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PLANEJAMENTO SIMBÓLICO-GEOMÉTRICO

RESUMO

Planejadores clássicos, com ações descritas com precondições e efeitos, criam uma forma
de operar em modelos puramente simbólicos para encontrar planos que alcançam os objetivos de
um agente. Planos encontrados por planejadores clássicos geralmente ignoram detalhes geométricos
necessários para resolver problemas de movimento, tais como pegar um objeto ou evitar passagens
estreitas. Esses detalhes incluem as dimensões do robô e de objetos. Em contrapartida, planejado-
res de movimento consideram apenas detalhes físicos, não objetivos ou partes simbólicas do estado.
Ambos planejadores simbólicos e de movimento são necessários para resolver certos problemas, mas
relações entre dados simbólicos e geométricos devem ser compartilhadas para evitar replanejamento
de grandes porções do espaço de busca. Para lidar com este problema, nós precisamos de um plane-
jador simbólico-geométrico que compartilhe dados e restrinja valores possíveis conforme o planeja-
mento avança, para minimizar uso de memória e tempo de planejamento. Diferentes algoritmos de
planejamento para esse tipo de planejamento híbrido foram desenvolvidos com o objetivo de combi-
nar planejamento simbólico e geométrico usando planejadores prontos ou novas implementações. A
maior parte dos planejadores híbridos compartilha informações entre as partes usando um conjunto
fixo de símbolos, os quais limitam a quantidade de informação que pode ser compartilhada. Gerando
esses símbolos durante o planejamento para a parte simbólica e os relacionando com objetos externos
complexos (containers, structs, instâncias) na parte geométrica é possível simplificar a descrição sim-
bólica enquanto exploram-se estruturas complexas e funções já disponíveis por bibliotecas externas,
como as usadas por simuladores. Esse trabalho traz como contribuições a definição de anexo semân-
tico, um mecanismo para compartilhar informação entre as partes simbólica e externa/geométrica de
um planejador de redes hierárquicas de tarefas (HTN), e uma tabela de símbolo para objeto para man-
ter detalhes externos fora da parte simbólica, enquanto capaz de computar com tais objetos externos
através de funções e anexos semânticos.

Palavras Chave: robótica, planejamento simbólico-geométrico.





SYMBOLIC-GEOMETRIC PLANNING

ABSTRACT

Classical planners, with actions described with preconditions and effects, create a way to
operate on purely symbolic models in order to find plans to reach an agent’s goals. Plans found
by classical planners often lack the geometric details required to solve motion problems, such as
grasping an object or avoiding narrow passages. Such details include robot dimensions and object
properties. Conversely, motion planners consider only physical details, not symbolic goals or parts
of the state. Both symbolic and motion planners are required to solve certain problems, but rela-
tions between symbolic and geometric data must be shared to avoid replanning large portions of the
search-space. In order to tackle this problem, we need a symbolic-geometric planner to share data and
limit possible values as planning progresses, to minimize memory usage and planning time. Different
planning algorithms for this type of hybrid planning have been developed to address the problem of
combining geometric and symbolic planning by using off-the-shelf planners or new implementations.
Most hybrid planners share information between the parts using a fixed set of symbols, which limits
the amount of information that can be shared. By generating such symbols during planning for the
symbolic part and relating them to external complex objects (containers, structs, instances) in the geo-
metric part, it is possible to simplify the symbolic description while exploiting complex structures and
functions already available in external libraries, such as the ones used by simulators. The contribu-
tions of this work include the definition of semantic attachments, as a mechanism to share information
between symbolic and external/geometrical parts for Hierarchical Task Network (HTN) planning, a
symbol to object table to keep external details hidden from the symbolic part, while able to com-
pute with external objects using functions and semantic attachments, and a precondition reordering
algorithm to improve planning time.

Keywords: robotics, symbolic-geometric planning.
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1. INTRODUCTION

In domains such as assistive robotics, self-driving cars and space exploration, autonomy is
now a more important issue than hardware, as hardware is readily available at low cost while software
must be developed for each application. Non-autonomous robots lack the capacity to make long-term
decisions, working successfully while following a script that defines a single behavior until something
unforeseen happens and then fail without notice [2]. There is a need for robots to be autonomous
agents [81], using goals or tasks as guiding forces, perceiving the world around themselves, reasoning
with an internal model of such world and acting in order to increase their chances of success.

Means-end reasoning is a key skill in autonomous agents, which must handle a model of
the world to find which actions they have available to achieve their goals before execution starts.
Within Artificial Intelligence, Automated Planning is a subfield interested in computing this sequence
of actions based on a description of the world. Planning can be done using different techniques [6, 48,
63], but it is easier to classify planners according to the description they receive before the planning
process can start. Classical planners use a declarative description of the actions as preconditions
and effects that require a discrete world in order to operate over a finite set of symbols, creating
intermediate states as search progresses. As more actions and symbols are added to the description,
more computing time is required to solve bigger problems, and even the best classical planner will
not process a large number of possible combinations in a timely fashion. Hierarchical Task Networks
(HTN) can solve this issue, using an hierarchical structure to guide the search process. HTNs are
more expressive and complex to describe than classical planning descriptions. Both approaches are
completely separated from the real-world, yet both operate over symbols and numbers that abstract
objects and resources of the real-world. As the description gets more complex, the time to extend and
maintain it with more details increases. To make the description process easier and more reliable, one
can exploit external libraries to solve common problems, such as geometric constraints. With such
geometric library, one can ask for a set of valid positions and only ask again if a new constraint is
found to limit the number of valid positions and not risk computing infinitely large sets. To avoid
computing multiple sets some approaches use a preprocessing or filtering stage in order to minimize
search time. Such optimizations tend to be domain specific, which require a domain expert, and are
prone to error, as it is not trivial to visualize how both planner and external solver are sharing data at
run-time due to the amount of data in each state [20]. An interface for the two approaches is needed
to have a generic solution, otherwise the robot takes a long time to plan an action sequence, and never
executes these actions in a world that is already different than the one it reasoned about.

Symbolic-Geometric planners try to address this issue, some use mixed approaches with
two off-the-shelf planners [39], while others follow different approaches, combining planner and
geometric solver into a single algorithm [18]. Other planners solve one side of the problem before
the other, incorporating geometric details into a firstly symbolic plan, and replanning when such
details cannot be added. [77] The main problem of these approaches is how to better share newfound
information across the two planners.
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This thesis contributes towards the Pró-Alertas project which aims to promote basic and
applied research on issues related to the prevention, mitigation and management of natural disasters.
Certain areas require routine or continuous verification to obtain data and evaluate how variations over
time may lead to a natural disaster. Some of these areas are of difficult access and require a device
to be installed for data gathering purposes to prevent future natural disasters. During natural disaster
management such areas may have people in need of help. Robotic agents can be applied to reach
the data gathering points to collect samples and/or apply sensors to obtain the information required
and alert other agents, humans or robots, about the risk. Such robots may be too complex to operate
and require certain autonomy to complete their tasks. Part of the robotic autonomy requires planning
actions before execution to better handle the available resources, such as battery. Automated planners
usually lack the ability to make external calls, with some having great constraints when they have the
ability, which limits the capacity of the planner to deal with complex scenarios that require optimized
solvers for sub-problems, and no user input during planning. We believe that with a more robust
planning system it is possible to conciliate external solvers and expert knowledge with simulation to
better test and prepare for dangerous situations. In such situations one may want to interfere with
the planning process to either save time by removing unnecessary paths to be explored and to force
critical paths to reach and gather data first, while generating a sequence of actions that matches an
expected safe behavior from the robot to coexist with other agents.

Our research aims to address three issues. First, we want to design an easy-to-use domain
description formalism that seamlessly integrates symbolic task problem description with the geo-
metric/continuous constraints inherent to robotics. Second, we want to develop algorithms to solve
problems in such formalism in a way that limits the number of objects explicitly reasoned about, by
adding such objects on demand, and ultimately processing time. Third, we want to be able to work
with symbols in a symbolic layer and with complex data structures and numeric/geometric functions
in an external layer, with an intermediate layer connecting symbols to numeric details. By separating
symbolic and geometric parts we can have an easier to understand search-space and more maintain-
able planning descriptions, while being able to exploit fast off-the-shelf geometric solvers.

To evaluate our approach we compare planning time and description differences between
known classical planners with numeric support and their domains with our HTN planner with seman-
tic attachments. We also explore how our approach could be used in other domains previously not
explored due to the amount of numeric details or external structures required, now accessible through
an intermediate layer.
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1.1 Overview of the contributions

During the course of the PhD we published all the contributions detailed in this thesis. We
also published contributions that are not directly related to this work, but which still support the work
here related to HTN planning research. We published the following papers about HTN planning:

• Maurício Cecílio Magnaguagno, Felipe Meneguzzi. Method Composition through Operator
Pattern Identification [55]. In International Conference on Automated Planning and Scheduling
(ICAPS), Workshop on Knowledge Engineering for Planning and Scheduling (KEPS), 2017;

• Felipe Meneguzzi, Maurício Cecílio Magnaguagno, Munindar P. Singh, Pankaj R. Telang, Neil
Yorke-Smith. GoCo: Planning expressive commitment protocols [61]. In Autonomous Agents
and Multi-Agent Systems (AAMAS), 2018;

• Maurício Cecílio Magnaguagno, Felipe Meneguzzi. HTN Planning with Semantic Attach-
ments [56]. In International Conference on Automated Planning and Scheduling (ICAPS),
Hierarchical Planning Workshop, 2019;

• Maurício Cecílio Magnaguagno, Felipe Meneguzzi. Semantic Attachments for HTN Plan-
ning [57]. In Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 2020.

We also published the following work about planning tools and visualizations:

• Maurício Cecílio Magnaguagno, Ramon Fraga Pereira, Felipe Meneguzzi. DOVETAIL - An
Abstraction for Classical Planning Using a Visual Metaphor [58]. In Proceedings of the 29th
International Florida AI Research Society Conference (FLAIRS), 2016;

• Maurício Cecílio Magnaguagno, Ramon Fraga Pereira, Martin Duarte Móre, Felipe Meneguzzi.
WEB PLANNER: A Tool to Develop Classical Planning Domains and Visualize Heuristic
State-Space Search [59]. In International Conference on Automated Planning and Scheduling
(ICAPS), Workshop on User Interfaces and Scheduling and Planning (UISP), 2017;

• Maurício Cecílio Magnaguagno, Ramon Fraga Pereira, Martin Duarte Móre, Felipe Meneguzzi.
Develop, Visualize and Test Classical Planning descriptions in your browser. In International
Conference on Automated Planning and Scheduling (ICAPS), System demonstration, 2019;

• Maurício Cecílio Magnaguagno, Ramon Fraga Pereira, Martin Duarte Móre, Felipe Meneguzzi.
Knowledge Engineering Tools and Techniques for AI Planning - Web Planner: A Tool to De-
velop, Visualize, and Test Classical Planning Domains [79]. Book/Chapter 11.
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Tools and repositories developed during the thesis are available online:

• HyperTensioN U: The modified HTN planner developed in this thesis, available at
github.com/Maumagnaguagno/HyperTensioN_U.

• WebPlanner: a classical planner with editor and visualizations accessible through a web
browser, focusing on new users. Available at web-planner.herokuapp.com.

• Both visualizations of WebPlanner were implemented as plugins to planning domains:
Statespace and Dovetail, available at github.com/AI-Planning/statespace and github.com/AI-

Planning/dovetail, respectively.

1.2 Overview of the Thesis

This thesis is divided into six chapters. Chapter 2 introduces the key background on clas-
sical planning, hierarchical planning, temporal planning, motion planning, and coroutines. Readers
familiar with such formalisms may safely skip reading this chapter. Chapter 3 presents our symbolic-
geometric planning approach, introducing an intermediate layer to support external predicates and
functions to access structures and libraries outside the planner. External elements are mapped to
symbols using a symbol-object table to obtain maintainable elements during planning, removing non-
symbolic elements from the domain description. The chapter closes with common use-cases of these
constructions. Chapter 4 evaluates our approach via complex examples and experiments using com-
mon scenarios and compare against known classical and HTN planners. Examples include common
grid-based problems, and motion and temporal planning problems. Chapter 5 compares our work with
other approaches that include numerical/geometrical data to planning and how they share constraints
found either by the symbolic or non-symbolic parts with the rest of the system. Finally, Chapter 6
discusses what we achieved and future work.
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2. BACKGROUND

This chapter introduces key theoretical background that underpins this work. In Section 2.1
we introduce classical planning, the basic formalism used by planners. Classical planners became
very fast due to specialized structures [6] and heuristic functions [7] guiding search towards solu-
tions with less steps, which made possible for planners to solve more detailed problems with more
actions available. Section 2.2 introduces Hierarchical planning, a planning approach that focuses on
specific actions at each time based on an hierarchical representation, built on top of the basic elements
from classical planning. Section 2.3 introduces temporal planners, such planners are specialized in
scheduling problems that arise when action duration is taken into consideration during planning Mo-
tion planning is shown in Section 2.4, such planners are specialized in geometric constraints. Motion
planners focus on movement of the planning agent itself or objects that such agent can interact with,
picking and placing such objects into satisfiable positions and orientations. Finally, Section 2.5 in-
troduces coroutines and generators as multitasking approaches to yield and resume control between
routines while keeping persistent state between calls.

2.1 Classical Planning

Devising a plan of action to achieve one’s goals [69] is a fundamental capability in au-
tonomous agents. Classical Planning is based on the idea of finding a sequence of actions that sat-
isfies a predefined goal. There are two important aspects about the planning environment that affect
which techniques can be employed to pursue a goal. The first aspect is determinism: when the out-
come of transitions is always the same, the environment is considered deterministic, otherwise, the
environment is non-deterministic, with a set of outcomes with a known or unknown probability for
each transition. The second aspect to be considered is the observability: some environments are
fully observable, such as most board-games, while others are partially observable, such as real-world
scenarios, or completely non-observable from the agent’s point of view, as a robot with sensor fail-
ure. The complexity of the environment impacts the description and the performance of the planning
system.

2.1.1 Formalization

A classical planning problem instance is defined by initial and goal states that encode prop-
erties of the objects in the world at a particular time. In order to achieve the desired goal one must
respect the rules of the domain, which limit which transitions are valid. Such transitions are the do-
main operators and are defined as preconditions and effects. Preconditions and effects use predicates
and free variables that, when unified with the current objects, enumerate the possible actions to be
performed. During the planning process, states are tested to check if they satisfy the preconditions of
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actions. The action effects can be applied if the preconditions are satisfied, creating a new possible
state. Preconditions are satisfied when the constraint formula (usually a conjunction of predicates) is
valid at the current state the action is being applied. The effects contain positive and negative sets of
predicates to be added and removed by actions, respectively, changing object properties of the current
state. Once a state that satisfies the goal is reached, the path taken is the plan or solution, a finite
sequence of actions [65].

Classical planning formalisms comprise the following elements:

Definition 1 (Terms) Terms are symbols that represent objects or variables. We call O the finite set

of objects available.

Predicates represent object relations that can be observed or changed during planning. Pred-
icates can also be seen as constraints between terms. When all terms of a predicate are objects we
call it a ground predicate, otherwise the predicate contain at least one variable term and is a lifted
predicate. Ground predicates are obtained from lifted predicates through Unification, which replace
variable terms with objects.

Definition 2 (Predicates) Predicates are defined by a signature name applied to a sequence of N

terms, represented by tn, p = 〈name(p), terms(t1, ..., tn)〉. We call F the finite set of facts, comprised

of all ground predicates.

Definition 3 (Unification) When a predicate p have all its variable terms, variables(p) = t∈ terms(p)

∧ t /∈O, replaced by O objects, we have unified a lifted predicate to a ground one. One can enumerate

several substitutions using the cartesian product between variable terms and O, such that variables(p)

x O = {(v, o) | v ∈ variables(p) ∧ o ∈O}. Then {(v0, o0), (v0, o1), ..., (vn, on)} is the set of replacements

of p to obtain ground predicates.

A state is a finite set of ground predicates that describes a world configuration at a partic-
ular time. Partial states may be used to represent only what we are interested in, in a closed-world
assumption where we have full observability. Partial states may also be used to represent only predi-
cates whose state is certainly know, in an open-world assumption, where we may lack certainty about
which predicates are true or false.

Definition 4 (State) States are represented by S = 〈p1, ..., pn〉, a set of ground predicates.

States can be modified respecting constraints that describe when a modification is APPLI-
CABLE, and the modification itself, described by APPLY.

Definition 5 (Applicable) A set of ground predicates is considered applicable when it is contained

in the current state, described by the function APPLICABLE(set, State) : set ⊆ State.
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Definition 6 (Apply) Apply is a function that removes and adds distinct effect sets of ground pred-

icates to create a new State from the current State, described by the function APPLY(a, State) :
(State − eff−(a)) ∪ eff+(a).

Each set of predicates to be used in APPLICABLE and APPLY calls can be generalized, using
variable terms, to make an Operator. More complex preconditions and effects consider expressions,
quantifiers and conditions instead of just set operations to obtain more expressive Operators. The
Operators can be Unified with O to obtain the full set of possible Actions.

Definition 7 (Operator) Operators are represented by a 4-tuple o = 〈name(o), pre(o), eff(o),
cost(o)〉:name(o) is the description or signature of o; pre(o) are the preconditions of o, a set of

predicates that must be satisfied by the current state for action o to be applied; eff(o) are the effects of

o; The effects contain positive and negative sets, eff+(o) and eff−(o), that add and remove predicates

from the state, respectively; cost(o) represents the cost of applying this operator, usually one or zero.

Definition 8 (Action) Actions are instantiated/ground operators obtained from the Unification pro-

cess of Definition 3. During the planning process, each action a that is APPLICABLE(pre(a), Staten)
can create a new reachable State, Staten+1 ← APPLY(a, Staten). The finite set of actions available

is called A.

Classical Planning is goal-driven, which requires the description of a Initial state and a Goal
state to plan for. The planner is responsible for finding a Plan, a sequence of Actions from A, that
when applied to the Initial state will satisfy the Goal state description.

Definition 9 (Initial state) The Initial state is a complete State, in a closed-world, represented by I
⊆ F, which is defined by a set of predicates that represent the current state of the environment.

Definition 10 (Goal state) Goal state is a partial State represented by G ⊆ F, which is defined by a

set of predicates that we desire to achieve by successfully applying the actions available.

Each Planning Instance is made of a generic domain D and a specific situation within this
domain to be solved, described by I and G. The solution is a Plan. Not all Planning instances can be
solved, as some G may be unreachable based on I and A, which results in planning failure.

Definition 11 (Domain) Domain brings all problem independent elements together in the tuple

D = 〈F, A〉.

Definition 12 (Plan) Plan is the solution concept of a planning problem and is represented by a

sequence of actions that when applied in a specific order will modify I to G in D, π = 〈 a1, ..., an〉. An

empty plan solves G ⊆ I.

Definition 13 (Planning instance) Planning instance represented by the 3-tuple P = 〈D, I, G〉, plan-

ners take as input P and return either π or failure.
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2.1.2 Heuristic Function

The order in which states are evaluated may generate visible difference in resources and
time required to solve a planning instance. The function which controls the evaluation order is called
heuristic function and gives priority to promising intermediate states using a metric between reached
and goal states. Such metric may consider only the expected distance (number of actions to apply)
to reach a goal state, or also the traveled distance (number of actions applied), or even the state
novelty [47]. The complexity of a perfect heuristic function varies according to the domain. As
different domains exhibit different characteristics it is almost impossible to find a heuristic function
that is both fast and accurate for all domains. To actually take advantage of a heuristic function one
must solve a relaxed version of the problem, ignoring certain details. Domain independent heuristic
functions are necessary components of fast search-based domain independent classical planners and
aim to close the gap between domain independent planners and specialized solvers.

2.1.3 Domain and Problem descriptions

In order to better describe and reuse environments, different languages were proposed, sep-
arating domain description from the implementation of planning algorithms. Stanford Research In-
stitute Problem Solver (STRIPS) [25] is a planner recognized as being one of the first to propose
a formalism to describe problem and domain, successors are referenced as STRIPS-like. Planning

Domain Definition Language (PDDL) was created in 1998 with the goal of becoming a standard in-
put for planners [60], to allow direct comparisons of efficiency between planning algorithms. With
PDDL the International Planning Competition (IPC) became possible, in which different planning
implementations compete in different tracks about resource usage and results obtained from the same
proposed problems.

PDDL domains are usually limited to symbolic approaches, as very few planners support
and are optimized for numeric problems. PDDL requires declaration of a finite set of objects, corre-
sponding to the terms of Definition 1, for grounding purposes, while the variable terms are prefixed
by “?”. The finite set of objects is a requirement to avoid a combinatorial explosion in the amount of
possible actions, corresponding to Definition 8, and ground predicates, corresponding to Definition 2.
Some objects may be the result of discretizations of the domain. The discretization process is used
to convert continuous values into their discrete counterparts, just like exchanging size in metric units
by small, medium and large. Limits between discrete parts are specific to each domain. A possible
description of pathfinding is shown in Listing 2.1 as the Search domain, in which two predicates are
used to represent where an agent is at and which positions are adjacent. The adjacencies remain
constant as they are not part of any action effects while the position of a moving agent is updated by
move actions. The problem in Listing 2.2 is a possible instance of the Search domain, in which one
agent must traverse four positions to reach a goal state. Note that the domain designer does not need
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1 ( d e f i n e ( domain s e a r c h ) ; T h i s i s a comment
2 ( : requ irement s : s t r i p s : t y p i n g )
3 ( : p r e d i c a t e s ( a t ? ag − a g e n t ? p − p o s i t i o n ) ( a d j a c e n t ? a ? b − p o s i t i o n ) )
4 ( : a c t i o n move
5 :parameters ( ? a g e n t − a g e n t ? from ? t o − p o s i t i o n )
6 : p r e c o n d i t i o n ( and ( a t ? a g e n t ? from ) ( a d j a c e n t ? from ? t o ) )
7 : e f f e c t ( and ( not ( a t ? a g e n t ? from ) ) ( a t ? a g e n t ? t o ) ) ) )� �

Listing 2.1 – PDDL Search domain with single move action.

� �
1 ( d e f i n e ( problem pb1 ) ( :domain s e a r c h )
2 ( : o b j e c t s ag1 − a g e n t
3 p0 p1 p2 p3 p4 − p o s i t i o n )
4 ( : i n i t ( a t ag1 p0 )
5 ( a d j a c e n t p0 p1 ) ( a d j a c e n t p1 p0 )
6 ( a d j a c e n t p1 p2 ) ( a d j a c e n t p2 p1 )
7 ( a d j a c e n t p2 p3 ) ( a d j a c e n t p3 p2 )
8 ( a d j a c e n t p3 p4 ) ( a d j a c e n t p4 p3 ) )
9 ( : g o a l ( a t ag1 p4 ) ) )� �

Listing 2.2 – PDDL Search problem with objects, initial and goal state.

to care about the agent repeatedly moving between adjacent positions, such as p1 and p2, in an infinite
loop. It is expected that the planner marks visited states or uses an approach that does not explore
repeated states. Unlike basic search mechanisms, one can modify the problem description, or even the
domain, to better represent the problem at hand, not having to deal with state representation. Different
problems may result in the same description due to symbolic limitations that ignore geometric details
using discretization, as seen when comparing the two maps of Figure 2.1 with our problem defined in
Listing 2.2.

p0 p1 p2 p3 p4 p0 p1

p2 p3

p4

Figure 2.1 – Symbolic descriptions remove geometric details and may be interpreted in different
ways. The same description may represent different maps. The domain designer becomes responsible
for discretizing the environment in a readable and maintainable way.

A domain expert on the other hand may have a clue about which problems may appear and
how to break such problems into parts that can be solved efficiently by common action sequences. In
the next section, the flat structure of actions from classical planning domains is expanded to include
methods that exploit the domain expert knowledge to better solve the problem by focusing on common
subproblems of a domain.



32

2.2 Hierarchical Planning

With domain knowledge one knows which action sequences are frequently used to solve
subproblems in specific domains [68]. Such sequences can be seen as recipes that, based on ingredi-
ents available and expert preferences, solve tasks in different ways. To exploit such domain knowl-
edge about problem decomposition we shift from goal states to tasks. The goal state is implicitly
achieved by the plan obtained from the tasks, just as a cake from a recipe. The ingredients available
act as decision points, that can be used to create an hierarchy of decisions, while preferences appear
as the order in which such decisions are considered. This planning formalism is called Hierarchical
Task Network (HTN).

2.2.1 Formalization

The problem for hierarchical planning is defined with initial state and tasks. Each task
corresponds to a starting node in an hierarchy, which comprises two types of nodes: primitive tasks
that map directly to an operator; and non-primitive tasks that select a method that decomposes to
subtasks. The process is repeated until only applicable primitive tasks remain, with states satisfying
preconditions in the same way as classical planning.

HTN planning expands the elements of classical planning with:

Definition 14 (Task) A task is represented by a signature name(task) applied to a sequence of N

terms that act as parameters, forwarding ground values to be used by the task, task = 〈name(task),
terms(t1, ..., tn)〉.

A set of tasks to be decomposed by an instance is called T. During each step of the planning
process the first task is removed from T by SHIFT, and mapped by name to an operator (primitive
task), equivalent to the one from Definition 7, or method (non-primitive/abstract task).

Definition 15 (Method) A method is a 3-tuple m = 〈name(m), pre(m), tasks(m), constr(m)〉, where:

name(m) is the description or signature of m; pre(m) are the preconditions of m; tasks(m) are the

subtasks of m, replacing the original task for new tasks; constr(m) are the ordering constraints im-

posed to the subtasks of m. Each ordering constraint describes the relation between two subtasks,

e.g. ti ≺ tj . In methods where not all subtasks are ordered, the planner is free to find an ordering

that achieves the plan. The finite set of methods available is called M.

During the HTN planning process, each possible DECOMPOSITION of m is found by search-
ing which methods match the current task, name(t) = name(m) for t ∈ SHIFT(T) ∧ m ∈ M. In this
work we will limit to total-order decomposition, constr(m) = tn−1 ≺ tn for n = |tasks(m)| and n ≥ 2,
which simplifies SHIFT(T) to consider only the first task. Partial ordering requires bookkeeping of the
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ordering constraints to interleave tasks, and more complex precondition descriptions, as tasks can be
accomplished in many ways not described by total ordering. The preconditions of the first task to be
decomposed, pre(SHIFT(T)), have their variable terms unified to objects based on the current state,
and external functions terms replaced by objects returned from the function evaluation.

Definition 16 (External functions) External functions are defined by a signature name applied to

a sequence of N terms, represented by tn, e = 〈name(e), terms(t1, ..., tn)〉, and replaced by a single

object obtained from the function evaluation, before or during planning if terms are ground or lifted,

respectively. The finite set of external functions is called E.

External functions are not usually included in HTN formalizations, but are commonly found
in HTN planner implementations. We thus formally include E, that allow the HTN planner to invoke
external code to create new object terms, as the ones from Definition 1, for the problem instance
during search (e.g. to represent numbers and numeric operations). In effect, the presence of such
functions makes the states in HTN planning potentially infinite, since such functions can introduce
arbitrary new objects.

Definition 17 (HTN domain) The classical planning domain, with F facts and A actions, is extended

with M methods and E external functions to make the HTN domain. The HTN domain is represented

by D = 〈F, A, M, E〉.

Definition 18 (HTN plan) HTN plan represented by a sequence of actions that when applied in a

specific order will modify I to an implicit G defined by T, π = 〈a1, ..., an〉.

Definition 19 (HTN planning instance) HTN planning instance represented by the 3-tuple P = 〈D,
I, T〉 and returns π or failure.

2.2.2 Decomposition-based Planning algorithm

We illustrate the algorithm for Total-order Forward Decomposition (TFD) [36, chapter 11]
in Algorithm 1 as one possible implementation of an HTN. TFD decomposes tasks using a recursive
approach that selects one task at a time with constraint orderings satisfied, with SHIFT (Line 3), and
check if the current task maps to a primitive or non-primitive task, an operator or method respectively.
Tasks that map to an operator (Lines 4-7) modify the current state, while tasks that map to a method
(Lines 8-12) are replaced by its subtasks. The process is repeated until it is not possible to decompose
the current task, either by reaching only primitive tasks or failure, which forces the algorithm to
backtrack, trying another applicable unification or decomposition on a previous level.

If no tasks are left to be decomposed the algorithm returns an empty plan as the base of
recursion (Line 2). This style of planning is able to describe more than STRIPS, with a built-in op-
erator heuristic function tailored to the domain and designer preferences [54], with all the methods
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required beforehand, which consumes a domain expert time. With domain knowledge the HTN do-
main description is more complex than the classical planning description, as recursive tasks can be
described. Recursive tasks appear when a non-primitive task expands a branch that contain itself in
the subtasks, this is useful when there is a need to apply several times the same set of operators until
a stop condition is met, like walking until the destination is reached.

Algorithm 1 Total-order Forward Decomposition planner
1: function TFD(S, T, D)
2: if T = ∅ then return empty π
3: t← SHIFT(T)
4: if t is a primitive task
5: for tapplicable ∈ APPLICABLE(pre(t), S) do
6: π← TFD(APPLY(tapplicable, S), T, D)
7: if π 6= failure then return tapplicable · π
8: else if t is a non-primitive task
9: for m ∈ DECOMPOSITION(t, D) do

10: for tasks(m) ∈ APPLICABLE(pre(m), S) do
11: π← TFD(S, tasks(m) · T, D)
12: if π 6= failure then return π
13: return failure

2.2.3 Domain and Problem descriptions

Since both PDDL and SHOP [63] input are based on LISP representations and developed
around the same time they share style, but are incompatible. PDDL is more verbose with each field
being named, while SHOP descriptions require the user to know what each unnamed field must de-
scribe. The problem file is almost identical to PDDL, the main differences are the lack of an explicit
set of O objects from Definition 1, and a Task list T from Definition 14, instead of a Goal state, as
in Definition 10. Operators represent the same as the classical operators, which correspond to Defi-
nition 7, elements that when unified, using the Unification from Definition 3, can be used to APPLY

effects, using the function from Definition 6, to the current State when APPLICABLE, according to
Definition 5. SHOP operators have a name, a set of parameters, preconditions, negative and positive
effects, and optional cost with default value of one. Methods, have a name, parameters, preconditions
and subtasks, as seen in Definition 15. Methods can be decomposed in different ways and have an
optional label for each case. Subtask constraints are simplified to either totally ordered or unordered.
Unordered tasks may interleave subtasks from different tasks to minimize plan size, but require more
preconditions, compared to totally-ordered tasks, to consider states generated by other tasks due to
interleaving. The domain designer is responsible for possible repeated states and infinite loops, as
recursive tasks may revisit states indefinitely. One must describe the domain in a way that such cases
never happen, or add extra information to the state and domain description, e.g. by adding precondi-
tions to not explore visited configurations, which are marked using invisible operators (used during
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planning, but removed from the final plan). The successors SHOP2 [64], JSHOP and JSHOP2 [46]
extended the input description language to support task interleaving, backtracking tries, and protec-
tions (predicate guards to avoid task interference)

The PDDL domain from Listing 2.1 can be modeled as an HTN domain. The HTN Search
domain show in Listing 2.3 illustrates how one uses domain knowledge to guide search in an HTN
planner. The key method driving the HTN for a plan consists of the forward method as the main task.
Figure 2.2 contains the decomposition of the forward task to a base or recursive forward method. The
base precondition tests if the agent is already at the goal position, which requires no further subtask
decomposition. Otherwise, the recursive method can be applied with the agent moving to an adjacent
position, marking the previous position as visited and decomposing one more step of recursive before
freeing visited positions with unvisit. The visit and unvisit invisible operators are used to avoid an
infinite loop where an agent moves around the same positions, forcing the HTN to backtrack and try
new adjacent positions. Visited positions are cleared once the goal position is reached by the base
forward method, so an agent is able to reuse these positions by later decompositions. Both methods
achieve the implicit destination. Note that adding operators to a PDDL domain would increase the
number of actions to consider during classical planning, while an HTN planner ignores primitive
and non-primitive tasks outside the decomposition process. This strict behavior also makes HTNs
domains harder to design and test, as one may have to add or modify many methods to include
support to a new operator, or risk having a planner that cannot handle certain situations.

method
forward(agent, goal)

operator
move(agent, from, place)

operator
visit(agent, pos)

operator
unvisit(agent, pos)

method
forward(agent, goal)

method
forward(agent, goal)

(not (at agent goal))
(at agent from)

(adjacent from place)
(not (visited agent place))

(at agent goal)

task:

preconditions:

subtasks:

base recursive

Figure 2.2 – In the HTN Search domain a recursive task is used to reach positions in a grid-based
scenario. Two decompositions are available to forward, one without subtasks when the goal position
is reached, and the other with a single movement before recursion.

The problem shown in Listing 2.4 has an equivalent initial state and an implicit goal state
described by the main task (forward ag1 p4). Many pathfinding solutions could be implemented to
replace the forward search, other implementations include backward and bidirectional search 1, which
expand positions from the goal position to the current position before moving, or from both directions
until the paths cross, respectively.

All HTN descriptions in this thesis use JSHOP or JSHOP-like descriptions as no HTN stan-
dard description language currently exists, and JSHOP does not allow empty operator preconditions

1Available at github.com/Maumagnaguagno/HyperTensioN/blob/master/examples/search/search.jshop
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to be omitted as SHOP. An example of a call to compute distance using an external function is shown
in Listing 2.5.

� �
1 ( defdomain s e a r c h (
2 ( : o p e r a t o r ( ! move ? a g e n t ? from ? t o )
3 ( ( a t ? a g e n t ? from ) ( a d j a c e n t ? from ? t o ) ) ; P r e c o n d i t i o n s
4 ( ( a t ? a g e n t ? from ) ) ; Del e f f e c t s
5 ( ( a t ? a g e n t ? t o ) ) ) ; Add e f f e c t s
6 ( : o p e r a t o r ( ! ! v i s i t ? a g e n t ? pos )
7 ( ) ; P r e c o n d i t i o n s
8 ( ) ; Del e f f e c t s
9 ( ( v i s i t e d ? a g e n t ? pos ) ) ) ; Add e f f e c t s

10 ( : o p e r a t o r ( ! ! u n v i s i t ? a g e n t ? pos )
11 ( ) ; P r e c o n d i t i o n s
12 ( ( v i s i t e d ? a g e n t ? pos ) ) ; Del e f f e c t s
13 ( ) ) ; Add e f f e c t s
14 ( :method ( f o r w a r d ? a g e n t ? g o a l ) ; Decomposable by base or r e c u r s i v e
15 base ; Unique l a b e l used f o r debugg ing
16 ( ( a t ? a g e n t ? g o a l ) ) ; P r e c o n d i t i o n s
17 ( ) ; Empty s u b t a s k s
18 r e c u r s i v e ; Unique l a b e l used f o r debugg ing
19 ( ; P r e c o n d i t i o n s
20 ( not ( a t ? a g e n t ? g o a l ) )
21 ( a t ? a g e n t ? from )
22 ( a d j a c e n t ? from ? p l a c e )
23 ( not ( v i s i t e d ? a g e n t ? p l a c e ) ) )
24 ( ; S u b t a s k s
25 ( ! move ? a g e n t ? from ? p l a c e )
26 ( ! ! v i s i t ? a g e n t ? from )
27 ( f o r w a r d ? a g e n t ? g o a l ) ; R e c u r s i v e s u b t a s k
28 ( ! ! u n v i s i t ? a g e n t ? from ) ) ) )� �

Listing 2.3 – JSHOP Search domain with three operators and a recursive method.

� �
1 ( defproblem pb1 s e a r c h
2 ( ; I n i t i a l s t a t e
3 ( a t ag1 p0 )
4 ( a d j a c e n t p0 p1 ) ( a d j a c e n t p1 p0 )
5 ( a d j a c e n t p1 p2 ) ( a d j a c e n t p2 p1 )
6 ( a d j a c e n t p2 p3 ) ( a d j a c e n t p3 p2 )
7 ( a d j a c e n t p3 p4 ) ( a d j a c e n t p4 p3 ) )
8 ( ( f o r w a r d ag1 p4 ) ) ) ; Task l i s t� �

Listing 2.4 – JSHOP Search problem with initial state and a single task.

� �
1 ( c a l l d i s t a n c e ? x ? y ? gx ? gy )� �

Listing 2.5 – JSHOP Call statement for distance with two points described by four terms.
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2.3 Temporal Planning

Temporal planning is used to describe even more complex problems, where actions have du-
ration and a start time point. Preconditions are turned into conditions, which limit how the state must
be before, during or after an action takes place. The same happen with effects, that now can happen at
the start or end of an action. Now the planner needs to consider not only which action sequence will
solve the problem, but also when each action must start and finish for their preconditions and effects
to match. Temporal planning also adds events and processes as temporal constructions to describe a
domain. Events are instantaneous changes applied to the environment once its preconditions are sat-
isfied, such as a candle removing its light from the environment once its fuel ends, without the need of
an action. Processes are continuous changes applied for as long as its conditions are satisfied, such as
a candle consuming its fuel, gravity pulling objects, and the speed of an object changing its position.
Events and processes are analogous to instantaneous and durative actions, respectively, taken by the
environment itself and executed once their conditions are met.

To deal with time constructions the planner must handle a more expressive description and
use a scheduler as flexible as the chosen description to control the beginning and end of each action, in
this case durative actions. The STRIPS extension added by Temporal Graphplan (TGP) [74] requires
all preconditions of an action to hold true during its execution, while PDDL 2.1 [28] expands the
concept with at start, at end and over all keywords to describe when each predicate is expected/set to
be true, as seen in Figure 2.3, allowing for more flexibility. Note that these keywords can be combined,
using (and (at start (p)) (at end (p)) (over all (p))) as a precondition will force the predicate (p) to hold
true for the entire duration of an action. Durative actions can also take advantage of time as a variable
to describe continuous numeric effects, as the consumption of fuel decreasing for the amount of time
an engine is running, as in the Durative-move domain of Listing 2.6. Not all planners are temporally
expressive, able to consider the concurrency described in the domain correctly and optimally solve
problems. Planners such as TGP are temporally simple and can still solve temporal domains that have
no concurrency [14]. Other limitations can also impact what can be expressed in temporal domains.
PDDL still lacks support for trigonometric functions, which would make simple movements trivial
to describe using sine and cosine, as such functions have non-linear behaviors and are complex to be
evaluated during planning. Domain descriptions are limited to functions provided by the language
specification and planner implementation.

action
t

over allat start at end

Figure 2.3 – PDDL 2.1 time constructions applied to actions is limited to at start, at end, over all.
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1 ( d e f i n e ( domain dura t ive−move )
2 ( : requ irement s : f l u e n t s : d u r a t i v e−a c t i o n s )
3 ( : p r e d i c a t e s ( moving ? v e h i c l e ) )
4 ( : f u n c t i o n s ( p o s i t i o n ? v e h i c l e ) ( f u e l L e v e l ? v e h i c l e ) )
5 ( : d u r a t i v e−a c t i o n move
6 :parameters ( ? v e h i c l e )
7 : d u r a t i o n (= ? d u r a t i o n 100)
8 : c o n d i t i o n ( ove r a l l ( >= ( f u e l L e v e l ? v e h i c l e ) 0 ) )
9 : e f f e c t ( and

10 ( a t s t a r t ( moving ? v e h i c l e ) )
11 ( i n c r e a s e ( p o s i t i o n ? v e h i c l e ) (* # t 5 ) )
12 ; ( i n c r e a s e ( p o s i t i o n X ? v e h i c l e ) (* (* # t 5 ) ( cos ( a n g l e ) ) ) )
13 ; ( i n c r e a s e ( p o s i t i o n Y ? v e h i c l e ) (* (* # t 5 ) ( s i n ( a n g l e ) ) ) )
14 ( d e c r e a s e ( f u e l L e v e l ? v e h i c l e ) (* # t 10) )
15 ( a t end ( not ( moving ? v e h i c l e ) ) ) ) )
16 . . . ) ; Other a c t i o n s o m i t t e d� �

Listing 2.6 – Durative action example using PDDL 2.1 temporal elements to describe the fuel
consumption and position changes of a vehicle as it moves using #t to represent the action duration.

HTNs can also incorporate temporal elements in their domain descriptions. PDDL 2.1
durative actions can be converted to SHOP2 HTN methods by following nine steps [38]. Such steps
are:

1. Create a new method definition with the same signature as the <act> durative action.

2. Add all at start conditions as preconditions to the new method for early failure detection.

3. Handle action duration: Add three additional variables, ?start, ?end, and ?duration to the
method definition, and additional preconditions binding them:

(a) (time ?start)

(b) (assign ?duration <original-PDDL-duration>)

(c) (assign ?end (+ ?duration ?start))

4. Create a !start-<act> operator, adding the ?start variable to its arguments.

5. Create an !end-<act> operator, adding the ?end variable to its arguments

6. The task network for the new method will be (:ordered !start-<act> !end-<act>).

7. Add all at end conditions as preconditions to the !end-<act> operator.

8. over all conditions are enforced as follows:

(a) Add the over all conditions as preconditions to the method <act>, so that they will hold
at the start of the interval.

(b) For each over all condition, the !start-<act> operator must add a protection, marking
predicates as immutable.
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(c) Protections added by the !start-<act> operator must be removed by the !end-<act> oper-
ator.

9. Manage the time fluent:

(a) Add (time ?start) precondition to the !start-<act> operator.

(b) Update the time fluent at the !end-<act> operator. To do this, first check that the time
for the !start-<act> operator has not passed adding the following preconditions: (time ?t)

and (<= ?t ?end). Finally, add the effect (time ?end).

However, it is not possible to model concurrency with continuous effects based on a time
variable that is always incremented without extra structures being added to the underlying HTN plan-
ner to contain the status of each predicate at specific time points. PDDL+ [27] events and processes
could be used to take advantage of the more focused search of HTN to minimize the computational
cost of the many interferences between effects, requiring external structures to handle time intervals
and constraints, however no HTN planner ported such concepts from PDDL+. The PDDL+ domain
from Listing 2.7 contains position, speed and acceleration functions to hold numeric data about the
state and processes to update these values based on a time variable #t when the car is running. The
goal in this domain is to safely stop near a certain position. The acceleration is propagated through
processes to a velocity function v, and v is propagated to a displacement function d. The planner is
responsible for choosing when and for how long each action is applied to reach the goal d.

� �
1 ( d e f i n e ( domain c a r _ l i n e a r _ m t _ s c )
2 ( : p r e d i c a t e s ( e n g i n e _ r u n n i n g ) ( e n g i n e _ s t o p p e d ) )
3 ( : f u n c t i o n s ( d ) ( v ) ( a ) ( m a x _ a c c e l e r a t i o n ) ( m i n _ a c c e l e r a t i o n ) ( max_speed ) )
4 ( : c o n s t r a i n t s p e e d _ l i m i t
5 : c o n d i t i o n ( and ( >= ( v ) (* −1 . 0 ( max_speed ) ) ) ( <= ( v ) ( max_speed ) ) ) )
6 ( : p r o c e s s d i s p l a c e m e n t : p r e c o n d i t i o n ( e n g i n e _ r u n n i n g )
7 : e f f e c t ( i n c r e a s e ( d ) (* # t ( v ) ) ) )
8 ( : p r o c e s s moving : p r e c o n d i t i o n ( e n g i n e _ r u n n i n g )
9 : e f f e c t ( i n c r e a s e ( v ) (* # t ( a ) ) ) )

10 ( : a c t i o n a c c e l e r a t e
11 : p r e c o n d i t i o n ( and ( < ( a ) ( m a x _ a c c e l e r a t i o n ) ) ( e n g i n e _ r u n n i n g ) )
12 : e f f e c t ( i n c r e a s e ( a ) 1 . 0 ) )
13 ( : a c t i o n s t o p _ c a r
14 : p r e c o n d i t i o n ( and ( > ( v ) −0 . 1 ) ( < ( v ) 0 . 1 ) (= ( a ) 0 . 0 ) ( e n g i n e _ r u n n i n g ) )
15 : e f f e c t ( and ( a s s i g n ( v ) 0 . 0 ) ( e n g i n e _ s t o p p e d ) ( not ( e n g i n e _ r u n n i n g ) ) ) )
16 ( : a c t i o n s t a r t _ c a r
17 : p r e c o n d i t i o n ( e n g i n e _ s t o p p e d )
18 : e f f e c t ( and ( e n g i n e _ r u n n i n g ) ( not ( e n g i n e _ s t o p p e d ) ) ) )
19 ( : a c t i o n d e c e l e r a t e
20 : p r e c o n d i t i o n ( and ( > ( a ) ( m i n _ a c c e l e r a t i o n ) ) ( e n g i n e _ r u n n i n g ) )
21 : e f f e c t ( d e c r e a s e ( a ) 1 . 0 ) ) )� �

Listing 2.7 – Car Linear domain with PDDL+ processes to apply acceleration to velocity and velocity
to displacement changes.
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2.4 Motion Planning

Motion Planning is used in robotics to obtain certain poses (physical configurations) from a
sequence of discrete movements considering physical and temporal constraints, to evaluate obstacles
in movement [52]. Continuous values are used to solve the several geometric constraints during
planning, unlike classical planning where symbols play the main role. The constraints are required by
the robot to avoid overlaps between its parts and other objects, which would translate into collisions,
how to pick and place objects correctly, and apply safe speeds to the actuators. Since motion planners
have applications in robotics, it is necessary to deal with unforeseen events, due to limited range
sensors and other agents also modifying the world, which force the robot to explore different paths
after learning new space constraints.

In order to approach this problem we can start with a relaxed version of the basic motion

planning problem [52]. In this relaxed version we assume the environment to be static with a single
rigid body moving object, our robot, which means no other objects are moving and the collection
of particles of each object have fixed position relative to one another. The velocity and position
constraints related to the object are ignored. The n-dimensional space where the robot moves is called
the workspace. In this same workspace there are rigid body obstacles, therefore creating a subset of
workspace called obstacle region. Assuming that we know the current positions of the object and
obstacles the problem consists of moving the object to its goal position, without collisions. This
problem can also be referred to as the path planning problem, or as a specific case for two dimensions
called the piano movers problem, as the movers cannot lift the object and are constrained to move in
a plane [72]. Approaches to motion planning include: roadmaps, cell decomposition, sampling-based
methods and potential fields. In the next subsections these approaches are described.

2.4.1 Roadmaps

Roadmaps [73] use a network of curves on free space to represent possible paths for the
robot to take. Once generated only such standardized paths are considered. Path planning is simplified
to finding a connection between the start and goal positions to the roadmap and a path within the
roadmap that connects these two points. Different roadmaps can be generated with different methods
such as the visibility graph that use obstacle vertices to create possible paths, seen in Figure 2.4, or
a retraction that use a function to slice the scenario into regions, such as the ones from a Voronoi

diagram [5], and use the limits between them as the roadmap as shown in Figure 2.5.

The visibility graph is a non-directed graph whose nodes are the start and goal positions as
well as the obstacle vertices. The links of such graph are the straight line segments that do not intersect
with any obstacle. Obstacles must be simplified to polygons with a limited number of vertices to
simplify computation to generate and query the graph during planning.
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Start
Goal

Figure 2.4 – Visibility graph with two poly-
gon obstacles between start and goal points.

Start
Goal

Figure 2.5 – A Voronoi-based roadmap con-
necting start and goal nodes to the paths ob-
tained.

2.4.2 Cell Decomposition

Cell decomposition methods slice the environment into cells to calculate the path between
the cell that contain the start position to the goal position [72]. Such methods can exactly match the
collision free region with each cell shape being adapted by details of the environment and robot, or
approximate using predefined shapes. The adaptive cell decomposition approach recursively parti-
tions the environment in quadrants, refining the areas near obstacles, reaching an exact solution with
enough subdivisions without generating many discrete areas for empty regions. The cell data is stored
in a quadtree [26], a tree structure with up to four leaf children nodes (NE, NW, SW and SE) to every
node. The approximate cell approach, on the other hand, is a simpler solution that uses the same
cell dimensions to discretize the entire environment, simplifying partition at the cost of more search
steps (as more cells are generated in this method), specially in empty regions. Both resulting cell
decompositions are shown in Figures 2.6 and 2.7.

2.4.3 Sampling-based methods

An explicit representation of the environment is required to apply roadmaps or cell decom-
position approaches. As the configuration space becomes more complex these approaches become too
costly to be used. To avoid an explicit representation one can sample the environment with different
strategies to generate a connectivity representation of the free space. This approach can deal with any
number of environment dimensions and obstacles of any shape. Two subdivisions exist: Probabilistic
Roadmaps and single-query planners.
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Start
Goal

Figure 2.6 – Adaptive cell decomposition
with collision free regions in white and
blocked regions in gray. Cell size is adapted
to minimize cell quantity and better describe
environment details.

Start
Goal

Figure 2.7 – Approximate cell decomposi-
tion with collision free regions in white and
blocked regions in gray. All cells share the
same shape.

Probabilistic Roadmaps (PRMs) [49] generate a roadmap by sampling the environment with
a probability distribution instead of an obstacle-based approach. PRM generation is made of learning
and query phases. In the learning phase, random samples based on a distribution are obtained and
checked for collision with the obstacles. If a sampled path does not collide and can be connected to a
at least one nearby previous node according to some metric, such as Euclidean distance, usually by a
straight line, the node and vertices are added to the roadmap. The process repeats until enough nodes
or vertices are added to the roadmap. The query phase attempts to find a path from the initial to the
goal state via the roadmap. The process can either obtain a path from a search algorithm using the
roadmap, fail and retry after improving the connectivity from a second round of learning or using a
specialized strategy, or simply return failure. PRMs will always find a solution given enough nodes,
but may fail to find passages in narrow paths using few nodes. Figure 2.8 shows an example of path
generated through PRMs such that the learning phase generated too few nodes. To generate enough
nodes one can either distribute nodes closer to obstacles (Obstacle-based PRM [1]) or based on a
Voronoi diagram of the environment [42].

Unlike other techniques that aim to obtain a reusable structure for multiple motion planning
problems in the same environment, single-query planners aim to solve only one problem. Their main
advantage is to represent only connectivity related to the problem. Unlike roadmaps, where a node
is added when it does not collide with an obstacle, nodes in single-query planners are only added if
they can be connected to the current structure, a tree that starts from the start node, which removes
the need for an additional search phase. The most used single-query planner approach is the Rapidly-
exploring Random Tree (RRT) [53], which samples in the goal node direction using a fixed step size
closer to goal nodes. After a certain number of nodes have been added to the structure, the process
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can try to connect nodes to the goal node instead of new random sampled ones. To speed up the
process, a bidirectional approach can be used, growing random trees from the start and goal nodes
and connecting each other after an expansion phase.

Start
Goal

Figure 2.8 – A Probabilistic Roadmap with
few nodes, but able to connect start and goal
nodes to the roadmap. One sample could not
be added to the roadmap as it collides with an
obstacle.

Start
Goal

Figure 2.9 – A simple potential field function
generating a trap as the direction from start to
goal is perpendicular with an obstacle wall.

2.4.4 Potential Fields

Potential fields [3] discretize the environment to a fine regular grid of configurations to guide
the search. The robot is simplified to a particle that is attracted and repulsed by artificial potential
fields, the goal and the obstacles respectively. The forces applied to each position in the grid move the
robot in a promising direction towards the goal. This method can be very efficient when compared
with other methods, but can also get the robot trapped in a dead-end without careful design of the
potential field function to avoid such scenarios. A simple potential field of our example environment
is shown in Figure 2.9.

2.5 Coroutines

Coroutine is a cooperative multitasking approach that gives the programmer full control
about their execution, as routines are not preempted by a scheduler, but explicitly called from other
routines, with persistent state between calls [62]. Generators are limited coroutines that always pass
control back to the caller while yielding a value, and thus are usually used to implement iterators.
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Every time a yield instruction is executed the generator state is saved to the stack, suspended, and
resumed once the generator is called again.

Figure 2.10 shows how the main program, the caller, and a coroutine, the callee, interact.
The main program starts calling the coroutine, which initializes its internal state and passes control
to it. The active coroutine computes the value to be yielded to the caller, but saves its state before
yielding and being suspended. The caller, now with the first value yielded, can operate on this value
and destroy the coroutine, or call the coroutine again to obtain a new value from the coroutine. This
process is repeated until the caller destroys the coroutine, using explicit functions, letting the coroutine
out of scope, or the coroutine failing to return another possible value, which is expected behavior for
coroutines that read files in blocks or compute elements of finite sets. Since coroutines do not need to
store previously yielded values in memory, the caller is expected to either consume or store the values
obtained from the coroutine, which removes memory leaking problems for long term programs. The
flexibility of coroutines allows it to be the caller to other coroutines.

Caller Coroutine
Callee

  Compute next value
  Save coroutine state to stack
  Yield value

  Compute next value
  Save context to stack
  Yield value

  Initialize coroutine state

  Resume coroutine state

call coroutine

suspend coroutine
value = v1

suspend coroutine
value = v2

call coroutine

Figure 2.10 – Basic main program (caller) and coroutine (callee) interaction to generate two possible
values in two calls.
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3. SYMBOLIC-GEOMETRIC PLANNING

In this chapter we describe our approach to symbolic-geometric planning. Symbolic plan-
ners are fast at solving domains that can be discretized into symbols, as seen in Section 2.1.3, when
used with performant heuristic functions, while retaining the domain characteristics we are planning
for. However, if the discretization process is not possible, either by requiring tedious human work or
by not obtaining enough detail with an automated process, one must use a planner that also supports
numeric features. Numeric features usually require a less readable description, and more computing
power and memory due to the increased number of states numeric variables can reach.

Also, numeric features come with rounding errors due to the internal representation of float-
ing point numbers. Unlike symbolic approaches where symbols are compared for equality during
precondition evaluation, one must compare numeric values with a delta to consider such errors. If the
planner is the one responsible for the comparison it will do so for every numeric element implicitly,
which impacts planning time, otherwise the user is responsible for explicitly defining when one must
consider rounding errors, which impacts description time and maintenance. For complex object in-
stances (from object-oriented programming) such as polygons that are made of many point instances,
the number of comparisons in the description is prone to error. The comparison itself, usually, is not
the goal of the planning description, in this case the same polygon can be defined by many orderings
of the same points (the triangle ABC is the same as BCA) and within floating point error, point B
is almost equal to B’, as in the example from Figure 3.1. Such comparisons are part of subprob-
lems that are better solved by external and specialized libraries, such as the Computational Geometry
Algorithms Library (CGAL) [23] or Boost.Geometry [35].

Figure 3.1 – The points ABC and BCA represent the same polygon, and considering floating point
errors one could even consider the B point the same as B’. This makes the comparison of continuous
values more complex than purely symbolic comparison common on planning descriptions.

Some HTN planners, such as JSHOP [46], are able to take advantage of specialized libraries
using external function calls, as the ones from Definition 16, to do such comparisons. Function calls
can also be used to access external solvers to handle complex numeric and object operations. Such
external functions can solve complex motion planning problems found during symbolic planning.
However, this approach is limited, function calls are expected to be deterministic and return a single
value, in this case a motion plan. If a domain designer wants to try multiple values until one succeeds,
the return value must be a list of values. Generating a complete list of possible values is more costly
than computing a single value, as the first one could be enough to find a feasible plan. Instead of the
complete list approach, it is more consistent with planning descriptions to use the equivalent of an
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external predicate, computed on demand during planning and not stored in the state structure as the
Predicates of Definition 2. Such external predicates are called semantic attachments.

3.1 Semantic attachments

The semantic attachment term was coined by Weyhrauch [80] to describe the attachment
of an interpretation to a predicate symbol using an external procedure. Semantic attachments have
already been used for classical planning [20] to unify values just like predicates, and their main
advantage is that new users do not need to discern between them and common predicates. While
common predicates are stored in a state structure, semantic attachments are computed at runtime and
can be implemented as generators/coroutines, as seen in Section 2.5. Unification and APPLICABLE,
as seen in Definition 3 and Definition 5, can be merged and implemented as a generator that yields
ground instances of an operator or method with preconditions satisfied by the current state. Such
generator can be used to obtain other unifications once the HTN planner backtracks, until no more
unifications can be obtained, forcing the planner to return to the previous decomposition level.

In Figure 3.2 the process of unification of a free variable from a method precondition using
a coroutine is illustrated. As the value V1 for ?var does not satisfy other preconditions or forces
the HTN to backtrack, the coroutine is resumed to obtain V2, a new unification for ?var, and HTN
decomposition is resumed. The inequality ?var 6= V1 is kept true by the coroutine state, that should
not try to repeat the same assignment for ?var, in this case based on pointers and indexes of which
values have already been yielded. Two distinct solutions can be applied when multiple variables
are unified by the same coroutine, the first solution is to generate the cartesian product and assign
variables based on each line of the product. The second solution is to choose values that better match
other parameters, that are grounded, and the current state. The second solution is more complex,
requiring domain expert knowledge to take full advantage of which values and ordering to try.

Method
precondition

Caller

Coroutine
Callee

  Compute next value
  Save coroutine state to stack
  Yield value

  Compute next value
  Save context to stack
  Yield value

  Initialize coroutine state

  Resume coroutine state

(pre ?var)
?var = ?

?var = v1
unsatisfied

?var ≠ v1
?var = ?

?var = v2

Figure 3.2 – Method precondition example computing and assigning possible values V1 and V2 to
?var variable through a coroutine, one at a time.
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Definition 20 (Semantic Attachments) Semantic Attachments are defined by a signature name ap-

plied to a sequence of N terms, represented by tn, sa = 〈name(sa), terms(t1, ..., tn)〉 that maps to

an equivalent coroutine implemented externally. We call SAs the finite set of semantic attachments

available during planning.

The SAs are coroutines implemented externally and exposed to the HTN domain descrip-
tion, extending the HTN domain previously defined in Definition 17. With a state that is not only
declarative, with parts being procedurally computed, it is possible to minimize memory usage and
delegate complex state-based operations to external methods otherwise incompatible with planning.

3.2 Symbolic anchors for external values

Since we are exploiting external libraries through function calls and semantic attachments,
we can hide or abstract away the numeric parts of planning in a layer between the planner and the
libraries. Our three-layered architecture of Figure 3.3 was inspired by the work of Lavindra and
Meneguzzi [16]. In the symbolic layer we manipulate an anchor symbol, corresponding to a Term of
Definition 1, such as polygon1, while in the external layer we manipulate Polygon instance with N

points as an object or struct based on what the selected external library specifies. The intermediate
layer acts as the foreign function interface between the other two layers, and can be replaced or mod-
ified to accommodate other external libraries without modifications to the symbolic description. The
intermediate layer is domain dependent, however its functions and semantic attachments can more
easily be reused in other domains, due to their limited scope, than actions and methods, correspond-
ing to the Definitions 8 and 15. This way we avoid complex representations in the symbolic layer and
incomplete representations in the external layer.

Symbolic layer

Declarative state

External calls

Ground SAs

Lifted SAs

       Intermediate layer

  Functions

        Coroutines

External layer

External libraries
or simulators

Sy
m

bo
l-o

bj
ec

t t
ab

le

Figure 3.3 – Symbolic and external layers share information through an intermediate layer that maps
representations and calls between them.

Object instances created in the external layer are compared with previously exposed object
instances. Object instances that do not match previously exposed objects are mapped to new anchor
symbols and stored in the symbol-object table. Object instances that match a previously exposed
object map to the same previously attributed symbol. Object matching can be implemented through
equality or equivalence, when certain features are not equal but within an error margin, according to
the domain. This process makes symbol comparison work in the symbolic layer even for symbols
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related to complex objects/structs, solving the ABC equals B’CA triangle problem, for example.
Symbols generated in branches that later backtrack due to failure are kept in the symbol-object table,
which facilitates debugging, as the user can see readable identifiers repeating instead of numeric
values.

Definition 21 (Symbol-object table) Our symbol-object table is defined by N key-value pairs, rep-

resented by SO-table = 〈〈key(k1), value(v1)〉, ..., 〈key(kn), value(vn)〉〉.

The Symbol-object table is accessed through two functions: QUERY and INSERT. The
QUERY function is used to find pairs based on anchor symbols as keys, used to convert symbols into
usable object instances by external calls, as functions and semantic attachments. The INSERT function
is used to find or create symbolic anchors to external object instances. Once operations are finished
in the external layer the INSERT function expose resulting objects as symbols through free variables
of semantic attachments, or as the return value of external function calls.

Definition 22 (Query) The query function is represented by QUERY(SO-table, symbol-kn) =

〈symbol-kn, object-vn〉 if symbol-kn ∈ SO-tablen, else ∅, where n represents indexes of the SO-table.

Definition 23 (Insert) The insert function is represented by INSERT(SO-table, object-vn) = symbol-

kn if object-vn ∈ SO-tablen, else new-symbol-kn+1. The insert function also have the side effect of

adding a tuple to the SO-table for any new object, SO-tablen+1 = 〈new-symbol-kn+1, object-vn+1〉.

3.3 Domain and Problem description

We decided to follow the style of the JSHOP [46] description, keeping most language el-
ements intact, while adding elements to represent our approach. The main structure of domain and
problem, as well as methods, remain the same. Each semantic attachment predicate signature is de-
scribed as the Predicate of Definition 2, as seen in Listing 3.1, and must be present in the domain
file for the planner compiler to know which predicates are externally evaluated. Signatures are not
uncommon in planning, as PDDL also requires predicate signatures to be explicitly defined. Each
semantic attachment used in the domain must have only one signature and its name must match the
actual implementation. The semantic attachment parameters are included to increase maintainability
of the description, as only the arity of the semantic attachment is tested before planning starts. The
user must supply at most the same quantity of parameters as described in the signature, while param-
eters that are not supplied will be initialized with default values described in the semantic attachment
implementation. Not finding the implementation, not matching the semantic attachment arity, or
missing parameters without default values results in error. The problem description contains the same
JSHOP elements. We created a new file extension to discern between the original and the extended
language files, UJSHOP, with semantic attachments. The implementation of external functions and
semantic attachments is part of the intermediate layer.
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1 ( defdomain example (
2 ; S i g n a t u r e s o f s e m a n t i c a t t a c h m e n t s i n use must be e x p l i c i t l y d e f i n e d
3 ( : a t t a c h m e n t s ( semant ic−a t tachment−name ? param1 ? param2 ) )
4 ( : o p e r a t o r . . . )
5 ( :method . . . ) )� �

Listing 3.1 – UJSHOP example domain with ADJACENT SA signature with two terms.

3.4 Intermediate layer

The symbol-object table, external functions and semantic attachments are in the interme-
diate layer, which is defined in a separate file from domain and problem. The planner loads such
file if one is available at the same folder as the domain and problem files, otherwise continues nor-
mally. Listing 3.2 contains a complete example of an external description. The symbol-object table
generation is currently not automated and the user is responsible for choosing a structure to gener-
ate symbols that better represents the objects being handled by the external layer. If this is not the
case a generic Hash table (Lines 5-6), with a function to convert object to symbol (Lines 8-14), can
be copied to this file. The symbol function in this example is equivalent to the insert function from
Definition 23, as this function name may vary. The symbol turned into SO-table key is currently
generated as a counter prefixed by a constant string, but the user could generate specific symbols for
complex objects using the equivalent of to string methods defined by the object class. In this example
the query function from Definition 22 is the actual Hash table access method and requires no extra
function definition. If the user prefers, the symbol-object table may start with predefined symbols,
which may aid debugging later, in this case two points are defined as start and goal.

Functions and semantic attachments start by converting symbols to objects using the table,
when not doing purely symbolic operations, as seen in the external function distance (Lines 16-20).
Note that distance expects two position symbols that already exist in the table, if such symbols are
not found we could raise an exception or return an infinity symbol as the resulting distance. If a
new symbol is returned by a call or unified by a free variable in a semantic attachment, it is the
user responsibility to store this unique symbol in the table to reuse later, but there is no mechanism
to enforce it, so the infinity symbol from the previous example could not be stored in the table.
The semantic attachment ADJACENT (Lines 22-37), may operate as a ground predicate precondition,
which can be true or false (Line 35), or lifted predicate precondition, unifying the free variable ?pos2

with any position in the Moore neighborhood, eight cells around a central cell in a grid.

Instead of adding adjacent positions to the initial state we can compute them during plan-
ning, which makes the symbolic description of the initial state simpler. If the domain ever changes to
a different map discretization, such as hexagon grids or irregular polygons, we only need to change
the behavior of ADJACENT. Domain constants may be exposed to the intermediate layer from the be-
ginning, such as width and height. Backtracking does not affect any external structure state, including
the symbol-object table, therefore increasesing in size as more objects are exposed to the symbolic
layer if the user does not explicitly remove them. Instead of creating an analogous state in the external
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1 module E x t e r n a l
2 e x t e n d s e l f
3
4 WIDTH = HEIGHT = 5
5 @symbol_object = { ’ s t a r t ’ => P o i n t . new ( 0 , 0 ) , ’ g o a l ’ => P o i n t . new ( 4 , 4 ) }
6 @symbol_counter = 0
7
8 def symbol ( o b j e c t )
9 symbol = @symbol_object . key ( o b j e c t )

10 re turn symbol i f symbol
11 symbol = " symbol #{ @symbol_counter += 1} "
12 @symbol_object [ symbol ] = o b j e c t
13 re turn symbol
14 end
15
16 def d i s t a n c e ( pos1 , pos2 )
17 pos1 = @symbol_object [ pos1 ]
18 pos2 = @symbol_object [ pos2 ]
19 re turn Math . hypo t ( pos1 . x − pos2 . x , pos1 . y − pos2 . y ) . t o _ s
20 end
21
22 def a d j a c e n t ( pos1 , pos2 )
23 pos1 = @symbol_object [ pos1 ]
24 i f pos2 . empty ?
25 [[−1 ,−1] , [0 ,−1] , [1 ,−1] , [−1 ,0] , [ 1 , 0 ] , [−1 ,1] , [ 0 , 1 ] , [ 1 , 1 ] ] . each { | x , y |
26 nx = pos1 . x + x
27 ny = pos1 . y + y
28 i f 0 <= nx and nx < WIDTH and 0 <= ny and ny < HEIGHT
29 pos2 . r e p l a c e ( symbol ( P o i n t . new ( nx , ny ) ) )
30 y i e l d
31 end
32 }
33 e l s e
34 pos2 = @symbol_object [ pos2 ]
35 re turn ( pos1 . x − pos2 . x ) . abs <= 1 and ( pos1 . y − pos2 . y ) . abs <= 1
36 end
37 end
38 end� �

Listing 3.2 – Intermediate layer with symbol-object table, distance function and ADJACENT SA.

layer we believe it is currently simpler to cache costly computations for later use instead of adding
a mechanism to keep states consistent across layers. To better deal with cases where information
found during search may be useful even after backtracking, such as newfound constraints or visited
positions, we can use the external layer to store it.

3.5 Optimize the description by reordering preconditions

If we restrict our operators to STRIPS [25], i.e. no disjunctions in preconditions and effects,
we can reorder the preconditions during the compilation process to improve execution time, removing
the burden of the domain designer to optimize a mostly declarative description by hand, based on how
free variables are used as terms. Each free variable creates a dependency between the first predicate
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1 ( : a t t a c h m e n t s ( sa1 ? a ? b ) ( sa2 ? a ? b ) )
2 ( :method (m ? t 1 ? t 2 )
3 l a b e l
4 ( ; P r e c o n d i t i o n s
5 ( c a l l != ? t 1 ? t 2 ) ; no d e p e n d e n c i e s
6 ( c a l l != ? fv1 ? fv2 ) ; ? f v 1 and ? f v 2 d e p e n d e n c i e s
7 ( sa1 ? t 1 ? fv1 ) ; no d e p e n d e n c i e s , ground ? f v 1
8 ( p re1 ? t 1 ? t 2 ) ; no d e p e n d e n c i e s
9 ( sa2 ? fv1 ? fv2 ) ; ? f v 1 d e p e n d e n c y , ground ? f v 2

10 ( p re2 ? fv3 ? fv1 ) ) ) ; ? f v 1 d e p e n d e n c y , ground ? f v 3
11 ( ( s u b t a s k ? t 1 ? t 2 ? fv1 ? fv2 ) ) ) ; S u b t a s k� �

Listing 3.3 – Abstract method with semantic attachments among preconditions.

or semantic attachment that contains such variable as a term and the next predicates or semantic at-
tachments with the same term. The first predicate or semantic attachment is responsible for grounding
such variable while the next predicates or semantic attachments only verify if the previously ground
value matches the current state. Predicates have priority over semantic attachments to ground free
variables, as the possible values are obtained from the current finite state, while semantic attachments
may cover a possibly infinite number of values. Algorithm 2 shows how preconditions are filtered in
distinct sets to later be reordered for improved performance.

Consider the abstract method example of Listing 3.3, with two semantic attachments among
preconditions, sa1 and sa2. This method is compiled to Algorithm 3 with both semantic attachments
evaluated after common predicates, while function calls happen before or after each semantic attach-
ment, based on which variables are ground at that point. In Line 4 the free variables fv1 and fv3 have
a ground value that can only be read and not modified by other predicates or semantic attachments.
In Line 7 every variable is ground and the second function call, difference, can be evaluated.

Each semantic attachment is responsible for unifying all remaining free variables with valid
values before resuming and, preferably, define a stop condition, otherwise the HTN process will keep
backtracking and evaluating the semantic attachment seeking new values and never returning failure.
Due to the implementation support of arbitrary-precision arithmetic and accessing data from real-
world streams of data/events (which are always new and potentially infinite) a valid value may never
be found. Thus, we expect the domain designer to implement mechanisms that limit the maximum
number of times a semantic attachment evaluates a call (i.e. to have finite stop conditions). This
maximum number of tries can be implemented as a counter in the internal state of a semantic attach-
ment to avoid repeated evaluation of the same values. Note that the number of side-effects in both

Algorithm 2 Filter preconditions during compilation process based on free variables used as terms of
predicates and semantic attachments.

1: function FILTERPRECONDITIONS(pre)
2: Pground← {p | p ∈ pre ∧ (p ∈ F ∨ (p ∈ E ∧ ∀t ∈ terms(p) t = object))}
3: Plifted← {p | p ∈ pre ∧ (p ∈ Predicate ∨ p ∈ E) ∧ ∃t ∈ terms(p) t 6= object}
4: Psa← {p | p ∈ pre ∧ p ∈ SA}
5: return 〈Pground, Plifted, Psa〉
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Algorithm 3 Compiled preconditions from Listing 3.3, reordered to optimize execution time.
1: function M(S, t1, t2)
2: if t1 6= t2
3: for each fv1, fv3; {〈pre1, t1, t2〉, 〈pre2, fv3, fv1〉} ⊆ S do
4: for each sa1(t1, fv1) do
5: free variable fv2
6: for each sa2(fv1, fv2) do
7: if fv1 6= fv2 then yield [〈subtask, t1, t2, fv1, fv2〉]

Algorithm 4 Semantic attachment-enabled APPLICABLE tests ground, lifted and coroutine based
preconditions to replace free variables with suitable values.

1: function APPLICABLE(pre, S, SO-table)
2: Pground, Plifted, Psa← FILTERPRECONDITIONS(pre)
3: if Pground * S then return
4: for prelifted with free variables fvslifted ∈ Plifted do
5: for each fvslifted match with name(prelifted) ∈ S do
6: for presa with free variables fvssas ∈ Psa do
7: for EXTERNAL(presa, fvssas, S, SO-table) do
8: yield

external functions calls and semantic attachments increases the complexity of correctness proofs and
the ability to inspect and debug domain descriptions.

Unlike Algorithm 1, we move the generic APPLICABLE of Definition 5, from the HTN al-
gorithm to custom unifiers implemented by the compilation process directly into the operator and
method functions, with preconditions reordered based on the return of Algorithm 2. This is an impor-
tant modification that allows more complex preconditions to be evaluated. By moving such routine
to the method itself we can have custom implementations, including generator-based ones. Their al-
gorithm complexity is a mixed result of the compilation process and the domain description, with at
most one predicate/semantic attachment per free variable, and at least one single predicate/semantic
attachment to unify them all. The original Algorithm 1 does not define how the APPLICABLE set of
free variable assignment can be implemented. The equivalent non-custom version of our approach is
defined by Algorithm 4. The symbol-object table is an argument of the new APPLICABLE routine to
be used by external function calls and semantic attachments after ground preconditions are satisfied
and lifted preconditions used to evaluate some of the free variables present in the preconditions.

3.6 Framework

In order to bring together the symbolic domain and problem descriptions, external func-
tions and semantic attachments, and the reordering optimizations seen in the previous section with
the HTN planner, we need a framework. The framework is responsible for the compilation process.
The compilation process between description and planning is taken by Hype, a framework that parses
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the planning description to an intermediate representation and compile 1 to an equivalent Ruby code
that connects with HyperTensioN U 2, our HTN planner whose features are described in this chapter.
The parser or compiler can be replaced for equivalent modules to support other input or output for-
mats, respectively, as long as they are compatible with the intermediate representation. Optimizations
can be applied to the intermediate representation if necessary, such as the preconditions reordering
from Section 3.5. External functions, semantic attachments and the symbol-object table are defined
in an external file in the compiler target language, in this case Ruby, outside the compilation process
and only loaded during planning, making D = 〈F,A,M,E,SAs,SO-table〉. The process and its
elements are better seen in Figure 3.4. The process is based on another project of ours [55], Hyper-

TensioN 3, forked to accommodate new features using a new intermediate representation.

Hype

parsers compilers
domain.*

UJSHOPproblem.*

domain.*.rb HyperTensioN U

problem.*.rb

external.rb

Intermediate
Representation

Ruby
(HTN)

Figure 3.4 – HyperTensioN U framework parses symbolic description and compiles to the target
language before connecting with external definitions (intermediate layer) and HTN planner.

Once the planning description is compiled and linked with the planner, it is possible to de-
compose the tasks. To decompose such tasks into a plan we adapt Algorithm 1 to support coroutine-
based semantic attachments. Semantic attachments increment the concept of the APPLICABLE func-
tion as seen in Definition 5, as they expand preconditions to either test or unify free variables relying
on coroutines defined externally, and not only the current State. To improve execution time the pre-
conditions may be reordered by the compilation process: ground function calls are tested earlier than
other preconditions, then free variables from predicates are unified and, one by one, their unifications
are used by lifted predicates and function calls. Semantic attachments, which may be several, are
then applied to either generate more unifications for variables that are still free or just test if they are
satisfied by the current state. Finally, the remaining predicates and function calls that require at least
one free variable to be grounded by semantic attachment can be tested as ground preconditions. For
each unification the method subtasks are decomposed or operator effects applied. If done in a differ-
ent order we are relying too much in a partially declarative language, in which the user have no hint
that order may impact unification time, generating multiple values where ground preconditions could

1The compiler here is also considered a source-to-source compiler or transpiler, as code is only translated from one
language to another, not to machine code.

2Available at github.com/Maumagnaguagno/HyperTensioN_U
3Available at github.com/Maumagnaguagno/HyperTensioN
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safely return earlier, or generating infinite values from a semantic attachment that unifies before the
common unification engine, which uses values from the finite current state.

3.7 Semantic Attachments and Symbol-Object table use-cases

In the following subsections three different use-cases are presented. The first case describes
the usage of the symbol-object table to hide numeric details from the description. The second use-case
describes the usage of semantic attachments to iterate over a numeric interval, an operation required
by geometric and temporal problems that must consider dimensions. The final use-case contains a
semantic attachment being used to either unify free variables or compute the truth value of a ground
external predicate.

3.7.1 Discrete distance between objects

A common problem when moving in dynamic and continuous environments is to check for
object collisions, as agents and objects do not move across tiles in a grid. One solution is to calculate
the distance between the centroid of both objects and verify if this value is in a safe margin before
considering which action to take. To avoid the many geometric elements involved in this process we
can map centroid position symbols to coordinate instances and only check the symbol returned from
the symbol-object table, ignoring specific numeric details and comparing a symbol to verify if objects
are near enough to collide. This process is illustrated in Figure 3.5, in which p0 and p1 are centroid
position symbols that match symbols S0 and S1 in the symbol-object table, which maps their value to
point objects O0 and O1. Such internal objects are used to compute distance and return a symbolic
distance in situations where the actual numeric value is unnecessary. The implementation resembles
Algorithm 5, returning near or far symbols based on the distance, but never adding such symbols to
the symbol-object table.

Algorithm 5 Distance function can use the symbol-object table to access position symbols and hide
away numeric computation and return value.

1: function DISTANCE(p0, p1)
2: o0← QUERY(SO-table, p0)
3: o1← QUERY(SO-table, p1)
4: return SYMBOL(HYPOT(X(o0) - X(o1), Y(o0) - Y(o1))) . Map values to near or far symbols.

3.7.2 An iterator for HTN

In order to find a correct number to match a spatial or temporal constraint one may want
to describe the relevant interval and precision to limit the number of possibilities without having
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S1 O1
...

p0
p1

Symbol-object table
distance

1.41near

S0 O0

Figure 3.5 – The Symbol-object table maps symbols to object-oriented programming instances to hide
procedural logic from the symbolic layer.

to discretely add each value to the state. Planning descriptions usually do not contain information
about numeric intervals and precision, and if there is a way to add such information it is through the
planner itself, as global definitions applied to all numeric functions, i.e. as the timestep, mantissa and
exponent digits of DiNo [67]. The STEP semantic attachment described in Algorithm 6 addresses this
problem, unifying t with one number at a time inside the given interval with an ε step. Listing 3.4
contains the STEP semantic attachment being used to generate possible deadlines two timesteps from
the current timestep now. The INSERT function from Definition 23 is responsible for generating and
adding a readable symbol to t, which is the ?deadline variable in our domain.

Algorithm 6 The STEP semantic attachment replaces the pointer of t with a numeric symbol before
resuming control to the HTN.

1: function STEP(t,min = 0,max =∞, ε = 1)
2: for i←min to max, step ε do
3: t← INSERT(SO-table, i)
4: yield . Resume HTN

� �
1 ( defdomain t imes tep−example (
2 ( : a t t a c h m e n t s ( s t e p ? t ? min ?max ? s t e p ) )
3 ; . . .
4 ( :method (m ?now )
5 ( ( s t e p ? d e a d l i n e ( c a l l + ?now 2) ) ) ; P r e c o n d i t i o n
6 ( ; S u b t a s k s
7 ( ! s t a r t ? d e a d l i n e )
8 ( ! move ( c a l l + ? d e a d l i n e 1 ) )
9 ( ! s t o p ( c a l l + ? d e a d l i n e 2 ) ) ) ) )� �

Listing 3.4 – STEP semantic attachment works as an iterator in the m method preconditions to generate
possible deadlines for subtasks. It uses only the free variable ?t and ?min value terms, ?max and ?step
implicitly fallback to default values externally defined.

3.7.3 Lazy adjacency evaluation

To avoid having complex effects in the move operators one must not update adjacencies be-
tween planning objects during the planning process. Instead one must update only the object position,
deleting the old position and adding the new position to the state. Such positions come from a par-
titioned space, previously defined by the user. The positions and their adjacencies are either used to
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generate ground operators or stored as part of the state. To avoid both solutions, one could implement
adjacency as a coroutine while hiding numeric properties of objects, such as position. Algorithm 7
is equivalent to the ADJACENT semantic attachment present in Listing 3.2, with the main two cases
for planning descriptions. In the first case both symbols are ground, and the coroutine resumes when
both objects are adjacent, doing nothing otherwise, failing the precondition. In the second case s2,
the second symbol, is free to be unified using s1, the first symbol, and a set of directions D to yield
new positions to replace s2 with a valid position, one at a time. Thus, this coroutine either checks
whether s2 is adjacent to s1 or tries to find positions adjacent to s1 binding the corresponding values
to s2 if such values exists.

Algorithm 7 The ADJACENT semantic attachment can either check if two symbols map to adjacent
positions or generate new positions and their symbols to unify s2.

1: D← {〈-1,-1〉,〈0,-1〉,〈1,-1〉,〈-1,0〉,〈1,0〉,〈-1,1〉,〈0,1〉,〈1,1〉}
2: function ADJACENT(s1, s2)
3: s1← QUERY(SO-table, s1)
4: if s2 is ground
5: s2← QUERY(SO-table, s2)
6: if |x(s1) - x(s2)| ≤ 1 ∧ | y(s1) - y(s2)| ≤ 1 then yield
7: else if s2 is free
8: for each 〈x, y〉 ∈ D do
9: nx← x + x(s1); ny← y + y(s1)

10: if 0 ≤ nx < WIDTH ∧ 0 ≤ ny < HEIGHT
11: s2← INSERT(SO-table, 〈nx, ny〉)
12: yield

A very common use-case of adjacency in HTN planning is illustrated by Listing 3.5. A
forward method is used to traverse a grid-like map where one agent tries to move around until a goal
position is reached, backtracking when no new position can be accessed. This replacement is trivial,
as one formula can be used to express adjacent positions, but leaves one open question: what if we
add the goal as a parameter of the ADJACENT SA? In Chapter 4 we investigate how much information
a domain designer is capable of exposing to a semantic attachment and how much it impacts the
domain description complexity and planning time.
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� �
1 ( defdomain ad jacency−example (
2 ( : a t t a c h m e n t s ( a d j a c e n t ? p o s i t i o n 1 ? p o s i t i o n 2 ) )
3 ; . . .
4 ( :method ( f o r w a r d ? a g e n t ? g o a l )
5 g o a l
6 ( ( a t ? a g e n t ? g o a l ) ) ; P r e c o n d i t i o n
7 ( ) ; Empty s u b t a s k s
8 keep−moving
9 ( ; P r e c o n d i t i o n s

10 ( not ( a t ? a g e n t ? g o a l ) )
11 ( a t ? a g e n t ? h e r e )
12 ( a d j a c e n t ? h e r e ? t h e r e ) ; or ( a d j a c e n t ? here ? t h e r e ? goa l )
13 ( not ( v i s i t e d ? a g e n t ? t h e r e ) )
14 ( not ( b l o c k e d ? t h e r e ) ) )
15 ( ; S u b t a s k s
16 ( ! move ? a g e n t ? h e r e t h e r e )
17 ( ! ! v i s i t ? a g e n t ? h e r e )
18 ( keep−moving )
19 ( ! ! u n v i s i t ? a g e n t ? h e r e ) ) ) )� �

Listing 3.5 – The ADJACENT semantic attachment replaces the many adjacent predicates from the
declarative state, making problem descriptions more compact and readable, while a smaller state
structure saves memory.



58



59

4. EXAMPLES AND EXPERIMENTS

In the following sections we explore how different problems can be described to be solved
by our approach. We conducted empirical tests of our HTN planner in a machine with Dual 6-
core Xeon CPUs @2GHz / 48GB memory, repeating experiments three times to obtain an average.
The results show a substantial speedup over the original classical descriptions from DiNo [67] and
ENHSP [70] with more complex descriptions, while being competitive against Metric-FF [41].

4.1 Adjacency / Initial state and method ordering impact

In this section we improve the efficiency of HTN planning in traditional scenarios, just by
modifying the order in which planning elements are defined and considered during planning. The
order in which elements are defined in a planning description may affect which tasks are decomposed
first and the resulting plan. Using a grid-based scenario as an example, a domain designer may opt
for a directional or non-directional domain description. Both approaches present the same problem:
the order of elements in the symbolic description influences planning time and solution.

A directional domain description is made of specialized methods for each direction, which
may force exploration of many unnecessary states or go directly to the goal position according to
different maps. Consider the example scenario of Figure 4.1 with an agent initially in the center and
a goal position in the upper-right corner. The static order of methods dictates which directions are
explored first. For example, the direction ordering up, left, right, down would force exploration of
almost the entire scenario, save bottom-right tiles, while the ordering down, up, left, right would make
the agent explore the entire scenario. This static method ordering is useful in domains where certain
directions are more promising or yield better plans, like side-scrolling games.

Other domain designers may opt for a non-directional domain description that just moves
to adjacent positions not visited, resulting in a more compact domain description, as previously seen
in Listing 2.3. The impact of method ordering is replaced by the adjacent description contained in the
initial state, as tiles are compared following the internal state structure ordering, generated from the
initial state description.

Figure 4.1 – Two discretizations of the same maze-like scenario. The discretization and order in
which methods select a direction directly impact the amount of tiles explored during HTN planning.
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1 ( :method ( f o r w a r d− d i r e c t i o n ? a g e n t ? g o a l )
2 base
3 ( ( a t ? a g e n t ? g o a l ) ) ; P r e c o n d i t i o n
4 ( ) ; Empty s u b t a s k s
5
6 r e c u r s i o n− r i g h t
7 ( ( a t ? a g e n t ? from ) ( r i g h t ? from ? p l a c e ) ( not ( v i s i t e d ? a g e n t ? p l a c e ) ) )
8 ( ; S u b t a s k s
9 ( ! move ? a g e n t ? from ? p l a c e )

10 ( ! ! v i s i t ? a g e n t ? from )
11 ( f o r w a r d ? a g e n t ? g o a l )
12 ( ! ! u n v i s i t ? a g e n t ? from ) )
13 r e c u r s i o n−u p
14 . . . )� �

Listing 4.1 – Prioritize directions in a certain order using custom method decompositions instead of
the generic adjacent movement.

The solution to this problem is to add goal information to avoid expanding tiles in any
direction. One could optimize the direction selection using external functions to compute which
direction is more promising. In order to move towards the goal the adjacent positions must be ordered
from nearest to furthest to the goal before decomposition continues. To calculate the distance between
two points one must use numeric values instead of discrete positions, e.g. (at agent 1 1) instead of
(at agent top-left-corner). Adding such details to the domain description is nontrivial, as not all HTN
planners support priority/sorting constructions and the lack of a description standard force domain
designers to know internal details about their HTN planner and description language to implement
such constructions. JSHOP2 [46] allows prioritization using the sort-by construction, as seen in
Listing 4.2, which binds values to a variable based on a specified comparison function. However it
is not clear if JSHOP2 currently allows external functions to be used together with the prioritization
construction, as no examples or documentation cover this aspect.

A domain designer may also opt for a different domain description while trying to improve
planning time, using a new discretization of the same scenario by changing the granularity of the
description. By clustering corridor tiles into single tiles one can effectively traverse many intermediate
states in a single action, however it requires a preprocessing stage and make numeric approaches with
direction prioritization harder to work with. Compare the ordered and sorted solutions, Listings 4.1
and 4.2, with the symbol-object table and semantic attachment solution presented in Listing 4.3, in
which both direction prioritization and readable names are used through the semantic attachment
and symbol-object table, respectively, without the inclusion of another specific construction. The
performance difference between the non-directional domain with and without semantic attachments is
shown in Figure 4.2 using 20 automatically generated 15x15 maze problems, displayed in Figure 4.3,
with unique tile names instead of numeric coordinate values. Our agent starts at the top-left position
and must reach the bottom-right position in all problems. In scenarios where the agent enters a
wrong path with many dead-ends we can see a peak in the planning time, as in the problem 17
without SA and the problem 8 with SA. Problems with many dead-ends repeatedly reach the same
position, as the depth-first search style of HTN combined with a local visited predicate is not enough
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to mark such positions between decompositions, requiring a backtracking-persistent cache to avoid
such repetitions.
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Figure 4.2 – Time in seconds to find a single plan
for Maze problems.

Figure 4.3 – Maze problems generated through
recursive division, adding walls with passages.

� �
1 ( :method ( f o r w a r d− d i r e c t i o n ? a g e n t ? g o a l )
2 base
3 ( ( a t ? a g e n t ? g o a l ) ) ; P r e c o n d i t i o n
4 ( ) ; Empty s u b t a s k s
5 r e c u r s i o n
6 ( ; P r e c o n d i t i o n s
7 ( :sort−by ? d i s t a n c e < ( and
8 ( a t ? a g e n t ? from )
9 ( a d j a c e n t ? from ? p l a c e )

10 ( not ( v i s i t e d ? a g e n t ? p l a c e ) )
11 ; Not c l e a r i f a s s i g n e d v a r i a b l e s w i t h sor t−by are s u p p o r t e d
12 ; ( a s s i g n ? d i s t a n c e ( c a l l d i s t a n c e ? p l a c e x ? p l a c e y ? g o a l x ? g o a l y ) )
13 ; R e q u i r e s precomputed d i s t a n c e s i n t h e i n i t i a l s t a t e
14 ( d i s t a n c e ? p l a c e ? g o a l ? d i s t a n c e ) ) ) )
15 ( ; S u b t a s k s
16 ( ! move ? a g e n t ? from ? p l a c e )
17 ( ! ! v i s i t ? a g e n t ? from )
18 ( f o r w a r d ? a g e n t ? g o a l )
19 ( ! ! u n v i s i t ? a g e n t ? from ) ) )� �

Listing 4.2 – Sort-by mechanism available in JSHOP binds variable to values according to the
comparison selected.

� �
1 ( : a t t a c h m e n t s ( a d j a c e n t ? pos ? n e a r ? g o a l ) )
2 ( :method ( f o r w a r d ? a g e n t ? g o a l )
3 base
4 . . .
5 r e c u r s i o n
6 ( ; P r e c o n d i t i o n s
7 ( a t ? a g e n t ? from )
8 ; E q u i v a l e n t t o ( a d j a c e n t ? from ? p l a c e ) w i t h ? goa l p r i o r i t y
9 ( a d j a c e n t ? from ? p l a c e ? g o a l )

10 ( not ( v i s i t e d ? a g e n t ? p l a c e ) ) )
11 ( . . . ) ) ; Same s u b t a s k s o f p r e v i o u s forward method� �

Listing 4.3 – Improve domain readability with symbols instead of coordinates and domain
performance with a more expressive semantic attachment that considers the goal position.
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4.2 Plant Watering / Gardening

In the Plant Watering domain [29] one or more agents move in a 2D grid-based scenario to
reach taps to obtain water and pour water in plants spread across the grid. Each agent can carry up to
a certain amount of water and each plant requires a certain amount of water to be poured, as seen in
Figure 4.4. Many state variables can be represented as numeric fluents, such as the coordinates of each
agent, tap and plant, the amount of water to be poured and being carried by each agent, and the limits
of how much water can be carried and the size of the grid. There are two common problems in this
scenario, the first is pathfinding, to reach either a tap or a plant, the second is the top level strategy. To
avoid considering multiple paths in the decomposition process one can try to move straight to the goal
position in scenarios without obstacles, which is the case of this domain and simplifies the forward
method. Otherwise positions closer to the goal are considered first. To achieve this straightforward
movement we modify the ADJACENT semantic attachment to also consider the goal position, using
Algorithm 8. A top level strategy may consider which plant is closer to a tap or closer to an agent,
how much water an agent can carry and so on. A simpler top level strategy verifies how much water
must be poured to a plant, move to any tap, obtain water, move to the previously selected plant and
pour all the water loaded. This process is repeated until every plant has enough water poured. The
forward method is shown in Listing 4.4 and compiled to Algorithm 9. We compare with the fastest
satisficing configuration of ENHSP (sat) and Metric-FF 2.1 (standard-FF) in Figure 4.5, which
shows that our approach is faster with execution times near 0.01s (ignoring interpreter loading time),
or competitive with Metric-FF around 0.11s (considering interpreter loading time), with all three
planners obtaining non-step-optimal plans.

Algorithm 8 In this goal-driven ADJACENT semantic attachment the positions are coordinate pairs,
and two variables must be unified to a closer to the goal position in an obstacle-free scenario.

1: function ADJACENT(x, y, nx, ny, gx, gy) . Or ADJACENT(xy, nxy, gxy) for symbolic positions
2: . 〈x, y〉 ← QUERY(SO-table, xy)
3: . 〈gx, gy〉 ← QUERY(SO-table, gxy)
4: . COMPARE returns -1, 0, 1 for <,=, >, respectively
5: . nxy← INSERT(SO-table, 〈x + COMPARE(gx, x), y + COMPARE(gy, y)〉)
6: nx← x + COMPARE(gx, x)
7: ny ← y + COMPARE(gy, y)
8: yield

Algorithm 9 Compiled output of the Plant Watering HTN domain excerpt from Listing 4.4.
1: function FORWARD(a, gx, gy)
2: if x(a) = gx ∧ y(a) = gy then yield ∅
3: else
4: free variables nx, ny
5: for each ADJACENT(x(a), y(a), nx, ny, gx, gy) do
6: yield [〈move, a, nx, ny〉, 〈forward, a, gx, gy〉]
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1 ( : a t t a c h m e n t s ( a d j a c e n t ? x ? y ? nx ? ny ? gx ? gy ) )
2 ( :method ( f o r w a r d ? a ? gx ? gy )
3 base
4 ( ; P r e c o n d i t i o n s
5 ( c a l l = ( c a l l f u n c t i o n ( x ? a ) ) ? gx )
6 ( c a l l = ( c a l l f u n c t i o n ( y ? a ) ) ? gy ) )
7 ( ) ; Empty s u b t a s k s
8 keep_moving
9 ( ; P r e c o n d i t i o n s

10 ( a d j a c e n t ( c a l l f u n c t i o n ( x ? a ) ) ( c a l l f u n c t i o n ( y ? a ) ) ? nx ? ny ? gx ? gy ) )
11 ( ; S u b t a s k s
12 ( ! move ? a ? nx ? ny )
13 ( f o r w a r d ? a ? gx ? gy ) ) )� �

Listing 4.4 – Excerpt of the Plant Watering HTN domain, the ADJACENT semantic attachment is
described separately.

Figure 4.4 – Plant watering problem with one
agent, four flowers and two taps in 6x4 grid-
based scenario.
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Figure 4.5 – Time in seconds to solve Plant Wa-
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4.3 Sokoban

Preprocessing is an important step in many domains. In this section we explore preprocess-
ing as a regular HTN task of the domain using the tight integration between symbolic and intermediate
layer. The intermediate layer is used to modify the state with preprocessed data, generate possible
values and store data about previous failed HTN branches to improve planning time.

In the Sokoban game an agent must push one or more boxes in a warehouse to their storage
locations. Each location is a cell on a grid, either clear or occupied by an agent, box, or wall, as seen
in Figure 4.6. Boxes can get stuck into non-storage locations or behind other boxes, which creates
many possible deadlocks (locations that when occupied by a box create dead end states) within the
game, forcing it to be reset. To avoid such situations the actions taken by the agent must be carefully
planned ahead, which makes Sokoban a challenging puzzle from a search perspective. Sokoban is
very trivial in terms of description, with only move and push operators. The agent can always move
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to an adjacent clear location or push an adjacent box towards a direction in which there is a clear
location, moving the agent to the box location and the box to the previously clear location.

The domain designer has two key challenges to solve in their description: how to describe
adjacent and pushable in terms of predicates. Adjacency can be described in the initial state for a
NxM grid as (adjacent cell1 cell2), which generates many predicates and will require more predi-
cates as N or M increases. Pushable can be described in the same way, (pushable cell1 cell2 cell3).
These two predicates greatly increase the number of predicates in the initial state, while also requiring
maintenance to support bigger maps. Such process can be automated by a preprocessor, as map di-
mensions are limited, to generate the complete initial state. HTNs can move such preprocessing stage
to happen during planning, which can save time for domains where a Sokoban-like subproblem may
never have to be solved for a specific task to be completed, which never requires adjacency and push-
able to be computed. Going one step further, we can preprocess deadlocks and avoid many actions
that lead to no solution. Listing 4.5 contains our Sokoban HTN domain with the original operators,
one invisible operator to verify repeated states and two methods, one to preprocess deadlocks and the
other to move/push agent/box recursively until all boxes are in storage locations. This domain de-
scription takes advantage of accessing the symbolic state from external parts to simplify description
complexity. The external elements ADJACENT, PUSHABLE and boxes_stored read clear cells and box
locations from the current state to either perform a unification or test externally, while find_deadlocks

function adds deadlock predicates to the state. The new_state function accesses a persistent memory
outside the planning engine, which is a separate structure that holds state information even after back-
tracking occurrences. This memory is useful to avoid dead end states repeatedly in many branches,
as current deadlock preprocessing does not consider deadlocks that involve other boxes, only the map
layout. The new_state function either adds the current new state to the structure and returns true, or
verifies that the current state is not new and returns false, which makes the precondition fail.

Figure 4.6 – Sokoban game with walls restricting the actions of an agent that must move boxes to
their storage location. Boxes that reach deadlock locations, represented by X, cannot be moved again.
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1 ( defdomain sokoban (
2 ( : a t t a c h m e n t s ( a d j a c e n t ? from ? t o ) ( p u s h a b l e ? from ? i n t e r m e d i a t e ? t o ) )
3
4 ( : o p e r a t o r ( ! move ? from ? t o )
5 ( ) ; Empty p r e c o n d i t i o n s
6 ( ( p l a y e r ? from ) ( c l e a r ? t o ) ) ; Del e f f e c t s
7 ( ( p l a y e r ? t o ) ( c l e a r ? from ) ) ) ; Add e f f e c t s
8
9 ( : o p e r a t o r ( ! push ? from ? i n t e r m e d i a t e ? t o )

10 ( ) ; Empty p r e c o n d i t i o n s
11 ( ( p l a y e r ? from ) ( box ? i n t e r m e d i a t e ) ( c l e a r ? t o ) ) ; Del e f f e c t s
12 ( ( p l a y e r ? i n t e r m e d i a t e ) ( box ? t o ) ( c l e a r ? from ) ) ) ; Add e f f e c t s
13
14 ( : o p e r a t o r ( ! ! v i s i t ? p l a y e r ) ( c a l l n e w _ s t a t e ? p l a y e r ) ( ) ( ) )
15
16 ( :method ( s o l v e−p r o c e s s e d ? p l a y e r )
17 n o _ b o x _ o u t s i d e _ s t o r a g e
18 ( c a l l b o x e s _ s t o r e d ) ; P r e c o n d i t i o n
19 ( ) ; Empty s u b t a s k s
20 push
21 ( ( p u s h a b l e ? p l a y e r ? box ? c l e a r ) ( not ( d e a d l o c k ? c l e a r ) ) ) ; P r e c o n d i t i o n s
22 ( ( ! push ? p l a y e r ? box ? c l e a r ) ( ! ! v i s i t ? box ) ( s o l v e−p r o c e s s e d ? box ) )
23 move
24 ( a d j a c e n t ? p l a y e r ? c l e a r ) ; P r e c o n d i t i o n
25 ( ( ! ! v i s i t ? c l e a r ) ( ! move ? p l a y e r ? c l e a r ) ( s o l v e 2 ? c l e a r ) ) ) ; S u b t a s k s
26
27 ( :method ( s o l v e ? p l a y e r )
28 p r e p r o c e s s
29 ( c a l l f i n d _ d e a d l o c k s ) ; P r e c o n d i t i o n
30 ( ( ! ! v i s i t ? p l a y e r ) ( s o l v e−p r o c e s s e d ? p l a y e r ) ) ) ) ) ; S u b t a s k s� �

Listing 4.5 – Sokoban domain with ADJACENT and PUSHABLE semantic attachments, and new_state,
boxes_stored and find_deadlocks external functions used to generate or test external state features.

4.4 Real-Time Strategy In-range Problem

Some problems have clear solutions that are either hard to describe in finer detail, due to
planning description limitations, and hard for the planner to derive from the high level operators and
methods alone. In this section we explore how to describe one specific problem that requires numeric
value support, storing and sorting values to reach an optimal solution.

Real-Time Strategy (RTS) games are a subgenre of strategy games in which teams fight for
resources in a 2D scenario. Units of both teams gather resources to obtain buildings or improvements
simultaneously (no turns) in a shared environment. The basic problem of RTS games is the number
of possible actions that can be made at any moment due to the vast number of available units (agents)
and specialized actions for each unit while reacting to actions from the opponent. Players spend hours
training to find useful strategies to win in certain scenarios. Due to their complexity, RTS games are
also subject of AI research [66]. Many AI approaches can be used to play RTS games, but a naive
search-based classical planner is not the preferred option, as it will suffer from a predicate combina-
torial explosion caused by the many agents and positions that can be unified in this domain, which
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combined with long plans will take enough time for the opponent to improve and attack without re-
sistance. The strategic nature of the game matches HTN solutions better than classical planning [50],
as strategies focus on certain action sequences and limit the number of states the planner can reach to
only promising ones. The ranged attack is one specific problem of interest within RTS games. Unlike
common attacks that require two units to be in adjacent positions to perform an attack action, a ranged
unit can attack within a certain range. To exploit such feature an attacking unit prefers to avoid doing
any extra steps closer to the target with the ranged unit and attacking as far as possible. To describe
such strategy the map is simplified to a grid with three relevant positions: the position of the target
enemy, the position of the attacker and the position in range that we want to discover. The goal is
to minimize the number of movements required by the attacker to be in range. Consider Figure 4.7,
where one green ranged unit have the task to attack a red enemy unit. In this implementation the range
is a circle of radius three. Considering each free position to be a valid candidate, the first thing to do is
to check if the distance between a position and the target is smaller than the range, in this example we
assume three cells. To simplify this process, we can filter positions that are inside the smallest square
that limits this circle, avoiding several distance calculations on large grids. This square is clipped by
the grid limits, which must also be taken into account. Now we can test each free position within the
square that is also inside the circle, store each one with their respective distance to the target in a list
and sort it based on the distance between the attacker and the position, to minimize movement. The
first elements of such list after this process (for a mostly free grid) are positions that are over the circle
border, being not only closer to the attacker, but as far away as possible from the target unit.

This solution is simpler in text than in planning description, as filtering and sorting are pro-
cedural features that are either not supported by planners or hard to describe, especially when com-
bined, as previously seen in Section 4.1 with sorting. An implementation of the go-attack method
using our approach is shown in Listing 4.6, and the IN_RANGE semantic attachment is shown in List-
ing 4.7. The go-attack method have two cases, one where the attacker is already in range, and another
where it moves with forward before being able to decompose to an attack method that repeatedly
apply attack actions. The IN-RANGE semantic attachment follows the same process previously de-
scribed. Objects are not stored in a table in this implementation as no position symbols are used, only
numeric values as X and Y coordinates.

Figure 4.7 – Discrete RTS ranged attack, a green ranged unit must select a position that is within the
range radius to attack the red enemy unit while trying to minimize movements to reach such position.
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1 ( : a t t a c h m e n t s ( i n _ r a n g e ? x ? y ? ax ? ay ? t x ? t y ? r a n g e ? wid th ? h e i g h t ) )
2 ( :method ( go−a t t a ck ? a t t a c k e r ? t a r g e t )
3 in− range
4 (
5 ( r a n g e ? a t t a c k e r ? r a n g e )
6 ( a t ? a t t a c k e r ? ax ? ay )
7 ( a t ? t a r g e t ? t x ? t y )
8 ( c a l l <= ( c a l l ^ ( c a l l + ( c a l l ^ ( c a l l − ? ax ? t x ) 2 )
9 ( c a l l ^ ( c a l l − ? ay ? t y ) 2 ) ) 0 . 5 ) ? r a n g e ) )

10 ( ( a t t a c k ? u n i t ? t a r g e t ) )
11 not− in− range
12 (
13 ( g r i d ? wid th ? h e i g h t )
14 ( r a n g e ? a t t a c k e r ? r a n g e )
15 ( a t ? a t t a c k e r ? ax ? ay )
16 ( a t ? t a r g e t ? t x ? t y )
17 ( i n _ r a n g e ? x ? y ? ax ? ay ? t x ? t y ? r a n g e ? wid th ? h e i g h t )
18 ( f r e e ? x ? y ) )
19 ( ( f o r w a r d ? u n i t ? x ? y ) ( a t t a c k ? u n i t ? t a r g e t ) ) )� �

Listing 4.6 – Go-attack method with IN_RANGE semantic attachment.

� �
1 def i n _ r a n g e ( x , y , ax , ay , tx , ty , range , width , h e i g h t )
2 ax = ax . t o _ i
3 ay = ay . t o _ i
4 t x = t x . t o _ i
5 t y = t y . t o _ i
6 r a n g e = r a n g e . t o _ i
7 wid th = wi tdh . t o _ i
8 h e i g h t = h e i g h t . t o _ i
9 minx = t x > r a n g e ? t x − r a n g e : 0

10 miny = t y > r a n g e ? t y − r a n g e : 0
11 maxx = t x + r a n g e
12 maxy = t y + r a n g e
13 maxx = wi tdh − 1 i f maxx > wi tdh − 1
14 maxy = h e i g h t − 1 i f maxy > h e i g h t − 1
15 l i s t = [ ]
16 minx . up to ( maxx ) { | t o x |
17 miny . up to ( maxy ) { | t o y |
18 l i s t << [ tox , t o y ] i f Math . hypo t ( t x − tox , t y − t o y ) <= r a n g e
19 }
20 }
21 l i s t . s o r t _ b y ! { | i , j | Math . hypo t ( ax − i , ay − j ) } . each { | i , j |
22 x . r e p l a c e ( i . t o _ f . t o _ s )
23 y . r e p l a c e ( j . t o _ f . t o _ s )
24 y i e l d
25 }
26 end� �

Listing 4.7 – IN-RANGE semantic attachment externally defined.

4.5 Motion Planning

Most planning problems are limited by the symbolic approach to deal only with discrete
representations. Maps are usually based on a grid, where positions are cells that can either be occupied
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1 ( : a t t a c h m e n t s ( a d j a c e n t ? f rom−ce l l ? t o− c e l l ? g o a l− c e l l ? c e l l− s i z e ) )� �

Listing 4.8 – ADJACENT semantic attachment for cell decomposition.

or available, similar to board games and puzzles, such as Sokoban. Not only a person or process must
slice the scenario in cells before planning starts, this may limit planning to simplified solutions that
require actual numeric definitions in realistic applications. To plan within a realistic scenario one
must deal with the continuous and geometric properties of it, usually 2D or 3D. Since planners and
geometric libraries are usually developed separately, one must either recreate geometric functions
for the planner or adapt a library to avoid rework. This process is not trivial: not only rounding
errors, but object comparisons, could lead to failures during planning or incorrect generation of a
(non-satisficing) plan. With our approach, one can reuse the same symbolic description for most
motion planning subproblems using a combination of preprocessing, as the one used in Sokoban from
Section 4.3, and ADJACENT semantic attachment, from Section 3.7.3. The actual motion planning is
implemented in the intermediate layer. In the following subsections we discuss how motion planning
techniques could be integrated in our symbolic-geometric planning approach.

4.5.1 Roadmap and Cell decomposition

The visibility graph from Roadmaps, from Section 2.4.1, and cells from Cell decomposi-
tion, from Section 2.4.2, can be generated by a function call and stored in the intermediate layer, while
adjacency between the regions can be implemented through the ADJACENT semantic attachment to
generate new locations to move. By choosing to not preprocess the map into roadmap or cells, one
will have to generate map information during each semantic attachment call, possibly caching infor-
mation obtained during each semantic attachment call for large maps. By adding the goal position
as a parameter to the ADJACENT semantic attachment it is possible to give priority to portions of
the map between current and goal points. The resulting HTN domain is very similar to the Plant
Watering domain of Section 4.2, however map properties are not discretized beforehand, letting the
planner decide when, how and which parts of the map to discretize as needed. For cell decomposi-
tion approaches, the cell size can also be controlled during planning using a ?cell-size parameter in
the semantic attachment, Listing 4.8, to deal with objects with different proportions or safety margin
distances.

In this configuration the continuous map must be described in the initial state or loaded
from an external source. Continuous map descriptions require polygons and polyhedra details, which
are harder to maintain using planning descriptions. The map description can also be loaded from
an external source. An example of such problem description is shown in Listing 4.9, with problem
specific details described in the problem file, while a common map is loaded from an external source.
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1 ( defproblem pb1 s e a r c h
2 ( ; I n i t i a l s t a t e
3 ( a t r o b o t s t a r t )
4 ( p o s i t i o n s t a r t 8 5 ) ; D e f i n e p o s i t i o n c o o r d i n a t e s
5 ( p o s i t i o n g o a l 6 8 )
6 ( po lygon 1 1 2 1 2 2 1 2) ; Add sq ua re o b s t a c l e
7 ; . . . Add many o b s t a c l e s here . . .
8 ( load−map map . j s o n ) ) ; Add map f i l e i n f o r m a t i o n d u r i n g c o m p i l a t i o n
9 ( ( f o r w a r d r o b o t g o a l ) ) ) ; Task l i s t� �

Listing 4.9 – Motion planning problem loading external continuous map properties from external file.

4.5.2 Sampling and Potential Fields

Sampling and Potential Fields, described in Sections 2.4.3 and 2.4.4, respectively, do not
need preprocessing, as they sample or compute forces based on their current position in the continuous
space, differently from the roadmaps or cells that discretize space independent from agent position.
Sampling combined with semantic attachments can yield the steps of a path obtained from the user
specified number of samples, which are connected when within the given range, with every position
sample being converted by the symbol-object table to a more readable symbol. The first call to the
semantic attachment generates the actual sampling, yielding the first sample to go to while caching
the path in the intermediate layer to be consumed on subsequent calls on the same area and range.
The semantic attachment implementation can try to find a path more than once, adding more samples
every round or changing sampling strategy to avoid returning a failure. SAMPLE semantic attachment
is shown in Listing 4.10.

Potential Fields are expected to return one position for each call, which makes them suitable
to be implemented by functions. However, by replacing the potential field function with a semantic
attachment to generate new positions we can also add new forces at local minima dead-ends found
during planning to repulse the agent, making possible to also consider the new forces when back-
tracking occurs and trying a different path. Extra domain knowledge provided by the HTN can also
be used to avoid narrow passages and consider dynamic obstacles.� �

1 ( : a t t a c h m e n t s ( sample ? from ? t o ? g o a l ? minx ?maxx ? miny ?maxy ? sample s ? r a n g e ?
t r i e s ) )

2 ( :method ( s a m p l i n g ? a g e n t ? g o a l )
3 base
4 ; P r e c o n d i t i o n s
5 ( ( a t ? a g e n t ? from ) ( c a l l < ( c a l l d i s t a n c e ? from ? g o a l ) 5 ) )
6 ( ) ; Empty s u b t a s k s
7 keep_moving
8 ; P r e c o n d i t i o n s
9 ( ( a t ? a g e n t ? from ) ( wid th ?w) ( h e i g h t ? h )

10 ( sample ? from ? t o ? g o a l 0 ?w 0 ? h 1000 5 3) )
11 ; S u b t a s k s
12 ( ( ! move ? a g e n t ? from ? t o ) ( s a m p l in g ? a g e n t ? g o a l ) ) )� �

Listing 4.10 – Sampling positions with a semantic attachment.
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4.5.3 Dubin’s path / Bitangent search

For an agent to move in a continuous space it is common practice to simplify the environ-
ment to simpler geometric shapes for faster collision evaluation [45]. One possible simplification is
to find the smallest circle or sphere that contains each 2D or 3D obstacle, respectively, and use this
simpler obstacle shape to evaluate paths. In this context the optimal path is the one with the shortest
lines between initial position and goal, considering bitangent lines between each simplified obstacle
plus the amount of arc traversed on their borders. This path is also know as Dubin’s path [22]. One
possible approach for a satisficing plan is to move straight to the goal or to the closest obstacle to the
goal and repeat the process. Such movement requires a visible destination, without any other obsta-
cles between current and target positions. A second consideration is the entrance and exit rotation
direction, as clock or counter-clockwise, to avoid cusped edges. Cusped edges are not part of optimal
realistic paths, as the moving agent would have to turn around over a single point instead of changing
its direction a few degrees to either side. For the problem defined in Figure 4.8 the possible paths from
point i to g are ACG, ADH, BEG and BFH, other paths contain unnecessary movements or cusped
edges, such as the AEH path, with two cusped edges.

Obstacle1 Obstacle2
A
B

C
D

E

F

G

H

i

g

Figure 4.8 – Possible bitangent paths from i to g with two circular obstacles.

Two possible approaches can be taken to solve the search over circular obstacles using
bitangents. One is to rely on an external solver to compute the continuous movement actions, a motion
planner, which could happen after or during HTN decomposition has taken place. If computed after
HTN decomposition, one must replace certain dummy actions of the HTN plan with actual movement
actions and replan in case of failure. If computed during HTN decomposition one must be able to
either access the entire solver or parts of it.

The first approach delegates the entire search to an external implementation to compute
the path. The external implementation can be implemented as a function, and used by the HTN as
the SEARCH-CIRCULAR function implemented in Listing 4.11. A forward method calls the external
solver when the agent is not at the goal already. The SEARCH-CIRCULAR function can return or
externally store the resulting steps of the path plan. The plan found by an external solver can be
stored in the intermediate layer as a list to be consumed by later function calls. The apply-plan

method recursively applies movement actions until no more positions, retrieved by the plan-position

function based on their index, are stored in the external list of size plan-size. The HTN planner can
try to use this path plan, but it is impossible to ask for a new plan if it fails, as functions return a value
once. The external functions could be modified to return many or all possible path plans. This is
not only complex to describe, but also computing intensive, as many paths are unnecessary for most
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cases. The external solver should only compute bitangents as required, as bitangent precomputation
takes a significant amount of time for scenarios with many obstacles.

� �
1 ( :method ( f o r w a r d ? a g e n t ? g o a l ) ; C a l l e x t e r n a l s o l v e r
2 base
3 ( ( a t ? a g e n t ? g o a l ) ) ; P r e c o n d i t i o n s
4 ( ) ; Empty s u b t a s k s
5 s e a r c h
6 ( ; P r e c o n d i t i o n s
7 ( a t ? a g e n t ? s t a r t ) ; Plan s t o r e d o u t s i d e HTN
8 ( c a l l s e a r c h− c i r c u l a r ? a g e n t ? s t a r t ? g o a l ) ) ; E x t e r n a l s o l v e r c a l l
9 ( ( app ly−plan ? a g e n t ? s t a r t 0 ( c a l l p l a n− s i z e ) ) ) ) ; S u b t a s k

10
11 ( :method ( app ly−plan ? a g e n t ? from ? i n d e x ? s i z e ) ; Consume e x t e r n a l p lan
12 i n d e x−e q u a l s− s i z e
13 ( ( c a l l = ? i n d e x ? s i z e ) ) ; P r e c o n d i t i o n s
14 ( ) ; Empty s u b t a s k s
15 g e t−n e x t−a c t i o n
16 ( ( a s s i g n ? t o ( c a l l p l a n−p o s i t i o n ? i n d e x ) ) ) ; P r e c o n d i t i o n s
17 ( ; S u b t a s k s ( move and r e p e a t )
18 ( ! move ? a g e n t ? from ? t o )
19 ( app ly−plan ? a g e n t ? t o ( c a l l + ? i n d e x 1) ? s i z e ) ) )� �

Listing 4.11 – Search over circular obstacles using bitangents is done entirely by external function
and resulting plan steps stored in intermediate layer are consumed by the HTN.

The second approach interleaves HTN and external calls to better deal with backtracking,
which requires external calls to not return a value once, but new values as needed. In cases like this
we can use semantic attachments to compute values on-demand. An implementation of the second
approach is presented in Listing 4.12. The second approach relies on parts of the external solver to
describe continuous search to the HTN planner, namely a VISIBLE function and a CLOSEST SA. The
VISIBLE function returns true if from a point on a circle there is a straight line to the goal without ob-
stacles, and false otherwise. The CLOSEST semantic attachment generates unifications from a circle
with an entrance direction to a point in another circle with an exit direction, new points closer to the
goal are generated first. Our initial task maps to the forward-attachments method, which decomposes
to a search loop in one of two directions, clockwise or counter-clockwise. The loop method is very
similar to a discrete search on a grid, the only difference is the direction and use of CLOSEST instead
of ADJACENT SA. Both loop method cases are used to move around circular obstacles using bitan-
gents, keeping the entrance and exit direction to avoid cusped edges between the circles. Instead of
generating all bitangents between start, goal and obstacles before search, we can exploit knowledge
of the goal position to generate bitangents that are closer to the goal, performing a greedy search. The
CLOSEST semantic attachment unifies three variables: ?out_circle with the target circle, ?to with a
point on the target circle, and ?out_dir with the exit rotation direction. Differently from the external
solver, one can deal with failure at any moment, while being able to modify behavior with the same
external parts, such as the initial direction the search starts with in the loop method, or to limit or
prioritize overtakes to the left or right of moving obstacles. Another advantage over the original so-
lution is the ability to ask for N plans, which forces the HTN to backtrack after each plan is found
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and explore a different path until the number of plans found equals N, or the HTN planner fails to
backtrack and obtain more plans.

� �
1 ( : a t t a c h m e n t s ( c l o s e s t ? c i r c l e ? t o ? o u t _ c i r c l e ? i n _ d i r ? o u t _ d i r ? g o a l ) )
2 ( :method ( f o r w a r d− a t t a c h m e n t s ? a g e n t ? g o a l )
3 c l o c k w i s e
4 ( ( a t ? a g e n t ? s t a r t ) ) ; P r e c o n d i t i o n
5 ( ( l oop ? a g e n t ? s t a r t ? s t a r t c l o c k ? g o a l ) ) ; S u b t a s k
6 c o u n t e r− c l o c k w i s e
7 ( ( a t ? a g e n t ? s t a r t ) ) ; P r e c o n d i t i o n
8 ( ( l oop ? a g e n t ? s t a r t ? s t a r t c o u n t e r ? g o a l ) ) ; S u b t a s k
9 )

10
11 ( :method ( l oop ? a g e n t ? from ? c i r c l e ? i n _ d i r ? g o a l )
12 base
13 ( ( c a l l v i s i b l e ? from ? c i r c l e ? g o a l ) ) ; P r e c o n d i t i o n
14 ( ( ! move ? a g e n t ? from ? g o a l ) ) ; S u b t a s k
15 r e c u r s i o n
16 ( ; P r e c o n d i t i o n s
17 ( c l o s e s t ? c i r c l e ? t o ? o u t _ c i r c l e ? i n _ d i r ? o u t _ d i r ? g o a l )
18 ( not ( v i s i t e d ? a g e n t ? t o ) ) )
19 ( ; S u b t a s k s
20 ( ! move ? a g e n t ? from ? t o )
21 ( ! ! v i s i t ? a g e n t ? from )
22 ( loop ? a g e n t ? t o ? o u t _ c i r c l e ? o u t _ d i r ? g o a l )
23 ( ! ! u n v i s i t ? a g e n t ? from ) ) )� �

Listing 4.12 – Search over circular obstacles using bitangents is done by the HTN using the CLOSEST

semantic attachment to generate each step.

4.6 Temporal Planning

Although there are steps to reproduce classical planning time constraints in HTN, as seen
in Section 2.3, there are no approaches to include a time variable and exploit HTN planning to test
multiple durations. Based on the ITERATOR semantic attachment, presented in Section 3.7.2, we
exploit durative actions in HTN descriptions.

4.6.1 Generator

In the Generator domain, first described by Howey and Long [44], one can generate energy
based on the amount of fuel available in each generator’s tank. Two actions are available in this
domain: generate and refuel. These two actions are durative actions, as their effects are based on
a time variable that matches the duration of the action. Both actions act on the fuel level of each
generator tank and are constrained by the capacity of fuel each generator tank can store.
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Here we use the linear version of the Generator domain, based on the one from DiNo 1,
shown in Listing 4.13, where the amount of fuel being added or removed from each generator tank
matches the behavior of a linear function. The linear version is easier to compute, debug and com-
pare than the original version, as more planners are able to support linear function descriptions than
otherwise.� �

1 ( d e f i n e ( domain g e n e r a t o r 2 )
2 ( : requ irement s : f l u e n t s : d u r a t i v e−a c t i o n s : d u r a t i o n− i n e q u a l i t i e s : a d l : t y p i n g )
3 ( : t y p e s g e n e r a t o r t a n k )
4 ( : p r e d i c a t e s ( r e f u e l i n g ? g − g e n e r a t o r ) ( g e n e r a t o r− r a n ) ( a v a i l a b l e ? t − t a n k ) )
5 ( : f u n c t i o n s ( f u e l L e v e l ? g − g e n e r a t o r ) ( c a p a c i t y ? g − g e n e r a t o r ) )
6 ( : d u r a t i v e−a c t i o n g e n e r a t e
7 :parameters ( ? g − g e n e r a t o r )
8 : d u r a t i o n (= ? d u r a t i o n 1000)
9 : c o n d i t i o n ( ove r a l l ( >= ( f u e l L e v e l ? g ) 0 ) )

10 : e f f e c t ( and ( d e c r e a s e ( f u e l L e v e l ? g ) (* # t 1 ) )
11 ( a t end ( g e n e r a t o r− r a n ) ) ) )
12 ( : d u r a t i v e−a c t i o n r e f u e l
13 :parameters ( ? g − g e n e r a t o r ? t − t a n k )
14 : d u r a t i o n (= ? d u r a t i o n 10)
15 : c o n d i t i o n ( and ( a t s t a r t ( a v a i l a b l e ? t ) )
16 ( ove r a l l ( < ( f u e l L e v e l ? g ) ( c a p a c i t y ? g ) ) ) )
17 : e f f e c t ( and ( a t s t a r t ( r e f u e l i n g ? g ) )
18 ( i n c r e a s e ( f u e l L e v e l ? g ) (* # t 2 ) )
19 ( a t s t a r t ( not ( a v a i l a b l e ? t ) ) )
20 ( a t end ( not ( r e f u e l i n g ? g ) ) ) ) ) )� �

Listing 4.13 – Linear Generator domain in PDDL from DiNo.

The Generator domain can be converted to UJSHOP, as durative actions are split in two
actions, start and finish, following the steps from Goldman [38], presented in Section 2.3. The PDDL
2.1 functions used in the durative-actions are simulated in the intermediate layer to consider times-
pans. The user is responsible for describing how processes affect the value of functions queried at
specific points in time. Function constraints are simulated using an extension to JSHOP protections,
by describing named expressions as axioms and adding or removing protections over such axioms
during planning. A function queried at a time t must never break any protected axioms, which are
evaluated replacing their time variable with t, as this is the same as failing an action precondition and
will force backtracking. The intermediate layer complex parts related to functions and processes are
contained in the basic library, making such constructions trivial to be supported by new domains. The
user must only describe the STEP semantic attachment and identity and double functions, used by the
generate and refuel processes to decrease fuel at the same rate as it generates or to add fuel twice
as fast as the action duration. This is equivalent to the PDDL 2.1 expressions, externally defined as
UJSHOP was not extended to support specific temporal constructions. The final UJSHOP description
of the Generator domain is shown in Listing 4.14.

The domain description is much longer than the classical one, but all mechanisms are visible
and their intention is clear. On the other side, DiNo’s documentation supplies the user with specific

1https://github.com/KCL-Planning/DiNo/blob/master/ex/linear-generator/generator.pddl
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1 ( defdomain g e n e r a t o r (
2 ( : a t t a c h m e n t s ( s t e p ? t ? min ?max ? s t e p ) )
3 ( :− ( enough− fue l ? g ? t ) ( c a l l >= ( c a l l f u n c t i o n ( f u e l L e v e l ? g ) ? t ) 1000) )
4 ( :− ( minimum−fuel ? g ? t ) ( c a l l >= ( c a l l f u n c t i o n ( f u e l L e v e l ? g ) ? t ) 0 ) )
5 ( :− ( maximum−fuel ? g ? t )
6 ( c a l l <= ( c a l l f u n c t i o n ( f u e l L e v e l ? g ) ? t ) ( c a l l f u n c t i o n ( c a p a c i t y ? g ) ) ) )
7 ( : o p e r a t o r ( ! g e n e r a t e− s t a r t ? g ? s t a r t ? f i n i s h )
8 ( ( minimum−fuel ? g ? s t a r t ) )
9 ( )

10 ( ( p ro t ec t−ax iom minimum−fuel ? g )
11 ( c a l l p r o c e s s d e c r e a s e ( f u e l L e v e l ? g ) i d e n t i t y ? s t a r t ? f i n i s h ) ) )
12 ( : o p e r a t o r ( ! g e n e r a t e− f i n i s h ? g ? s t a r t ? f i n i s h )
13 ( ( minimum−fuel ? g ? f i n i s h ) )
14 ( ( p ro t ec t−ax iom minimum−fuel ? g ) )
15 ( ( g e n e r a t o r− r a n ) ) )
16 ; . . . C e r t a i n o p e r a t o r s and methods were o m i t t e d due t o space
17 ( :method ( m u l t i p l e− r e f u e l ? g ? s t a r t )
18 enough− fue l
19 ( ( enough− fue l ? g ? s t a r t ) )
20 ( )
21 add− fue l
22 ( ( t a n k ? t )
23 ( a v a i l a b l e ? t )
24 ( a s s i g n ? f i n i s h ( c a l l + ? s t a r t 10) ) )
25 ( ( ! r e f u e l− s t a r t ? g ? t ? s t a r t ? f i n i s h )
26 ( ! r e f u e l− f i n i s h ? g ? t ? s t a r t ? f i n i s h )
27 ( m u l t i p l e− r e f u e l ? g ? f i n i s h ) ) )
28 ( :method ( r e f u e l− a n d−g e n e r a t e ? g )
29 ( )
30 ( ( m u l t i p l e− r e f u e l ? g 0 ) ( g e n e r a t e ? g ) ) ) ) )� �

Listing 4.14 – Linear Generator domain in UJSHOP.

execution values to set the PDDL parser time quantum (a time step), real scale and real fraction digits
(value resolution), and such values are not trivial to guess. Executing both DiNo, with the supplied
values, and our approach over the problems from DiNo’s repository, we obtain the planning times of
Figure 4.9. Our approach does get slower as more tanks are available in the more complex problems,
but the entire batch of problems takes less time than the simplest problem being solved by DiNo (e.g
Problem 20 takes 0.0053s). We ignore the setup time required by both planners in this comparison,
as both require file generation, compilation or interpreter loading.
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Figure 4.9 – Time in seconds to solve Linear Generator problems.
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4.6.2 Car Linear

In the Car Linear domain [8] the goal is to control the acceleration of a car, which is con-
strained to a minimum and maximum speed, without external forces applied, only moving through
one axis to reach its destination, and requiring low speed to safely stop. The idea is to propagate pro-
cess effects to state functions, in this case acceleration to velocity and velocity to position, while being
constrained to an acceptable speed and acceleration. The planner must decide when and for how long
to increase or decrease acceleration, therefore becoming a temporal planning problem. We use the
STEP semantic attachment to iterate over the time variable and propagate temporal effects and con-
straints, i.e. speed at time t. The strategy implemented in the Car Linear HTN domain, Listing 4.15, is
to briefly accelerate to obtain speed and later to stop, leaving the semantic attachment responsible to
find the amount of time required to obtain the required displacement, as shown in Figure 4.10. In this
domain all state properties are functions, i.e. numeric values, with the speed limit constraint in place
during the entire planning time. Functions and speed constraint are initialized by the initial state, as
seen in Listing 4.16, with a single forward task with the destination minimum and maximum limits.
Note that the destination is not a single value to deal with rounding errors that may happen during
planning with non-integer numerical values and different time steps.

We compare the execution time of our approach with ENHSP with aibr, ENHSP main
configuration for planning with autonomous processes, in Table 4.1. There is no comparison with a
native HTN approach, as one would have to add a discrete finite set of time predicates (e.g. 〈time 0〉)
to the initial state description to be selected as time points during planning.

a

v

t1
d - 1 d

Figure 4.10 – In the Car Linear domain the car acceleration a can be controlled to achieve an accept-
able velocity v to obtain a displacement d and reach the destination, within an error margin, in less
time while respecting the domain constraints.

Problem 1 2 3 4 5 6 7 8 9
ENHSP (aibr) 0.484 0.432 0.411 0.443 0.461 0.474 0.465 0.436 63.585
HTN with SA 0.016 0.019 0.014 0.016 0.018 0.019 0.017 0.018 01.402

Table 4.1 – Time in seconds to solve Car Linear problems.
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1 ( defdomain c a r _ l i n e a r (
2 ( : a t t a c h m e n t s ( s t e p ? t ? min ?max ? s t e p ) )
3 ( :− ( s p e e d _ l i m i t ? t ime ) ; C o n s t r a i n t t o a x i o m , p r o t e c t e d s i n c e i n i t i a l s t a t e
4 ( and ( a s s i g n ? v t ( c a l l f u n c t i o n v ? t ime ) )
5 ( c a l l >= ? v t ( c a l l − 0 ( c a l l f u n c t i o n max_speed ) ) )
6 ( c a l l <= ? v t ( c a l l f u n c t i o n max_speed ) ) ) )
7 ( : o p e r a t o r ( ! s t a r t _ c a r ? s t a r t ? f i n i s h )
8 ( ( not ( e n g i n e _ r u n n i n g ) ) )
9 ( )

10 ( ( e n g i n e _ r u n n i n g )
11 ( c a l l p r o c e s s i n c r e a s e d d i s p l a c e m e n t ? s t a r t ? f i n i s h )
12 ( c a l l p r o c e s s i n c r e a s e v moving_custom ? s t a r t ? f i n i s h ) ) )
13 ( : o p e r a t o r ( ! s t o p _ c a r ? t ime )
14 ( ( e n g i n e _ r u n n i n g )
15 ( a s s i g n ? v t ( c a l l f u n c t i o n v ? t ime ) )
16 ( c a l l > ? v t −0 . 1 ) ( c a l l < ? v t 0 . 1 ) ( c a l l = ( c a l l f u n c t i o n a ? t ime ) 0 ) )
17 ( ( e n g i n e _ r u n n i n g ) )
18 ( ( c a l l e v e n t a s s i g n v 0 ? t ime ) ) )
19 ( : o p e r a t o r ( ! a c c e l e r a t e ? t ime )
20 ( ( e n g i n e _ r u n n i n g )
21 ( c a l l < ( c a l l f u n c t i o n a ? t ime ) ( c a l l f u n c t i o n m a x _ a c c e l e r a t i o n ) ) )
22 ( )
23 ( ( c a l l e v e n t i n c r e a s e a 1 ? t ime ) ) )
24 ( : o p e r a t o r ( ! d e c e l e r a t e ? t ime )
25 ( ( e n g i n e _ r u n n i n g )
26 ( c a l l > ( c a l l f u n c t i o n a ? t ime ) ( c a l l f u n c t i o n m i n _ a c c e l e r a t i o n ) ) )
27 ( )
28 ( ( c a l l e v e n t d e c r e a s e a 1 ? t ime ) ) )
29 ( : o p e r a t o r ( ! ! t e s t _ d e s t i n a t i o n ? m i n _ d e s t i n a t i o n ? m a x _ d e s t i n a t i o n ? t ime )
30 ( ( a s s i g n ? d ( c a l l f u n c t i o n d ? t ime ) )
31 ( c a l l >= ? d ? m i n _ d e s t i n a t i o n ) ( c a l l <= ? d ? m a x _ d e s t i n a t i o n ) ) ( ) ( ) )
32 ( :method ( f o r w a r d ? m i n _ d e s t i n a t i o n ? m a x _ d e s t i n a t i o n )
33 base
34 ( )
35 ( ( ! ! t e s t _ d e s t i n a t i o n ? m i n _ d e s t i n a t i o n ? m a x _ d e s t i n a t i o n 0 ) )
36 keep_moving
37 ( ( s t e p ? d e a d l i n e 3 ) )
38 ( ( ! s t a r t _ c a r 0 ? d e a d l i n e )
39 ( ! a c c e l e r a t e 0 )
40 ( ! d e c e l e r a t e 1 )
41 ( ! d e c e l e r a t e ( c a l l − ? d e a d l i n e 1 ) )
42 ( ! a c c e l e r a t e ? d e a d l i n e )
43 ( ! s t o p _ c a r ? d e a d l i n e )
44 ( ! ! t e s t _ d e s t i n a t i o n ? m i n _ d e s t i n a t i o n ? m a x _ d e s t i n a t i o n ? d e a d l i n e ) ) ) ) )� �

Listing 4.15 – Car Linear domain in UJSHOP.

� �
1 ( defproblem pb0 c a r _ l i n e a r
2 ( ; I n i t i a l s t a t e
3 ( f u n c t i o n d 0) ( f u n c t i o n v 0) ( f u n c t i o n a 0 )
4 ( f u n c t i o n m i n _ a c c e l e r a t i o n −10 ) ( f u n c t i o n m a x _ a c c e l e r a t i o n 10)
5 ( f u n c t i o n max_speed 10)
6 ( p r o t e c t _ a x i o m s p e e d _ l i m i t ) )
7 ( ( f o r w a r d 999 .5 1 0 1 0 . 5 ) ) ) ; Task l i s t� �

Listing 4.16 – Car Linear problem in UJSHOP.
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4.7 Rules and Behaviors

Certain domains, such as games and driving vehicles, force agents to act within certain rules
to match what is an expected behaviour by the other agents, otherwise the planning process becomes
extremely complex or impossible, decreasing the chances of agents obtaining their goals. Certain
rules are deterministic and clear, while others may be subjective to what one agent may perceive
about the environment or their interpretation about the rule description, forcing them to behave in
unexpected ways in corner cases not clearly specified.

Humans can deal with ambiguous or incomplete rules in a day-to-day basis using experience
and analyzing the behavior of others to complete missing information about how to act in the current
situation. However, the majority of robots lack the sensors, processing power or models to do the
same as humans in such scenarios. The problem becomes more visible as robots share spaces recently
occupied only by humans, as autonomous cars, drones and boats must adhere to preexisting rulesets
not made for them to coexist with human drivers. One such ruleset are COLREGS [13], which stands
for COLlision REGulationS, which focus on navigation rules to be followed by ships and vessels to
avoid collision hazards with static and moving objects. The main idea behind COLREGS is to have
a set of common rules to be used internationally, although some rules may be different according to
region or context, such as competitive sailing at sea. The regulatory content covers many aspects of
sailing, such as visibility, which are hard to measure and predict, while other aspects better match
rules to plan with, such as overtaking.

With motion and temporal planning it is possible to describe how trajectory and speed can be
controlled by a plan to carry out such maneuvers while complying with the COLREGS, maintaining
a behavior that does not jeopardize other vessels. The aspects more interesting for planning are:

• Overtake: catch up with and pass another vessel in the same direction, sometimes competing
for space;

• Head-on and crossing situations: consider other vessel direction and speed to avoid collision;

• Never stop in narrow channels: consider position to gather and process data, simplify colli-
sion avoidance with other vessel;

• Follow traffic schemes (lanes): simplify collision avoidance by using a preset direction and
speed in some regions.

• Minimize speed to gather more data or avoid hazard: consider position and speed during
planning; and

• Consider current, wind and depth during maneuvers: physical properties must be consid-
ered as they impact the planning process.

Such aspects may generate conflicting behaviors during execution, which must be consistent
with the common sense of a human to be effective [4] in an environment shared by autonomous
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and manually controlled vessels. Some of these aspects are more interesting for offline planning,
simulated before the event, to plan data gathering on a routine scanning from a lake or river. Other
aspects are more interesting to be done online, taking advantage of all the sensors on board of the
robotic vessel while constrained to limited computing power within the vessel.

By combining the previous implementations of the Bitangent search domain, from Sec-
tion 4.5.3, and the Car Linear domain, from Section 4.6.2, it is possible to obtain a new domain
in which we can plan in the continuous space while reasoning about temporal events and processes.
With motion and temporal planning aspects combined it is possible to describe the COLREGS aspects
previously selected. We can have a goto method to reach a goal position with a certain orientation
angle. If the goal position is nearby only the orientation must be adjusted. Otherwise the planner
decomposes the forward-attachments method to select which overtaking rotation direction to start
with, clockwise or counter-clockwise. The loop method will try to move to a visible goal position,
using the same strategy of the Car Linear domain, or keep moving towards the goal selecting visible
obstacles that are closer to the goal and repeating this process until the goal is reached or failure is
returned. Part of this domain is shown in Listing 4.17.

Head-on trajectories can use an expanded obstacle radius in the vessel coming towards our
agent, forcing it to move away from the collision route faster, as seen in Figure 4.11. For safety
reasons avoiding head-on vessels is usually done in only one rotation direction, starboard (counter-
clockwise), which removes one case from the forward-attachment and will require an extra flag to set
which directions are allowed in the CLOSEST semantic attachment. Adding the ?time variable to the
CLOSEST semantic attachment will also enable moving obstacles, vessels or not, to have their position
queried at specific times based on their expected routes during planning time. An extra case could be
considered to change speed to minimize turns and safely deal with crossing situations. Overtaking
forces our agent to align with the other vessel to an angle in which it avoids a crossing situation while
maintaining distance to increase safety, as the other vessel may not be aware of our presence and may
change speed and direction without notice.

Head-on Overtake / Crossing

Figure 4.11 – Head-on and overtaking situations force certain behaviors to match the COLREGS
ruleset. The head-on collision avoidance behavior will always force the agent to select the starboard
side, while overtaking leave the agent free to select a direction to avoid crossing in front of the other
vessel (dashed line) or move further ahead (straight line).

Terrain details can be considered by the CLOSEST semantic attachment. Terrain details
include a preference for wider channels, delaying narrow channels alternatives as they require the
agent to keep moving and not block the passage, which increases the description complexity with
guard cases. If the terrain follows a traffic scheme there is no need to use the goto method, just add a
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sequence of landmark points as subgoals and a method that forces the agent to reach each landmark
in the sequence. External forces, such as current and wind, influence the position function in the
same way as the acceleration process, but are outside the control of any agent action. Such forces can
be emulated by a local database of expected external forces at specific positions and times to better
model this domain.

� �
1 ( : a t t a c h m e n t s ( s t e p ? t ? min ?max ? s t e p )
2 ( c l o s e s t ? c i r c l e ? t o ? o u t _ c i r c l e ? i n _ d i r ? o u t _ d i r ? g o a l ) )
3 ( :method ( go to ? r o b o t ? g o a l ? a n g l e ? t ime )
4 base
5 ( ( a s s i g n ? pos ( c a l l f u n c t i o n ( pos ? r o b o t ) ? t ime ) )
6 ( a s s i g n ? g o a l _ a n g l e ( c a l l a t a n ? pos ? g o a l ) )
7 ( c a l l = ( c a l l d i s t a n c e ? g o a l ? pos ) n e a r ) )
8 ( ( t u r n ? r o b o t ? g o a l _ a n g l e ? a n g l e ? t ime ) )
9 las t−move

10 ( ( a s s i g n ? pos ( c a l l f u n c t i o n ( pos ? r o b o t ) ? t ime ) )
11 ( c a l l != ( c a l l d i s t a n c e ? g o a l ? pos ) n e a r )
12 ( a s s i g n ? g o a l _ a n g l e ( c a l l a t a n ? pos ? g o a l ) ) )
13 ( ( ! ! s e t ? r o b o t ? pos ? t ime )
14 ( f o r w a r d− a t t a c h m e n t s ? r o b o t ? g o a l ? pos ? a n g l e ? t ime ) ) )
15 ( :method ( f o r w a r d− a t t a c h m e n t s ? r o b o t ? g o a l ? pos ? a n g l e ? t ime )
16 ; c l o c k w i s e
17 ; ( ( a t ? r o b o t ? pos ? t i m e ) )
18 ; ( ( l oop ? r o b o t ? s t a r t ? s t a r t c l o c k ? goa l ? pos ? a n g l e ? t i m e ) )
19 c o u n t e r− c l o c k w i s e
20 ( ( a t ? r o b o t ? pos ? t ime ) )
21 ( ( l oop ? r o b o t ? s t a r t ? s t a r t c o u n t e r ? g o a l ? pos ? a n g l e ? t ime ) ) )
22 ( :method ( l oop ? r o b o t ? from ? c i r c l e ? i n _ d i r ? g o a l ? pos ? a n g l e ? t ime )
23 base
24 ( ( c a l l v i s i b l e ? from ? c i r c l e ? g o a l )
25 ( a s s i g n ? c u r r e n t _ a n g l e ( c a l l f u n c t i o n ( a ? r o b o t ) ? t ime ) )
26 ( a s s i g n ? g o a l _ a n g l e ( c a l l a t a n ? pos ? g o a l ) )
27 ( s t e p ? d e a d l i n e ( c a l l + ? t ime 1) ) )
28 ( ( t u r n ? r o b o t ? c u r r e n t _ a n g l e ? g o a l _ a n g l e ? t ime )
29 ( ! ! s t a r t _ m o v e m e n t ? r o b o t ? t ime ? d e a d l i n e )
30 ( ! i n c r e m e n t _ v e l o c i t y _ x ? r o b o t ? t ime )
31 ( ! d e c r e m e n t _ v e l o c i t y _ x ? r o b o t ? d e a d l i n e )
32 ( ! ! t e s t _ d e s t i n a t i o n ? r o b o t ? pos ? d e a d l i n e )
33 ( t u r n ? r o b o t ? g o a l _ a n g l e ? a n g l e ? d e a d l i n e ) )
34 r e c u r s i o n
35 ( ( s t e p ? d e a d l i n e ( c a l l + ? t ime 1) )
36 ( c l o s e s t ? c i r c l e ? t o ? o u t _ c i r c l e ? i n _ d i r ? o u t _ d i r ? g o a l )
37 ( not ( v i s i t e d ? r o b o t ? t o ) )
38 ( a s s i g n ? g o a l _ a n g l e ( c a l l a t a n ? pos ? t o ) ) )
39 ( ( t u r n ? r o b o t ? c u r r e n t _ a n g l e ? g o a l _ a n g l e ? t ime )
40 ( ! ! s t a r t _ m o v e m e n t ? r o b o t ? t ime ? d e a d l i n e )
41 ( ! i n c r e m e n t _ v e l o c i t y _ x ? r o b o t ? t ime )
42 ( ! d e c r e m e n t _ v e l o c i t y _ x ? r o b o t ? d e a d l i n e )
43 ( ! ! v i s i t ? r o b o t ? t o )
44 ( loop ? r o b o t ? t o ? o u t _ c i r c l e ? o u t _ d i r ? g o a l ? pos ? a n g l e ? d e a d l i n e )
45 ( ! ! u n v i s i t ? r o b o t ? t o ) ) )� �

Listing 4.17 – HTN domain combining Bitangent search and Car Linear strategy to plan in the
continuous space while also considering temporal effects of the acceleration process.
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5. RELATED WORK

We selected related work about planning to show how other researchers are dealing with
the symbolic-geometric data and the large state space created by combinatorial explosion. We focus
on symbolic-geometric planners as their application is closely related to robotics and the common
problems of this domain.

Before we cite related work, it is interesting to categorize the different approaches symbolic-
geometric planners may take. According to Schüller et al. [71] we can categorize planners based on
how different strategies focus on low-level checks about geometric feasibility, which happen:

Before planning Preprocessing geometric data for the planning stage;

During planning Making calls between the symbolic and external layers;

After planning Obtaining many plans and filtering impossible ones;

After planning Obtaining a single plan, and replanning with new constraints after each failure.

We can also focus on which layer takes control, expanding the previous categories, according to
Gharbi et al. [37]:

Symbolic layer calls external layer The symbolic layer is responsible for the search and asks the
external layer about the geometric feasibility of actions (during and after planning);

External layer calls symbolic layer The external layer is responsible for the movements and asks
the symbolic layer about which paths to take (before planning);

Sample in the compound space Search is controlled by both layers simultaneously (not defined by
Schüller et al. [71]).

Different problems can be better solved by certain strategies provided by such categories, e. g. robots
that do not change the environment geometry (only movement) or change in a limited way (pick and
place objects) can reuse geometric data for longer periods, which makes preprocessing more suitable.
In our work the symbolic layer calls the external layer, during planning, which makes the process
faster than preprocessing a lot of data or filtering later, which may require replanning. Since the calls
happen during planning and access external libraries, it is possible to create an interface to let experts
interact with the process, mostly to select the order in which the planner will consider each possible
value. Replanning with new constraints makes the process more tedious for a human to interact with
and more time consuming, as new constraints may force the planner to start from scratch, being unable
to exploit a cache of complex previous operations.

Considering deliberation and execution, de Silva and Meneguzzi [16] propose to add more
layers to an agent than the three layers used in this work. A deliberation layer is used to control the
symbolic planning layer providing goals or tasks. The symbolic planning layer is connected to the
geometric planning layer by anchors (similar to our symbol-object table in the intermediate layer)
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that are used to share data between the two parts, discretizing objects that were discovered during
execution that must be visible to the symbolic layer, such as obstacles. The anchors are defined as
automatic mechanisms that expose such data to the other layer when available, as a compound state,
unlike our approach that only creates new symbols through semantic attachments or function calls.
The lower levels are close to the hardware, monitoring if performed actions generate the expected
results captured by sensors.

In our work the upper (deliberation) and lower (robotic devices) levels from de Silva and
Meneguzzi are ignored, as they are more suited for continuous execution, with deliberation only tak-
ing place before planning, whereas sensing and acting, from the lower levels, are more suited before
and after planning, respectively. If acting and sensing must happen during planning, the intermediate
or external layer could access low level libraries that control robotic devices to execute and monitor
such functions, but the symbolic layer must be aware that backtracking may not be possible in cer-
tain situations, as the robot progresses and use resources. Deliberation could be used to either call the
lower levels to plan and execute simultaneously, or only plan, which could be used to know in advance
about possible challenges and failures based on known predicates that require no further exploration.

5.1 Semantic attachments for classical planning

Dornhege et al. [20] prefer to combine symbolic and geometric planners in a classical plan-
ner, a non-hierarchical architecture, using an extended version of PDDL to define geometric calls to
a classical planner. They opted to integrate the planners tightly to avoid preprocessing and replan-
ning, with the symbolic planner calling the geometric planner during the planning process. They
use semantic attachments to integrate both parts, checking the truth value of specific predicates by
a trajectory planner. Two types of semantic attachments are defined: condition checker for complex
preconditions, and effect applicator to compute the numerical state variables in effects. The PDDL
description is extended further to support grounding and cost modules [19], to externally unify vari-
ables and the cost of actions. No comments are made about the limitations of a static set of objects
(literal symbols) defined by PDDL problems, which impacts the number of possible predicates that
trigger calls to a geometric planner, and in a dynamic environment where dummy PDDL objects must
be defined, as they may or may not be used, and how this approach could affect performance. In a
later work [21] a cache was added to reuse values from external procedures applied to similar previ-
ous states. The work of Dornhege et al. was very inspiring to our approach, as the negative points
of a classical planner do not exist for an HTN approach. The number of objects is not static by de-
sign, as the actions applicable at any given moment come from the task decomposition procedure and
have their variables constrained by their preconditions. The number of numerical and external calls
is greatly minimized by following the decomposition procedure, no extra computation is required for
tasks that are never decomposed. The use of coroutines to explore other paths is more suitable for
HTN, as only backtracking forces the planner to ask for a new value, which triggers the coroutine to
yield such new value.
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5.2 STRIPStream / PDDLStream

With STRIPStream, Garret et al. [30] tried to solve some of the issues with classical plan-
ners, extending the STRIPS language [25] to support the specification of blackbox generators. As
generators create infinite streams of objects and static predicates, two planning algorithms are used to
reduce problems to finite versions. The first is an incremental planner, which generates planning in-
stances based on the streams, and retrying with more objects after each failed attempt. The second is
a focused planner, that starts with dummy objects to be replaced by concrete values during planning,
such values being limited to the region of interest, thus focusing the generation of objects on a prede-
fined interval. PDDLStream [31], the successor of STRIPStream, adheres to the PDDL standard [60],
adding a stream.pddl file to define the equivalent of our intermediate layer, with input/output param-
eters, domain and certified facts. Domain facts act as typing information, defining legal inputs, while
certified facts declare properties guaranteed to be satisfied by all stream outputs. Two new planning
algorithms are added to the system, binding and adaptive, to take more advantage of the previous
plans. Binding propagates stream outputs to the next stream inputs to evaluate more at each step, and
Adaptive maintains a queue of bindings to repeatedly consider. All planning algorithms operate in the
same way, solving a sequence of finite planning problems of increasing size. The implementation of
the generators uses PyBullet 1. The goal application of this work is geometrical tasks done by a robot
in a kitchen scenario, with actions like pick, place and scoop, never mentioning temporal planning
constructions. STRIPStream and PDDLStream have the same problem with fixed sets of objects to
represent streams of data from outside solvers as Dornhege et al.

5.3 Extend the description language

Other works also extended the description language to take advantage of external calls,
such as the Object-oriented Planning Language from Hertle et al. [40], with type safe mechanisms
and similar to the C++ language, Functional STRIPS from Ferrer-Mestres et al. [24], which supports
state constraints, functions, and numerical variables to deal with symbolic and geometric properties.
Gaschler et al. [34, 33] also implemented external calls in the symbolic layer with variables that
can deal with uncertainty, able to represent their state as known, unknown, incomplete or computed

during run time to obtain feasible plans. Later, they implemented geometric predicates to speed up
the planning process [32].

1pybullet.org



84

5.4 Geometric Task Planner

HTN-GTP [18] uses a totally-ordered HTN as the symbolic part of the system, decomposing
tasks as they are defined. The symbolic part tries to find a solution using a discrete space of candidates
to grasp and place objects in order to solve pick and place tasks. The Geometric Task Planner (GTP)
considers agent "effort" level, discrete grasps, placement positions and orientations. The authors
cite that the main advantage of GTP lies in its ability to solve a variety of common tasks related to
object visibility, grasp and reachability. Their work does not analyze what happens when geometric
backtracking must be performed, modifications of the geometric parts while symbolic parts of the plan
are kept intact, as this may force complete replanning if symbolic constraints must be changed to allow
planning on a different branch of the state space. More recent work of their research group [15, 51,
37] does not consider geometric backtracking as the original [17], using only geometric alternatives
represented by action instances in the symbolic level to explore other planning branches.

5.5 Symbolic versus Geometric top-level planner

S, ucan and Kavraki [77] use low-level checks after planning on a set of symbolic plans,
looking for a feasible geometrical solution to achieve a symbolic goal. Later they expanded the work
to deal with uncertainty using Markov Decision Process to guide the search [78]. Srivastava et al. [76]
also use the low-level checks after planning approach, but once a symbolic plan is found the actions
are expanded to consider the missing geometric relations, that will trigger a state update and search for
a new symbolic plan in case of failure. Their following work [75] considers geometric backtracking
to go back to the last feasible action in case of failure and try another alternative. The alternatives are
limited to a certain number, and the reason of failure is informed to the symbolic planner. Choi and
Amir [12] propose to do the opposite, use an external geometric layer to guide the search. They use
a motion planner to explore the world, such as the ones seen in Section 2.4, and use the generated
graph to search for feasible actions, using sets of motion between the edges of the generated graph
that modify the state of objects. Such actions are then used by a symbolic planner to search for a
feasible symbolic plan.

5.6 aSyMov

aSyMov [10, 39, 11, 9] is a symbolic-geometric planner created with robotic tasks in mind,
it shares constraints between symbolic and geometric parts of the planner using a compound state. To
do so, aSyMov employs a hybrid approach, the symbolic problems are solved by Metric-FF [41] while
the geometric problems, such as path and manipulation, are solved by Move3d [73]. At each planning
step the data from both parts, symbolic and geometric, is considered. It uses accessibility lists to solve
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geometric constraints alongside a roadmap, a representation of the configuration space (the geometric
state). The Probabilistic Roadmaps (PRMs) aSyMov relies on are considered an efficient approach
for highly dimensional motion planning problems. aSyMov works as a forward search planner in
the state space, exploring from the current state to the goal. When the goal is reached the plan
found is post-processed to add the geometric information required. This means that the planner
solves a purely symbolic version of the problem, ignoring geometric relations until a symbolic plan is
achieved. When backtrack happens, the system is forced to acknowledge that constraints exist in the
real-world and a heuristic estimator is used to select the closer-to-goal state from the reachable states
before replanning. The system also decides if more exploration of possible roadmaps is required
before selecting a state. The state is represented by three parts: a purely symbolic, an interface
between symbolic and geometric constraints, such as positions, and a purely geometric part with the
combinations that can be reached without collision. One of our first goals was to take advantage of
unlimited symbol generation at run-time instead of having a limited number of symbols to connect the
symbolic layer with the external layer. Creating such position objects during planning could improve
the performance of the planner, while removing the user’s burden to describe all position objects that
may be used along the search process.

5.7 Comparison

The related work cited in this chapter is organized in Table 5.1, to be better compared
with our work. We use the categories presented in the beginning of this chapter and a few more
to compare each approach. The ability to call external procedures during planning (7), as functions
or semantic attachments, to solve specific subproblems that cannot be represented as easily in the
planning description language. When only symbolic or geometric state is kept in memory the planner
will derive the other state representation from it (8 and 9), which may incur in some processing penalty
to save memory and avoid a complex internal representation that is forced to keep both symbolic
and geometric states consistent. Some planners may have a geometric solver that present several
possibilities to continue planning (10), some may even be able to backtrack only the geometric part of
the current solution to obtain a feasible plan (11). Each approach present several features according
to their planning strategies, we selected the following for comparison:

1. Symbolic layer calls external/geometric layer;

2. External/Geometric layer calls the symbolic layer;

3. Sample in the compound state;

4. From a first symbolic plan find a geometrically feasible solution;

5. Ensure geometric feasibility while computing the symbolic plan;

6. Find a geometrically feasible plan among all symbolic plans;

7. Call external procedures;
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8. Compute geometric states from symbolic states;

9. Create symbolic knowledge from geometry;

10. Geometric alternatives;

11. Geometric backtracking;

Table 5.1 – Related work sorted by research groups, our work is in the last row of the table.
Work 1 2 3 4 5 6 7 8 9 10 11
Dornhege et al. (2009) [20] X X X X
Dornhege et al. (2009) [19] X X X X
Hertle et al. (2012) [40] X X X X
Dornhege et al. (2013) [21] X X X X
Garret et al. (2017) [30] X X X X
Garret et al. (2020) [31] X X X X
Ferrer-mestres et al. (2015) [24] X X X
Gaschler et al. (2013) [34] X X X
Gaschler et al. (2013) [33] X X X
Gaschler et al. (2015) [32] X X X
de Silva et al. (2013) [17] X X X X X X
de Silva et al. (2013) [18] X X X X
de Silva et al. (2014) [15] X X X X
Lallement et al. (2014) [51] X X X X
Gharbi et al. (2015) [37] X X X X
S, ucan and Kavraki (2011) [77] X X
S, ucan and Kavraki (2012) [78] X X
Srivastava et al. (2013) [76] X X X
Srivastava et al. (2014) [75] X X X X X X
Choi and Amir (2009) [12] X X X
Cambon et al. (2003) [10] X X X
Gravot et al. (2003) [39] X X X
Cambon et al. (2004) [11] X X X
Cambon et al. (2009) [9] X X X
Our work X X X X X

Most systems seen in this chapter use a static description with a constant number of symbols
to be used during planning, as PDDL, or address geometric details offline, precomputing as much as
possible. This static view does not reflect the dynamic world we expect autonomous robots to work
in. We believe it would be more efficient to create and destroy symbols as perceptions are received by
the robot, or new environment constraints are found. We also believe that our approach of semantic
attachments and symbol-object table adds a lot of flexibility while introducing few elements to a
description language already understood by a domain designer. The semantic attachments can be
introduced gradually to already working HTN domains, making the process easier to understand for
new users, instead of requiring multiple setup steps to recreate a domain in a new language.
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6. CONCLUSION

We developed a notion of semantic attachments for HTN planners that not only allows a
domain expert to easily define external numerical functions for real-world domains, but also provides
substantial improvements on planning speed over comparable classical planning approaches. The
use of semantic attachments improves the planning speed as one can express a potentially infinite
state representation with procedures that can be exploited by a strategy described as HTN tasks. As
only semantic attachments present in the path decomposed during planning are evaluated, a smaller
amount of time is required compared to approaches that precompute every possible value during
operator grounding. Our description language is arguably more readable than the commonly used
strategy of developing a domain specific planner with customized heuristics, or attaching procedures
that must have all variables ground [36, chapter 11]. Specifically, we allow designers to easily define
external functions in a way that is readable within the domain knowledge encoded in HTN methods
at design time, and also dynamically generate symbolic representations of external values at planning
time, which makes generated plans easier to understand. We only exploited semantic attachments in
preconditions, but there is no limitation to add special constructions to generate effects and define
costs through external calls. We believe that the external layer must keep its state separate from the
symbolic state and unify variables in a way that already minimizes effort (which impacts cost), as
HTN-GTP [18].

Our work is the first attempt at defining the syntax and operation of semantic attachments
for HTNs, allowing further research on search in SA-enabled domains within HTN planners, enabling
HTN planners to become task and motion planners. This kind of extension comes in line with recent
attempts at including more expressive planning languages than vanilla PDDL, and which include
more functional elements in it (e.g. Tarski1). Dornhege et al. [20] uses semantic attachments to
compute the truth value of facts in preconditions, and effects on numerical fluents that would be
too complex to describe otherwise. Dornhege et al. [21] adds action grounding and action costs as
semantic attachment modules. By contrast, our method can be used to both compute the truth value
of ground external predicates or to unify free variables with values in preconditions, better reflecting
the lifted reasoning already used by planners. Such unified values can be symbolic or numeric, and
can be generated indefinitely, which is useful when searching for a numeric value that satisfies some
property as one can define the equivalent of an iterator as a predicate. Further the grounding action
approach [21] does not match the HTN domain style, where most operator parameters (groundings)
are decided by method preconditions before decomposing to primitive tasks.

Future work includes implementing a standard cache mechanism to reuse previous values
from external procedures applied to similar previous states [21] and a generic construction to access
such values in the symbolic layer description, to obtain, add or remove data from explored branches
outside the state structure, i.e. to hold mutually exclusive predicate information. We plan to develop
more domains, with varying levels of domain knowledge and semantic attachments usage, to obtain

1github.com/aig-upf/tarski

github.com/aig-upf/tarski
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better comparison with other planners and their resulting plan quality. The advantage of being able to
exploit external implementations conflicts with the ability to incorporate such domain knowledge into
heuristic functions, as such knowledge is outside the description. Further work is required to expose
possible metrics from semantic attachments to heuristic functions, which recently have been explored
by HTN planners [43].
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