
Journal of Computer Languages 73 (2022) 101160

C
J

A

K
P
P
S
D
P
S

1

n
p
t
T
t
b
f
a
l
l

w
m
c
p
t

l

h
R
A
2

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

ombining stream with data parallelism abstractions for multi-cores
únior Löff a, Renato B. Hoffmann a, Dalvan Griebler a,b,∗, Luiz G. Fernandes a

a School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619–900, Brazil
b Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty (SETREM), Três de Maio, 98910–000, Brazil

R T I C L E I N F O

eywords:
rogramming language
arallel programming
tream parallelism
ata parallelism
arallelism abstractions
tream processing

A B S T R A C T

Stream processing applications have seen an increasing demand with the raised availability of sensors,
IoT devices, and user data. Modern systems can generate millions of data items per day that require
to be processed timely. To deal with this demand, application programmers must consider parallelism
to exploit the maximum performance of the underlying hardware resources. In this work, we introduce
improvements to stream processing applications by exploiting fine-grained data parallelism (via Map and
MapReduce) inside coarse-grained stream parallelism stages. The improvements are including techniques for
identifying data parallelism in sequential codes, a new language, semantic analysis, and a set of definition
and transformation rules to perform source-to-source parallel code generation. Moreover, we investigate the
feasibility of employing higher-level programming abstractions to support the proposed optimizations. For
that, we elect SPar programming model as a use case, and extend it by adding two new attributes to its
language and implementing our optimizations as a new algorithm in the SPar compiler. We conduct a set
of experiments in representative stream processing and data-parallel applications. The results showed that
our new compiler algorithm is efficient and that performance improved by up to 108.4x in data-parallel
applications. Furthermore, experiments evaluating stream processing applications towards the composition of
stream and data parallelism revealed new insights. The results showed that such composition may improve
latencies by up to an order of magnitude. Also, it enables programmers to exploit different degrees of stream
and data parallelism to accomplish a balance between throughput and latency according to their necessity.
. Introduction

Parallel hardware resources are ubiquitous. To fully exploit it, all
ew and legacy computing systems must employ concurrency and
arallelism strategies. Nonetheless, writing parallel code while main-
aining the correctness of applications may be a convoluted endeavor.
he challenges of writing parallel systems are well documented in
he literature [1–4]. Fortunately, academic and industry efforts have
een conducted revolving around this issue for a long time, yielding
ruitful and varied approaches to improve programmability aspects via
bstractions. Parallel programming abstractions are organized into at
east three layered abstraction levels, each one building on top of their
ower level abstraction counterpart.

First, at the bottom or lowest level, programmers are equipped
ith low-level synchronizations, communicating queues, and other
echanisms specific to each architecture. The programmer manually

oordinates computation using such mechanisms for a specific ap-
lication and target hardware system [5,6]. In the second level are
he structured parallel programming models. Most of them provide

∗ Correspondence to: School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619–900, Brazil
E-mail addresses: junior.loff@edu.pucrs.br (J. Löff), renato.hoffmann@edu.pucrs.br (R.B. Hoffmann), dalvan.griebler@pucrs.br (D. Griebler),

uiz.fernandes@pucrs.br (L.G. Fernandes).

fundamental operators and parallel patterns that hide many paral-
lelism intricacies such as load-balancing, communication, reductions,
etc. Instead of lower-level mechanisms, the programmer may find
ready-to-use building blocks (e.g., Map, flatMap, Reduce, Filter, etc.)
and discern their semantics: How and when to use? [1,7,8]. At the high-
est parallel programming level, also known as higher-level parallelism
abstractions [9,10] are the domain-specific languages (DSL) that ease
the burden of writing parallel programs. Rather than manually design-
ing parallelism strategies, the programmer specifies information about
the data flow using a high-level language. This language leverages
expert domain knowledge with a cleaner interface. Then, compilers,
interpreters, and translators inspect the programmer’s information and
automatically assemble efficient parallel code. This is done employing
building-blocks from the second parallelism layer that resembles the
exact data flow from the programmer’s information.

Our work focus on parallel programming abstractions at highest
level. We employ SPar as use case to prototype our optimizations.
Moreover, we provide extensions along with improvements to its lan-
guage and compiler. SPar [10] is a domain-specific language (DSL)
for expressing stream parallelism via code annotations. It provides five
ttps://doi.org/10.1016/j.cola.2022.101160
eceived 28 February 2022; Received in revised form 27 July 2022; Accepted 23 S
vailable online 3 October 2022
590-1184/© 2022 Elsevier Ltd. All rights reserved.
eptember 2022

https://doi.org/10.1016/j.cola.2022.101160
https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2022.101160&domain=pdf
mailto:junior.loff@edu.pucrs.br
mailto:renato.hoffmann@edu.pucrs.br
mailto:dalvan.griebler@pucrs.br
mailto:luiz.fernandes@pucrs.br
https://doi.org/10.1016/j.cola.2022.101160

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

t
t
t
S
S
t
a
s

2

c
i
I
t
f
S

attributes for application programmers to annotate sequential code
while the compiler selects the parallel pattern algorithms and handles
complicated aspects of parallelization. Before this work, SPar was
limited to coarse-grained stream-only parallelism. Modern stream pro-
cessing systems may benefit from fine-grained internal data-parallelism
computation to improve resource utilization and increase scalability.
We highlight real-time constrained applications from computer vision,
high-definition image processing, intelligent vehicles, and others. In
these cases, performance may be improved by combining stream with
data parallelism.

To the best of our knowledge, no previous work in the literature,
except ours [11], has combined stream with data parallelism using code
annotations. Therefore, in this work, we investigate the feasibility of
introducing high-level and efficient combined stream with data-parallel
abstractions using SPar as proof of concept. We provide an experi-
mental evaluating using stream processing applications from different
domains to determine which classes of applications may benefit from
such composition of stream and data parallelism. We contribute for
increasing SPar’s language expressiveness, a new algorithm for parallel
code generation, a prototype implementation in the SPar compiler,
and performing performance analysis and trade-offs with representative
applications.

Our investigations started in [11]. In this work, we provide a more
mature research and significant improvements, presenting new insights
with a consolidation of the experiments towards the composition of
stream and data parallelism as well as future directions. In short, the
content of this article newly adds: (1) a thorough explanation of the
algorithms and low-level strategies that were designed for the compiler
to support stream and data parallelism composition; (2) a new dis-
cussion regarding parallelization of applications with SPar combining
stream and data parallelism. We explain SPar annotated code with high-
level domain-oriented annotations and provide a discussion in terms
of the automatically generated data flow using parallel patterns; (3)
all experiments were executed in a different computer machine and
collected additional metrics that lead to new insights. They revealed
that the composition of stream and data parallelism can be used by
stream processing systems to provide a balance between throughput
and latency; (4) We assess the performance in a new stream processing
application from the computer vision domain. It applies a neural net-
work that trains a model using live data flowing through a stream for
improving the model.

The remainder of this paper is organized as follows. Section 2
presents SPar’s background and expands on our motivation towards
the composition of stream and data parallelism. Section 3 introduces
a high-level strategy for automatic data-parallel code generation. We
explain parallelization blueprints on different stream and data-parallel
applications using SPar in Section 4. Then, the experimental analy-
sis is discussed in Section 5 using representative applications. Sec-
tion 6 describes and discusses related work. Finally, Section 7 remarks
conclusions and presents future directions.

2. SPar fundamentals

This section presents SPar, a C++ domain-specific language used in
this work to provide high-level abstractions for parallel programming.
SPar was developed with a focus on productivity and portability.
Fundamentally, SPar is a programming model that provides parallel
programming abstractions that can help programmers in the burden
of writing efficient parallel code. It does so by arranging a clear
separation between the application business logic code and parallelism
strategies. Other benefits are towards minimizing sequential code refac-
toring, supplying an intelligible language syntax aiming for simplicity,
minimal code intrusion, and hiding low-level complexities particular
to concurrency, parallelism, hardware architecture, and computing

platforms. F

2

The SPar programming model leverages C++ code annotations
coupled with high-level language features for expressing common con-
figurations of stream processing applications. Then, internally, it uses
its compiler tools and applies source-to-source code transformations to
automatically transform these code annotations into efficient parallel
code. This parallel code is represented using an underlying runtime
parallel system, which by default is FastFlow [12]. The source-to-
source transformations are performed directly on the standard C++ AST
(Abstract Syntax Tree). Therefore, SPar’s compiler maintains the full
semantics of the C++ language and supports powerful source-to-source
transformations. SPar may be reasoned about as two distinct modules:
the SPar language and the SPar compiler. From a high-level perspective,
the SPar user must only be aware of SPar language features while SPar
compiler handles the rest. We explain the default SPar language in
Section 2.1, and the Spar compiler in Section 2.2. Then, Section 2.3
introduces the motivation of our work via composition of data and
stream parallelism.

2.1. SPar language

To use the SPar language, the user must insert C++11 annotations
directly in the source code. This annotation system was first available in
C++11 ISO release [13]. Annotations may be inserted almost anywhere
in the code with no need for restructuring. They are delimited by
double brackets and receive a list of attributes as input (e.g., [[attr-
list]]). Interpreting these attributes is up to the compiler, but every
C++11 compliant compiler must be able to parse and place them in the
AST. This attribute list is the mechanism to describe the SPar language.

SPar’s language was initially conceptualized containing five at-
tributes: (1) ToStream denotes where the data stream starts and ends;
(2) Stage denotes where a stage/block of sequential code starts and
ends; (3 and 4) Input and Output, describe the input and output data
of a ToStream or Stage; (5) Replicate is a special attribute for
replicating a Stage for parallel execution.

1 [[spar : : ToStream]] while (1) {
2 i = read () ;
3 [[spar : : Stage , spar : : Input (i) , spar : : Output (i) , spar : : Replicate (4)]]
4 { i = f i l t e r (i) ;
5 }[[spar : : Stage , spar : : Input (i)]]{
6 write (i) ;
7 }}

Listing 1: Stream parallelism with SPar annotations.

Listing 1 shows an example of a traditional read, then filter, then
write sample stream processing application parallelized with SPar. The
ToStream and Stages declared in lines 1, 3, and 5 represent iden-
ifier attributes. With these annotations, SPar’s compiler will identify
hat the loop in line 1 represents a data stream. Therefore, each item of
his data stream (each iteration) will be consumed by two sequential
tages (line 4 and 6). In this example, 𝑖 represent the stream item.
ince 𝑖 is created outside the Stage, we use Input and Output
o communicate data between the Stages. Finally, the Replicate
ttribute informs that this Stage can be computed in parallel with the
pecified degree of parallelism (4 in the example).

.2. SPar compiler

After the sequential code is annotated with SPar language, SPar
ompiler handles the process of interpreting, optimizing, and generat-
ng the final parallel code. SPar achieves this using CINCLE (Compiler
nfrastructure for new C/C++ Languages Extensions) compiler infras-
ructure support [12]. CINCLE is a support tool that provides basic
eatures and a simple interface to interact with the C++ AST (Abstract
yntax Tree), semantic analysis, and source-to-source code generation.
ig. 1 depicts a simplified SPar’s compilation flow with CINCLE.

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

t
a
u
t
l
a
d
m
s
t
s
l
d

p
m
C
s
t
u
p
u
d
t
t

s

2

n
p
a
s
a
i
I
p
p
e

f
a
F
a
c
t
m
d

Fig. 1. SPar compilation flow.
Source: Extracted from [12].
The compilation process is divided into Front-end and a combina-
ion of Middle- and Back-end. The Front-end is responsible for parsing
nd analyzing the C++ code, reporting default C++ errors to the
ser with the support of GCC compiler. Then it uses the resulting
okens to create a fully C++ ISO compliant AST containing the SPar
anguage annotations. With CINCLE support, this AST is fully accessible
nd modifiable, which permits code transformations to be performed
irectly on the AST during the compilation phase. This is one of the
ain advantages of CINCLE, since GCC and CLANG compilers do not

upport this kind of direct AST transformations [12]. Subsequently,
he Middle- and Back-end phases of the compilation flow start with a
emantic analysis that checks the AST for semantic errors in the SPar
anguage features. If present, inconsistencies are reported back to the
eveloper.

The next step of the compilation phase is the transformation step,
erformed directly on the AST. From a high-level perspective, it re-
oves the SPar language attribute nodes and sub-trees from the AST.
onceptually, it then swaps them with the underlying parallel runtime
ystem nodes and sub-trees. This process preserves the nodes and sub-
rees that perform computations inside the stream stages and also other
nrelated code. All of the re-structuring required by the underlying
arallel runtime system is handled by the SPar compiler and the SPar
ser is not exposed to any of its intricacies. However, this step must be
one with special attention to the C++ ISO [13], as errors can break
he entire code. The final part of the compilation flow takes as input
he transformed AST to generate the final binary file.

SPar also permits customizing some of the behavior of the runtime
ystem using a few compilation flags:

• spar_ondemand: used to generate on-demand scheduling.
• spar_blocking: used to activate FastFlow blocking mode.
• spar_ordered: used to guarantee that output stream elements

are delivered respecting the original input order.

.3. SPar with stream and data parallelism

Past research revealed that SPar can improve programmability with
egligible performance cost [10,14–16]. However, SPar targets stream
arallelism only. In structured parallel programming, the Pipeline
nd Farm are parallel patterns commonly used to describe parallel
tream processing applications. SPar employs both and also their semi-
rbitrary composition. These parallel patterns combined enable SPar to
mplement a great number of modern stream processing applications.
n addition to traditional stream processing, the SPar language can
otentially be expressive enough to allow parallelism for some different
arallelism domains (e.g., data parallelism, task parallelism, data-flow,
tc.).

Although expressive for different domains, SPar is not always ef-
icient. Sometimes the code generated by SPar may be inefficient, or
t least not as efficient as other parallel strategies from literature.
or instance, the Map pattern is more efficient than both the Farm
nd Pipeline for data parallelism applications. It contains schedulers,
ommunicating queues, and synchronization mechanisms optimized for
his application domain. Also, available optimizations like MapReduce
ay be used when data requires certain synchronization, in which
eterministic accumulated results are obtained by combining partial
3

Fig. 2. Ecosystem of stream processing applications.

Fig. 3. Composing stream and data parallelism.

values. We discuss and analyze in greater detail this performance gap
between parallel patterns in our experiment Section 5.

In this work, one of our contributions is extending SPar’s program-
ming model to support stream and data parallelism. In the ecosystem of
stream processing applications (Fig. 2), today’s computing workloads
are implied in many applications containing internal regions with
intensive data processing. Some highlights are machine learning, which
implements convolution mathematical operations; natural resources
exploration, which computes CFD routines (Computational fluid dy-
namics), wildfires reporting, which analyzes high-definition satellite
images, among others. For these applications, adding an extra internal
level of parallelism can increase performance by improving resource
utilization.

Fig. 3 illustrates a composition of stream and data parallelism. The
Figure also highlights the main goals of this work: we investigate the
feasibility of combining stream and data parallelism using a single
language abstraction; we investigate the benefits and efficiency such
abstraction may yield. For that, we still keep stream parallelism for the

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

L

b
T
i
o

t

coarse grain computation and exploit internal data parallelism. In this
work, we exclusively target multi-core architectures. In the future, our
data parallelism strategies may target architectures such as GPUs and
FPGAs.

3. High-level data parallelism

In this section, we introduce new programming abstractions to
simplify the development of data parallelism in C++ code. We extend
SPar to support data parallelism instead of its default stream-only
programming model. To do so, we increase the expressiveness of the
SPar language and develop a new compiler algorithm to automatically
generate data-parallel code. Our compiler algorithm generates parallel
code using the FastFlow [17] runtime. In the future, the algorith-
mic strategies discussed in here could be applied to other parallel
programming abstractions besides SPar. Furthermore, the automatic
parallel code generation is not bounded to the FastFlow library and
it is possible to modify the final phase of our compiler algorithm to
generate code for other runtimes like OpenMP [18] and Intel TBB [19].
For example, in recent works SPar’s original compiler already supports
stream parallelism generating parallel code via OpenMP [20] and Intel
TBB [21] runtimes.

The outline of the section is the following. Section 3.1 presents
the technique we design for identifying data-parallel patterns in C++
sequential code. Then, we include it in SPar: (i) first by extending
SPar’s language in Section 3.2 and (ii) implementing a new compiler
algorithm for source-to-source parallel code generation in Section 3.3.

3.1. Support for data parallelism

In this section, we reason about data-parallel patterns in C++ code.
SPar’s programming model does not support expressing information
about data computational intensive regions in the code. It does not
mean that SPar cannot parallelize data-parallel applications, however,
the generated parallel code might not be efficient for data parallel
computations. For example, SPar can be employed in matrix multiplica-
tion, which is a traditional data-parallel application. Listing 2 illustrates
such implementation. The programmer annotates lines 1 and 3 with
SPar’s attributes. The ToStream attribute from line 1 indicates that
the for loop is a data stream and each element (each iteration) is
computed by a sequential computation from Stage (line 3). Using this
sequence of annotations, SPar’s compiler will automatically detect that
a Farm pattern is suitable for this application, composed by an Emitter
and parallel Workers (due to the Replicate attribute). Semantically,
the generated code is functionally correct. Unfortunately, the Farm
generated by SPar is not as efficient as as a true data-parallel pat-
tern (e.g., Map and MapReduce). We later show through experiments
(Section 5) the performance gap between these parallel patterns.

Our work adds new supported parallel patterns to improve SPar’s
parallelism-awareness and enhance its automatic parallel code genera-
tion. Consequently, more suitable parallel patterns are applied depend-
ing on the information the programmer annotates in the sequential
code. In this work, we focus on the recurrently used data-parallel
patterns: Map and MapReduce. Therefore, in addition to the parallel
patterns already supported by SPar (Pipeline and Farm), the source-
to-source code generation will also consider the Map and MapReduce
patterns.

1 [[spar : : ToStream]]
2 for (long int i =0; i<SIZE ; i +=1){
3 [[spar : : Stage , spar : : Input (i) , spar : : Replicate ()]]
4 for (long int j =0; j <SIZE ; j ++){
5 for (long int k=0; k<SIZE ; k++){
6 matrix [i][j] += (matrix1 [i][k] ∗ matrix2 [k][j]) ;
7 }}}
8

isting 2: Matrix multiplication parallelized with SPar.
4

A Map pattern may be introduced when there is a known indexed
data set locally stored in the multi-core architecture. This indexed set
can be empty but must be available locally. That is because data stored
in network file systems or cloud storage usually is associated with
I/O bottlenecks that hinders data parallelism viability. Consequently,
these systems could be better modeled with default stream parallelism
using efficient schedulers. The MapReduce parallel pattern is a special
case of Map where iterations exhibit certain data dependencies. In this
situation, all parallel replicas work towards solving a slice of the data
and results are later combined into a single output.

To support these attributes, SPar must apply a strict definitions
of the characteristics that define a Map or MapReduce pattern. Data-
parallel patterns are more restrictive than stream parallelism patterns.
Thus, the compiler algorithm is more complex. Data patterns require
the dataset size to be fixed and known a priori. On the other hand,
stream parallelism may handle bounded or unbounded datasets. Data
patterns are usually associated with C++ for loops while stream
patterns can deal with any logic that provides a continuous flow of
incoming data. To get the dataset size, we design an algorithm that
locates the boundaries of the indexed data set (start and end) and
iteration step. With this information, if not explicit, the size can be cal-
culated implicitly. For instance, using C++ syntax: start=0, end=9,
iteration_step+=1 (10 elements); or, start=2, end=64, it-
eration_step*=2 (6 elements).

We designed a scheme that delineates data-parallel patterns based
on sequential C++ for loop syntax. In fact, our design also considers
while and do_while loops. Map and MapReduce patterns can be
fully exploited by the SPar compiler when they match our proposed
scheme for sequential C++ for loop syntax. In other words, every
constant and function we define must be located by the compiler during
compilation. Listing 3 shows a high-level representation of Map (line 1)
and MapReduce (lines 2 and 3) patterns. The lhs and rhs are the left-
and right-hand sides data boundaries. We did not name them start
and end since for loops can be in either ascending or descending
order. The it stands for iteration step. The lhs, rhs, and it must
e static and cannot be modified after the for loop execution started.
he type and type2 can be a standard language type (i.e int, long
nt, double) or custom types (i.e. struct, class). The exp and
p stand for expression (i.e. <, >, <=, >=, !=) and operation (i.e. -

=, ++, *=, &=, |=), respectively. The loop (line 3) uses a shared
variable. This is a common example of a MapReduce pattern that must
implement synchronizations to safely parallelize the code.

The MapReduce scheme definition is important because the stan-
dard C++ ISO is broad and allow multiple ways of expressing the
same action. For example, the data type of the iteration variable does
not need to be declared within the for loop. Therefore, our compiler
algorithm uses the id (identifier) and traverses the abstract syntax
tree (AST) to find where the variable was declared and to extract its
data type. In a second case, our scheme defines exp() and op() as
functions. That is because they receive static values or variables (rhs
and it) and C++ permits modifying values according to the operator.
For instance, the tokens < or <= modify the right-hand side boundary
o either rhs+0 or rhs+1 by increasing the number of iteration by

zero or one, respectively.

1 for (type id=lhs ; id exp (rhs) ; id=id op (i t)) { }
2 type2 id2 ;
3 for (type id=lhs ; id exp (rhs) ; id=id op (i t)) { id2=id2 op2 (v) }

Listing 3: High-level Map and MapReduce representation.

Until this point, we have only defined the Map and MapReduce
patterns based on plain C++ syntax. However, this does not semanti-
cally guarantee that the sequential code can be safely parallelized. For
example, as shown in previous Listing 3 at line 3, the data dependency
may not be implemented in terms of Reduce pattern (e.g., accumula-
tions such as sums and multiplications). Some dependencies cannot be

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

T
m
m
a
p
a
E

e
T
o
r
o
t
S
t
t
b
e
s

T
a
w
o
t
f
c
p

a
c
w

t
c
a
s
t
a

m
t
S
u
a
l
b

1
1
1

L

reduced. In particular, when a different order of computations modifies
the result. In that case, the automatic parallel code generation would
be incorrect.

According to a recent study [22] that has conducted a deep analysis
to evaluate quantitative and qualitative aspects of auto-parallelization
compilers, they concluded these compilers need more sophisticated
techniques for parallel code analysis. In this study, the authors de-
scribed many problems: starting from execution errors, missing parallel
loops, incorrect semantics, and inefficient code generation. Their find-
ings revealed that current state-of-the-art compiler strategies cannot
ensure correctness.

In our work, we designed the compiler algorithm to base its in-
formation on user-oriented annotations. Therefore, we expect the user
to provide the correct information of sequential block of code that
can be safely parallelized. This approach is employed by almost any
parallelism framework such as OpenMP, Threading Building Blocks,
C++ Parallel STL, and others. Different from them, we do not expose
the user to low-level details and expect him to manually write parallel
code. Instead, we provide high-level programming abstractions that
equip the programmer with a small set of domain-specific attributes
he can use to express parallelism information on the code. Later, the
compiler reads the information and produces parallel code.

In Sections 3.2 and 3.3, we present the SPar language and com-
piler extensions. First, we describe two new attributes we included
to increase SPar’s language expressiveness. Then, we describe a new
compiler algorithm and the transformation rules we implemented for
SPar to support stream and data parallelism composition.

3.2. SPar language extension

The original SPar language focuses on a language to express stream
parallelism in the code. However, it lacks expressiveness to represent
data parallelism. Consequently, we need to extend the SPar language
with new attributes to support data parallelism: Pure and Impure.

he Pure attribute is a term already defined in functional program-
ing for describing functions implemented in their purest form. This
eans that the results (outputs) depend only on the input parameters

nd the computation has no side effect. No side effects determine that a
ure function must only: perform a computation based on input data;
nd return the result or store it in a locally private memory address.
xamples of side effects are:

• Modify a globally shared variable;
• Read or write files;
• Synchronizations such as return, break, and socket;
In functional programming, the ‘‘pure’’ definition has many prop-

rties. In SPar, we limit pure functions to the parallelism property.
herefore, our pure definition carries the information that a block
f code annotated with Pure can be executed in parallel with no
estrictions. The programmer can use this attribute to annotate regions
f sequential code that can benefit from parallelism, or in simplified
erms, regions (usually loops) that take a long time to compute. Then,
Par analyses these regions trying to find opportunities to optimize
he code. Currently, we apply optimizations via a Map parallel pattern
argeting CPUs-only. In the future, other suitable optimizations may
e applied using different parallel patterns (e.g., pack, filter, etc.),
xploiting compiler vectorizations, or offloading the computation into
pecialized hardware like GPUs and FPGAs.

The next attribute included in the SPar language is the Impure.
his attribute allows otherwise impure code regions to be annotated
s pure. For example, if inside a function there is a single line of code
ith side effects, by definition all the function is considered not pure,
r impure. Therefore, the Impure attribute may be used to annotate
hat specific code region. This way, the compiler can ‘‘purify’’ the
unction and allow parallelism transformations. In SPar, annotating a
ode region with Impure means that SPar will try to automatically im-
lement the required synchronization to allow parallelism. By default,
5

n impure region is protected using locks. Before that, the compiler
hecks the code trying to detect ways to optimize the synchronization
ithout locks.

In this work, we already detect Reduce operations which we op-
imize using the MapReduce pattern. This option is better than syn-
hronizing all threads with locks when a large number of cores is
vailable. Other optimizations can be implemented in the future using
peculative synchronization mechanisms or even other parallel pat-
erns (e.g., stencil, scan, etc.) and their implications with the Impure
ttribute.

Listing 4 shows an example of parallelization using the matrix
ultiplication algorithm with the new attributes. Parallelizing it with

he new SPar language is straightforward. Compared to the original
Par language, it only requires the programmer to annotate the code
sing two extra attributes: Pure and Impure. Line 3 annotates a Pure
ttribute, meaning the entire loop can be safely parallelized. However,
ines 9 and 10 have side effects and the user can annotate this impure
lock of code using Impure.

1 [[spar : : ToStream]]
2 for (long int i =0; i<SIZE ; i +=1){
3 [[spar : : Stage , spar : : Pure , spar : : Input (i) , spar : : Replicate ()]]
4 for (long int j =0; j <SIZE ; j ++){
5 for (long int k=0; k<SIZE ; k++){
6 matrix [i][j] += (matrix1 [i][k] ∗ matrix2 [k][j]) ;
7 [[spar : : Impure]]
8 {
9 sum += matrix [i][j] ;
0 sum_l ine [j] += matrix [i][j] ;
1 }
2 }}}

isting 4: Matrix multiplication with new attributes.

Listing 5 provides a sequence of commands to show how the com-
piler should transform the annotations into the appropriate patterns.
Pure means the computation annotated by this attribute is in its purest
form, has no side effects, and depends only on its inputs. Therefore,
we encapsulate and abstract this block of code into a single function
call pure_function(), as show in line 2. In this example, the
parallelization is not safe yet, because it is conditioned to a compiler
automatically purifying the impure block of code. Once the compiler
purifies the impure region, it can parallelize the code using Map (line
1), and each parallel worker computes a partial result (line 2). In the
end, the partial results are accumulated into a single output using the
Reduce pattern (line 3).

1 MAP i = 0 , 1 , . . . , SIZE
2 sum_local = pure_function (i) ;
3 REDUCE sum += sum_local ;

Listing 5: High-level annotated attributes

3.3. SPar compiler implementation

In this section, we start from previous Listing 5 and disclose how
our new compiler algorithm interprets the SPar language via code
annotation and automatically generates suitable parallel patterns using
source-to-source code transformations. Fig. 4 illustrates a flowchart of
our implementation methodology, which is discussed in the subsequent
Sections Section 3.3.1 up to Section 3.3.4. Each column represents a
compiler phase of our algorithm.

3.3.1. Semantic analysis
We start by extending the SPar compiler to support two new at-

tributes included in SPar’s language: Pure and Impure. The first
compiler step is responsible for traversing the C++ AST and performing
a semantic analysis to verify the annotated attributes correctness. In the
analysis, we only check for SPar semantics and expect the programmer

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

t
o

T

i
m
S
a
t
p
a

c
i
i
a
m
a
d

m
a
A
o
f
c
𝐸
w
s
b

t

Fig. 4. Implementation methodology used to implement the new compiler algorithm in SPar.
s
p
f

r
t
p
u
d
c
p

a
(
𝑅
a
c

[

M
A
i
a
𝐼

[

s
i
o
r
c
b

o provide correct information about the data flow. Available technol-
gy does not allow static analysis to ensure that a Pure or Impure

are in fact functionally correct. For example, our analysis is limited
to checks such as: a Impure must be declared within a Pure, and
oStream must be the outermost attribute annotation.

During the AST traversal, the compiler also gathers crucial semantic
nformation about the composition of the annotations. This is infor-
ation about where ToStream was declared, how many internal
tages or Pures, Input and Output variables, and others. The
nnotations’ semantic analysis is necessary so that later it is guaranteed
hat the compiler logic will converge and select a suitable parallel
atterns. The Stage attributes may become Pipeline stages or Farms,
nd Pure and Impure may become Map or MapReduce patterns.

By default, the compiler only analyzed the ToStream scope be-
ause it was the only attribute that could be composed with multiple
nternal Stage attributes. The composition of Stage inside Stage
s not semantically permitted. In our extension, we included two new
ttributes that can be semi-arbitrarily composed. The Pure attribute
ay be declared as an identifier attribute inside a Stage scope or

s an auxiliary attribute of a Stage. The Impure attribute must be
eclared as an identifier attribute inside a Pure scope. To check their

composition we implemented two new routines that account for the
Pures inside a Stage and the Impure inside a Pure scope. Once
the SPar language information is collected, the next compiler step uses
the information combined with pre-defined transformations rules set to
decide for a suitable parallel patterns.

3.3.2. Transformation rules
For the SPar compiler, we have proposed new definitions and

transformation rules to support source-to-source code transformations
combining data and stream parallelism. SPar’s definitions and transfor-
mation rules were originally proposed in [10]. They focus on stream
parallelism and we extended them in this work to also support and
combine data parallelism. Table 1 shows all of the definitions, including
new ones we created and applied modifications.

In Table 1, a □ is a generic block of code and the scope of the
sentences is represented by {...}. Annotations are marked as [[...]] and

ay contain a list of attributes as an argument. The ID attributes
re 𝑇 (ToStream), 𝑆 (Stage), 𝑃𝑛 (Pure), and 𝐼𝑛 (Impure). The
UX attributes are 𝐼 (Input), 𝑂 (Output), 𝑅𝑛 (Replicate), and
ptionally 𝑃𝑛 (Pure). Regarding parallel Patterns, the Pipeline is de-
ined as 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑆1, 𝑆2,…) and is composed of a list of sequential
omputational stages 𝑆𝑛. The Farm is defined as 𝐹𝑎𝑟𝑚(𝐸,𝑊 ,𝐶), where

is a sequential stage that also distributes data items among the
orkers, 𝑊 is a group of parallel worker threads and 𝐶 is an optional

equential data collection stage. Any composition of these patterns may
e used (e.g. 𝑃 𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑆1, 𝐹 𝑎𝑟𝑚(𝐸,𝑊), 𝑆2)). New parallel patterns are

Map defined as 𝑀𝑎𝑝(□), and MapReduce defined as 𝑀𝑎𝑝𝑅𝑒𝑑𝑢𝑐𝑒(□,□).
Inclusions and modifications in Table 1 are highlighted with the

eal color. This table can be seen as the SPar compiler heuristic to
 S

6

elect a suitable parallel pattern. Each time the compiler is called it
erforms the semantic analysis. Then, it inspects this definition table
rom 𝐷0 up to 𝐷𝑛−1 until a definition is satisfied. The first satisfied

definition is applied. Then, the compiler starts again from 𝐷0. It repeats
this operation until no definition is satisfied.

The new transformation rules we included can be classified in two
groups. The first group contains two basic transformation rules, where
a code annotated with SPar can be transformed in Map or MapReduce
patterns. The second group contains two composable transformation
rules that target parallel code generation using pattern composition.
These are a set of transformation rules supporting the composition of
stream-parallel patterns (Pipeline and Farm) with data-parallel patterns
(Map and MapReduce).

To describe the new definitions and transformation rules, we ex-
tended the original notation. The attributes Pure and Impure are
epresented by the 𝑃𝑛 and 𝐼𝑛 notations, respectively. In our work,
he Map and MapReduce parallel patterns are analogous to C++ for
rogramming loops, we represent those with ∀𝑛. The first two rules
se 𝐷5 and 𝐷6 to perform aggressive transformations that enable
ata parallelism in SPar. These rules completely ignore the streaming
ounterpart and transform the entire ToStream into pure data-parallel
atterns. We briefly explain them in the following.

Rule (1) is created via definition𝐷5, since a 𝑇 (ToStream) contains
s its first declaration a single ∀ (for) that is annotated with a 𝑆
Stage) containing in its attribute list a 𝑃 (Pure) and

(Replicate), and inside the □ (block of code) does not contain
n 𝐼𝑛. In this rule, the ∀ becomes a Map parallel pattern and the □
omputation is passed as its input parameter.

[𝑇0]]{∀0{[[𝑆0, 𝑃0, 𝑅𝑛]]{□0}}}

⇓

𝑀𝑎𝑝(□0)

(1)

Rule (2) is similar to the previous one since it converges into a
ap combined with a Reduce. This Rule is created via definition 𝐷6.
ccordingly, the rule defines that a 𝑇 may become a MapReduce when

t contains as first declaration a single ∀ with a single □ annotated with
𝑆 containing in its attribute list a 𝑃 , 𝑅, and inside the □ contains an
𝑛.

[𝑇0]]{∀0{[[𝑆0, 𝑃0, 𝑅𝑛]]{□0, [[𝐼0]]{□1}}}}

⇓

𝑀𝑎𝑝𝑅𝑒𝑑𝑢𝑐𝑒(□0,□1)

(2)

The other two transformation rules we added enable composition of
tream with data parallelism. These transformation rules are executed
n two steps. Rather than transforming the entire ToStream into a Map
r MapReduce, our compiler algorithm only transforms the internal
egion from □ into data-parallel patterns and combines them with
oarse-grained stream parallelism. Therefore, a single □ becomes a
lack box that may contain none, one, or more data-parallel patterns.

ubsequently, in the second step, a □ may become a Stage 𝑆𝑛 in a

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

w
s
𝐷
□

[

Table 1
New definitions designed to support the data parallelism transformation rules.
𝐷0 A generic stage 𝜓 is automatically generated for gathering results when the last □ is annotated with 𝑆 containing in its attribute list a

𝑅𝑛 and 𝑂.

𝐷1 A ∀𝑛 may become a Map when its first declaration is a □ annotated with 𝑆 containing in its attribute list a 𝑃𝑛, and inside the □ does
not contain an 𝐼𝑛.

𝐷2 A ∀𝑛 may become a MapReduce when its first declaration is a □ annotated with 𝑆 containing in its attribute list a 𝑃𝑛, and inside the
□ contains an 𝐼𝑛..

𝐷3 A □ annotated with 𝑆 and may containing a Map or MapReduce can become a stage 𝑆𝑛 in a Pipeline, or a stage 𝐸 or 𝐶 in a Farm
when its attribute list does not contain a 𝑅𝑛.

𝐷4 A □ annotated with 𝑆 containing in its attribute list a 𝑅𝑛 and may containing a Map or MapReduce can only become a 𝑊 stage in a
Farm.

𝐷5 A 𝑇 may become a Map when its first declaration is a ∀𝑛 with a single □ annotated with 𝑆 containing in its attribute list a 𝑃𝑛 and 𝑅𝑛,
and inside the □ does not contain an 𝐼𝑛.

𝐷6 A 𝑇 may become a MapReduce when its first declaration is a ∀𝑛 with a single □ annotated with 𝑆 containing in its attribute list a 𝑃𝑛
and 𝑅𝑛, and inside the □ contains an 𝐼𝑛.

𝐷7 A 𝑇 becomes a Farm when the first 𝑆 annotation contains in its attribute list a 𝑅𝑛, when there are two 𝑆 at most, and 𝐷5 or 𝐷6 are
not satisfied.

𝐷8 A 𝑇 becomes a Pipeline when the first 𝑆 annotation does not contain in its attribute list a 𝑅𝑛, when there are more than two 𝑆
annotations, and 𝐷5 and 𝐷6 are not satisfied.

𝐷9 A Farm becomes a 𝑆𝑛 stage in a Pipeline when 𝐷7 is not satisfied and a □ is annotated with 𝑆 containing in its attribute list a 𝑅𝑛.
t
T
s
s
t
t
e
A
b
s
i
c

o
t
o
d
i
l
i

Pipeline, or a 𝐸, 𝑊 , or 𝐶 in a Farm. This way, our compiler algorithm
allows the composition of data and stream parallelism.

Rule (3) exemplifies a data and stream parallelism composition.
According to definition 𝐷1, a ∀ that contains a □ annotated with 𝑃
as its first declaration will become a Map pattern. So, in the compiler
first iteration the ∀0{[[𝑃0]]{□2}} is transformed into a 𝑀𝑎𝑝(□2) and

rapped into a □𝑚 black box that is inserted in the C++ AST. In the
econd step, the 𝑇 is transformed into a Farm according to definition
7, in which □0 becomes the 𝐸 and the compiler concatenates □1 with
𝑚 while passing them as a parameter to the 𝑊 in a Farm.

[𝑇0]]{□0, [[𝑆0, 𝑅𝑛]]{□1,∀0{[[𝑃0]]{□2}}}}

⇓

𝐒𝐭𝐞𝐩𝟏 ∶□𝑚 =𝑀𝑎𝑝(□2)

[[𝑇0]]{□0, [[𝑆0, 𝑅𝑛]]{□1,□𝑚}}

⇓

𝐒𝐭𝐞𝐩𝟐 ∶𝐹𝑎𝑟𝑚(𝐸(□0),𝑊 (□1□𝑚))

(3)

3.3.3. Information extraction
In the previous compiler phase, the compiler selects suitable parallel

patterns. Once SPar’s compiler determines the parallel pattern or their
composition, it extracts the necessary data. This step is responsible for
executing compiler routines that traverse the C++ abstract syntax tree
(AST) to gather information regarding the new Map and MapReduce
patterns. Data parallelism is more restricted and patterns can only be
generated when all necessary information is extracted. Therefore, in
this compiler step, both the information extraction and C++ syntax
analysis routines can abort the data-parallel patterns generation. If this
happens, our compiler algorithm resumes the original SPar execution
flow only generating stream parallelism patterns.

In Section 3.1, we presented our strategy for detecting data-parallel
patterns in the sequential code. We define the basic data required
to generate the Map and MapReduce patterns based on C++ syntax.
This step must extract essential data such as identifiers, variable types,
indexed set size, and others. To extract these information, we have
implemented parsing algorithms based on standard C++17 ISO [23],
that specifies a for loop as:

for (init-statement conditionopt; expressionopt)
statement

We designed an FSM (finite-state machine) algorithm for gathering
the information about each one of the three fields of C++ for loops.
Before entering the FSM, the block of code annotated with SPar is
transformed into a list containing an internal C++ AST representation

of all nodes and their literal data representation (e.g., }, <, int,

7

double). Then, our FSM receives as input this list and uses the literal
string while processing the characters individually. Each new character
that enters the FSM is accumulated in each state and transitions when
special tokens are detected. For example, in a traditional for loop
design we expect the programmer to write the following code:

for (int i = 0; i < SIZE; i++) {...}

In the init-statement we expect to extract three informa-
ion: the identifier, identifier data type, and left-hand side boundary.
herefore, our FSM has three states, one for each information. In this
ituation, the special tokens are an identifier, eq_token, and
emicolon_token (based on C++17 ISO). In our example, every-

hing before identifier is the data type, all in between the data
ype and eq_token is the identifier, and finally, all in between the
q_token and semicolon_token is the left-hand side boundary.
t the end, the identifier is i, data type is int, and left-hand side
oundary is 0. We design this algorithm for extending the C++ expres-
iveness to our programming model. This way, there is no difference
f the programmer uses as data type a int, a unsigned int, or a
ustom struct or class object.

In the first information extraction step, if at the end of execution
nly the variable data type is missing, we implemented an optimization
o find the variable data type using its identifier. The importance
f this optimization relies upon the fact that many applications may
eclare variables in different regions of the code. Consequently, we
mplemented a new compiler routine that traverses the C++ AST and
ocates where the variable was declared to obtain its data type. This
s also important for the Impure region since global shared variables

were certainly declared outside the scope of the code annotated with
SPar.

In the second step, we identify the right-hand side boundary and
loop expression in the condition field. This time, we implemented
an FSM with only two states. First, we extract the expression matching
the input with the standard C++17 token. In this work we consider
the tokens >, <, >=, and <=. Everything in between these tokens and
semicolon_token is the right-hand side boundary. When the FSM
detects the tokens >= or <= it additionally increments the right-hand
side value by 1 for maintaining logical correctness.

Finally, the last step uses expression to extract the operation,
iteration step, and loop direction. In this step, we do not employ an
FSM. Our work considers the following C++ tokens: ++, --, +=, and -
=. The loop direction is straightforward and can be inferred depending
on if the iteration step is incremented or decremented. The iteration
step is always 1 for the first two tokens (++ and --) since they are

C++ abstractions for unitary incremental. However, for the two last

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

1
1
1
1
1
1
1
1
1

L

e
c

c
o
t
m
m

a
i
e
p
t
c
t

1
1
1
1
1
1
1
1
1
1

L

tokens (+= and -=), the value is extracted in between these tokens and
semicolon_token.

Map and MapReduce patterns exploit the aforementioned algorithm
to extract vital information for their Map counterpart. Nonetheless,
MapReduce has a second extraction step that gathers information for
the Impure region of the code. They are the reduce identifier, iden-
tifier data type, operation, and, optionally, the identifier size. In our
reduce algorithm, we consider recurrent code representation of reduce
operations, such as: +=, -=, and = composed with +, -, *, ˆ, &, and
|. The composition of = with a C++ operation (e.g., var = var +
1;) is more complex and we use an FSM with four states, while the
+= logic uses an FSM with two states. The identifier and operation
are extracted from the Impure region. However, in Reduce operations,
since the variable is shared it was almost certainly declared in another
code region. This way, we use the unique C++ identifier to locate where
the variable was declared. If it is found, we extract the data type along
with the array size when required.

As an optimization, we included in our algorithm a parser that
enable reductions using static arrays, since our algorithm sees little
variation between a variable declared as sum += partial_sum;
or declared as sum[i] += partial_sum;. Many state-of-the-art
programming abstractions do not support pointers, only via manual
implementation. For now, we only support arrays that are statically
allocated.

3.3.4. Parallel code generation
Finally, if data is correctly extracted, our compiler automatically

generates the appropriate parallel patterns using FastFlow runtime
calls. The code generation is composed of three different routines for
patterns declaration, initialization, and runtime calls. Listing 6 shows
a slice of the parallel code automatically generated by our compiler
algorithm. The code represents the matrix multiplication algorithm
annotated with SPar in previous Listing 4. This example gives an idea
of how many parallelism details a programmer must deal with to
parallelize an application, even if the application is as simple as matrix
multiplication.

Lines 1 and 2 store a copy of the original values that require synchro-
nization. In this case, memory copy is necessary because the reduction
is performed using an array. Line 3 initializes the reduction variables
since FastFlow requires the initial value and an empty reference. Lines 4
to 16 implement FastFlow’s MapReduce parallel pattern schema, which
is based on C++ lambda functions. We replace the lambda function by
the pure_function() block annotated with Pure. Finally, in lines
17 and 18 the accumulated reduction values are assigned to the original
variables.

1 spar_global . sum = sum ;
2 memcpy(spar_global . sum_line , sum_line , s izeof (int)∗SIZE) ;
3 spar_reduce reduce_c lean , reduce (spar_global . sum , spar_global .

sum_l ine) ;
4 spar_pf−>p a ra l l e l _ r ed u ce (reduce , reduce_c lean ,0 , SIZE +0 ,1 ,
5 [&] (long int i , spar_reduce & reduce) {
6 for (long int j = 0; j < SIZE ; j ++){
7 for (long int k = 0; k < SIZE ; k++){
8 matrix [i][j] += (matrix1 [i][k]∗matrix2 [k][j]) ;
9 reduce . sum = reduce . sum+matrix [i][j] ;
0 reduce . sum_l ine [j] += matrix [i][j] ;
1 }
2 }
3 } ,
4 [&] (spar_reduce & reduce , const spar_reduce spar _aux_reduce) {
5 reduce += spar _aux_reduce ;
6 }) ;
7 sum = reduce . sum ;
8 memcpy(sum_line , reduce . sum_line , s izeof (int)∗SIZE) ;

isting 6: MapReduce parallel code generation.

The MapReduce requires an additional reduction struct. As an
xample, in Listing 7 we provide the reduce struct generated by our
ompiler algorithm for the same matrix multiplication application. As
8

an be seen, the code is quite complex when reductions are performed
ver arrays. The compiler completely abstracts these complexities from
he programmer. We couple the generated struct directly with the
echanisms required by FastFlow. Other runtime libraries may slightly
odify this reduce struct for their purposes.

Lines 2 to 6 in Listing 7 show the logic that will be used to initialize
ll partial variables. Between lines 7 to 9 is located the logic that
nitializes all shared variables with the current values captured during
xecution time. Note that arrays cannot simply assign data between
ointers, instead, we use memcpy to initialize them. Finally, Lines 10
o 16 contain the logic that will be used to combine partial results. Our
ompiler algorithm leverages C++ operator overloading to optimize
his step.

1 struct spar_reduce{
2 spar_reduce () : sum(0 .0) {
3 for (int i =0; i<SIZE ; ++i) {
4 sum_l ine [i] = 0 .0 ;
5 }
6 }
7 spar_reduce (int sum , int ∗ sum_l ine) : sum(sum) {
8 memcpy(this −> sum_line , sum_line , s izeof (int)∗SIZE) ;
9 }
0 spar_reduce & operator +=(const spar_reduce & v) {
1 sum += v . sum ;
2 for (int i =0; i<SIZE ; ++i) {
3 this−>sum_l ine [i] += v . sum_l ine [i] ;
4 }
5 return ∗ this ;
6 }
7 int sum ;
8 int sum_l ine [SIZE] ;
9 } ;

isting 7: Reduce struct code generation.

To generate source-to-source parallel code we employ FastFlow’s
Map and MapReduce programming abstractions and initialize them
using the information extracted in the previous compiler phase. The
FastFlow templates for the Map and MapReduce patterns are presented
in Listing 8. Note that FastFlow is a recent parallel library that uses
well-known data-parallel patterns. These patterns’ API is either equiv-
alent or at least similar between different solutions. Therefore, other
C++ libraries that also leverage data-parallel patterns may be used
for providing further extensions to our programming model, such as
OpenMP, Intel TBB, GrPPI, Kokkos, etc.

1 MAP (l e f t−hand s ide boundary , r ight−hand s ide boundary , i t e r a t i o n
step , pure_function ())

2
3 MAP REDUCE (impure var iab le s , i n i t i a l values , l e f t−hand s ide

boundary , r ight−hand s ide boundary , i t e r a t i o n step ,
pure_function () , impure_function ())

Listing 8: FastFlow templates for the Map and MapReduce parallel
patterns.

4. Parallelism with SPar

In this section, we explain the strategies employed to parallelize
applications using the SPar programming model. We selected real-
world computations from both stream and data parallelism domains.
Section 4.1 discusses the NAS Parallel Benchmarks (NPB) considering
different kernels and pseudo-applications from the data-parallelism
domain. Then, Section 4.2 discusses our strategies for parallelizing
three stream processing applications composing stream with data par-
allelism. We extracted or adapted from the stream processing domain
the Mandelbrot set, Lane Detection, and Computer Vision applications.

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

a
a

t
a
l
s
f
p
t

C
o
a
S
r
c

s
p
p
s
I
F
c
m

r
a
M
a
c
t
r

a
a
u
e
g
t
e
a

1

L

4.1. Data parallelism

The NAS Parallel Benchmarks is a popular suite used to evaluate
massively parallel systems. It contains eight benchmarks extracted from
the computational fluid dynamic (CFD) domain representing real com-
putations with realistic workloads. The workload represents a heavy
mathematical computation that can be easily found in popular scientific
HPC applications. The NPB is maintained by the NASA advanced super-
computing (NAS) division and receives updates to be compliant with
modern computing systems. We selected six benchmark applications
for our experiments, four kernels, and two pseudo-applications. The
remaining two applications are not considered because they require
complex global synchronization strategies that are out of the scope of
this work. The four kernels are briefly described as follows:

• Embarrassingly Parallel (EP). It generates a large number of
Gaussian random deviates and computes the Gaussian deviation.
This method is useful to stress floating-point operations [24].

• Multi Grid (MG). It computes a scalar Poisson equation where
the kernel continuously alternates between coarse and fine grids
to perform restriction and prolongation operations. It generates
irregular data communications that result in numerous cache
misses [24,25].

• Conjugate Gradient (CG). It computes an approximation of the
smallest eigenvalue of an unstructured matrix. This kernel stresses
data communication mechanisms [25].

• Discrete 3D Fast Fourier Transform (FT). It computes a Fast
Fourier Transform (FFT) of a 3D partial differential equation. This
kernel requires intensive data communication [24,25].

The two pseudo-applications implement different methods to solve
Navier–Stokes system of differential equations. We summarize them

s follows:

• Block Tri-diagonal solver (BT). Computes the Alternating Direc-
tion Implicit (ADI) factorization on a 3D matrix. Then, it solves
the unknown vectors using the back substitution method for each
direction [25].

• Scalar Penta-diagonal solver (SP). It uses the Beam-Warming
approximate factorization to decompose the 3D matrix. Then,
the unknown vectors are solved using the tridiagonal matrix
algorithm and the back substitution method [25].

The NPB sequential code is mainly composed by multiple routines
hat implement computational intensive loops. We identified such loops
nd annotated them using the available SPar features. During the paral-
elization, we observed that the SPar language and its five attributes are
uitable for implementing some data-parallel applications. However, its
lexibility still lacks key internal mechanisms to readily exploit data
arallelism. In the following, we highlight some drawbacks that we
ackle in this work.

1. SPar generates code based on the scope that it was declared.
Therefore, for each new function/class/struct/loop iteration, it
generates and re-initializes all of its mechanisms, introducing
huge performance penalties. In our work, we minimize perfor-
mance penalties by using global pointers, initializing them once,
and reusing parallel mechanisms.

2. SPar cannot correctly capture some variables via Input and
Output attributes. For example, a double q[NQ] may be
interpreted as double q. Instead, we designed a new algorith-
mic scheme based on an FSM logic, which was described in
Section 3.3.3.

3. SPar requires that every variable that enters or leaves its scope
are declared via Input and Output attributes. This can be
tricky in complex applications that require manually entering a
big number of variables. In our new version, we employ standard
C++ lambdas to intermediate variable capture.
9

Due to the previous drawbacks, we parallelized only EP, FT, and
G with the original SPar. These applications provide an overview
f SPar’s performance behavior. We based our parallel procedure on
handwritten FastFlow implementation [26,27]. However, knowing

Par’s overhead penalties, we understand that some potential parallel
egions should not be implemented because the parallel gains do not
ompensate for the overhead.

Using SPar with data parallelism, we were able to implement all
ix applications. Our parallel procedure was equivalent to a lower-level
rogramming abstraction such as FastFlow. In CG the FastFlow parallel
rocedure uses dynamic scheduling in the most computational inten-
ive loop. On the other hand, SPar supports default static scheduling.
n the MG kernel, we implement one less MapReduce concerning the
astFlow versions. The reason is that our current compiler algorithm
onsiders summation while the application requires a reduction of type
ax.

Concerning the FT kernel, it uses a custom variable data type to
epresent complex numbers. At some point in the code, FT requires
reduction operation over this complex type. In SPar, however, the
apReduce pattern only recognizes standard C++ data types. So, we

dapted the code by separating the real and imaginary part of the
omplex number into two variables of double type. The remaining
hree NPB applications have an equivalent parallelism procedure with
espect to the FastFlow version.

In Listing 9 we illustrate a working example of NPB’s data-parallel
pplications parallelized with SPar. This procedure extends to all NPB
pplications. It shows an internal routine of CG kernel we implemented
sing the new SPar language. For the original SPar, the code is similar
xcept the recent Pure and Impure attributes. Consequently, pro-
rammers must manually deal with impure regions or not parallelize
his code regions at all. Besides, in original SPar the programmer is
xpected to inform the input and output variables for each ToStream
nd Stage.

1 [[spar : : ToStream]]
2 for (int j = 0; j < l a s t c o l − f i r s t c o l + 1; j ++) {
3 [[spar : : Stage , spar : : Pure , spar : : Replicate ()]]
4 {
5 [[spar : : Impure]]
6 {
7 d = d + p[j]∗q[j] ;
8 }
9 }
0 }

isting 9: CG’s internal routine parallelization with SPar.

4.2. Stream and data parallelism composition

In this Section, we discuss the strategies designed for paralleliz-
ing three stream processing applications. We leverage composition
of stream and data parallelism to exploit the maximum parallel re-
sources of the underlying multi-core architecture. This combines two
levels of parallelism. Fig. 5 shows the flow-graph for each application.
Mandelbrot set and Lane detection was implemented using three com-
putational stages where the first and last one perform sequential I/O
operations. The middle one is a parallel stage that performs the bulk
of the computation. This composition is equivalent to a Farm pattern
that has replicated workers with internal data parallelism inside. On the
other hand, Computer Vision was implemented using 4 stages. The first
stage reads data. The second stage is a Neural Network that can only
be parallelized using data parallelism strategies. The third stage is a
replicated stage that acts as the Workers of the Farm pattern. The fourth
sequential stage combines the output, applies another computational
filter to the image, and then writes the output to disk. Next, we describe
each application and its parallelization strategies in greater detail.

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

1

L

Fig. 5. The flow-graph of the stream processing applications.
1
1
1
1
1
1
1
1
1

L

r
w
h
f
t
f
t
o

b

4.2.1. Mandelbrot Set
Mandelbrot Set is a mathematical visualization set. It computes a

fractal in the complex plane by assigning a color intensity to each
pixel according to its position in the plane. This application displays
an unbalanced workload. The reason is that points located inside the
complex plane within the Mandelbrot set have much more computation
than the ones from outside. For the stream processing procedure, our
application’s input is a 2D matrix dividing stream items as matrix
lines. To improve load-balancing, we try to exploit data parallelism by
splitting this line between data-parallel workers.

The upper left-hand side part of Fig. 5 shows the resulting Mandel-
brot flow-graph. This flow-graph represents the parallelism algorithm
automatically generated by SPar taking into account our annotations.
In order to achieve that, we inserted a single Pure attribute in a
relevant data-parallel region. The SPar compiler uses this information
to generate the optimized parallel code. In this work, we ensured this
is the case.

We parallelized the Mandelbrot Set inserting three SPar language
annotations. They are represented in Listing 10. We implemented three
stages of computations were the first one is the stream generator that
initializes the matrix and distributes items that will be computed by
workers using Mandelbrot’s fractal routine. Inside the second parallel
stage, we used data parallelism to statically divide the stream items
and compute them in parallel. In the third and final stage, stream
items are concatenated in an ordered fashion and written into a file
to obtain the resulting Mandelbrot set image. Concerning original SPar
annotations, the only difference in the code is we annotated a single
[[spar::Pure]] in the data parallelism region.

1 [[spar : : ToStream , spar : : Input (dim , n i t e r) , spar : : Output (dim , i)]] {
2 // schedule a new l i n e of the 2D matrix
3 [[spar : : Stage , spar : : Input (dim , n i t e r , i ,M) , spar : : Output (M) , spar : :

Replicate ()]] {
4 [[spar : : Pure]]
5 // apply f r a c t a l s tage computation
6 }
7 [[spar : : Stage , spar : : Input (dim , i ,M)]] {
8 // wri te l i n e s in order
9 }
0 }

isting 10: Mandelbrot Set’s parallelization with SPar.
 o

10
4.2.2. Lane Detection
Lane Detection is a stream processing application that receives

images captured by autonomous vehicles and performs a computation
to detect the lane boundaries. For that, it uses the Canny edge detector
and the Hough transform algorithms. A use case of this application
is for improving autonomous vehicle computing systems’ performance
and precision. In this application, each frame captured by the camera
is considered a stream item.

1 [[spar : : ToStream , spar : : Input (grayImages , f u l l i m g s i z e)]]
2 // schedule the frames captured by a camera
3 [[spar : : Stage , spar : : Input (i F i l e , numberOfpoints , f u l l i m g s i z e) , spar

: : Replicate ()]] {
4 // apply de tec to r s tage computation
5 [[spar : : Pure]] {
6 // apply a s tep of gauss ian f i l t e r
7 }
8 [[spar : : Pure]] {
9 // apply a s tep of sober f i l t e r
0 }
1 [[spar : : Pure]] {
2 // apply a s tep of non−maximum suppress ion
3 }
4 }
5 [[spar : : Stage , spar : : Input (i F i l e)]] {
6 // wri te frames in order
7 }
8 }

isting 11: Lane Detection’s parallelization with SPar.

Similar to the Mandelbrot Set, the graph-flow of this application
esults in a Farm parallel pattern that has three computational stages
here the middle one is replicated. This can be seen in the upper right-
and side part of Fig. 5. The input frames are read in the first stage and
orwarded to the subsequent detection stage. Then, the computation in
his detection stage is performed in parallel. Each worker receives a
rame and applies the detection filters. Finally, the application collects
hese resulting frames containing the lane edges and writes them in
rder into a file.

Latency is critical in this application. Since the workload may
ecome unbalanced when some frames require more computation than
thers, we applied the second level of data parallelism in the detection

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

i
s
F
s

1
1
1
1
1
1
1
1
1
1
2

2
2
2
2
2
2
2

L

5

c
n
c
i
t

stage. As demonstrated in the flow-graph in Fig. 5 we included three
Map parallel patterns in the data-parallel regions of the code. These
regions have fine-grained computation and represent less than half of
total computation.

4.2.3. Computer Vision
Computer Vision is a synthetic application we created to represent

a more complex stream processing application flow. In summary, it is
an NN (Neural Network) that trains itself with input images captured
from a camera and then applies one denoising and then another sobel
filter to the resulting images. The output is then written to disk. The
neural network we used1 is written in C++. The topology of our NN
is configured with two hidden layers, each with 100 neurons. In the
application, each frame captured by the camera is a stream item of
our pipeline. Therefore, this application has a different characteristic
in the sense that the NN cannot be replicated using stream parallelism.
Each image in the pipeline updates the NN weights. If replicated,
two parallel images would cause a race condition by trying to update
the same NN weight. However, the denoising and sobel filters can
be parallelized using stream features. Therefore, for this application,
stream parallelism alone is not sufficient. Combining stream and data
parallelism is the best option.

The resulting flow-graph of our application is shown at the bottom
of Fig. 5. Our plan for parallelizing this application uses a composition
of Pipeline and Farm like strategies. In this case, the first stream
stage is sequential where we use 4 Pure attributes to parallelize NN
nternal matrix multiplication computations. Then, we have another
tage for denoising filtering where we replicate to increase parallelism.
inally, we apply the sobel filter in the last stage and write the output
equentially since it is a smaller portion of the computation.

1 [[spar : : ToStream , spar : : Input (video)]] {
2 // schedule the frames captured by a camera
3 [[spar : : Stage , spar : : Input (frame) , spar : : Output (frame)]]
4 {
5 // apply feed forward
6 // apply back propagation
7 [[spar : : Pure]] {
8 // matrix mu l t i p l i c a t i on
9 }
0 [[spar : : Pure]] {
1 // matrix mu l t i p l i c a t i on
2 }
3 [[spar : : Pure]] {
4 // matrix mu l t i p l i c a t i on
5 }
6 [[spar : : Pure]] {
7 // matrix mu l t i p l i c a t i on
8 }
9 }
0 [[spar : : Stage , spar : : Input (frame) , spar : : Output (frame) , spar : :

Replicate ()]] {
1 // apply denoiser s tage computation
2 }
3 [[spar : : Stage , spar : : Input (frame)]] {
4 // apply sobel s tage computation
5 // wri te frames in order
6 }
7 }

isting 12: Computer Vision’s parallelization with SPar.

. Experiments

Experiments were conducted to assess the efficiency of the new
ompiler algorithm which we implemented as prototype in SPar. From
ow on, we refer to this new version as SPar+. We used stream pro-
essing applications from different domains with the goal of providing
nformation on which class of applications may benefit, or not, from
he composition of stream and data parallelism.

1 https://github.com/ralampay/ann
11
Section 5.1 briefly presents our methodology and the environment
employed in our tests. The tests are divided in two parts. In Section 5.2,
we evaluate the new compiler algorithm performance when automat-
ically generating parallel code for data parallelism applications. In
Section 5.3, we evaluate the composition of patterns from different
parallelism paradigms. Section 5.4 compares our results with previous
work and Section 5.5 summarizes our findings.

5.1. Methodology and environment

The experiments were executed on a machine with two Intel(R)
Xeon(R) Silver 4210 CPU @ 2.20 GHz, featuring 20 cores and 40
threads. Each hyper-threaded core has 64KB private L1, 1MB private
L2 and 13.75MB of L3 shared. The machine has 64 GB of RAM @
2400 MHz and is equipped with four HDD 3.5 @ 7200rpm using SATA
3.1 with 6.0 Gb/s. The kernel was Linux 5.4.0-59-generic and the OS
Ubuntu 20.04.1 LTS. We used GCC 9.3.0 with -O3 flag enabled. The
FastFlow version was v3.0.0.

The tests were executed from the degree of parallelism 1 up to
40 (maximum degree). The degree of parallelism may not represent
the actual active thread count in the system. Rather, SPar spawns
dedicated threads for each parallel stage according to the specified
degree of parallelism. The execution was repeated 5 times and the
graphs represent the average value. The standard deviation was plotted
using error bars and may not be visible when the value is negligible.
We kept the repetition number low because results were close and the
standard deviation is also low. To guarantee the correctness of the
parallel versions, we compared the hash value of the output with the
sequential version.

5.2. Data parallelism

This section introduces our experiments regarding the performance
of the new SPar compiler algorithm when automatically generating
data-parallel patterns. These experiments are important to evaluate
the efficiency of our code generation strategy. In data parallelism, the
NPB is a meaningful benchmark containing important computational
characteristics such as intensive memory communications, complex
data dependencies, different memory access patterns, and hardware
components/sub-systems overload. We executed the applications using
NPB’s class B (parameters available on website2).

The graphs in Fig. 6 summarizes our results. In these graphs, the 𝑥
axis shows the degree of parallelism while the 𝑦 axis shows the total
execution time in seconds using a logarithmic scale 2. Moreover, the
𝑦2 axis shows the normalized difference between SPar+ and FastFlow.
We used FastFlow’s execution time as baseline, meaning that positive
values stand for SPar+ being slower than FastFlow while negative
values vice-versa. To better assess the difference between the versions,
we colored the bars using red and green. They indicate the obtained
𝑝-value from our statistical analysis [28]. Before executing the tests,
we applied a homogeneity test to evaluate if the samples (5 repetitions)
are in a normal distribution. This was done using the Shapiro–Wilk test,
in which the results indicate the best hypothesis test to execute (para-
metric or nonparametric). If samples were in a normal distribution, we
executed the paired T-test. Otherwise, we used Wilcoxon test. In our
statistical analysis, the null hypothesis (H0) stands for SPar+ equal to
FastFlow. To reject H0 and assume H1 (SPar+ is significant different
from FastFlow), the 𝑝-value must be less than 0.05. When this happens
and H0 is rejected, we colored them in red. Otherwise, when H0 is not
rejected we colored them in green.

We compare the original SPar and the new SPar+ proposed in this
work against handwritten and manually optimized FastFlow versions
obtained from past work [26,27]. One of our goals is minimizing over-
head compared to the manually optimized FastFlow code. Since SPar

2 https://www.nas.nasa.gov/publications/npb_problem_sizes.html

https://github.com/ralampay/ann
https://www.nas.nasa.gov/publications/npb_problem_sizes.html

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

d

g
s
a
S
e
p
h

r
e
p

Fig. 6. NPB with handwritten parallelizations [27] vs. automatic parallelizations using SPar and SPar+. Lines represent the execution time while bars represent the normalized
ifference between SPar+ and FastFlow. Bar’s colors show if this difference is significant from the statistical standpoint under 95% of reliability.
enerates FastFlow parallel code, an optimal outcome is achieving the
ame level of performance while providing higher-level programming
bstractions. Also, in the experiments we assess the performance of
Par in complex data-parallel applications. Although SPar only gen-
rates stream parallelism, in some applications it can achieve similar
erformance to data-parallel approaches [12]. This is exactly what
appens in Fig. 6(a) while others showed a poor performance outcome.

In graphic 6(a), all the results are equivalent since EP is an embar-
assingly parallel application containing a single parallel loop. How-
ver, there is already a slight advantage when using data-parallel
atterns over stream patterns. At the highest degree of parallelism (40
12
threads), SPar+ is 5.1% faster than SPar using the same annotations in
the code. The main explanation is that the stream patterns use an extra
thread for scheduling. Therefore, at the highest degree of parallelism,
there are 41 threads (40 parallel workers + 1 scheduler) disputing
resources.

In graphics 6(b) and 6(c), it becomes clear that the stream paral-
lelism generated by SPar is inefficient for these applications. The main
problem is that the scheduler is a bottleneck since it has to orchestrate
a fine-grained workload. The tasks perform low intensity computations
which means working threads finish very quickly and become idle until
a new task arrives from the scheduler. The execution time increases

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

r
S
n

p
p
t
p
p
d
t
m
w
i
S
a
w
i
o
s

a
w
p
s
a
o
s
s
o
a
t
u
r
n
e
i

l
t
m
o
s
s
5
l
t
m
m

5

d
p
3
s
i
A
S

with higher degrees of parallelism since more threads are idly waiting
to receive new tasks. The difference between SPar versions is up to
2.4x in FT and up to 108.4x in CG. It is worth noting that in all
graphs the execution time increases in the transition from the degree
of parallelism 20 to 21 due to the hyper-threading, which introduces
workload balancing issues.

We were not able to implement the other three applications with
SPar for the reason we explained in Section 4.1. On the other hand, the
new language and compiler algorithm increased SPar+ expressiveness
and flexibility and we were able to resolve those limitations while
enabling parallelism for all applications. Added results are illustrated in
graphics 6(d), 6(e) and 6(f), and revealed that SPar+ can achieve sim-
ilar performance to handwritten FastFlow parallelizations. The major
differences between SPar+ and FastFlow are in FT, CG, and MG. In CG,
FastFlow uses dynamic scheduling, whose optimal configuration was
obtained through experimental tests. SPar+ by default applies static
scheduling. However, as explained in [27], the extra overhead required
for dynamic scheduling only pays off for bigger workloads.

In MG, the difference is that SPar+ implements one less MapReduce
pattern than FastFlow. The reason is that, currently, SPar+ only sup-
ports summation reduce operations while MG implements a reduction
of type max. Therefore, in some degrees of parallelism SPar+ achieved
up to 37.1% less performance compared to FastFlow. Similarly, in
the FT kernel there is one MapReduce routine that is performed over
complex numbers. Since C++ does not represent complex numbers,
they implemented it as a struct with two double data types for
epresenting the real and imaginary values from the imaginary number.
Par’s compiler only performs the Reduce operation considering C++
ative data types.

The BT and SP pseudo-applications are NPB’s most complex data-
arallel applications and we parallelized them using multiple Map
atterns. Graphics 6(e) and 6(f) presents the results. As can be seen,
he performance is equivalent between SPar+ and FastFlow. In these
arallelizations, the code generated by SPar+ is identical to FastFlow’s
arallelism procedure. Slight divergences in execution time or standard
eviation may be seen because these pseudo-applications are sensitive
o where data is placed in memory. For example, in previous experi-
ents, we were observing situations where the SPar+ code was either
orse or better than FastFlow in some degrees of parallelism. This

s shown in Fig. 7. We fixed it by removing one memory allocation
Par+ performed at the beginning of the parallel code. As consequence,
pplication data was realigned in memory and the performance issue
as solved. New results are the ones illustrated in graphic 6(f). It

s worth noting that the decrease in performance for higher degrees
f parallelism happens because BT and SP are both bounded to their
equential partial differential equation solvers.

In this section, our goal was to evaluate SPar using data-parallel
pplications. We expected SPar+ to offer higher levels of abstraction
hile executing with similar performance to handwritten FastFlow
arallel programs. The experiments have revealed that SPar+ achieves
imilar results concerning handwritten parallelizations, except FT, CG,
nd MG. In FT and MG SPar+ achieves the lowest performance on most
f the parallelism degrees while in CG it is the contrary. However, the
tatistical test shows that the differences in these applications are not
ignificant from a statistical viewpoint. On the other hand, the graphs
f EP, BT, and SP show more occurrences of significant difference
lthough in average they are small (at most 3.18%). We designed SPar+
o be a transparent parallel programming model, therefore it cannot be
sed to express every low-level parallelism intricacy, especially on a
epresentative benchmark suite like the NPB. We can conclude that the
ew SPar compiler algorithm is reliable and efficient. We extend our
xperiments to assess the composition of stream and data parallelism
n the subsequent Section.
13
Fig. 7. Performance issue with SPar+ in SP.

5.3. Stream and data parallelism composition

In this section, we assess the performance of different parallelism
paradigms. The goal is to investigate the behavior of stream and data
parallelism composition and how to compose different parallel patterns.
Such effort may bring new insights to this research domain regarding
the viability of these compositions. We selected three stream processing
applications from different domains. They are briefly described in Sec-
tion 4.2. These applications contain distinct characteristics we intend
to stress to observe the performance of our new compiler algorithm.
Mandelbrot Set was selected due to its unbalanced workload. Lane De-
tection contains routines for real-time image processing. The Computer
Vision application implements a heavy computational intensive neural
network and other image filters.

The results shown in this section are represented via 3D colored
graphs in Fig. 8. A 2D grid (𝑥 and 𝑦 axis) represents every composition
of data and stream degrees of parallelism. The results for each metric
are simultaneously represented in the 𝑧 axis and colorized box. From
a visual perspective, identifying the best degrees of parallelism is not
intuitive. Instead, we want to give the reader an idea of the behavior
to identify performance trends. For important data points in the graph,
we discuss absolute values in the text.

There are two types of graphs: one illustrating the throughput in
items per second; another illustrating latency using the 95th percentile
atency in milliseconds. The throughput was measured by dividing the
otal number of items by total execution time. As explained in the
ethodology Section 5.1, execution time was obtained via the average

f multiple executions. Latency was acquired using the 𝑘th percentile
core from statistics [29]. Therefore, we measure the latency of each
treaming item. Then, we order this data set and remove the highest
% values, which by definition are considered outliers. The remaining
atency value sitting on top of the list is the 95th value we used to plot
he graphs. We used 5% because it is close to the percentage of cache
isses we obtained in our experiments. When data is fetched in main
emory, it can severally increase the latency, representing outliers.

.3.1. Mandelbrot set
Figs. 8(a) and 8(b) illustrate the results obtained with the Man-

elbrot Set application. The first behavior we observe is that stream
arallelism scales better than data parallelism. The best throughput is
63 items per second and it is obtained with SPar using the degree 40 of
tream parallelism. However, latency is high when the best throughput
s achieved, where we captured 696.4 ms of delay in many items.
ccording to trends in the graphics, better latency is enabled with
Par+ and higher degrees of data parallelism. For example, the best

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

h
d
r

l
p

h
i

Fig. 8. Performance measures of three stream processing applications parallelized with SPar+. In the graphics, Orange represents the best results and Blue vice-versa. For throughput
igher values are better, while for latency lower values are better. SPar uses only stream parallelism and its data are plotted in the first line from right to left, when degree of
ata parallelism is zero. SPar+ are the remaining lines varying the degree of data parallelism. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
atency of 43.6 ms is captured with SPar+ configuring degree of data
arallelism 37 and stream 1.

When using SPar, the best latency is up to an order of magnitude
igher with respect to SPar+. The best latency achieved with SPar
s 568.8 ms of delay with a throughput of 226. This happens at the

degree of stream parallelism 20. In SPar, we also notice that latency
is decreasing until reaching degree 20, when it reverses the trend and
starts increasing. This result reveal that SPar generating stream-only
parallelism cannot efficiently exploit resource usage when dealing with
logical threads from the hyper-threading region.
14
For achieving the best outcome and selecting the desired throughput
and latency, application users may choose different degrees of stream
and data parallelism. Each parameter offers a trade-off that can be
exploited to achieve a balance between these two performance metrics.
As revealed by results, along the grid, different degrees of parallelism
achieve various performance options that can be selected as parallel
configurations.

Furthermore, it is worth highlighting that some degrees of data par-
allelism introduce severe load balancing constraints, limiting through-
put and increasing latency. The highest impact is seen in the degree of
data parallelism 7. However, this is a peculiar result. In this case, the

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

d
w
a
b
p

m
s
g
t
n

5

w
w
2
a
o
H
o
a
w

t
h

overall execution time was impacted by the internal fine-grained data
parallelism. The performance deteriorated because data parallelism
also suffers from unbalancing workload. However, it suggests that a
second nested level of fine-grained parallelism has the ability to balance
workloads derived from originally unbalanced applications that exploit
coarse-grained stream parallelism.

5.3.2. Lane detection
Figs. 8(c) and 8(d) illustrate the results we obtained with the Lane

Detection application. Again, we observe that stream parallelism scales
better than data parallelism. This was expected because now our par-
allel implementation introduces three data-parallel Map patterns that
together represent less than half of the total computation. However,
this time, the best throughput (367 items per second) was achieved
with SPar+ with stream degree 40 and data degree 1. Similarly, SPar
achieved a close throughput that is 2.6% worse than SPar+. At the best
throughput level, both version achieved equivalent latencies of 228.2
and 230.4 respectively for SPar and SPar+.

The lowest latency (36.4 ms) was captured using SPar+ when config-
uring stream parallelism with degree 2 and data parallelism with degree
18. On the other hand, the best latency of SPar is 155.2 ms, which is
4.26x higher than the latency achieved by SPar+. Comparable to results
observed in Mandelbrot Set, the best latency is achieved increasing data
parallelism, while better throughput is achieved increasing stream par-
allelism. Different configuration options along the grid can be exploited
for balancing throughput and latency.

5.3.3. Computer vision
Figs. 8(e) and 8(f) sketch the results obtained with the Computer

Vision application. In this application, increasing the degree of stream
parallelism does not scale at all. The reason is that replicated course-
grained stream processing stages are not significantly intensive routines
in this scenario. The most computationally intensive stage is the neural
network. However, replicating it could lead to race conditions. This
explains why the results using SPar and its stream-only parallelism
accomplish low throughput and high latency. The best throughput
using SPar is 3.78 items per second with a latency of 282 ms. On the
other hand, the best throughput in this application is 5.02 (1.33x higher
than SPar) and is achieved when combining stream with degree 8 and
ata parallelism with degree 9. In this configuration, latency is low as
ell, where we measured 218 ms of delay. The best overall latency is
chieved with SPar+ and is very similar to the one captured in the
est throughput. It is 217 ms and was captured with degree 9 of stream
arallelism and degree 8 of data.

In both SPar and SPar+ version, the best throughput and latency
easured during our experiments are either the same or at least very

imilar. Therefore, a single parallelism parameters configuration may
ive the best outcome in this applications. The results may extend
o other applications from this domain, but further investigation is
ecessary.

.4. Comparison with previous work

This section provides a comparison with respect to our previous
ork [11]. In previous work, we used an older machine equipped
ith 24 GB of RAM and two processors Intel(R) Xeon(R) CPU E5-
620 3@2.40 GHz with 6 cores each and support to hyper-threading,
dding up to 24 threads. Besides, we conducted our experiments only to
btain the best execution time for each stream processing application.
owever, stream processing applications may run during long periods
f time, possibly to infinity. Therefore, better metrics for this class of
pplication are throughput and latency, which are considered in this
ork.

The NPB results are equivalent, but show smaller differences be-
ween SPar and SPar+ since the machine is slower and runtime over-
eads are mitigated by total execution time. Regarding our study
15
Table 2
Comparison with previous work [11].

Apps. Metrics Current work Previous work [11]

Spar Spar+ Spar Spar+

Mandel-
brot Set

Time (s) 2.75 3.28 1.97 2.33
Std. Dev 0 0.01 0.75 0.75
Stream par. 40 40 24 20
Data par. – 1 – 1

Lane
Detection

Time (s) 2.61 2.55 3.94 5.12
Std. Dev 0.03 0.01 0.03 0.02
Stream par. 39 40 24 14
Data par. – 1 – 8

towards composition of stream and data parallelism, previous results
revealed similar trends to this paper’s experiments. Our 3D graphics
plot the same data patterns. Table 2 shows a comparison between the
best execution time of current and previous work. In our previous work,
we showed that composition between stream and data parallelism
may not always lead to performance gains. In fact, it may degrade
performance when the overheads of data-parallel mechanisms outgrow
the parallelism gains. This is the case in previous work where SPar+
stops scaling with lower degrees of parallelism. However, in our current
work we revealed new insights: although throughput is not always
improved, having a nested fine-grained data-parallelism can enhance
latency.

5.5. Findings summary

In this section, our goal was to analyze the behavior and reveal new
insights towards the composition of stream and data parallelism. The
experiments showed that there are opportunities to improve parallelism
efficiency by exploiting this approach. The most important character-
istic we are interested in is improving resource utilization while also
improving throughput and latency metrics.

Table 3 summarizes our results by exhibiting the best observed
throughput and latency. We highlighted in color the best SPar version
for each application. SPar+ is better in 5 out of 6 cases. It achieved
the best latency in all situations. Furthermore, SPar can provide higher
throughput at the cost of latency. This happens in Mandelbrot where
SPar achieves a throughput 19% higher than SPar+. In this case, the
unbalanced workload is accentuated because SPar+ uses 2 levels of
parallelism. However, in the best latency configuration, SPar+ provides
a 15.97x lower latency while the measured throughput is only 3.06x
lower than the best configuration from SPar. In other words, it gives up
on two thirds of throughput to trade-off a fifteen times lower latency.
The same happens to Lane Detection. In Lane detection, one possible
configuration gives up on one third of throughput in favor of six times
lower latency. Computer Vision using SPar+ achieves the best results:
both latency and throughput are improved with respect to SPar ones.
SPar+ users can exploit different compositions and select configurations
that maximize their needs of throughput and latency.

There are open research questions towards combining different lev-
els of parallelism. However, the literature still lacks solutions that ex-
ploit compositions between different parallelism paradigms. We showed
that using a single multi-core architecture, stream and data parallelism
can be composed to maximize resource usage via workload balancing
between available resources. Optionally, different configurations may
be used to maximize either latency or throughput. Other approaches
for future research contemplate compositions with different archi-
tectures. For example, using stream parallelism combined with data
parallelism to exploit both highly scalable and distributed cloud en-
vironments (stream parallelism) and internally implement fine-grained
parallelizations for multi-cores (data parallelism).

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160
Table 3
Summary of best results regarding throughput and latency. We colorized the column that contains the best result between
SPar and SPar+ for each stream processing application.

Mandelbrot Set Lane Detection Computer Vision
Guideline Metrics SPar SPar+ SPar SPar+ SPar SPar+

Throughput (items/sec) 363.35 304.30 358.37 367.55 3.78 5.02
Latency - 95th per. (ms) 696.4 828.8 228.2 230.4 282 218
Execution Time (sec) 2.75 3.28 2.61 2.55 72.48 54.61
Degree of Stream par. 40 40 39 40 1 8

Best Throughput

Degree of Data par. - 1 - 1 - 9

Latency - 95th per. (ms) 568.8 43.6 155.2 36.4 282 217
Throughput (items/sec) 226.43 118.80 297.08 164.64 3.78 5.00
Execution Time (sec) 4.42 8.42 3.15 5.68 72.48 54.75
Degree of Stream par. 20 1 20 2 1 9

Best Latency

Degree of Data par. - 37 - 18 - 8
6. Related work

In the literature, many efforts are being conducted towards in-
creasing the level of parallelism by offering high-level abstractions
with negligible performance costs. Table 4 summarizes such related
work. We focus on research targeting stream processing and multi-core
architectures.

The StreamIt [30] DSL introduces a new language and compiler.
Similar to SPar, StreamIt offers a high-level interface for expressing
stream parallelism. It also generates parallel code using source-to-
source transformations. However, StreamIt requires learning a new
syntax and language based on Java while SPar uses C++11 attributes,
which are fully recognized and represented in the standard language
AST (abstract syntax tree).

GrPPI [31] (Generic Reusable Parallel Pattern Interface) offers a
parallel programming abstraction with generic parallel patterns. For
that, the programmer only instantiates parallel patterns once and
chooses, at compile-time, which runtime GrPPI should generate parallel
code. In GrPPI, the programmer is responsible for identifying the best
pattern and refactoring the code to implement it manually. In contrast,
SPar automatically decides and generates the suitable parallel patterns.

OpenMP is the de facto standard for data parallelism in C++ and
multi-core architecture. Some researchers notice the difficulties of de-
veloping stream processing applications using OpenMP and proposed
extensions. However, they provide mechanisms to express data depen-
dencies in the code and enable task parallelism rather than procedures
targeting some stream parallelism features.

OmpSs [32] extended OpenMP by proposing a new programming
model to annotate parallel code based on pragma directives. Besides,
OmpSs supports asynchronous parallelism and heterogeneous program-
ming (GPUs and FPGAs). They have their own compiler and runtime
system. In recent versions, OpenMP also supports a task-based model
taking inspiration from OmpSs’ programming model. Developers are
equipped with pragmas for creating tasks and linking them according
to their data dependencies.

OpenStream [33] also extended OpenMP by offering additional
support to task parallelism and Pipelines. This tool is based on pragma
compilation directives used by the programmer to annotate dependen-
cies between tasks and providing information about the data flow.
Instead of using pragmas, SPar leverages C++ attributes that are avail-
able for any compiler that recognizes C++11 and newer. Attributes are
fully represented in the C++ grammar. Therefore, they are part of the
C++ language and semantics while pragmas are not.

WindFlow [34] introduces a header-only library for leveraging data
stream parallelism in multi-core and heterogeneous architectures. The
library provides common stream processing operators such as Map,
FlatMap, Filter, and others that can be interconnected in a Pipeline or a
Directed acyclic graph (DAG). However, the programmer is in charge of
identifying convenient operators and refactoring the code to implement
them manually. SPar’s language does not introduce such parallelism
details to the programmer since its compiler generates the parallel code.
16
PiCo [35] is a DSL that tries to simplify parallelism concerning
other Big Data solutions. However, although PiCo proposes a high-
level abstraction over FastFlow (similar to SPar’s goal), the syntax
used by PiCo is still very similar to FastFlow. Differently, SPar clearly
distinguishes between low-level parallelism optimizations and high-
level abstractions, in which parallelism complexities are hidden from
the programmer. SPar’s main goal is to help application programmers
achieve higher levels of productivity and performance via a high-level
programming model.

7. Conclusion

In this paper, we introduced new optimizations to improve stream
processing applications. In that, we leverage the idea of internal fine-
grained data parallelism exploitation located inside concurrent stages
from coarse-grained stream parallelism stages. The optimizations made
were new techniques for identifying data-parallel patterns in C++, a
new language, semantic analysis, and a set of transformation rules
to perform source-to-source parallel code generation. To investigate
the feasibility of employing the proposed optimizations in higher-level
programming abstractions, we elected the SPar programming model
as a use case. We extended SPar by adding two new attributes to its
language and implementing a new algorithm for its compiler. With it,
SPar is able to generate parallel code more efficiently because it can
select parallel patterns between stream patterns (Pipeline and Farm),
data patterns (Map and MapReduce), and a composition of them. In
addition to that, SPar is now able to express complex data-parallel
computations such as presented in NPB.

In the experiments, results evaluating parallel code generation via
NPB’s data-parallel applications have revealed that SPar’s new compiler
algorithm can improve performance by up to 108.4x compared to old
SPar compiler. Furthermore, the performance of automatic parallel
code generation is equivalent to handwritten parallelizations in most
cases.

Experiments assessing stream processing applications revealed that
lower latency and higher throughput can be achieved when employ-
ing a nested level of data parallelism within a coarse-grained stream
parallelism compared to a stream-only approach. So, programmers
can exploit different configurations of stream and data parallelism to
balance between throughput and latency, even when there are more
threads than physical cores in multi-cores. In the future, automatic
strategies from machine learning or self-adaptive domains can be used
to provide the best degrees of parallelism for programmers.

As future work, we plan to conduct experiments on other stream
processing applications from different domains to find which class of
applications may benefit from this approach. Now that we introduced a
new compiler algorithm that generates stream and data parallel code, it
becomes simpler to test parallelism composition in other applications.
There is still room for improve static analysis to improve parallelism
exploitation on Impure annotations. Also, we intend to investigate the
support for automatic parallel code generation for combining stream
and data in different architectures such as clusters of multi-cores, or
multi-cores with GPUs.

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160

i
m
d

D

c
i

A

a
d
F

Table 4
Comparison between related works.

Work API Programming
language

Runtime
systems

Supported
architectures

Parallelism
exploitation

Language
domain

GrPPI [31] Template library C++ FastFlow, TBB,
OpenMP and,
C++ Parallel STL

Multi-cores Explicit Stream and Data
parallelism

OpenStream [33] Pragma compilation
directives

C/C++ POSIX Threads Multi-cores Explicit Task parallelism

OmpSs [32] Pragma compilation
directives

C/C++ Nanos++ Multi-cores, clusters,
and accelerators

Explicit Task parallelism

WindFlow [34] Parallel library C++ FastFlow Multi-cores and
accelerators

Explicit Stream
processing

PiCo [35] C++ domain
specific language

C++ FastFlow Multi-cores Explicit Big Data

StreamIt [30] External domain
specific language

Java Custom Multi-cores
and clusters

Abstract Stream
processing

SPar [12] C++ domain
specific language

C++ FastFlow, TBB,
and OpenMP

Multi-cores, clusters,
and accelerators

Abstract Stream
processing
CRediT authorship contribution statement

Júnior Löff: Software, Investigation, Validation, Visualization, Writ-
ing – original draft. Renato B. Hoffmann: Software, Validation, Writ-
ng – original draft. Dalvan Griebler: Conceptualization, Project ad-
inistration, Validation, Writing – review & editing. Luiz G. Fernan-
es: Supervision, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

We would like to acknowledge the support of GMAP research group
nd PUCRS university. This research is partially funded by Coordenação
e Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
inance Code 001, FAPERGS 05/2019-PQG project ParAS (No 19/2551-

0001895-9), FAPERGS 10/2020-ARD project SPar4.0 (No 21/2551-
0000725-7), Universal MCTIC/CNPq call 28/2018 project SParCloud
(No 437693/2018-0), and MCTIC/CNPq call 25/2020 (No 130484/
2021-0).

References

[1] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati, Fastflow: high-level and
efficient streaming on multi-core, in: Programming Multi-Core and Many-Core
Computing Systems, Parallel and Distributed Computing, 2017.

[2] M. Cole, Algorithmic skeletons: Structured management of parallel computation,
1989.

[3] D. Griebler, L.G. Fernandes, Towards distributed parallel programming support
for the spar DSL, in: Parallel Computing Is Everywhere, Proceedings of the
International Conference on Parallel Computing, ParCo ’17, IOS Press, Bologna,
Italy, 2017, pp. 563–572, http://dx.doi.org/10.3233/978-1-61499-843-3-563.

[4] T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Programming, first
ed., Addison-Wesley Professional, 2004.

[5] L. Dagum, R. Menon, OpenMP: An industry standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55.

[6] W. Gropp, W.D. Gropp, E. Lusk, A. Skjellum, A.D.F.E.E. Lusk, Using MPI: Portable
Parallel Programming with the Message-Passing Interface, Vol. 1, MIT Press,
1999.

[7] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas, Apache
flink: Stream and batch processing in a single engine, Bull. IEEE Comput. Soc.
Tech. Committee Data Eng. 36 (4) (2015).

[8] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism, " O’Reilly Media, Inc.", 2007.

[9] Apache Software Foundation, Apache Beam, URL: https://beam.apache.org.
17
[10] D. Griebler, M. Danelutto, M. Torquati, L.G. Fernandes, SPar: A DSL for high-
level and productive stream parallelism, Parallel Process. Lett. 27 (01) (2017)
1740005, http://dx.doi.org/10.1142/S0129626417400059.

[11] J. Löff, R.B. Hoffmann, D. Griebler, L.G. Fernandes, High-level stream and
data parallelism in C++ for multi-cores, in: XXV Brazilian Symposium on
Programming Languages, SBLP, SBLP ’21, ACM, Joinville, Brazil, 2021.

[12] D. Griebler, Domain-Specific Language & Support Tool for High-Level Stream
Parallelism (Ph.D. thesis), Faculdade de Informática - PPGCC - PUCRS, Porto
Alegre, Brazil, 2016, URL: http://tede2.pucrs.br/tede2/handle/tede/6776.

[13] ISO/IEC-14882:2011, Information Technology - Programming Languages - C++,
Technical Report, International Standard Organization, Geneva, Switzerland,
2011, URL: https://www.iso.org/standard/50372.html.

[14] D. Griebler, R.B. Hoffmann, M. Danelutto, L.G. Fernandes, Higher-level paral-
lelism abstractions for video applications with spar, in: Parallel Computing Is
Everywhere, Proceedings of the International Conference on Parallel Computing,
ParCo ’17, IOS Press, Bologna, Italy, 2017, pp. 698–707, http://dx.doi.org/10.
3233/978-1-61499-843-3-698.

[15] D. Griebler, R.B. Hoffmann, J. Loff, M. Danelutto, L.G. Fernandes, High-level
and efficient stream parallelism on multi-core systems with spar for data
compression applications, in: XVIII Simpósio Em Sistemas Computacionais De
Alto Desempenho, SBC, Campinas, SP, Brasil, 2017, pp. 16–27, URL: https:
//gmap.pucrs.br/dalvan/papers/2017/CR_WSCAD_2017.pdf.

[16] D. Griebler, R.B. Hoffmann, M. Danelutto, L.G. Fernandes, High-level and pro-
ductive stream parallelism for dedup, ferret, and Bzip2, Int. J. Parallel Program.
47 (1) (2018) 253–271, http://dx.doi.org/10.1007/s10766-018-0558-x.

[17] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati, Fastflow: High-level
and efficient streaming on multicore, in: Programming Multi-Core and Many-
Core Computing Systems, John Wiley & Sons, Ltd, 2017, pp. 261–280, http:
//dx.doi.org/10.1002/9781119332015.ch13.

[18] OpenMP ARB, Openmp application program interface version 5.0, 2018,
URL: https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-
5.0.pdf.

[19] M. Voss, R. Asenjo, J. Reinders, Pro TBB: C++ Parallel Programming with
Threading Building Blocks, first ed., A Press, USA, 2019.

[20] R.B. Hoffmann, J. Löff, D. Griebler, L.G. Fernandes, Openmp as runtime for
providing high-level stream parallelism on multi-cores, J. Supercomput. (2022)
1–22.

[21] R.B. Hoffmann, D. Griebler, M. Danelutto, L.G. Fernandes, Stream parallelism
annotations for multi-core frameworks, in: XXIV Brazilian Symposium on Pro-
gramming Languages, SBLP, SBLP ’20, ACM, Natal, Brazil, 2020, pp. 48–55,
http://dx.doi.org/10.1145/3427081.3427088.

[22] S. Prema, R. Nasre, R. Jehadeesan, B.K. Panigrahi, A study on popular
auto-parallelization frameworks, CCPE 31 (17) (2019).

[23] ISO/IEC 14882:2017, ISO/IEC 14882:2017 - Programming Languages – C++,
2000, International Organization for Standardization, Geneva, Switzerland, 2017.

[24] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, S. Weeratunga, The NAS Parallel Benchmarks, Technical Report, NASA
Ames Research Center, Moffett Field, CA - USA, 1994.

[25] H.-Q. Jin, M. Frumkin, J. Yan, The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance, Technical Report, NASA Ames Research Center,
Moffett Field, CA - USA, 1999.

[26] D. Griebler, J. Loff, G. Mencagli, M. Danelutto, L.G. Fernandes, Efficient
NAS benchmark kernels with C++ parallel programming, in: 26th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing,
PDP, PDP ’18, IEEE, Cambridge, UK, 2018, pp. 733–740, http://dx.doi.org/10.
1109/PDP2018.2018.00120.

http://refhub.elsevier.com/S2590-1184(22)00057-0/sb1
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb1
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb1
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb1
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb1
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb2
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb2
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb2
http://dx.doi.org/10.3233/978-1-61499-843-3-563
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb4
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb4
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb4
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb5
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb5
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb5
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb6
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb6
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb6
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb6
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb6
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb7
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb7
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb7
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb7
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb7
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb8
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb8
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb8
https://beam.apache.org
http://dx.doi.org/10.1142/S0129626417400059
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb11
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb11
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb11
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb11
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb11
http://tede2.pucrs.br/tede2/handle/tede/6776
https://www.iso.org/standard/50372.html
http://dx.doi.org/10.3233/978-1-61499-843-3-698
http://dx.doi.org/10.3233/978-1-61499-843-3-698
http://dx.doi.org/10.3233/978-1-61499-843-3-698
https://gmap.pucrs.br/dalvan/papers/2017/CR_WSCAD_2017.pdf
https://gmap.pucrs.br/dalvan/papers/2017/CR_WSCAD_2017.pdf
https://gmap.pucrs.br/dalvan/papers/2017/CR_WSCAD_2017.pdf
http://dx.doi.org/10.1007/s10766-018-0558-x
http://dx.doi.org/10.1002/9781119332015.ch13
http://dx.doi.org/10.1002/9781119332015.ch13
http://dx.doi.org/10.1002/9781119332015.ch13
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb19
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb19
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb19
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb20
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb20
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb20
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb20
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb20
http://dx.doi.org/10.1145/3427081.3427088
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb22
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb22
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb22
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb23
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb23
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb23
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb24
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb24
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb24
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb24
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb24
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb24
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb24
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb25
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb25
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb25
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb25
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb25
http://dx.doi.org/10.1109/PDP2018.2018.00120
http://dx.doi.org/10.1109/PDP2018.2018.00120
http://dx.doi.org/10.1109/PDP2018.2018.00120

J. Löff, R.B. Hoffmann, D. Griebler et al. Journal of Computer Languages 73 (2022) 101160
[27] J. Löff, D. Griebler, G. Mencagli, G. Araujo, M. Torquati, M. Danelutto, L.G.
Fernandes, The NAS parallel benchmarks for evaluating C++ parallel program-
ming frameworks on shared-memory architectures, Future Gener. Comput. Syst.
(2021).

[28] D. Taeger, S. Kuhnt, Statistical Hypothesis Testing with SAS and R, first ed.,
Wiley Publishing, 2014.

[29] X. Dimitropoulos, P. Hurley, A. Kind, M.P. Stoecklin, On the 95-percentile
billing method, in: International Conference on Passive and Active Network
Measurement, Springer, 2009, pp. 207–216.

[30] W. Thies, M. Karczmarek, S. Amarasinghe, Streamit: A language for streaming
applications, in: R.N. Horspool (Ed.), Compiler Construction, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002, pp. 179–196.

[31] D. del Rio Astorga, M.F. Dolz, J. Fernández, J.D. García, A generic parallel
pattern interface for stream and data processing, Concurr. Comput.: Pract. Exper.
29 (24) (2017) e4175, e4175 cpe.4175.

[32] A. Duran, E. Ayguadé, R.M. Badia, J. Labarta, L. Martinell, X. Martorell, J. Planas,
OmpSs: A proposal for programming heterogeneous multi-core architectures, PPL
21 (2) (2011) 173–193.

[33] A. Pop, A. Cohen, OpenStream: Expressiveness and data-flow compilation of
OpenMP streaming programs, ACM Trans. Archit. Code Optim. 9 (4) (2013)
http://dx.doi.org/10.1145/2400682.2400712.

[34] G. Mencagli, M. Torquati, D. Griebler, M. Danelutto, L.G.L. Fernandes, Raising
the parallel abstraction level for streaming analytics applications, IEEE Access 7
(2019) 131944–131961.

[35] C. Misale, M. Drocco, G. Tremblay, A.R. Martinelli, M. Aldinucci, PiCo: High-
performance data analytics pipelines in modern C++, Future Gener. Comput.
Syst. 87 (2018) 392–403.

Júnior Löff is an M.Sc student in Computer Science at the
Pontifical Catholic University of Rio Grande do Sul (PUCRS),
and research member of the Parallel Applications Modeling
Group (GMAP) at PUCRS. He received his B.Sc Degree in
Computer Engineering from PUCRS in 2020. His research
interests include: Parallel and distributed systems, high-
performance applications modeling, and hardware/software
co-design.
18
Renato B. Hoffmann is a M.Sc student in Computer Science
at the Pontifical Catholic University of Rio Grande do
Sul (PUCRS), and research member of the Parallel Appli-
cations Modeling Group (GMAP) at PUCRS. He received
his B.Sc Degree in Computer Engineering from PUCRS in
2020. His research interests include: High performance com-
puting, parallel programming, parallel architectures, and
high-performance algorithms.

Dalvan Griebler is an Associate Professor at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS) and
research coordinator of the Parallel Application Modeling
Group (GMAP). Also, he is an Associate Professor at Três
de Maio Faculty (Setrem) and head of the Laboratory of
Advanced Research on Cloud Computing (LARCC) at Setrem.
He received the Ph.D. in computer science from both PUCRS
and University of Pisa in 2016. His main research inter-
ests are: parallel and distributed computing, methodologies,
languages and libraries for high-level parallel programming;
benchmarking; cloud computing; applied data science; and
data stream processing.

Luiz G. Fernandes is an Associate Professor of the graduate
program in computer science (PPGCC) at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS). His
primary research interests are Parallel and Distributed Com-
puting, High Performance Applications Modeling, Green
Computing and Parallel Programming Interfaces. Dr. Fernan-
des received his Ph.D. in Computer Science from the Institut
National Polytechnique de Grenoble (France) in 2002. He
currently leads the Parallel Applications Modeling Group
(GMAP) at PUCRS.

http://refhub.elsevier.com/S2590-1184(22)00057-0/sb27
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb27
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb27
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb27
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb27
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb27
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb27
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb28
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb28
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb28
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb29
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb29
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb29
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb29
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb29
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb30
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb30
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb30
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb30
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb30
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb31
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb31
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb31
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb31
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb31
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb32
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb32
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb32
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb32
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb32
http://dx.doi.org/10.1145/2400682.2400712
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb34
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb34
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb34
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb34
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb34
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb35
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb35
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb35
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb35
http://refhub.elsevier.com/S2590-1184(22)00057-0/sb35

	Combining stream with data parallelism abstractions for multi-cores
	Introduction
	SPar fundamentals
	SPar language
	SPar compiler
	SPar with Stream and Data Parallelism

	High-level Data Parallelism
	Support for Data Parallelism
	SPar Language Extension
	SPar Compiler Implementation
	Semantic Analysis
	Transformation Rules
	Information Extraction
	Parallel Code Generation

	Parallelism with SPar
	Data Parallelism
	Stream and Data Parallelism Composition
	Mandelbrot Set
	Lane Detection
	Computer Vision

	Experiments
	Methodology and Environment
	Data Parallelism
	Stream and Data Parallelism Composition
	Mandelbrot Set
	Lane Detection
	Computer Vision

	Comparison with Previous Work
	Findings Summary

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

