is to use a voltmeter and ammeter

by connecting them between the device and its power source. Our research uses the

UM25C [45] USB device to measure energy consumption. The UM25C transmits its mea-

surements via Bluetooth, which we collect using an independent computer and log as

a CSV file. Later, we correlate the energy consumption readings with execution logs to

determine the consumption in Wh.

We sample energy consumption measurements every 0.3 seconds, the highest

sampling rate we can obtain from the UM25C device. Since we correlate execution time

logs with energy consumption logs, we must round execution timestamps to the closest

match. Therefore, we may overestimate or underestimate the energy consumption by up

to 0.3 seconds. In this Master’s thesis experiment, the energy consumption approximation

never entails roundings greater than 0.002 mWh: 0.001 mWh for the start and potentially

other 0.001 mWh for the end.

4.4.3 Programming Productivity

Many studies in the parallel programming domain evaluate technical factors such

as execution time, speedup, memory, and energy consumption. Programming productiv-

ity is another crucial factor in comparing different parallel programming interfaces. De-

veloping more productive PPIs and refining existing ones from usability evaluation is pos-

sible. However, this is a complex task since it involves human beings. Therefore, many

researchers use established code metrics to approximate productivity evaluation.

It is crucial to evaluate and compare PPMs concerning productivity. For that pur-

pose, it is possible to use code metrics based on: code size, for example, Source Lines

of Code (SLOC), Number of Characters, and Tokens of Code; complexity evaluation, for

50

example, Cyclomatic Complexity Number and Information Flow Complexity; and develop-

ment effort, for example, Halstead, and Constructive Cost Model. While helpful, code size

and complexity evaluations cannot predict the effort required to develop a parallel appli-

cation [7]. Evaluations that estimate development efforts are more helpful but still have

limitations. In this Master’s thesis, we measure SLOC and Halstead.

SLOC (source lines of code) does not count blank or commented lines. It has

limitations since it does not consider software complexity, code structure, number of func-

tions, or connections between modules. SLOC primarily measures verbosity, so comparing

different versions of the same program in the same programming language is better. We

can observe this is an issue taking the example of Figure 4.3, where we have the same

algorithm, expressed in the same number of lines, but using different PPIs with potentially

different complexities involved.

Figure 4.3 – Example extracted from [54].

Halstead metrics quantify software complexity. Halstead metrics measure the

program length, vocabulary size, volume, and difficulty estimating the development ef-

fort. The central idea is that the program’s complexity is related to the number of unique

operations and operands used in the program and the number of times they are used.

The higher the Halstead metrics, the higher the program complexity. Halstead metrics

might not, however, represent ease of programmability. In summary, the Halstead met-

rics provide a quantitative way to assess the complexity of a software system based on

the number and diversity of its constituent parts. To measure Halstead, we adapted the

Parallel Halstead algorithm [7] to include OpenMP and Threads.

51

4.5 Parallel Programming Interfaces

The parallel programming interfaces we use for our experimental analysis have

different characteristics. They are SPar, FastFlow, TBB, OpenMP, and Threads. Addition-

ally, for GPGPU, we also experiment with CUDA and OpenCL. They are different from one

another because they have different design goals and parallelism implementation strate-

gies. Even if we can create a logically similar parallel implementation of an application

using them, they can still have several different implications when executing. Further-

more, they may have different abstraction and programmability features. In the next

Chapter, we explain them in greater detail, where the first two research questions explore

their main differences.

4.6 Execution and Graphs

This Section aims to provide details about the execution parameters from all the

experimental data gathered and summarized in this Master’s thesis. We also outline some

of the main graph configurations.

We repeated all experiments five times. From that, we calculate the median

average and the standard deviation. We use these results as the data for our graph plots.

Concerning the graphs, the X −axis is the degree of parallelism. The degree of parallelism

ranges from 1 to the maximum number of cores available in each hardware configuration.

That is one up to 4 for Jetson and Raspberry and one up to 6 for Odroid. An important

aspect to consider is that the degree of parallelism may not represent the actual active

thread count in the system. Instead, each runtime may spawn one dedicated thread for

each stage, or in the case of parallel stages, a thread pool is determined in size by the

degree of parallelism.

In all graphs, the 0 value in the X − axis always represents the sequential exe-

cution. Furthermore, in the graphs, the Y − axis represents one of the performance or

consumption metrics. Finally, graphs have a logarithmic scale of 2, and we show error

bars to represent the standard deviation, which in some cases may not be visible due to

its low value. Lastly, we guarantee the output correctness of the parallel versions by com-

paring the resulting output MD5 (Message-Digest algorithm 5) checksum with the original

sequential version.

Another point to consider is when we refer to the text about percentage differ-

ences. We calculate percentage differences using the absolute difference between two

values, divide by the average, and multiply by 100 to get the percentage; we use the fol-

52

lowing formula (|value − referencevalue|/average) ∗ 100. When there are multiple values,

the reference value is the sequential version.

4.6.1 Input Data

• Lane Detection ’s input is a video of a truck driving on the road. It is an mp4 video

with 640×360 resolution with 30 frames per second (H.264 codec). The video lasts

3 seconds and has a file size of 0.57 MB.

• Bzip2 ’s input is a dump file from the Wikipedia database with a total size of 349.1

MB. Bzip2 Storm/Flink has used as input a random characters text file with 51 MB

size.

• Face Recognition ’s input consists of pictures of former US president Obama’s face

plus a video recorded during a talk that contains images of his face and the faces of

other people in the audience at some points. The training phase of the application

uses this set of pictures, while the recognition of the former president’s face uses

video. It is an mp4 video with 640×360 resolution with 30 frames per second (H.264

codec). The video lasts 3 seconds and has a file size of 0.57 MB.

• Ferret’s input is a set of images from the large alias in the Parsec benchmark [15].

It performs 256 image similarity queries from a 34,973 image bank. All images are

128x96 resolution JPEG files. Each query searches for the top K = 10 most similar

images.

NPB’s workload is class B for the five kernels (EP, CG, MG, FT, and IS) and class

A for the three applications (BT, SP, and LU). Class B is the largest workload we could

securely execute every test with 4 GB of RAM. Furthermore, we use class A for the appli-

cations since they take longer to process. Specifically for NPB, we change the benchmark

after each execution to ensure the system does not pre-load data into the cache and reuse

it between executions.

53

5. RESEARCH OBJECTIVES’ ANALYSIS

This Chapter presents an analysis of this Master’s thesis research objectives (Sec-

tion 4.1). To help readers navigate ROs, we categorize them in Table 5.1 using the char-

acteristics we observe in Chapter 4. In Table 5.1, the application type describes if the RO

studies data or stream processing applications. The analysis describes the metrics we use

in each RO, while the devices describe the hardware we use in that analysis. Parallelism

refers to CPU multithreading or GPGPU accelerators.

Table 5.1 – Classification of Research Objectives.
Research Objectives Application Type Analysis Devices Parallelism

1 Data & Stream Programmability - All
2 Data & Stream Programmability - All
3 Data Performance All CPU

3.1 Data Performance All CPU
3.2 Data Performance All CPU
3.3 Data Performance All CPU
3.4 Data Performance All CPU
3.5 Data Performance All CPU
3.6 Data Performance All CPU
3.7 Data Performance All CPU
4 Data Consumption All CPU
5 Stream Performance All CPU

5.1 Stream Performance All CPU
5.2 Stream Performance All CPU
6 Stream Consumption All CPU

6.1 Stream Consumption All CPU
7 Data Cons. & Perf. Jetson & Odroid GPGPU & CPU
8 Data Cons. & Perf. Jetson GPGPU

We also highlight the experimental methodology using a flowchart that results

in each research objective in Figure 5.1. It connects parallelism versions, applications,

hardware, metrics, and the research objective. The numbers on the edges represent the

accumulated number of results or experiments that each RO considers. The origin of

the edge indicates whether it encompasses one (dotted line origin) or multiple features

(straight line origin). Sometimes, we use colours to create a joint group of experiments,

facilitating their origin; otherwise, they encompass everything that arrives in them. One

final consideration is that ROs 7 and 8 are exceptional cases, and we use dotted edges.

Each following Section describes one RO. In them, we explain the context, forces,

discussion, and threats to the validity of our analysis. The Context - summarizes the

RO’s motivation and the challenge it brings. The Forces - associated with the RO explain

factors in play and possible solutions. For the Discussion -, we show collected results,

findings, and evaluations. We also explain the threats to the validity or limitations of

our analysis for the leading ROs.

54

4 Stream
Applications

Execution Time (s)

Latency (s)

Throughput (items/s)

total energy consumption (Wh)

average power dissipation (W)

peak power dissipation (W)

memory consumption (Mb)

RO1

RO3

SLOC

Halstead

8 Data
Applications

Features

RO2

RO4

RO6

RO5

Jetson

Raspberry

Odroid

Applications Hardware Metrics Research
Objective

RO7

RO8

96

24

48

144

144

72

72

192

144

144

72

40

15

432

72

216

Seq

SPar

FastFlow
TBB

OpenMP

Threads

CUDA
OpenCL

4

2

4

2

Version

120

45

15

Figure 5.1 – Experimental methodology using the research objectives.

5.1 RO1: Evaluating programming features for the parallel programming

interfaces

Context and Forces - For limited-resource hardware, developers typically must

choose low-abstraction solutions that allow expressive control of the available hardware[13].

For this research question, we assess the most relevant PPI features, limitations, and chal-

lenges associated with parallelism in limited-resource hardware.

Discussion - For shared-memory multithreading, we highlight the main differ-

ences between each evaluated PPI in Table 5.2. We explain the characteristics from the

Table during this discussion session. One consideration is balancing the application com-

putation between the fewer available processors. Unlike x86 architectures, our devices do

not have Simultaneous Multithreading (SMT or Hyper-threading). Therefore, the program-

mer can conFigure parallel threads to oversubscribe the available cores, use the maximum

amount, or even underutilize available processing cores (valid as long as memory con-

tention is the main issue). The number of parallel processing threads per processing stage

is user-defined in OpenMP, FastFlow, SPar, and Threads; otherwise, they use maximum

resources. TBB is the only interface that automatically chooses these values dynamically

according to its scheduler logic. TBB allows users to set the maximum number of threads

their scheduler can use.

Another factor to consider is mapping threads into physical cores. The opera-

tional systems are typically responsible, but some interfaces, such as FF, have custom

thread mapping algorithms. However, Threads allows pinning threads to physical cores

55

Table 5.2 – Parallel Programming Interfaces main characteristics comparison.
PPI

Programming
Model

Communication
Pattern

Thread
Mapping

Degree of
Parallelism

Memory
Config

Blocking
Mode

Stream
Support

Data
Support

SPar DSL Runtime Yes
User

defined
Queue size Yes Yes Partial

FastFlow Patterns Static buffer Yes
User

defined
Queue size Yes Yes Yes

TBB Patterns Work-stealing No Dynamic
Number of

Tokens
No Yes Yes

OpenMP
Compiler
Directives

Static buffer (data)
User-defined (stream)

No
User

defined
Queue size Yes No Yes

Threads Explicit
User

defined
Explicit

User
defined

Fully Explicit
User

defined
User

defined

to optimize cache coherency. OpenMP and TBB do not directly provide this functionality.

For all NPB applications using FF, we must manually define the cache-line size for cache

padding, an automatic process on TBB and OpenMP.

Threads and exclusively stream processing OpenMP are the only interfaces that

require the developer to directly specify data scheduling or load balancing algorithms,

which may be a complex implementation [39]. In Table 5.2, we refer to it as Communica-

tion Pattern. For this data scheduling algorithm, one can consider busy waiting; this is fully

controlled by the programmer using Threads, which is impossible in TBB. FastFlow, SPar,

and OpenMP allows using this configuration by simply enabling it with the omp_wait_policy

compilation flag.

One other crucial factor for some limited-resource hardware is using static mem-

ory consumption. Within the minimum required range by each application, we observe

that all parallelism interfaces allocate up to a maximum amount of required memory.

FastFlow, SPar, and OpenMP stream only allow the user to define the size of internal com-

munication buffer queues. TBB allocates memory dynamically; its pipeline implementation

permits defining the number of items (tokens) alive in the stream, which is the only con-

figurable parameter that affects the PPI memory consumption. Threads is fully controlled

by the user’s implementation.

Evaluating the available programming features, OpenMP is the only PPI that pro-

vides explicit SIMD parallelism options. For GPGUs parallel programming, the develop-

ers must take into account different concerns. Reducing the memory footprint is essen-

tial in limited-resource hardware, which requires changing the algorithms to use smaller

data types, avoiding duplicating data, and possibly separating the original algorithm into

smaller parts that can fit in the GPGPU. Another vital consideration is available data types.

Mali G52 only supports 32-bit floating point numbers, which does not meet the NPB appli-

cations’ 64-bit precision requirements.

Another critical change for GPGPU is reducing the computational kernel complex-

ity; this involves minimizing the number of instructions and memory accesses during each

kernel invocation. Even with enough available memory, threads per block, and blocks

available in the GPGPU, HPC servers’ functional GPGPU code may not execute correctly

56

on limited-resource GPGPUs because of high kernel complexity. In other words, if there

are not enough registers to invoke the thread blocks, an error is silently generated during

the execution. This scenario is the case for some NPB applications on the Jetson board.

Choosing the appropriate parallelism interface for GPGPU is also a limited choice because

this hardware frequently needs to provide drivers for GPGPU interfaces such as OpenACC,

CUDA, or even OpenCL. In Jetson, we can only execute CUDA code while only OpenCL in

Odroid.

SPBench (stream processing benchmark) applications did not require any changes

regarding the original implementation (see Section 4.3) to run in limited-resource hard-

ware. However, some PPI characteristics are not ideal for this type of hardware, as we

examine in the following ROs of this Chapter. For NPB applications, only FastFlow re-

quires manually setting the cache-line size. Otherwise, the parallel code is the same as

executed in HPC servers [54].

The main limitation is the set of stream and data processing applications we

assess. In developing other parallel applications, additional features we did not consider

may be necessary. These extra features may further vary development decision-making

between interfaces.

5.2 RO2: Evaluating programmability metrics for the parallel programming

interfaces

Context - When choosing a parallel programming interface, developers find sev-

eral alternatives. Beyond efficiency, each one may have a different learning curve, ex-

pressiveness, verbosity, ease of use, portability, and level of abstraction. For instance,

according to their design choices, some interfaces may favor generalization, abstractions

over performance, and customization range over simplicity. This research question as-

sesses the programmability or productivity of higher-level abstractions in limited-resource

hardware. We also discuss the most relevant changes, limitations, and challenges to port-

ing the code from typical HPC servers to limited-resource hardware.

Forces - SPar is a high-level stream processing domain-specific language. It

uses code annotations that do not require code-refactoring and low-level implementation.

It typically requires a few lines to enable parallelism but is not customizable. OpenMP is an

unstructured approach that leverages pre-compiler directives and library functions to en-

able parallelism. The exception is for stream processing applications, requiring additional

mechanisms to function correctly [39].

TBB and FastFlow adopt the structured parallel programming approach. Pro-

grammers must structure their code into pre-defined templates such as MapReduce or

Pipeline. On the other hand, TBB is not very customizable, whereas FastFlow allows a

57

much greater level of customization and adaptation of the background parallelism behav-

ior. Threads require the programmer to define every aspect of the parallelism algorithm

using a set of functions that interact with the operational system.

Discussion - Regarding stream processing applications in Figure 5.2, the aver-

age source lines of code for all four applications combined are 19.75 for Seq, 73.25 for

Fastflow, 71.50 for TBB, 210.75 for OpenMP, 194.50 for Threads, and 38.75 for SPar. This

metric primarily showcases the level of code intrusion each parallelism interface requires

to model stream parallelism concerning the sequential version. The Seq SLOC count is

lower because SPBench exposes a very concise code, which is the base for every other

parallelism implementation. The graph shows patterns: the implementation with SPar

uses the lowest; OpenMP and Threads are similar and use the highest; FastFlow and TBB

are in the middle but closer to SPar.

SPar achieves low lines of code since it is a high-level domain-specific language

for stream processing. TBB and FastFlow use the same structured parallel programming

approach, which requires code re-structuring. Their runtime manages the most compli-

cated aspects of parallel programming. On the other hand, Threads require the full im-

plementation of all parallelism features. The outliner is OpenMP because it typically only

requires a few pragma notations to enable parallelism; this is not true for stream process-

ing applications, and it requires several different mechanisms to model pipeline stream

parallelism [39]. At its highest, OpenMP has 858.33% more SLOC than SPar.

 0

 50

 100

 150

 200

 250

 300

Bzip2 Ferret Lane Face

S
L

O
C

Seq
Fastflow

TBB
OpenMP

Threads
SPar

Figure 5.2 – SPBench applications SLOC.

For NPB data processing applications in Figure 5.3, the average SLOC for all eight

applications combined is 1237 for Seq, 1307.63 for Fastflow, 1328.63 for TBB, and 1303.75

for OpenMP. Unlike the previous graph, the sequential values here are much higher be-

58

cause they include the entire source code. All parallel implementations also use the same

sequential base code. Furthermore, unlike the previous applications, the differences be-

tween TBB, OpenMP, and FastFlow are much smaller. The highest difference is on EP,

where TBB has 7.10% more SLOC than OpenMP. For this class of applications, the difference

in SLOC between each parallel programming model is insignificant. In this case, OpenMP

provides enough support to parallelize the entire code using its pragma directives. TBB

and FastFlow provide a relatively concise MapReduce pattern that can efficiently lever-

age parallelism.

 0

 500

 1000

 1500

 2000

 2500

 3000

BT CG EP FT IS LU MG SP

S
L

O
C

Seq
Fastflow

TBB
OpenMP

Figure 5.3 – NPB applications SLOC.

Moving to stream processing applications effort evaluation, Table 5.3 showcases

the Halstead estimated development effort normalized between 0 and 1, where 0 is the

sequential and 1 is the highest Halstead measurement. Halstead measurements follow a

similar pattern to SLOC, where SPar is the lowest, OpenMP and Threads are higher, and

TBB and FastFlow are in the middle. However, Halstead indicates a more significant gap

between SPar and TBB/FastFlow. This is because SPar can preserve the original code

structure. We also see that OpenMP and Threads have similar estimated development

efforts. After all, they both require explicit communication and synchronization logic, while

all others do not.

Table 5.4 showcases the Halstead measurements for all 8 NPB data processing

applications. The values are also normalized. Compared to SLOC, Halstead effort esti-

mation reveals a different insight: OpenMP is, on average, significantly lower effort than

FastFlow and TBB. That is because its pragma directives are suitable for data processing

applications, where they can correctly model all encountered parallelism features without

changing much of the original code. Indeed, it still requires a great rationale about the

59

Table 5.3 – Normalized Halstead for SPBench applications.
App Fastflow TBB OpenMP Threads SPar
Bzip2 0.32 0.31 0.96 1.00 0.04
Ferret 0.79 0.49 0.98 1.00 0.06
Lane 0.32 0.34 0.97 1.00 0.05
Face 0.24 0.25 0.97 1.00 0.04

Total Avg. 0.41 0.35 0.97 1.00 0.05

parallel logic, but they are an efficient tool for these applications. FastFlow and TBB have

a similar Halstead evaluation for all applications except EP, where TBB is estimated to be

a lower effort. That is due to a design choice where FastFlow implements a MapReduce

pattern, which requires defining the reduce operation. In contrast, TBB uses a Map pattern

with atomic operations to reduce.

Table 5.4 – Normalized Halstead for NPB applications. Normalized values.
App FastFlow TBB OpenMP
BT 0.98 1.00 0.80
CG 1.00 0.92 0.74
EP 1.00 0.77 0.58
FT 0.92 1.00 0.75
IS 0.92 1.00 0.59
LU 0.99 1.00 0.73
MG 0.95 1.00 0.58
SP 0.96 1.00 0.80

Total Avg. 0.96 0.96 0.70

The main threat to validity of this analysis is the low number of metrics consid-

ered. As this RO showed, SLOC and Halstead yield different insights. We might obtain new

information by using additional metrics to differentiate the parallelism interfaces [7, 6].

Ultimately, programming efficiency may also be subjective since it involves humans.

5.3 RO3: Evaluating performance metrics for data processing applications

Context - Parallel data processing plays a critical role in computer science by en-

abling faster and more efficient processing of large amounts of data. This data is available

at the start of the computation and is divided among the parallel computing elements.

It is possible to measure the performance of data processing applications by measuring

the difference between the time of starting and completing any computation. It ideally

completes in the shortest period.

Forces - The performance of data processing applications is heavily influenced

by the application logic and available hardware resources. Given that such applications

process large volumes of data, the choice of hardware configuration and their inherent

60

architectural characteristics significantly impact their performance. In addition, parallel

programming interfaces (PPIs) are crucial in selecting the appropriate parallelism algo-

rithms to meet these applications’ performance requirements. In this context, OpenMP is

the de-facto standard for multi-core shared-memory architectures. It has been shown to

deliver superior performance and is widely recognized in the HPC community [54].

Threats to the validity This RO and its derived ROs have some limitations. First,

we only use NPB applications and therefore are limited to the computational characteris-

tics that, although varied, they provide. For instance, although we have eight applications,

some are structurally similar such as SP and BT. Another point of consideration is that we

cannot use system profilers on Odroid and Jetson devices because they are not available.

Instead, we must rely on simulation tools for these devices, such as Valgrind. Conversely,

Raspberry allows us to accurately count hardware events with Linux perf tools. Finally,

another consideration, heavily related to RO 3.7, is that Raspberry does not dissipate heat

as efficiently as the other devices and might have some issues with higher degrees of

parallelism.

Discussion - We showcase all NPB data processing applications’ execution time

measurements in Table 5.5. In this case, we demonstrate the results for Jetson, Rasp-

berry, and Odroid devices considering all 8 NPB applications. All parallel versions use the

maximum available hardware resources. We also display the total average amount of all

devices and applications for each version at the bottom of the table. We highlight the

best parallel performance PPI in light green and the worst in light red. Compared with the

parallelism gains, OpenMP is best; it is 0.7% and 1.46% better than TBB and FastFlow, re-

spectively. However, this is a generalized result that has a significant standard deviation;

there are more fine-grained details we should consider.

Overall, Table 5.5 shows that the performance varies depending on the appli-

cation, parallel processing technique, and device. For instance, comparing FastFlow with

OpenMP on the BT application, we see that OpenMP is significantly better in Jetson and Rasp-

berry while it is similar in Odroid. These differences appear in more applications, which

we investigate individually in the remainder of this Section and derived ROs.

5.3.1 RO3.1: Analysis of MapReduce with no data dependencies

EP implements a MapReduce strategy with no data dependencies. With an effi-

cient parallelism implementation, it has the most significant scalability potential. In Fig-

ure 5.4, Jetson with a degree of parallelism 2 has a nearly linear 1.95 speedup and 3.9

with 4. Odroid shows linear speedup using the four most efficient BIG.little cores but also

benefits from the two low-performance cores, which increase the speedup from 4 to 5.15

with degrees of parallelism 4 and 6, respectively. We also see that TBB’s dynamic schedul-

61

Table 5.5 – Execution time for NPB applications. For parallel versions, green and red high-
light the best and worst observed results, respectively.

Execution Time (seconds)
Device Application

Seq FastFlow OpenMP TBB
BT 172.60 54.00 50.00 54.00
CG 403.00 164.40 136.80 163.80
EP 375.20 96.20 94.00 93.80
FT 282.00 83.40 82.40 82.40
IS 8.00 2.00 2.00 2.00
LU 149.60 51.20 51.40 51.00
MG 18.80 9.00 9.00 9.00

Jetson

SP 122.00 53.40 52.80 52.80
BT 118.80 75.80 65.20 69.40
CG 262.40 163.80 161.80 160.40
EP 181.00 47.40 46.20 46.20
FT 315.60 126.20 126.80 125.00
IS 5.00 2.00 2.00 2.00
LU 145.00 133.40 132.80 133.60
MG 27.00 21.00 21.00 21.00

Raspberry

SP 116.20 104.60 107.00 109.80
BT 100.00 36.00 36.00 34.00
CG 181.60 69.20 66.00 66.40
EP 135.00 27.00 26.20 24.00
FT 248.40 93.60 92.20 87.40
IS 2.00 1.00 1.00 1.00
LU 90.00 60.00 60.80 59.40
MG 14.00 8.00 8.00 8.00

Odroid

SP 71.40 57.40 56.80 56.80
Total Avg. 147.69 64.17 62.01 63.05

ing can handle the BIG.little differences slightly better than FF’s and OpenMP’s static load

scheduling. These findings align with the conclusion of past research [18]. EP is an applica-

tion that achieves close to 100% constant CPU utilization. Raspberry shows 1.9 speedups

with degree 2 and only 3.92 with degree 4. Therefore, low-resource hardware parallelism

can increase speedup close to the ideal efficiency.

5.3.2 RO3.2: Evaluating Map with memory contention

The FT application contains three independent symmetric Fast Fourier Transform

routines that compute three dimensions using a Map algorithm. However, this algorithm

has many communications because it must decompose slices of the main 3D matrix into

a 1D local array each time it applies an FFT resolution. Then it requires copying the re-

sults back. Data communication imposes a significant challenge to parallelism scalability.

62

50

100

150

200

250

300

350

400

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) Jetson.

40

60

80

100

120

140

160

180

200

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) Raspberry.

20

40

60

80

100

120

140

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) Odroid.

Figure 5.4 – EP application on multiple devices.

Therefore, FT can pressure the memory hierarchy mechanisms and internal data paths.

This phenomenon is known as the "memory wall" or memory contention problem in per-

formance scalability.

Figure 5.5 showcases the performance results of the FT application across all

devices. We can compare it with EP results and observe lower scalability, even though

the main computation loops have no data dependencies between each other. On Odroid,

using maximum hardware resources, EP achieves a speedup of 5.1527 and FT 2.6920. On

Raspberry, EP achieves 3.92 and FT 2.4883 speedups. Even with the memory contention

problem, using parallelism improves performance.

5.3.3 RO3.3: Evaluating data locality on Maps

MG and CG parallelism applies multiple Map algorithms, while CG also applies

multiple MapReduce algorithms. Furthermore, they both must perform multiple barrier

logic synchronizations. In addition, another challenge is that both CG and MG display

63

50

100

150

200

250

300

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) FT Jetson.

100

150

200

250

300

350

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) FT Raspberry.

80

100

120

140

160

180

200

220

240

260

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) FT Odroid.

Figure 5.5 – FT on multiple devices.

irregular data access in memory, which prevents the best cache use. EP, which has linear

data access patterns, has 3.22% L1 cache load misses, while MG has 7.57%, and CG

displays 33.81% L1 cache load misses. Higher L1 cache miss benefits hardware with

higher L2 and L3 levels of cache sizes as they are more likely to contain, depending on the

data access patterns, the required data for each computation instead of going to the main

memory. However, our devices all have the same L1 cache hierarchy size and showcase

similar scalability.

We observe the results of MG and CG on the graphs in Figures 5.6 and 5.7, respec-

tively. The first characteristic we observe is that both have limited scalability. Since these

applications have irregular data access patterns, the CPUs must wait considerably longer

for data to arrive from the main memory instead of the L1 cache levels. Since MG has a

lower cache miss rate, it can scale slightly better than CG; MG scales up to the degree of

parallelism three, and CG mainly scales up to degree 2 (see Figures 5.6 and 5.7).

Comparing PPIs, we can also reinforce the RO3.6 on Odroid devices with degrees

of parallelism 5 and 6. Another factor is that CG requires many MapReduce synchroniza-

tions, during which time the computation is sequential. Besides the fact that it limits

64

8

10

12

14

16

18

20

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) MG Jetson.

21

22

23

24

25

26

27

28

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) MG Raspberry.

8

9

10

11

12

13

14

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) MG Odroid.

Figure 5.6 – MG on multiple devices.

scalability, it also affects computation. Since it introduces implicit barriers, OpenMP is the

only interface that supports adding no wait directives to remove them and continue com-

puting the next round of results. TBB’s work-stealing scheduler is more efficient than FF’s

static round-robin assignment at handling these applications’ irregular workloads.

5.3.4 RO3.4: Evaluating Map with data dependency

LU implements the Symmetric Successive Over-Relaxation (SSOR) method to solve

a linear system of equations. Its intensive computation relies on decomposing a 3D ma-

trix system in triangular lower/upper matrices and then solving this matrix system. In

this system, a thread can only start its computation after its neighbor has finished. The

traditional data parallelism method is better because all three dimensions have data de-

pendencies [9]. This alternative would require sending many update messages between

parallel threads, impairing parallel scalability. Therefore, the alternative is using lock syn-

chronization mechanisms. Parallelism happens when for each advance along one dimen-

sion, a new thread starts computing the next block of elements, which are incremental

65

100

150

200

250

300

350

400

450

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) CG Jetson.

140

160

180

200

220

240

260

280

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) CG Raspberry.

60

80

100

120

140

160

180

200

220

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) CG Odroid.

Figure 5.7 – CG on multiple devices.

higher. Effectively, LU is an application with high data dependency (across all three di-

mensions) that uses multi-step lock-unlock thread computations.

Figure 5.8 showcases the results of the LU application. On Raspberry, all applica-

tion versions have small scalability with speedups no greater than 1.1. The main reason

is heat dissipation issues, which we discuss in RO3.7. On the other hand, Jetson achieves

2.9 speedups and Odroid 1.59. On Odroid, OpenMP performs worse on degrees 5 and 6 for

the same reasons we discuss on RO3.6. Despite that, we observe no particular advantage

over any PPI over others. Ultimately, parallelism can be advantageous even with high data

dependencies.

5.3.5 RO3.5: Analyzing memory bandwidth as a parallelism bottleneck

BT and SP implement implicit iterative methods to approximate the solution in

CFD equations using a series of Maps without reduces or critical Sections contained. Be-

tween each Map pair, there is an implicit barrier logic. Regarding parallelism, one tech-

66

40

60

80

100

120

140

160

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) LU Jetson.

132

134

136

138

140

142

144

146

148

150

152

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) LU Raspberry.

50

60

70

80

90

100

110

120

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) LU Odroid.

Figure 5.8 – LU on multiple devices.

nique to improve performance is re-utilizing the Map structures (6 within the main com-

putation) to avoid repeatedly creating and destroying threads and organizing communi-

cation and synchronization structures. Furthermore, the application’s scalability is limited

by a sequential PDE (Partial Differential Equation) solver [54]. However, there needs to be

more inherent parallelism in our devices to create this bottleneck.

Regarding the BT application, we observe good scalability in the graphs in Figure

5.9. Raspberry achieves a maximum 1.82 speedup, Jetson 3.45, and Odroid 2.77. On

the other hand, the SP application has poor scalability in Figure 5.10. These are intriguing

results because SP only has good scalability on the Jetson board (2.3 speedups). Raspberry

(1.086 speedups) and Odroid (1.25 speedups) do not scale much and even deteriorate

performance with higher degrees of parallelism. SP has a higher cache-miss rate at 5.82%,

while BT is around 1.94%, and SP has 86% more branch misses than BT. We also analyze

CPU utilization; both applications can maintain CPU utilization above 95%.

Using a Single Board Computer profiler 1, we obtain the memory bandwidth of

Jetson is 3728.0 MB/s, Raspberry is 2478.0 MB/s, and Odroid is 3884.0 MB/s. SP is an-

1https://github.com/ThomasKaiser/sbc-bench

67

40

60

80

100

120

140

160

180

200

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) BT Jetson.

60

70

80

90

100

110

120

130

140

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) BT Raspberry.

30

40

50

60

70

80

90

100

110

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) BT Odroid.

Figure 5.9 – BT on multiple devices.

other memory-bound application, so the bandwidth explains why Odroid scales better than

Raspberry. However, another difference still explains why Jetson is the only device that

scales with parallelism. The most prevalent hardware difference between these three de-

vices is the L2 cache size. Jetson has double the L2 cache size (2048 MB) as Raspberry and

Odroid (1024 MB). In SP, threads process bigger chunks of data. Therefore, they also have

more L1 cache misses (5.82% vs. 1.94%). Therefore, SP scales better on Jetson because

it has more L2 cache. Given that Jetson has 2.3 speedups and Odroid has 1.25 speedups,

double L2 cache size displays doubles the speedup. The speedup is also affected by avail-

able memory bandwidth.

5.3.6 RO3.6: Evaluating BIG.little architecture performance features

One important feature to consider is mapping threads to physical cores. The

Odroid is a BIG.little architecture example with four high-performance and two low-performance

processing cores. Some parallel interfaces may pin threads to physical cores to exploit

cache locality better. Default FastFlow adopts this pinning strategy, although this be-

68

50

60

70

80

90

100

110

120

130

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) SP Jetson.

100

110

120

130

140

150

160

170

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) SP Raspberry.

55

60

65

70

75

80

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) SP Odroid.

Figure 5.10 – SP on multiple devices.

havior is customizable. Some threads are pinned to low-performance cores. It is known

that the slowest part of the parallel program is the limiting factor; in this case, it is the

threads that execute on the low-performance cores. If well used, low-performance cores

can increase performance; however, efficient parallel programs must also consider this

architectural feature. Typically, the OS of Odroid can handle this sufficiently well. We can

observe this phenomenon in Figure 5.11, where the graphs on the left showcase BIG.little

aware OS scheduling, and the graphs on the right showcase the non-BIG.little aware of FF

mapping. In this case, the OS BIG.little aware scheduling can improve performance by up

to 366%. This is a similar conclusion to previous research [18].

5.3.7 RO3.7: Analysis of the impact of hardware temperature on performance

The consumption metrics we evaluate in RO4 show that using the maximum

available hardware resources (via parallel computing) increases power dissipation. Even

though the operating frequency is the same (they all use performance mode operating

system governor), parallelism means more CPU nodes are operating, internal bus data

69

30

40

50

60

70

80

90

100

110

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) OS mapping BT application.

20

40

60

80

100

120

140

160

180

200

220

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

ff tbb omp

(b) FF mapping BT application.

80

100

120

140

160

180

200

220

240

260

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) OS mapping FT application.

80

100

120

140

160

180

200

220

240

260

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

ff tbb omp

(d) FF mapping FT application.

20

40

60

80

100

120

140

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(e) OS mapping EP application.

20

40

60

80

100

120

140

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

ff tbb omp

(f) FF mapping EP application.

Figure 5.11 – Odroid proof for a correct thread-to-core mapping.

transfers, and increased memory usage across all hierarchical levels. Therefore, higher

power dissipation means the hardware dissipates more heat than the lower power. High

temperatures in processors can lower performance. According to the documentation, the

CPU temperature range for Raspberry is up to 85ºC. Our experiments showed that our

Raspberry device setup could not dissipate heat as efficiently as Odroid and Jetson. The

problem happens during prolonged periods of maximum parallelism when temperatures

reach 75ºC. The idle temperature is around 51.6ºC in a 22ºC room.

70

70

80

90

100

110

120

130

140

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) BT higher average temperature.

60

70

80

90

100

110

120

130

140

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(b) BT lower average temperature.

40

60

80

100

120

140

160

180

200

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) EP higher average temperature.

40

60

80

100

120

140

160

180

200

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(d) EP lower average temperature.

23

24

25

26

27

28

29

30

31

32

33

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(e) MG higher average temperature.

21

22

23

24

25

26

27

28

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(f) MG lower average temperature.

Figure 5.12 – Raspberry device.

To confirm that temperature is the issue, we perform some extra experiments.

After finishing an experiment using maximum parallelism and achieving temperatures as

high as 75ºC, we let the device cool down to its idle temperature, which usually takes 30 to

60 seconds in our setup. We start the next experiment only after the temperature is back

in its idle state. By keeping the average temperature of the device lower, we can improve

the total (all 8 applications) average performance from 99.425 seconds to 83.52 seconds,

representing a 17.39% better performance considering all parallel versions. However, if

71

we look at the individual applications, we see performance improvements ranging from

smaller 0.9% (SP) up to 49.89% (EP).

To help visualize the results, we showcase in the graphs in Figure 5.12 the higher-

temperature performance readings on the left and the lower-temperature readings on the

right. Comparing the graphs on the right and the left, we see that the lower degrees

of parallelism (Seq and 1) do not improve execution time as much as higher degrees of

parallelism (3 and 4). The reason is that, as discussed in the previous paragraph, the

average temperature is not as high when the parallel application uses fewer CPUs. We

observe a maximum temperature of 66ºC with a degree of parallelism compared to 75ºC

with degree 4. We can perform better (0.9% up to 49.89%) by keeping the processor with

a lower average temperature.

5.4 RO4: Evaluating consumption metrics for data processing applications

Given that the Context is equivalent to RO5, regarding Forces, the PPIs that

use the most hardware resources yield the most power dissipation but the lowest energy

consumption. They use the hardware resources most intensively, momentously drawing

more power, which results in higher computational power. For instance, a PPI that uses

all CPUs simultaneously will necessarily draw more power. However, PPIs that potentially

cause less cache-miss also cause fewer data movements within the hardware and may

reduce energy consumption because fewer actions should occur. It also reduces power

dissipation. Parallelism can cause more hardware operations executed (i.e., synchroniza-

tion, communication, and more L1 cache movements due to more cores). Conversely,

lower execution time from parallelism lowers the total energy consumption by lowering

the time interval that measures the idle component’s energy consumption. Other hard-

ware and system considerations also affect energy consumption (i.e., clock frequency and

peripherals activity); however, they are not related to PPIs parallelism. The main limita-

tions of this analysis is related to the precision of the energy measurement device and

sampling rate of 3 times per second.

Discussion - Often, energy consumption has some degree of correlation with

their performance counterparts; when the execution time is lower, the total energy con-

sumption is also typically lower because the processing finishes earlier, and so does the

energy consumption reading. This effect indicates that applications that take longer to

execute consume more energy. The constant energy consumption by idle components

(i.e., GPUs, peripherals, video output, and DMA) also increases this effect. However, this

is only sometimes the case. We highlight in Figure 5.13 the performance graphs on the

left and energy consumption graphs on the right. These are a few examples of some ap-

plications among multiple devices in which we can see a correlation between performance

72

and energy consumption; energy consumption and performance might change at differ-

ent rates. If we apply a Pearson correlation calculation between these two values, we get

a correlation factor of 0.51.

100

150

200

250

300

350

400

450

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(a) Jetson CG Performance.

128

256

512

Seq 1 2 3 4

E
n
e
rg

y
 (

u
W

h
)

Degree of Parallelism

ff tbb omp

(b) Jetson CG Energy Consumption.

60

70

80

90

100

110

120

130

140

Seq 1 2 3 4

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(c) Raspberry BT Performance.

64

128

256

Seq 1 2 3 4

E
n
e
rg

y
 (

u
W

h
)

Degree of Parallelism

ff tbb omp

(d) Raspberry BT Energy Consumption.

50

60

70

80

90

100

110

120

Seq 1 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Degree of Parallelism

ff tbb omp

(e) Odroid LU Performance.

64

128

Seq 1 2 3 4 5 6

E
n
e
rg

y
 (

u
W

h
)

Degree of Parallelism

ff tbb omp

(f) Odroid LU Energy Consumption.

Figure 5.13 – correlation between execution time and energy consumption on data pro-
cessing applications.

Table 5.6 summarizes the energy consumption in uWh for all NPB applications

across all devices. We can highlight that, according to the total average values, paral-

lelism can reduce the total energy consumption required to perform the same set of com-

73

putations by 30.36 to 31%. In contrast, the difference in execution time improvements

regarding the sequential version is between 56.57 and 57.96%. Therefore, the gains in

energy consumption are smaller than performance but still significant.

Comparing devices, the energy Odroid consumes, on average, 32.95% and 57.97%

less energy than Jetson and Raspberry, respectively. In comparison, Odroid has, on aver-

age, 46.94% and 54.65% better performance than Jetson and Raspberry, respectively. In

this case, the trend repeats where gains in energy consumption are smaller than per-

formance. Overall, Odroid achieves less execution time and more energy consumption

because it has more inherent parallelism (6 cores instead of Raspberry and Jetson 4).

Table 5.6 – Energy consumption for NPB. The maximum observed standard deviation is
0.034. For parallel versions, green and red highlight the best and worst observed results
respectively.

Total Energy Consumption (uWh)
Device Application

FastFlow OpenMP TBB Seq
BT 94.60 89.00 95.60 164.20
CG 264.60 217.80 264.80 399.00
EP 116.80 113.80 113.80 281.00
FT 137.80 138.40 138.00 266.20
IS 8.80 8.40 7.80 18.60
LU 85.20 85.80 86.40 144.00
MG 21.00 18.80 20.00 24.40

Jetson

SP 90.20 91.40 90.80 122.00
BT 130.00 123.80 130.20 153.60
CG 264.80 265.80 264.80 346.80
EP 74.40 72.20 72.40 197.00
FT 201.60 200.00 199.40 394.00
IS 8.00 7.80 8.20 16.80
LU 201.20 200.20 201.20 182.80
MG 40.80 38.80 39.20 39.40

Raspberry

SP 250.40 248.00 252.60 148.20
BT 73.80 74.00 72.40 106.60
CG 140.00 137.40 133.40 206.40
EP 39.00 38.20 36.00 108.00
FT 137.60 137.20 136.60 233.00
IS 3.40 4.00 4.00 6.80
LU 95.00 110.80 98.00 101.40
MG 17.80 17.80 18.40 19.00

Odroid

SP 113.40 117.40 120.60 81.00
Total Avg. 108.76 106.53 108.53 156.68

Examining Table 5.6, we see that OpenMP yields the best overall energy consump-

tion readings. FastFlow and TBB perform similarly to each other (difference of 0.21%) but

are, respectively, 2.09% and 1.84% inferior to OpenMP. Overall, the best-performing inter-

faces in each device and application yield the lowest energy consumption. The explana-

74

tions for all readings are the same as for equivalent performance results in RO3. However,

the evaluation can also take into consideration power dissipation.

Table 5.7 summarizes the average power dissipation in W for all NPB applications

across all devices. Therefore, as expected, since the sequential version uses the least

amount of hardware resources, it consumes the least average power. Considering that the

reduction in energy consumption from parallel and sequential versions is 30.36 to 31%,

the increase in power dissipation between parallel and sequential versions is between

65.77 and 68.05%.

Another vital factor to consider is power peaks. Isolating the maximum Power

reading during the execution of the application across all devices and calculating the av-

erage, we get that FastFlow peaks at 6.36 W, OpenMP 6.42 W, TBB 6.61 W, and the se-

quential at 4.68 W. Additionally, if we observe absolute single maximum values, we get

FastFlow with 7.982 W, OpenMP with 8.123 W, TBB with 8.338 W, and the sequential with

6.468 W. Therefore, the average and maximum peaks, we get that FastFlow is the ver-

sion that achieves the least power peaks, followed by OpenMP, and then TBB. However, this

represents at most 4.48% of the difference between them. In this case, we only compare

a single device; this peak difference becomes more relevant in a cluster with hundreds or

thousands.

Overall, this leads us to conclude that OpenMP is the most suitable interface for

data processing applications. FastFlow power peaks are 1.76% lesser than OpenMP; how-

ever, FastFlow consumes total energy. TBB and FastFlow are very similar to each other

regarding energy consumption.

5.5 RO5: Evaluating performance metrics of stream processing applications

Context - Parallel stream processing allows multiple threads to process data si-

multaneously whenever available. Typical metrics to measure the performance of stream

processing systems are latency, throughput, and resource utilization. Resource usage is

considered in RO6. Latency is the average time between a stream item generation and

the moment it finishes processing. This metric is essential to systems that operate under

some degree of real-time constraints. Throughput measures the average processing rate

of items per second; it indicates that the system can process more items in a period of

time.

Forces - Past research shows that the relation between these metrics displays

some exclusivity [71]. The parallel algorithm can allocate the maximum number of pro-

cessing resources to one of the stream items as soon as it arrives. Alternatively, it can

opt for a more balanced approach that distributes the processing resources among dif-

ferent stages. The first option can reduce latency to the detriment of throughput, while

75

Table 5.7 – Power dissipation for NPB. The maximum observed standard deviation is 0.61.
For parallel versions, green highlights the best and red the worst results.

Average Power Dissipation (W)
Device Application

FastFlow OpenMP TBB Seq
BT 6.17 6.30 6.24 3.38
CG 5.37 5.25 5.39 3.42
EP 4.33 4.34 4.35 2.69
FT 5.49 5.61 5.57 3.13
IS 4.77 4.95 4.86 2.87
LU 5.84 5.87 5.92 3.40
MG 5.42 5.18 5.28 3.73

Jetson

SP 5.97 6.06 6.05 3.57
BT 4.53 4.21 4.27 4.60
CG 5.43 5.37 5.37 4.52
EP 5.56 5.54 5.54 3.99
FT 5.34 5.31 5.32 4.17
IS 5.20 5.20 5.40 4.03
LU 5.35 5.37 5.34 4.47
MG 5.42 5.39 5.42 4.38

Raspberry

SP 5.36 5.40 5.38 4.53
BT 6.57 6.54 7.41 3.77
CG 5.68 5.80 6.31 3.88
EP 5.10 5.09 5.37 2.86
FT 4.98 5.05 5.29 3.17
IS 5.21 5.54 5.16 3.13
LU 5.61 5.22 5.84 4.02
MG 5.60 5.51 5.83 4.05

Odroid

SP 5.60 5.67 5.78 4.00
Total Avg. 5.41 5.41 5.53 3.74

the second can potentially increase throughput to the detriment of latency. Another par-

allel algorithm feature is considering statically or dynamically allocating resources for the

computation.

The main threats to the validity of this RO and its derived ROs are related to

the limited variations in characteristics of the parallelism algorithms in SPBench applica-

tions. All applications, except Ferret, have the same parallel pipeline structure. Another

point to consider is related to latency measurement. We attach a timestamp to the stream

items the moment those items are generated in the first processing stage of the pipeline.

This benefits TBB because it only executes this stage and, therefore, the timestamp cre-

ation when it has available resources. Therefore, TBB’s latency is potentially lower than if

an independent external system generated the stream items.

76

Discussion - Table 5.8 showcases latency measurements for all SPBench ap-

plications using the maximum hardware resources. The first evident conclusion is that

using parallelism increases latency. The reason is that, in addition to the original compu-

tation, parallelism adds to the cost of communication, data movements, and synchroniza-

tion of the computation. Comparing our experiments’ average latency, the best parallel

version (TBB) has 37% higher latency. TBB’s latency measurement difference is the re-

source allocation strategy, which we examine later in this Section. Threads and OpenMP

increase latency by 230.48% – they use the same queue to communicate between stages

– while FastFlow increases by 264.63%. This difference between Threads/OpenMP and

FastFlow is due to the data communication queue’s implementation strategy. FastFlow

adopts multiple lock-free queues between each producer-consumer thread pair, while

Threads/OpenMP uses a single lock-guarded queue between each stage. When the re-

source contention is higher (using a higher degree of parallelism), the Threads/OpenMP

approach yields a more balanced workload distribution. We can visualize this situation

in the left-side graphs in Figure 5.15, where Threads/OpenMP consistently achieve lower

latency with the maximum degree of parallelism.

On the other hand, SPar achieves the most significant average latency readings

by a large margin. SPar typically performs similarly to FastFlow; Ferret is an exception

where SPar achieves very high latency readings and inflates the total average (see Figure

5.15 (b)). Even the standard deviation for SPar Ferret is relatively high: 0.45 seconds.

The reason is that SPar generates an inefficient code for latency in this application. SPar

generates a pipeline of farms (i.e., pipe(farm(stage1), ..., farm(stagen)), and the FastFlow

implementation generates an optimized pattern composition (i.e., pipe(pipe(farm(stage1)),
...,pipe(farm(stagen))). The SPar version for Ferret generates four empty data emitters and

collectors that, although they do not significantly degrade throughput, add extra steps to

the communication path and severely degrade latency. These four communication paths

add extra queues with a 512 default size that severely degrades latency. The graph in

Figure 5.14 exemplifies this situation, where the on-demand paths have a queue size of

1, and the four instances where it does not have on-demand have 512 queue sizes. The

user does not control this as it is a SPar internal. This observation points to the fact

that shorter data paths reduce latency. Furthermore, we can observe that on-demand

scheduling (queue-size 1) or dynamic scheduling can greatly reduce latency.

Table 5.9 showcases the throughput results for all SPBench applications across

all three devices, including the total average at the bottom. In this case, the individual ap-

plication results mostly correspond to the total average; TBB has the highest throughput,

Threads, and OpenMP closely match TBB. Then SPar and Fastflow – similar to each other –

come last. Approximately, SPar/FastFlow achieves a speedup of 3.15, and the other three

PPIs achieve 3.51 using the maximum available resources. These results confirm that par-

77

Figure 5.14 – Example of the problem in SPar code generation.

Table 5.8 – Latency measurements for all SPBench applications. The standard deviation
can vary between 0.0003 and 0.45. For parallel versions, green and red highlight the best
and worst observed results respectively.

Latency (seconds)
Device Application

Seq SPar Fastflow TBB Threads OpenMP
Bzip2 0.24 0.73 0.73 0.29 0.72 0.71
Ferret 0.05 49.22 0.74 0.05 0.44 0.44
Lane 0.93 2.65 2.65 0.97 2.66 2.68

Jetson

Face 3.40 9.82 9.79 3.81 9.75 9.74
Bzip2 0.21 1.19 1.20 0.45 1.01 1.01
Ferret 0.04 40.57 0.88 0.06 0.50 0.51
Lane 0.33 1.24 1.26 0.50 1.13 1.17

Raspberry

Face 2.10 8.67 8.48 3.76 7.89 7.86
Bzip2 0.16 1.06 1.11 0.47 0.86 0.85
Ferret 0.03 30.36 0.50 0.04 0.32 0.31
Lane 0.25 1.35 1.36 0.59 1.04 1.05

Odroid

Face 2.07 7.19 7.21 3.68 6.32 6.25
Total Avg. 0.82 12.84 2.99 1.22 2.72 2.71

allelism can significantly increase the performance of stream processing applications on

limited-resource hardware. The graphs also showcase this on the right side of Figure 5.15.

The graphs in Figure 5.15 show that Latency and Throughput do not directly

correlate. For instance, we observe that in Bzip2, we have a range difference ((max −
min)/average) of 68.99% and 6.33% for latency and throughput, respectively. However,

Ferret has a range difference of 490.27% and 96.02% for latency and throughput, respec-

tively. Additionally, latency and throughput are not exclusive (inversely correlated). As we

can observe in all degrees of parallelism 2, higher latency does not entail lower through-

put and vice-versa. For instance, with a degree of parallelism 2, we get 659.9 milliseconds

latency and 7.54 items/second throughput; with a degree of parallelism 4, we get 692.69

milliseconds latency and 13.08 items/second throughput. Even though the throughput in-

creases by 73.54%, the latency only increases by 4.97%. The Pearson correlation factor

between throughput and latency is 0.197, which indicates a low correlation.

78

 0.125

 0.25

 0.5

 1

 2

Seq 1 2 3 4 5 6

L
a

te
n
c
y
 (

s
e

c
o

n
d
s
)

Degree of Parallelism

6

8

10

12

14

16

18

Seq 1 2 3 4 5 6

It
e

m
s
 p

e
r

s
e

c
o

n
d

Degree of Parallelism

SPar
FF

TBB
OMP

Threads

(a) Bzip2.

 0.015625

 0.0625

 0.25

 1

 4

 16

Seq 1 2 3 4 5 6

L
a

te
n
c
y
 (

s
e

c
o

n
d
s
)

Degree of Parallelism

20

40

60

80

100

120

140

160

Seq 1 2 3 4 5 6
It
e

m
s
 p

e
r

s
e

c
o

n
d

Degree of Parallelism

SPar
FF

TBB
OMP

Threads

(b) Ferret.

 0.125

 0.25

 0.5

 1

 2

Seq 1 2 3 4 5 6

L
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Degree of Parallelism

2

4

6

8

10

12

14

16

18

Seq 1 2 3 4 5 6

It
e
m

s
 p

e
r

s
e
c
o
n
d

Degree of Parallelism

SPar
FF

TBB
OMP

Threads

(c) Lane detection.

 2

 4

 8

Seq 1 2 3 4 5 6

L
a

te
n
c
y
 (

s
e
c
o
n
d
s
)

Degree of Parallelism

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Seq 1 2 3 4 5 6

It
e

m
s
 p

e
r

s
e
c
o
n
d

Degree of Parallelism

SPar
FF

TBB
OMP

Threads

(d) Face Recognition.

Figure 5.15 – Odroid device graphs.

79

Table 5.9 – throughput of all SPBench applications. The maximum observed standard de-
viation is 0.92. For parallel versions, green and red highlight the best and worst observed
results respectively.

Throughput (items/second)
Device Application

Seq SPar Fastflow TBB Threads OpenMP
Bzip2 4.21 13.09 13.07 13.94 13.80 13.80
Ferret 18.57 64.58 64.32 73.39 73.54 73.11
Lane 1.07 4.02 4.02 4.09 4.14 4.10

Jetson

Face 0.29 0.99 0.98 1.03 1.03 1.02
Bzip2 4.70 8.23 8.35 8.97 8.91 8.96
Ferret 25.34 55.28 55.77 65.94 64.40 64.06
Lane 3.03 7.64 7.69 7.95 8.03 7.76

Raspberry

Face 0.48 1.02 1.02 1.04 1.03 1.04
Bzip2 6.39 17.26 17.13 17.51 17.42 17.42
Ferret 34.15 134.11 135.66 155.21 151.30 151.64
Lane 4.00 15.94 15.48 16.13 15.95 15.86

Odroid

Face 0.48 1.80 1.82 1.90 1.89 1.90
Total Avg. 8.56 27.00 27.11 30.59 30.12 30.06

5.5.1 RO5.1: Assessing the effect of blocking vs. non-Blocking computation on perfor-

mance metrics

As discussed in RO1, SPar, and Fastlow permit selecting blocking or non-blocking

behavior for waiting. Blocking may also be referred to as busy-waiting. Blocking behavior

can yield better performance because threads waiting with NOP operations can instantly

retrieve and compute the stream items. At the same time, non-blocking threads need

to wait for the operating system to permit them to use the CPU and retrieve the context

to continue computing [22]. Therefore, blocking behavior can potentially increase per-

formance metrics if the application does not have considerable periods of data scarcity.

Threads and OpenMP use C++ Mutexes to guard the parallel queue, which implement a

partial spin-lock. The Mutex with a partial spin-lock emulates the blocking behavior for a

fixed amount of time, after which it yields the processor back to the OS.

To assess this, we test stream processing applications on the exact condition

using FastFlow blocking and non-blocking configuration. Effectively, the non-blocking

approach yields 68.1% less throughput and increases the end-to-end latency by 205.9%.

For low-contention processing stages, meaning that it typically does not have to wait for

data to be available in the queue, this increase is less relevant at 32.6%. In conclusion,

blocking communication between parallel stages can significantly improve performance

metrics.

80

5.5.2 RO5.2: Evaluating computational resource allocation strategies in parallelism

techniques

One important parallelism design choice is mapping computation to existing threads;

it can be a static or dynamic approach. One thread performs only one logical type of com-

putation using the static strategy. On the other hand, the dynamic approach permits one

thread to perform multiple types of computation according to some scheduler logic. For

instance, suppose we have computation f (g(h(C))) where C = x , y , z that applies filter h
then g and then f to a data set containing x , y , and z. For the static approach, one thread

always executes the same filter computation. In our example, one thread performs f (C),
another g(C), and other h(C). For the dynamic approach, one thread can perform any

of the three filters computation according to some scheduler logic. In our example, one

thread performs f (g(h(x))), another f (g(h(y))), and other f (g(h(z))). The dynamic approach

could also have other valid combinations.

The main difference in performance between static and dynamic computation

and thread mapping is the logical set of actions taken when resource contention occurs.

In the dynamic approach, the scheduler logic must detect the bottleneck, look for other

available computations, and then change the thread behavior accordingly. There is a

computational overhead for the scheduler logic. However, when a static thread can not

perform its computation, it must either yield the physical core through an operating sys-

tem call or it can block using NOP (no operation) instructions. Here, the computational

overhead occurs with the system calls and context switching or meaningless NOP compu-

tations. Out of our tested PPIs, only TBB uses the dynamic approach. Every other interface

uses static.

TBB consistently achieves lower latency readings due to its thread allocation

strategy. TBB threads can execute any pipeline computational filter or stage, which is co-

ordinated by its dynamic task scheduler. Therefore, TBB threads only execute the stream

generator code when it has sufficient computational resources, which acts as a pipeline

back pressure mechanism. On the other hand, the static resource allocation strategies

have one dedicated thread for the stream generation computation. This thread also com-

putes dynamically, only generating items when the following stage can compute them.

Overall, even with an extra logic task scheduler cost, the dynamic approach yields a bet-

ter latency (122.95%) because it better exploits that extra thread’s computational power.

This is particularly relevant in the limited-resource environment. The graphs on the left of

Figure 5.15 illustrate this behavior.

However, another effect that results from the static vs. dynamic resource allo-

cation approach is perceptible from the right-side throughput graphs of Figure 5.15: TBB

(dynamic) can yield lower throughput than the other PPIs (static) when using a lower de-

81

gree of parallelism. This difference can reach 12.73% and 26.469% for Lane detection

and Ferret, respectively. However, for Face recognition and Bzip2, this difference is pri-

marily negligible at 0.043287%. It leads us to conclude that the dynamic approach can

better handle resource contention – using the maximum number of available computa-

tional resources – improving by at least 1.72% up to 16.74%. On the other hand, the

static approach achieves slightly better performance when there are exceeding available

resources (ranging from 0.043287% up to 26.469%).

5.6 RO6: Evaluating consumption metrics for stream processing applica-

tions

The Context - for stream processing applications is similar to RO5. For Forces

-, we also consider memory consumption to assess the amount of extra memory each PPI

introduces despite the natural parallelism replication. There is the effect of dynamic vs.

static memory allocating strategy. The limitations are the same as stated in RO4.

Discussion - As we highlight for the data processing applications, there is some

correlation between energy consumption and performance metrics. Figure 5.16 demon-

strates that whenever an application achieves lower throughput (graph on the top right

corner), it also has a higher energy consumption rate. If we apply a direct correlation cal-

culation between execution time (used to calculate throughput) and energy consumption,

however, we get a small correlation factor of 0.25. Data processing applications have a

correlation factor of 0.51. We highlight that this is just a mathematical representation of

our data set and is not a universal correlation between execution time and energy con-

sumption.

Table 5.10 showcases the total energy consumption for all SPBench applications.

Similarly to data processing applications, parallelism reduces the total energy consump-

tion required to perform the same computations by 54.29 to 63.53%. It is a significant step

up the data processing application range from 30.36 to 31%. For stream applications, we

see that the improvement range in throughput regarding the sequential version is 103.7

up to 112.54%. Like the data processing applications, the energy consumption gains are

smaller than performance but still significant.

Comparing devices, the energy Odroid consumes, on average, is 50.59% and

59.74% less energy than Jetson and Raspberry, respectively. In comparison, Odroid has,

on average, 68.57% and 78.71% better performance than Jetson and Raspberry, respec-

tively. In this case, the trend repeats where gains in energy consumption are smaller than

performance. Odroid achieves better performance and energy consumption because it

has more inherent parallelism (6 cores instead of Raspberry and Jetson 4).

82

 0.0625

 0.25

 1

 4

 16

 64

Seq 1 2 3 4

L
a

te
n
c
y
 (

s
e

c
o

n
d
s
)

Degree of Parallelism

10

20

30

40

50

60

70

80

Seq 1 2 3 4

It
e

m
s
 p

e
r

s
e

c
o

n
d

Degree of Parallelism

SPar
FF

TBB
OMP

Threads

(a) Performance.

 64

 128

 256

Seq 1 2 3 4

E
n
e
rg

y
 (

u
W

h
)

Degree of Parallelism

SPar
FF

TBB
OMP

Threads

(b) Energy Consumption.

Figure 5.16 – Ferret application: correlation between performance and energy consump-
tion.

Table 5.10 – Energy consumption of all SPBench applications. The maximum observed
standard deviation is 0.00089. For parallel versions, green and red highlight the best and
worst observed results respectively.

Total Energy Consumption (uWh)
Device Application

Seq SPar Fastflow TBB Threads OpenMP
Bzip2 79.8 45 45.4 42.6 43 42.8
Ferret 160.4 84.6 87.2 75.2 76.2 76
Lane 64.8 28.4 28.2 27.8 27.6 27.2

Jetson

Face 93.4 50.2 50.2 48.8 48 48.2
Bzip2 99.6 70.6 71.8 66.4 66 66.6
Ferret 166.6 97.4 100.8 79.2 80.6 81.8
Lane 37.8 18 18.2 17.4 17.2 17.6

Raspberry

Face 82.4 50 49.2 46.4 45.8 46
Bzip2 54.8 35.8 36.2 35.8 34.6 35.6
Ferret 88 47.4 47 41.2 42.4 41.8
Lane 20.6 10.6 11.6 10.4 11 10.8

Odroid

Face 56 29.6 29.6 28.8 29 28.6
Total Avg. 83.68 47.30 47.95 43.33 43.45 43.58

Examining Table 5.10, we see that TBB yields the best overall energy consumption

readings. OpenMP and Threads come closely behind, with differences between them and

TBB being 1.56% and 1.76%, respectively. FastFlow and SPar seem to perform more

poorly, given that they are 12.06% and 12.49% inferior to TBB. The explanations for all

83

energy consumption variations between PPIs are the same as for equivalent performance

results in RO5.

Table 5.11 summarizes the average power dissipation in W for all SPBench appli-

cations across all devices. Therefore, as expected, since the sequential version uses the

least amount of hardware resources, it consumes the least average power. Considering

that the reduction in energy consumption from parallel and sequential versions is 54.29

to 63.53%, the increase in power dissipation between parallel and sequential versions is

between 45.98 and 46.86%.

Isolating the maximum power reading during the execution of the application

across all devices and calculating the average, we get that SPar peaks at 7.48 W, FastFlow

at 7.01 W, TBB at 7.06 W, Threads at 7.13 W, OpenMP at 7.01 W, and sequential at 4.75 W.

However, this represents at most 6.7% of the difference between them. As we discussed

previously, this is only considering a single device.

Table 5.11 – Power dissipation of all SPBench applications. The maximum observed stan-
dard deviation is 0.31. For parallel versions, green and red highlight the best and worst
observed results respectively.

Average Power Dissipation (W)
Device Application

Seq SPar Fastflow TBB Threads OpenMP
Bzip2 3.11 5.43 5.48 5.46 5.44 5.45
Ferret 3.09 5.62 5.63 5.66 5.75 5.70
Lane 2.79 4.53 4.53 4.53 4.53 4.53

Jetson

Face 3.21 5.78 5.73 5.85 5.77 5.74
Bzip2 4.32 5.44 5.50 5.51 5.46 5.46
Ferret 4.32 5.32 5.36 5.38 5.34 5.32
Lane 4.55 5.55 5.60 5.57 5.56 5.49

Raspberry

Face 4.55 5.48 5.48 5.46 5.46 5.45
Bzip2 3.24 5.74 5.68 5.79 5.68 5.76
Ferret 3.08 6.55 6.48 6.58 6.50 6.54
Lane 3.30 6.65 6.63 6.76 6.85 6.88

Odroid

Face 3.15 6.14 6.17 6.31 6.29 6.33
Total 3.56 5.69 5.69 5.74 5.72 5.72

5.6.1 RO6.1: Analysis of memory consumption for parallel stream applications

Table 5.12 showcases the memory consumption each PPI requires to execute a

parallel program with the most computational resources available in each device. Looking

at the total averages, we can see the increase in percentage taking the sequential ver-

sion as a base; SPar, FastFlow, TBB, Threads, and OpenMP respectively increase 90.23%,

86.88%, 72.60%, 81.10%, and 78.08%. Even the most minor memory consumption ver-

sion also significantly increases the memory consumption of the sequential version. It is

84

a factor that must be taken into account by system maintainers. The parallel versions

can consume as much as 7.38 times more memory. The parallel versions in Odroid use

significantly more memory because they have to sustain six parallel threads instead of 4

from Jetson and Raspberry.

Table 5.12 – Memory consumption of all SPBench applications. For parallel versions, green
and red highlight the best and worst observed results respectively.

Memory Consumption (MB)
Device Application

Seq SPar Fastflow TBB Threads OpenMP
Bzip2 11188 44984 46984 40516 43380 42860
Ferret 99144 115548 111416 112884 116536 108660
Lane 39156 55492 54976 47512 52320 54220

Jetson

Face 51152 90880 93288 87692 91356 89752
Bzip2 10732 48976 48312 45560 41184 45320
Ferret 57524 65468 65472 64748 65184 65704
Lane 31444 46876 46484 40160 44384 45032

Raspberry

Face 43480 76368 78276 81052 82720 86892
Bzip2 11484 84768 87288 70168 70132 65264
Ferret 57700 129996 111520 111660 120872 115220
Lane 37720 77292 73320 62564 62676 65216

Odroid

Face 49796 115164 118824 99548 116100 107660
Total Avg. 41710 79318 78013 72005 75570 74317

Regarding the PPIs, except TBB, all interfaces use static memory allocation. It

means that they allocate memory at the start of the computation and use that until the

end. When a thread requests more memory, the default language memory allocation calls

are responsible for allocating it, which means they pass this responsibility to the OS. TBB

has a different methodology to leverage thread-local and global pools of memory. When

a TBB application requests memory, the memory allocator looks in the thread-local pool

for free memory blocks. If there is no free memory in the thread-local pool, it gets a lock

and a block of memory from the global pool. The global pool is shared among all threads

in the application, and it is divided into fixed-size chunks that can be allocated to threads

as needed. Therefore, TBB typically consumes less memory because it uses a dynamic

approach.

5.7 RO7: Evaluating matrix multiplication in limited-resource hardware

Context - Matrix multiplication is a fundamental operation in many fields of

study. It represents complex systems as it is a fundamental building block of many algo-

rithms and numerical computation methods. It corresponds to the bulk of the computation

of a typical machine-learning neural network. It is also essential in computer graphics and

image processing.

85

Forces - Possibilities to increase the computational performance of matrix multi-

plication operations are using vectorization or SIMD instructions, multithreading, and ac-

celerators such as GPGPUs. Furthermore, there is ongoing research with hyper-specialized

accelerators for matrix multiplication that include in-memory processing or analogical

computing. However, these emergent technologies face many challenges before being

commercially available in most hardware devices.

The main threat to validity of this analysis is related to the fact that we only

execute one matrix size load, which is the maximum size we could safely execute on

the Odroid device. Using smaller or even greater matrix sizes broken into a series of

computations to fit in the devices’ GPGPU could yield different insights.

Discussion - To assess this RO, we experiment with a straightforward 2D ma-

trix multiplication algorithm. For this algorithm, we use 1280 by 1280 matrix dimensions.

Table 5.13 showcases execution time and energy consumption metrics for the Matrix Mul-

tiplication benchmark. The Seq version is fully optimized by the compiler. We developed a

manually vectorized version of the algorithm; however, it achieves the same performance

as the compiler-optimized version across all platforms. Therefore, we do not depict it in

the table. The performance difference between the compiler- and manually-vectorized

versions was, on average, 0.4 seconds out of 72.57 seconds. This coincides precisely with

the standard deviation number.

Table 5.13 – Matrix Multiplication Metrics. The greatest standard deviations are 3.58 for
the CPU and 2.21 for GPU.

Device Version
Execution

Time
(s)

Total Energy
Consumption

(uWh)

Avg. Power
Consumption

(W)

Maximum
Power

(W)
Seq 72.57 64.6 3.20 3.315

CUDA 0.55 0.4 5.37 6.023Jetson
OpenMP 14.61 18.6 4.64 4.9

Seq 286.15 212 2.66 2.936
OpenCL 3.98 3.4 3.31 3.468Odroid
OpenMP 37.81 46 4.38 5.032

Seq 79.14 92.8 4.21 4.501
Raspberry

OpenMP 36.05 52.4 5.16 5.557

Regarding Table 5.13, the most significant standard deviations are 3.58 for the

CPU and 2.21 for GPU across all devices. The GPGPU versions are 132 and 72 times faster

than the sequential versions in Jetson and Odroid, respectively. GPGPU versions perform

much better because the Matrix Multiplication code is an ideal target for massive GPGPU

parallelism. With correct implementation, it can leverage the GPGPU hardware capabili-

ties; however, it requires a manual optimization of the kernel parameters.

Besides execution time, GPGPU parallelism yields the best total energy consump-

tion readings. The Jetson device gets the highest average and peak power dissipation.

86

Compared to CPU parallelism with OpenMP, GPU parallelism gets 15.80 and 23.01% higher

average and peak power dissipation. However, this differs for the Odroid device GPGPU,

which has lower power than CPU parallelism in OpenMP. That is because Odroid GPU is opti-

mized for energy efficiency, given that it is a typical smartphone GPU. On the other hand,

Maxwell GPU from Jetson is optimized for general-purpose computing and can accelerate

parallel processing tasks better with more available cores. The Maxwell GPU performs

621.82% better than the Mali G52 GPU.

5.8 RO8: Evaluating GPGPU parallelism for data processing applications

Context - limited-resource devices often have GPU accelerators. They are de-

signed to handle graphics-intensive tasks much more efficiently than the device’s CPU.

Additionally, they are an option for general-purpose computing for neural-network infer-

ence, mathematical operations, and low-complexity robotics. Ultimately, limited-resource

hardware GPUs are designed for cost-effectiveness and low energy consumption.

Forces - The GPGPU architecture favors massive parallelism, often found within

data processing applications. However, these devices have more limited computing ca-

pability (simpler hardware) and available hardware, which require detailed customization.

Since GPU cores are much simpler than CPU cores, developers must consider that the GPU

kernel code should not be complex [7]. For instance, while high-end server GPUs have

65,536 32-bit registers per streaming multiprocessor and 32 64-bit per thread, Nvidia

Maxwell (Jetson GPU) only has 192 32-bit registers and 64 64-bit registers. Additionally,

the compute capabilities of Maxwell GPGPU are old (5.3), which means it does not have

features and optimizations from modern GPGPUS (9.x). Furthermore, the software support

for these devices is limited. Mali G52 GPU supports OpenCL, OpenGL, and Rendescript,

while the Jetson Maxwell device only supports NVIDIA CUDA alternatives.

Discussion - For evaluating GPGPU parallelism, we use the CUDA implementa-

tion of all NPB applications [9]. We can successfully execute all applications of the NPB

benchmark except EP, BT, and SP; they both execute, but the NPB result verification re-

turn is unsuccessful. Therefore, we omit EP, BT, and SP from our analysis. For these three

applications, the output is not a number because there are not enough registers to run the

code. Since the GPGPU code uses registers to store intermediate results, the code actually

corrupts and returns without completing the computation. This is caused by a limitation of

the GPGPU available resources, in this case, the internal registers. The solution would be

to adapt the algorithm to launch smaller kernels. Similarly, we can not execute NPB appli-

cations on Odroid Mali G52 because NPB requires 64-bit precision, and Mali only supports

32-bit precision. Limitations are similar to the ones stated in ROs 3 and 4.

87

Table 5.14 depicts execution time, total energy consumption, and average power

dissipation for all NPB applications on the Jetson device. In this case, we only add OpenMP

as the base of comparison since it is the best-performing version as evaluated on RO3.

Regarding execution time, the first factor we can observe is that, contrary to matrix multi-

plication, these more robust data processing applications scale less on the GPGPU. CUDA

versions have an average speedup of 3.68, while OpenMP ones have 3.06. The drop in scal-

ability is because these NPB applications perform many more operations with the memory,

which hinders the application’s scalability potential. Another factor that limits scalability is

that NPB applications have thousands of barrier synchronization and launches up to thou-

sands of kernels. However, GPGPU is still significantly faster; it is 11.55% up to 50% faster

than OpenMP, taking the sequential as a reference.

Table 5.14 – Metrics for NPB applications with CUDA GPGPU.
Execution
Time (s)

Total Energy
Consumption (uWh)

Avg. Power
Consumption (W)

Device Aplication
Seq CUDA OpenMP Seq CUDA OpenMP Seq CUDA OpenMP

CG 403.00 122.60 136.80 399.00 205.00 264.80 3.42 5.29 5.39
FT 282.00 57.20 82.40 266.20 110.00 138.00 3.13 6.29 5.57
IS 8.00 4.00 2.00 18.60 10.00 7.80 2.87 4.83 4.86
LU 149.60 44.00 51.40 144.00 75.00 86.40 3.40 6.00 5.92

Jetson

MG 18.80 6.00 9.00 24.40 17.80 20.00 3.73 5.12 5.28
Total Average 107.68 29.23 35.20 106.53 52.23 64.63 2.07 3.44 3.38

Evaluating total energy consumption in Table 5.14, we see a similar trend to ex-

ecution time. CUDA, on average, uses 68.40% less energy to perform the same set of

computations than the sequential version; OpenMP uses 48.96% less. The average power

dissipation is another representation of this pattern. However, examining power peaks,

OpenMP gets 6.42 W while CUDA versions get up to 8.025 W. Therefore, GPGPU setups

should be prepared to handle 24.98% greater power peaks.

88

6. SUMMARY OF FINDINGS

This chapter provides a summary of our findings and guidelines. In the remainder

of this chapter, we enumerate a list of findings, briefly explain them, and relate it to the

ROs that allow us to conclude them.

1 For stream processing applications, OpenMP and Threads require the developer to

specify the communication queue and synchronization strategies explicitly. [RO1 and RO2]

OpenMP and Threads showcase the greatest SLOC and Halstead programmability met-

rics, up to 858.33% more than SPar.

2 For data processing applications, OpenMP showcases the lowest estimated complexity.

[RO2]

OpenMP has 0.7 normalized Halstead, while FastFlow and TBB have 0.96. This Hal-

stead measurement indicates that OpenMP is roughly 30% less complex than the others

because its pragma directives are suitable for data processing applications. With SLOC,

there are 1.61% differences.

3 Map and MapReduce data parallelism can increase performance and reduce energy

consumption in limited-resource hardware. [RO3.1, RO3.2, 3.4, 3.5, and RO4]

MapReduce, with no data dependencies, can achieve 3.9 speedups using four cores,

independently of PPI. With memory contention, the scalability potential is reduced, but it

still achieves speedups up to 2.48. Furthermore, with data dependencies, the scalability is

also limited, and the speedups are up to 2.9. It can also reduce total energy consumption

by up to 31%. Ultimately, Map and MapReduce parallelism is advantageous on limited-

resource hardware, even with irregular data access and direct data dependencies.

4 Devices with larger L2 cache sizes can increase parallelism scalability. [RO3.3 and

RO3.5]

Irregular data access that increases L1 cache-miss rate from 3.22% up to 33.81%

severely hinders parallelism efficiency. We observe that the device with double the L2

cache size achieves a speedup of 2.3 while the one with half the L2 size achieves 1.25.

Therefore, L2 cache size can be the direct bottleneck factor for the scalability potential of

parallelism.

5 BIG.little architecture requires special care for the thread mapping strategy. The de-

fault OS thread scheduler handles it well. [RO3.6]

Using the low-performance cores of Big.little architectures can increase performance,

but efficient parallel programs must also consider this architectural feature. The OS

89

BIG.little aware scheduling can improve performance by up to 366% compared to a schedul-

ing strategy that does not consider this architectural feature.

6 Parallelism can increase average hardware temperature, which impacts performance

scalability. [RO3.7]

The average device temperature also increases using the maximum available hard-

ware resources with parallelism. By keeping the average device temperature lower, we

can perform from 0.9% up to 49.89% better.

7 Parallelism reduces the total execution time and energy consumption to perform a set

of computations. [RO3, RO4, RO5, and RO6]

Parallelism can cause more hardware operations executed due to parallelism (i.e., syn-

chronization, communication, and more L1 cache movements due to more cores). Con-

versely, lower execution time from parallelism lowers the total energy consumption by

lowering the time interval that measures the idle component’s energy consumption. Par-

allelism can reduce the total energy consumption required to perform identical computa-

tions between 54.29 and 63.53%. In contrast, the difference in throughput improvements

regarding the sequential version is between 103.7 and 112.54%. Therefore, the gains in

energy consumption are smaller than performance but still significant.

8 OpenMP is the best performing PPI on data processing applications. [RO3 and RO4]

OpenMP yields the best overall energy consumption readings. FastFlow and TBB per-

form similarly to each other (difference of 0.21%) but are, respectively, 2.09% and 1.84%

inferior to OpenMP. Regarding execution time, OpenMP is best; it is 0.7% and 1.46% better

than TBB and FastFlow, respectively.

9 Efficient parallel implementations that use more hardware resources reduce the total

energy consumption but increase the power consumption and maximum power peaks.

[RO4 and RO6]

Considering that the reduction in energy consumption from parallel and sequential

versions is 30.36 to 31%, the increase in power consumption between parallel and se-

quential versions are between 65.77 and 68.05%. Additionally, the best PPIs increase the

maximum power peaks by up to 4.48% between each other.

10 For stream processing applications, TBB is the best-performing PPI. [RO5 and RO6]

It achieves the lowest energy consumption (up to 10.45% better than other PPIs), la-

tency (up to 145.08% better), and highest throughput (up to 11.75% better). The main

explanations are related to TBBs dynamic approach to parallelism that handles the limited-

resource domain better.

11 Parallelism increases latency in stream processing applications. [RO5]

90

In addition to the original computation, parallelism adds to the cost of communication,

data movements, and synchronization of the computation. Comparing our experiments’

average latency, the best parallel version (TBB) has 37% higher latency than the sequen-

tial version.

12 On-demand or dynamic workload scheduling can reduce latency in stream processing

applications. [RO5]

Although it does not significantly degrade throughput, on-demand scheduling (queue-

size 1) or dynamic scheduling can reduce latency by 132.79% up to 373.05%. It results in

a more balanced computational resource distribution between stream items, resulting in

shorter wait times from arrival to computation.

13 Throughput and Latency do not significantly correlate with limited-resource hardware.

[RO5]

The general correlation factor latency and throughput in our experiments is 0.197.

For instance, with a degree of parallelism 2, we get 659.9 milliseconds latency and 7.54

items/second throughput; with a degree of parallelism 4, we get 692.69 milliseconds

latency and 13.08 items/second throughput. Even though the throughput increases by

73.54%, the latency only increases by 4.97%.

14 Blocking or busy-waiting yields lower latency and higher throughput. [RO5.1]

Blocking behavior can yield better performance because threads waiting with NOP

operations can instantly retrieve and compute the stream items. Effectively, the non-

blocking approach yields 68.1% less throughput and increases the end-to-end latency by

205.9%. For low-contention processing stages, meaning that it typically does not have to

wait for data to be available in the queue, this increase is less relevant at 32.6%. In con-

clusion, blocking communication between parallel stages can significantly improve perfor-

mance metrics.

15 Dynamic thread-to-computation mapping achieves lower latency and higher through-

put than the static approach. [RO5.2]

For latency, the dynamic approach can get 122.95% better latency. For throughput,

the dynamic approach can better handle resource contention – using the maximum num-

ber of available computational resources – improving by at least 1.72% up to 16.74%. On

the other hand, the static approach achieves slightly better performance when there are

exceeding available resources (ranging from 0.043287% up to 26.469%).

16 Data processing applications have a higher correlation factor between execution time

and energy consumption than stream processing applications. [RO6]

91

The direct correlation between execution time and the energy consumption is 0.25.

Data processing applications have a correlation factor of 0.51. Based on our data set, we

argue that both of these correlations are significant.

17 Parallelism increases memory consumption. [RO6.1]

On average, parallelism using maximum device resources increases memory con-

sumption by up to 90.23%. However, some parallel versions can increase memory con-

sumption by as much as 7.38 times more memory. TBB uses the least amount of memory

for parallelism because it uses an allocator logic instead of statically allocating parallel

threads’ memory.

18 GPGPU parallelism greatly increases performance and reduces the energy consump-

tion of Matrix Multiplication operations. [RO7]

For limited-resource hardware, the GPGPU version can be up to 132 times faster than

the sequential versions. However, it also gets 23.01% higher average and peak power

consumption.

19 GPGPU parallelism is optimal for data processing applications. [RO8]

GPGPU parallelism is 11.55% up to 50% faster than the best-performing CPU version

on data processing applications. It also consumes less total energy but gets 24.98% higher

power peaks.

92

7. CONCLUSION

This Master’s thesis investigated the impact and implications of parallelism on

limited-resource hardware devices. This study is crucial because these devices have be-

come increasingly more sophisticated, which imposes challenges on software develop-

ers. These challenges involve selecting the appropriate parallelism strategy, PPIs (par-

allel programming interfaces), and an appropriate device that meets the performance

requirements of their applications. This decision process requires deep knowledge of

limited-resource hardware, operating system, PPI internals, and parallelism algorithms.

Therefore, this work helps to guide developers when choosing parallelism strategies or

interfaces for their applications on limited-resource hardware.

To meet our goal, we proposed a set of ROs (research objectives) to guide this

research in answering the leading question: What parallelism techniques and interfaces

work well for limited-resource hardware? From that, we focused on the main part of this

thesis, the experimental analysis guided by these ROs. Our experiments consider twelve

applications, eight exploiting data, and four stream processing parallelism on three hard-

ware devices with different architectural characteristics. They also evaluate programma-

bility, performance, and consumption metrics: execution time (s), latency (s), through-

put (items/s), speedup, total energy consumption (Wh), average power consumption (W),

peak power consumption (W), and memory consumption (Mb). Finally, we experiment par-

allel versions developed using SPar, FastFlow, TBB, Threads, OpenMP, OpenCL, and CUDA.

We perform various experiments from our set of ROs with detailed explanations

of the outcomes regarding parallelism and hardware features. We summarized these re-

sults in a series of guidelines with explanations about each conclusion pointing to the ROs

deeper analysis that allowed us to conclude them. In our study, we observed that paral-

lelism could reduce the total energy consumption required to perform identical computa-

tions between 54.29 and 63.53%. In contrast, execution time improvements are between

30.36 and 112.54%. Therefore, the gains in energy consumption are fewer than perfor-

mance but still significant, a pattern that repeats in multiple ROs analysis. Additionally,

we found OpenMP is the most suitable parallelism interface for data processing applica-

tions. Finally, we observed that dynamic approaches to parallelism tend to perform better,

particularly TBB, in stream processing applications.

During our ROs analysis, we highlight some of the main limitations or threats to

the validity of this research. Generally, they are related to the precision of our energy

measurement readings and the constrained characteristics of our 12 applications. This

research brought the benefits of a structured approach to evaluate many parallelism fea-

tures. Additionally, its discussions bring a panorama of parallel computing that can guide

parallelism developers on limited-resource hardware devices.

93

For future work, we can isolate and simulate characteristics with synthetic bench-

marks. For instance, we can create a situation that forces an L1 cache miss and evaluate

how much the L2 size affects parallelism. Similarly, we can force L2 cache miss and mea-

sure the effect of memory bandwidth on parallelism scalability. Another advancement is

combining stream and data parallelism and assessing their relation on limited-resource

hardware, particularly with applications that combine neural network inference and video

filtering. One crucial future step is assessing distributed computing using a cluster of

limited-resource devices, which is essential to the edge computing domain. Finally, an-

other critical future research investigates programming techniques that allow robust HPC

GPGPU code into limited-resource GPGPU; this includes techniques to reduce register re-

quirements for GPGPU kernel invocations and optimization techniques.

94

LIST OF PAPERS

Below this paragraph, we display a list of papers published during this Master’s

thesis period. None of these papers relate to this Master’s thesis. They were written in

parallel with the Master’s thesis.

• OpenMP as runtime for providing high-level stream parallelism on multi-

cores. The Journal of Supercomputing [39].

• High-level and efficient structured stream parallelism for rust on multi-

cores. Journal of Computer Languages [71].

• DSParLib: A C++ Template Library for Distributed Stream Parallelism. In-

ternational Journal Of Parallel Programming. [52].

• Combining stream with data parallelism abstractions for multi-cores. Jour-

nal of Computer Languages [51].

• High-Level Stream and Data Parallelism in C++ for Multi-Cores. Brazilian

Symposium on Programming Languages. [55]

• Performance Data Visualization of Linux Events on Multicores. Simpósio em

Sistemas Computacionais de Alto Desempenho. [80]

95

REFERENCES

[1] Adornes, D. “A unified mapreduce programming interface for multi-core and

distributed architectures”, Master’s thesis, Faculdade de Informática - PPGCC -

PUCRS, 2015, 143p.

[2] Al Ghadani, A. K. A.; Mateen, W.; Ramaswamy, R. G. “Tensor-based cuda optimization

for ann inferencing using parallel acceleration on embedded gpu”. In: International

Conference Artificial Intelligence Applications and Innovations, 2020, pp. 291–302.

[3] Aldegheri, S.; Manzato, S.; Bombieri, N. “Enhancing performance of computer

vision applications on low-power embedded systems through heterogeneous parallel

programming”. In: International Conference on Very Large Scale Integration, 2018,

pp. 119–124.

[4] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Fastflow: High-level and

efficient streaming on multi-core”. In: International Conference Programming Multi-

core and Many-core Computing Systems, 2014, pp. 1–14.

[5] Amiri, S.; Abdi, S.; Sharifzadeh, S. “Simultaneous multiprocessing on fpga-cpu

heterogeneous chips”. In: International Conference on Industrial Technology, 2021,

pp. 805–809.

[6] Andrade, G.; Griebler, D.; Santos, R.; Fernandes, L. G. “A parallel programming

assessment for stream processing applications on multi-core systems”, Computer

Standards & Interfaces, vol. 84, March 2023, pp. 1–25.

[7] Andrade, G.; Griebler, D.; Santos, R.; Kessler, C.; Ernstsson, A.; Fernandes, L. G.

“Analyzing programming effort model accuracy of high-level parallel programs for

stream processing”. In: International Conference on Software Engineering and

Advanced Applications, 2022, pp. 1–4.

[8] Andrade, H. C. M.; Gedik, B.; Turaga, D. S. “Fundamentals of Stream Processing:

Application Design, Systems, and Analytics”. Cambridge University Press, 2014,

529p.

[9] Araujo, G.; Griebler, D.; Rockenbach, D. A.; Danelutto, M.; Fernandes, L. G. “Nas

parallel benchmarks with cuda and beyond”, Software: Practice and Experience,

vol. 53, Nov 2021, pp. 53–80.

[10] Bahrami, M.; Li, D.; Singhal, M.; Kundu, A. “An efficient parallel implementation

of a light-weight data privacy method for mobile cloud users”. In: International

Conference on Data-Intensive Computing in the Clouds, 2016, pp. 51–58.

96

[11] Bahri, N.; Maazouz, M.; Khemiri, R.; Masmoudi, N. “Parallel implementation of hevc

encoder on multicore arm-based platform”. In: International Conference on Systems,

Signals Devices, 2019, pp. 663–668.

[12] Bailey, D.; Harris, T.; Saphir, W.; Van Der Wijngaart, R.; Woo, A.; Yarrow, M. “The

nas parallel benchmarks 2.0”, Technical Report, Technical Report NAS-95-020, NASA

Ames Research Center, 1995, 1p.

[13] Barr, M.; Massa, A. “Programming Embedded Systems: With C and GNU Development

Tools”. O’Reilly Media, Inc., 2006, 420p.

[14] Belloch, J. A.; León, G.; Badía, J. M.; Lindoso, A.; San Millan, E. “Evaluating the

computational performance of the xilinx ultrascale+ eg heterogeneous mpsoc”,

Journal of Supercomputing, vol. 77, June 2021, pp. 2124–2137.

[15] Bienia, C.; Kumar, S.; Singh, J. P.; Li, K. “The parsec benchmark suite:

Characterization and architectural implications”. In: International Conference on

Parallel architectures and compilation techniques, 2008, pp. 72–81.

[16] Cannizzaro, M. J.; Gretok, E. W.; George, A. D. “Risc-v benchmarking for onboard

sensor processing”. In: International Conference IEEE Space Computing Conference,

2021, pp. 46–59.

[17] Chen, L.; Cui, M.; Zhang, F.; Hu, B.; Huang, K. “High-speed scene flow on embedded

commercial off-the-shelf systems”, IEEE Transactions on Industrial Informatics,

vol. 15, August 2019, pp. 1843–1852.

[18] Chronaki, K.; Moretó, M.; Casas, M.; Rico, A.; Badia, R. M.; Ayguadé, E.; Valero, M. “On

the maturity of parallel applications for asymmetric multi-core processors”, Journal

of Parallel and Distributed Computing, vol. 127, May 2019, pp. 105–115.

[19] Clemons, J.; Zhu, H.; Savarese, S.; Austin, T. “Mevbench: A mobile computer vision

benchmarking suite”. In: International Conference IEEE Symposium on Workload

Characterization, 2011, pp. 91–102.

[20] Coffrin, C. J. “Beyond moore’s law: Exploring the future of computation”, Technical

Report, Los Alamos National Lab., Los Alamos, United States, 2019, 55p.

[21] Flink, A. “Stateful Computations over Data Streams”. Source: https://flink.apache.

org/, July 2022.

[22] Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “Spbench: a framework

for creating benchmarks of stream processing applications”, Computing, vol. 1,

January 2022, pp. 1–23.

97

[23] Gilchrist, J. “Parallel compression with bzip2”. In: International Conference on Parallel

and Distributed Computing and Systems, 2004, pp. 559–564.

[24] GMAP. “Parallel Application Modeling Group (Home Page)”. Source: https://gmap.

pucrs.br, January 2016.

[25] Gordon, M. I.; Thies, W.; Amarasinghe, S. “Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs”. In: International Conference on

Architectural Support for Programming Languages and Operating Systems, 2006, pp.

151–162.

[26] Gretok, E. W.; Kain, E. T.; George, A. D. “Comparative benchmarking analysis of next-

generation space processors”. In: International Conference Aerospace Conference,

2019, pp. 1–16.

[27] Griebler, D. “Domain-specific language & support tool for high-level stream

parallelism”, Doctoral thesis, Faculdade de Informática - PPGCC - PUCRS, 2016, 243p.

[28] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “Spar: A dsl for high-level

and productive stream parallelism”, Parallel Processing Letters, vol. 27, March 2017,

pp. 1–20.

[29] Griebler, D.; De Sensi, D.; Vogel, A.; Danelutto, M.; Fernandes, L. G. “Service level

objectives via c++11 attributes”. In: International Conference Parallel Processing

Workshops, 2018, pp. 745–756.

[30] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Higher-level parallelism

abstractions for video applications with spar”. In: International Conference on Parallel

Computing, 2017, pp. 698–707.

[31] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Stream parallelism

with ordered data constraints on multi-core systems”, Journal of Supercomputing,

vol. 75, July 2018, pp. 4042–4061.

[32] Griebler, D.; Hoffmann, R. B.; Loff, J.; Danelutto, M.; Fernandes, L. G. “High-

level and efficient stream parallelism on multi-core systems with spar for data

compression applications”. In: International Conference Brazilian Symposium on

High-Performance Computing Systems, 2017, pp. 16–27.

[33] Griebler, D.; Vogel, A.; De Sensi, D.; Danelutto, M.; Fernandes, L. G. “Simplifying

and implementing service level objectives for stream parallelism”, Journal of

Supercomputing, vol. 76, June 2019, pp. 4603–4628.

[34] Guo, C.; Ci, S.; Zhou, Y.; Yang, Y. “A survey of energy consumption measurement in

embedded systems”, IEEE Access, vol. 9, April 2021, pp. 60516–60530.

98

[35] Görtz, M. D.; Kühn, R.; Zietek, O.; Bernhard, R.; Bulinski, M.; Duman, D.; Freisen,

B.; Jentsch, U.; Klöppner, T.; Popovic, D.; Xu, L. “Energy efficiency of a low power

hardware cluster for high performance computing”. In: International Conference

Informatik, 2017, pp. 2537–2548.

[36] Herlihy, M.; Shavit, N. “The Art of Multiprocessor Programming”. Morgan Kaufmann

Publishers, 2008, 340p.

[37] Hoffmann, R. B. “Stream Parallelism Annotations for Autonomic OpenMP Code

Generation”, Technical Report, School of Technology - PPGCC - PUCRS, Porto Alegre,

Brazil, 2020, 55p.

[38] Hoffmann, R. B.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Stream parallelism

annotations for multi-core frameworks”. In: International Conference Brazilian

Symposium on Programming Languages, 2020, pp. 48–55.

[39] Hoffmann, R. B.; Löff, J.; Griebler, D.; Fernandes, L. G. “Openmp as runtime

for providing high-level stream parallelism on multi-cores”, The Journal of

Supercomputing, vol. 1, Apr 2022, pp. 1–22.

[40] Hsieh, C.; Sani, A. A.; Dutt, N. “Surf: Self-aware unified runtime framework for parallel

programs on heterogeneous mobile architectures”. In: International Conference on

Very Large Scale Integration, 2019, pp. 136–141.

[41] Intel. “oneapi: A new era of heterogeneous computing”. Source: https://www.

intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.oik8xz, Feb

2022.

[42] ISO/IEC-14882:2011. “Information technology - programming languages - c++”,

Technical Report, International Standard Organization, Geneva, Switzerland, 2011,

1338p.

[43] Jacqueline Farrell, Dick Buttlar, B. N. “PThreads Programming”. O’Reilly, 1996, 284p.

[44] Jin, H.; Frumkin, M. A.; Yan, J. C. “The openmp implementation of nas parallel

benchmarks and its performance”. In: International Conference Technology

Solutions, 1999, pp. 1–26.

[45] Joy-IT. “Um25c measuring instrument”. Source:

https://joy-it.net/en/products/JT-UM25C, Jan 2022.

[46] Jubertie, S.; Melin, E.; Raliravaka, N.; Bodele, E.; Bocanegra, P. E. “Impact

of vectorization and multithreading on performance and energy consumption on

jetson boards”. In: International Conference on High Performance Computing and

Simulation, 2018, pp. 276–283.

99

[47] Junior, J. S.; Carissimi, A. “Avaliação do consumo de energia na execução do nas

parallel benchmark (npb) em processadores arm”. In: International Conference

Brazilian Symposium on High Performance Computing, 2015, pp. 240–251.

[48] Khasanov, R.; Goens, A.; Castrillon, J. “Implicit data-parallelism in kahn process

networks: Bridging the macqueen gap”. In: International Conference on Parallel

Programming and RunTime Management Techniques for Manycore Architectures and

Design Tools and Architectures for Multicore Embedded Computing Platforms, 2018,

pp. 20–25.

[49] Kubiak, K.; Dec, G.; Stadnicka, D. “Possible applications of edge computing in the

manufacturing industry: Systematic literature review”, Sensors, vol. 22, March 2022,

pp. 1–7.

[50] Lee, S.-J.; Park, S.-S.; Chung, K.-S. “Efficient simd implementation for accelerating

convolutional neural network”. In: International Conference on Communication and

Information Processing, 2018, pp. 174–179.

[51] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “Combining stream with data

parallelism abstractions for multi-cores”, Journal of Computer Languages, vol. 73,

Dec 2022, pp. 1–21.

[52] Löff, J.; Hoffmann, R. B.; Pieper, R.; Griebler, D.; Fernandes, L. G. “Dsparlib: A C++

template library for distributed stream parallelism”, International Journal of Parallel

Programming, vol. 50, Dec 2022, pp. 454–485.

[53] Lorenzon, A. F.; Cera, M. C.; Beck, A. C. S. “Investigating different general-purpose

and embedded multicores to achieve optimal trade-offs between performance and

energy”, Journal of Parallel and Distributed Computing, vol. 95, September 2016, pp.

107–123.

[54] Löff, J.; Griebler, D.; Mencagli, G.; Araujo, G.; Torquati, M.; Danelutto, M.;

Fernandes, L. G. “The nas parallel benchmarks for evaluating c++ parallel

programming frameworks on shared-memory architectures”, Future Generation

Computer Systems, vol. 125, July 2021, pp. 743–757.

[55] Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-level stream and data

parallelism in c++ for multi-cores”. In: International Conference Brazilian Symposium

on Programming Languages, 2021, pp. 41–48.

[56] Ma, T.; Bai, N.; Shi, W.; Wu, X.; Wang, L.; Wu, T.; Zhao, C. “Research on the application

of visual slam in embedded gpu”, Wireless Communications and Mobile Computing,

vol. 2021, Jun 2021, pp. 1–17.

100

[57] Magnussen, B. M.; Kawasumi, T.; Mikami, H.; Kimura, K.; Kasahara, H. “Performance

evaluation of oscar multi-target automatic parallelizing compiler on intel, amd, arm

and risc-v multicores”. In: International Conference Languages and Compilers for

Parallel Computing, 2022, pp. 50–64.

[58] Maheshwari, S.; Shafik, R.; Wilson, I.; Yakovlev, A.; Acharyya, A. “Repute: An opencl

based read mapping tool for embedded genomics”. In: International Conference

Design, Automation and Test in Europe Conference and Exhibition, 2020, pp. 121–

126.

[59] Marwedel, P. “Embedded System Design”. Springer Cham, 2022, 433p.

[60] McCool, M.; Reinders, J.; Robison, A. “Structured Parallel Programming: Patterns for

Efficient Computation”. Morgan Kaufmann Publishers, 2012, 432p.

[61] Membarth, R.; Reiche, O.; Hannig, F.; Teich, J.; Korner, M.; Eckert, W. “Hipacc: A

domain-specific language and compiler for image processing”, IEEE Transactions on

Parallel and Distributed Systems, vol. 27, Jan 2016, pp. 210–224.

[62] Microsoft. “Parallel patterns library (ppl)”. Source: https://docs.microsoft.com/en-us/

cpp/parallel/concrt/parallel-patterns-library-ppl, Feb 2020.

[63] Miner, D.; Shook, A. “MapReduce Design Patterns”. O’Reilly Media, 2012, 232p.

[64] Munshi, A.; Gaster, B.; Mattson, T. G.; Fung, J.; Ginsburg, D. “OpenCL Programming

Guide”. Addison-Wesley Professional, 2011, 648p.

[65] NVIDIA; Vingelmann, P.; Fitzek, F. H. “Cuda, release: 10.2.89”. Source: https:

//developer.nvidia.com/cuda-toolkit, Mar 2023.

[66] OmpSs. “The ompss programming model”. Source: https://pm.bsc.es/ompss, Feb

2022.

[67] OpenMP. “Open multi-processing api specification for parallel programming”. Source:

http://openmp.org/, Feb 2020.

[68] Ou, Z.; Pang, B.; Deng, Y.; Nurminen, J. K.; Ylä-Jääski, A.; Hui, P. “Energy- and cost-

efficiency analysis of arm-based clusters”. In: International Conference Symposium

on Cluster, Cloud and Grid Computing, 2012, pp. 115–123.

[69] P B, H.; Anireddy, S. R.; F T, J.; R, V. “Introduction to arm processors & its types and

overview to cortex m series with deep explanation of each of the processors in this

family”. In: International Conference on Computer Communication and Informatics,

2022, pp. 1–8.

101

[70] performance of intrusion detection system using OpenCL based general-purpose

computing on Graphic Processing Unit (GPGPU), I. “Widianto, ahmad rinaldi and lim,

charles and kho, i. eng”. In: International Conference on New Media, 2015, pp. 1–5.

[71] Pieper, R.; Löff, J.; Hoffmann, R. B.; Griebler, D.; Fernandes, L. G. “High-level and

efficient structured stream parallelism for rust on multi-cores”, Journal of Computer

Languages, vol. 65, July 2021, pp. 1–14.

[72] Pieper, R. L. “High-level programming abstractions for distributed stream

processing”, Master’s thesis, School of Technology, 2020, 170p.

[73] Pop, A.; Cohen, A. “Openstream: Expressiveness and data-flow compilation

of openmp streaming programs”, ACM Transactions on Architecture and Code

Optimizations, vol. 9, January 2013, pp. 1–25.

[74] Rauber, T.; Rünger, G.; Stachowski, M. “Performance and energy metrics for multi-

threaded applications on dvfs processors”, Sustainable Computing: Informatics and

Systems, vol. 17, March 2018, pp. 55–68.

[75] Reinders, J. “Intel Threading Building Blocks”. O’Reilly, 2007, 334p.

[76] Reinders, J.; Ashbaugh, B.; Brodman, J.; Kinsner, M.; Pennycook, J.; Tian, X. “Data

Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using

C++ and SYCL”. Appress Open, 2020, 548p.

[77] Rockenbach, D. A. “High-level programming abstractions for stream parallelism on

gpus”, Master’s thesis, School of Technology, 2020, 163p.

[78] Rockenbach, D. A.; Löff, J.; Araujo, G.; Griebler, D.; Fernandes, L. G. “High-level

stream and data parallelism in c++ for gpus”. In: International Conference Brazilian

Symposium on Programming Languages, 2022, pp. 41–49.

[79] Ruf, B.; Mohrs, J.; Weinmann, M.; Hinz, S.; Beyerer, J. “Res2tac—uav-borne real-

time sgm stereo optimized for embedded arm and cuda devices”, Sensors, vol. 21,

Jun 2021, pp. 1–37.

[80] Scheer, C.; Hoffmann, R.; Griebler, D.; Manssour, I.; Fernandes, L. “Performance data

visualization of linux events on multicores”. In: International Conference Brazilian

Symposium on High-Performance Computational Systems, 2021, pp. 108–119.

[81] Schmid, M.; Fritz, F.; Mottok, J. “Fine-grained parallelism framework with predictable

work-stealing for real-time multiprocessor systems”, Journal of Systems Architecture,

vol. 124, March 2022, pp. 1–10.

102

[82] Sensi, D. D.; Matteis, T. D.; Danelutto, M. “Simplifying self-adaptive and power-

aware computing with nornir”, Future Generation Computer Systems, vol. 87,

October 2018, pp. 136–151.

[83] Shalf, J. “The future of computing beyond moore’s law”, Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 378,

January 2020, pp. 1–15.

[84] Simula, F.; Pastorelli, E.; Paolucci, P. S.; Martinelli, M.; Lonardo, A.; Biagioni, A.;

Capone, C.; Capuani, F.; Cretaro, P.; De Bonis, G.; Cicero, F. L.; Pontisso, L.; Vicini,

P.; Ammendola, R. “Real-time cortical simulations: Energy and interconnect scaling

on distributed systems”. In: International Conference on Parallel, Distributed and

Network-Based Processing, 2019, pp. 283–290.

[85] Stokke, K. R.; Stensland, H. K.; Griwodz, C.; Halvorsen, P. “Load balancing of

multimedia workloads for energy efficiency on the tegra k1 multicore architecture”.

In: International Conference on Multimedia Systems Conference, 2017, pp. 124–135.

[86] Storm, A. “Apache Storm”. Source: https://storm.apache.org/, July 2022.

[87] Talreja, P. V.; Durbha, S. S.; Potnis, A. V. “On-board biophysical parameters estimation

using high performance computing”. In: International Conference Geoscience and

Remote Sensing Symposium, 2018, pp. 5445–5448.

[88] Thies, W.; Karczmarek, M.; Amarasinghe, S. “Streamit: A language for streaming

applications”. In: International Conference on Compiler Construction, 2017, pp. 179–

196.

[89] Vogel, A.; Griebler, D.; Fernandes, L. G. “Providing high-level self-adaptive

abstractions for stream parallelism on multicores”, Software: Practice and

Experience, vol. 51, January 2021, pp. 1194–1217.

[90] Xie, L.; Zhang, X. “Parallel acceleration of elas on arm”. In: International Conference

on Control, Automation and Robotics, 2019, pp. 235–240.

[91] Yongbon Koo, S. K. . Y.-g. H. “Opencl-darknet: implementation and optimization

of opencl-based deep learning object detection framework”, Internet and Web

Information Systems, vol. 24, Feb 2021, pp. 1299–1319.

[92] Zhou, X.; Li, R.; Zhang, P.; Liu, Y.; Dou, Y. “A pipelining strategy for accelerating

convolutional networks on arm processors”. In: International Conference

Communications in Computer and Information Science, 2020, pp. 519–530.

