
Non-intrusive Monitoring Framework for
NoC-based Many-Cores

Angelo Elias Dalzotto, Caroline da Silva Borges, Marcelo Ruaro, Fernando Gehm Moraes
PUCRS – School of Technology, Porto Alegre, Brazil

{angelo.dalzotto,marcelo.ruaro, caroline.s}@edu.pucrs.br, fernando.moraes@pucrs.br

Abstract—Many-core Systems on Chip (MCSoCs) require
resource management to achieve scalability at the computation
and communication levels. The monitoring infrastructure feeds
management tasks with raw data, enabling these tasks to detect
behaviors corresponding to constraint violations or a trend that
signalizes a future violation. Several works available in the
literature use monitoring to apply their management techniques
but do not specify how to implement the monitoring framework.
We propose a monitoring framework for MCSoCs, with the
following features: (i) generic: the infrastructure can carry data
related to different monitored features; (ii) monitored data does
not disturb NoC flows; and (iii) reduced overhead compared to
other monitoring methods. The monitoring framework is loosely
coupled to the MCSoC by using a dedicated NoC to carry
monitoring and management messages, decoupling data traffic
from management traffic. Results adopt the Observe-Decide-
Act management method, comparing the proposed monitoring
framework to a standard monitoring approach. Results show
a reduction in the data NoC traffic (12%), faster management
responsiveness to act on deadline violations (up to 77%), and
reduced applications execution time (on average 8%).

Index Terms—monitoring, management, self-adaptability, mul-
tiple physical networks (MPN), NoC-based many cores

I. INTRODUCTION

The increased number of cores in Many-Core Systems
on Chip (MCSoC) results in complex resource allocation
problems. To keep scalability at the computation and com-
munication levels, it is necessary to manage the many-core
resources. Besides application admission and task mapping,
system management includes actions to keep the system op-
erating at safe conditions (e.g., safe temperature and power)
and deliver to applications resources enabling them to meet
their constraints (e.g., real-time deadlines). Such systemic
and application constraints can conflict, making management
complex.

The MCSoC management might be centralized [1] or
distributed [2, 3]. Distributed management is the approach
used to attain scalability in larger MCSoCs. An example of
flexible and distributed management is the Observe-Decide-
Act (ODA) control loop [4]. ODA organizes the management
in specialized tasks to enable the system to achieve self-
awareness and self-adaptability. These properties allow the
MCSoC to configure itself based on its perception of the
application constraints and system status [5].

Observation is the key feature in the ODA approach or
any other strategy, enabling management techniques to guide
decisions and actuations (such as DVFS, scheduling, task mi-

gration, and power gating). A monitoring infrastructure feeds
observation tasks with raw data, enabling these tasks to detect
behaviors corresponding to constraint violations or a trend
that signalizes a future violation [6]. Although several works
in the literature use monitoring in MCSoCs, the monitoring
infrastructure is usually abstracted since these works do not
describe it. This lack of details is the gap in the literature to
be fulfilled.

The goal of this work is to propose a monitoring framework
for MCSoCs, with the following features:

• generic: the infrastructure can carry data related to dif-
ferent monitored features, such as QoS or temperature;

• non-intrusiveness: monitored data does not disturb NoC
flows;

• reduced performance penalty: minimization of hardware
interrupts in processors receiving monitoring data.

The original contribution of this work is the proposal
of a lightweight monitoring framework with hardware and
software modules, enabling faster management actuation. The
monitoring framework design is generic, and other NoC-based
SoCs may benefit from this proposal.

This paper is organized as follows. Section II presents
related work on many-core monitoring and the trend of using
multiple NoCs in a many-core. Section III presents the baseline
MCSoC architecture, its management organization, and the
motivations that led us to this work. Section IV describes
the monitoring framework, the main contribution of this
work. Section V presents experimental results comparing the
proposed framework with a clustered distributed monitoring
technique. Finally, Section VI concludes this paper and points
out directions for future works.

II. RELATED WORK

Monitoring is the foundation of self-adaptation in many-
cores, requiring distinct metrics for managing each system
resource [7]. An example of early work is the Kornaros and
Pnevmatikatos proposal [8]. The Authors adopt centralized
management, with monitoring performed by hardware agents
on the network interface. To Author’s goal is to monitor real-
time applications, using a hierarchical, cluster-based monitor-
ing infrastructure.

Rahmani et al. [9] present a Dynamic Power Management
(DPM) technique for avoiding dark cores. Their work use
sensors and counters at the PE level, distinct constraints
calculators, and a DPM controller. The Authors do not specify

20
22

 X
II

Br
az

ili
an

 S
ym

po
siu

m
 o

n
Co

m
pu

tin
g

Sy
st

em
s E

ng
in

ee
rin

g
(S

BE
SC

) |
 9

78
-1

-6
65

4-
74

25
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SB
ES

C5
67

99
.2

02
2.

99
65

17
7

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:48:39 UTC from IEEE Xplore. Restrictions apply.

how monitored data flow through the system and where the
controller is located. Caimi et al. [10] list security mechanisms
for NoC-based many-cores that rely on monitored data, such
as traffic characteristics, bandwidth, and resource availability,
without presenting details of how to treat and transmit the
monitored data through the system. Gheibi et al. [11] apply
Machine Learning (ML) in self-adaptive systems, relying on
monitoring feedback loops to ensure the system goals. Note
that the works [7, 9, 10, 11], despite exploiting monitoring for
resource management, the monitoring itself is not the focus of
the work, with the monitoring framework abstracted.

Da Silva et al. [12] propose a thermal management for
MCSoCs. In their work, each Processing Element (PE) period-
ically monitors the type and number of executed instructions,
the number of memory accesses, and the number of flits
traversing the router. The PE sends this monitored data to
a manager PE through the NoC. This manager computes the
power dissipated by each PE, transmitting this information to
a hardware temperature estimator using the NoC. The main
drawback of the adopted monitoring infrastructure is using
the same NoC for both data and monitoring.

Tsoutsouras et al. [13] present a Per-Application Man-
agement (PAM) organization. The Authors use hierarchical
management, dividing the many-core into clusters, where each
cluster has a manager responsible for monitoring its area.
The management is applied by per-application managers that
negotiate resources between each other.

Sudusinghe et al. [14] describe a ML-based Denial of
Service (DoS) attack detection. In their work, NoC traffic data
is gathered at each router and sent using a dedicated NoC to a
core responsible for security management. The Authors justify
the adoption of a dedicated NoC for transmitting monitoring
packets due to the advantages of Multiple Physical NoCs
(MPN) over Virtual Channels (VC) [15].

Recent work also adopts MPN for management. Choi et al.
[16] propose a hybrid approach for heterogeneous many-core
architectures targeting deep learning kernels. Their approach
uses a standard NoC to communicate CPUs to GPUs, and a
wireless NoC for CPU to memory controller communication.
DRACON [17] is a dedicated hardware infrastructure for
management, that uses: (i) a global management NoC for
communication between managers in a cluster-based organi-
zation; (ii) a local management NoC that connects the cluster
managers to its locally managed PEs; (iii) a data NoC for PE
to PE data exchange. Sant’Ana et al. [18] adopt a dedicated
NoC that acts as a lightweight firewall, which only the cluster-
based managers can insert packets into this dedicated NoC.

Besides system management, MPN is used in deadlock-
free cache coherence protocols [19, 20, 21], circuit-switching
configuration in Software-Defined Networks (SDN) [22], and
for path discovering in secure zones mechanisms [23].

Our proposal does not restrict the monitoring to a central-
ized manager as in [14], and does not enforce a hierarchical
path for the monitored data as in [12, 13]. We follow the
current trend of using MPN, using a broadcast NoC to carry
the monitored data.

Three reasons justify the adoption of a broadcast NoC:
• isolate data traffic from monitoring traffic, increasing

system security;
• faster propagation of these packets to several PEs simul-

taneously;
• fault-tolerance, since broadcast transmission may bypass

faulty links.
The management strategy is orthogonal to our monitoring

framework. According to the system constraints, it might
be used by centralized managers, Cluster-Based Management
(CBM), or hardware-accelerated peripherals.

III. ARCHITECTURE AND MOTIVATION

We assume a many-core using a 2D-mesh NoC as the
communication infrastructure in this work. PEs contains an
NoC router, a processor, a network interface (NI), and a local
scratchpad memory. PEs may execute management and user
tasks. Peripherals, such as shared memories and hardware
accelerators, may be connected to the borders of the NoC.
At least one peripheral is required, responsible for deploying
applications.

The management strategy is the ODA, where Observation,
Decision, and Actuation tasks execute in user space at any
PE. This method does not require dedicated management
processors, as in [1, 2, 3], improving system utilization. All
PEs execute the same operating system (OS), which schedules
ODA and user tasks. Figure 1 shows a 6x6 MCSoC instance
with four Observation tasks, three Decision tasks, and two Ac-
tuation tasks. These tasks are not restricted to a given location
and may be allocated according to the application constraints.
For example, if an application with QoS constraints enters the
system, a new Observation task may be mapped near to this
application to receive QoS monitoring data.

O

O

O

O

D

D

D

A

A

Fig. 1. ODA model. O – Observation, D – Decision, A – Actuation tasks.

The ODA method enhances management parallelism and
flexibility but increases the number of messages flowing
through the NoC. Table I presents the number of messages
and flits comparing ODA to a CBM approach in a 6x6

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:48:39 UTC from IEEE Xplore. Restrictions apply.

many-core, modeled at the RTL level. The CBM management
has four 3x3 clusters with four manager PEs. The ODA
management contains 4 Observers, 4 Deciders, and 1 Actuator.
The workload comprises four applications: Encryption, Audio
and Video decoding, Dijkstra’s algorithm for a graph shortest
path, and Pattern Recognition.

TABLE I
NUMBER OF MESSAGES AND FLITS IN A CBM AND ODA APPROCHES.

CBM ODA ODA overhead
Number of messages 2,137 3,623 70%
Number of flits 163,007 233,089 43%

In Table I, despite increasing the number of messages
by 70%, the total number of flits propagating through the
NoC increases by 43%. Despite the traffic increase, ODA
detected more violations than CBM and consequently acted
in applications to meet deadlines due to the parallelization of
the management tasks.

Although the number of messages increases, the volume
of flits does not increase in the same proportion. Thus,
monitoring and management messages are small, and adopting
an additional NoC could be arguable. However, we justify the
adoption of an additional NoC for monitoring for the following
reasons:

A. Mixing applications and monitoring traffic potentially
affect application performance and monitoring security.
Monitored data can carry sensitive system information,
such as DVFS levels, and a malicious application could
damage the system by generating false DVFS monitoring
packets [24].

B. General-purpose NoCs usually adopt point-to-point com-
munication (unicast). Management may require multicast
transmission. For example, to send a message for all tasks
of a given application to modify voltage-frequency levels
(DVFS).

C. Monitoring and management messages require transmis-
sion with low latency. NoC congestion can delay the
actuation reaction time, leading, for example, to missed
deadlines in applications having real-time constraints.

D. Data packets interrupt processors upon the reception of
a new message. As monitoring messages are frequent
and small, processors that receive them have their perfor-
mance degraded due to the constant hardware interrupts.

IV. MONITORING FRAMEWORK PROPOSAL

Three subsections compose this Section. First, we briefly
describe the dedicated NoC, then the PE architecture, and
finally the monitoring framework.

A. Dedicated NoC for Monitoring and Management Messages

The dedicated control NoC uses as reference a state-of-
the-art broadcast NoC [25], named brNoC. brNoC transmits
small management and monitoring messages in a single flit,
with its size equal to 80 bits, where 40 bits corresponds to the
payload (it is possible to parameterize the flit size at design

time). Data transmission using this NoC presents low latency
and fault tolerance due to the broadcast transmission, equiva-
lent to flooding behavior, suited for management purposes.

Figure 2 details the brNoC architecture used as base for
this implementation. Its topology follows the same 2D-mesh
used by the data NoC, with North, South, East, West, and
Local ports. The brNoC modules are: (i) an Input Arbiter
and Input Finite-State Machine (I-FSM); (ii) a central Content-
Addressable Memory (CAM); and (iii) an Output Arbiter and
Output Finite-State Machine (O-FSM). The brNoC Input and
Output logic are independent. A round-robin Output Arbiter
selects a CAM line to propagate to the outputs (broadcast).
The O-FSM searches the pending field for messages that need
to be sent. sa except to the one where it came from. To write
a message to the CAM, the I-FSM must assert that the data is
not in the memory and it has available space, marked by the
used field.

source target... used pending

...

Input

Arbiter

O-FSM

I-FSM

Output

Arbiter

CAM

North

South

East

West

Local

North

South

East

West

Local

Input

Ports

Output

Ports

Fig. 2. BrNoC architecture. Source: [25].

The most relevant brNoC feature is that all messages fit
in one flit. The advantages of 1-flit messages are: (i) no input
buffers on local ports; (ii) simplified switching mode, which
enables the broadcast; and (iii) smaller router silicon area,
corresponding to 50% of the data router.

The absence of input buffers does not mean that flits
go directly through the brNoC router, since this would be
unfeasible in terms of delay. The flits that arrive at the router
are stored on a CAM line and later transmitted to the output
ports. The average propagation latency of the one flit packet
is 7 clock cycles per hop. The data NoC takes at least 6
clock cycles per hop for arbitration and routing, plus the time
needed to transmit the payload. Besides faster propagation to
several targets simultaneously, another advantage of broadcast
propagation is that it reaches the target routers even if there
is congestion in the brNoC, through a non-minimum path.

The brNoC can carry out the transmission of three broad-
cast modes:

1) ALL: broadcasts a message to all processors;
2) TARGET: the message arrives at all PEs, but only a given

PE, the target, effectively receives the message;
3) CLEAR: broadcast started by the brNoC after a ALL or

TARGET broadcast message with the goal to release the
CAM line associated to this message.

Software services use these broadcast modes. For example,
to identify a given monitored data (e.g., power, performance,

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:48:39 UTC from IEEE Xplore. Restrictions apply.

latency, deadline violations), to notify a PE to make an
actuation (e.g., task migration, change on DVFS level), or a
management information (e.g., start/end of applications).

Due to the brNoC payload size limitation, management
messages with larger payloads use the data NoC. Examples of
such messages include task code, data, task context, and stack
content in allocation or migration services.

The brNoC meets the first characteristic that the moni-
toring framework must provide: be generic. The brNoC can
carry data related to different monitored features.

B. Processing Element with brNoC

Figure 3 presents the PE architecture. The Direct Mem-
ory Network Interface (DMNI [26]) is a Network Interface
(NI) with Direct Memory Access (DMA) capabilities. The
processor and the DMNI are connected to a dual-port local
memory. The DMNI simplifies the OS drivers and, at the same
time, improves performance when sending/receiving packets
to/from the NoCs. Observe that both routers are independent
and connected to a DMNI port. The goal is to propose a
generic method, decoupling monitoring and data, easing the
integration of the brNoC in other designs.

Fig. 3. Proposed PE architecture. dNoC corresponds to the brNoC router.

The feature of 1-flit messages simplifies the integration of
the brNoC router to the DMNI module. The absence of logic
to control the packet flow and size minimizes the hardware
required for this integration.

This PE architecture meets the second characteristic that the
monitoring framework must provide: non-intrusiveness. The
monitoring messages are isolated in a second NoC.

C. Hardware and Software Infrastructure

Figure 4 details the modified DMNI architecture to receive
monitoring and management messages from the brNoC. The
service embodied in a message arriving in the brNoC local
port defines how the DMNI sends it to the local memory:

1) Monitoring messages: the DMNI computes the address to
write the message into the Observer task memory space
without interrupting the processor.

2) Control messages: treatment similar to the reception of
data packets, i.e., the DMNI raises an interrupt to the
processor upon data reception. A buffer stores the control
messages (brNoC buffer in Figure 4) to avoid brNoC
stalls due to the time spent interrupting the processor and
executing message reception.

The DMNI arbiter was modified to prioritize brNoC,
because broadcasts only advance when all propagated ports
acknowledge the reception of a given message. Therefore, they
should occur within the minimum delay to avoid performance
loss. This priority does not disturb the reception of messages
coming from Data NoC because broadcast messages contain
a single flit, and Data NoC reception is usually buffered and
tuned for throughput, not low latency.

Fig. 4. DMNI block, and integration with brNoC.

The Observer task has a monitoring table in its memory
space. Each monitoring table line has two cells: (i) task ID
that generated the monitored data; (ii) monitoring data. The
Observer task periodically evaluates the received data (e.g.,
number of violated deadlines), transmitting this information
to a Decision task.

The processor sets up monitoring message reception through
brNoC by using Memory Mapped Registers (MMR). A
monitoring Application Programming Interface (API) is re-
sponsible for providing system calls to Observer tasks that are
capable of configuring MMRs with the base address of the
monitoring table (MTBA). Each monitored metric should have
its own MTBA configured. This configuration occurs during
the Observer task startup.

When receiving a monitoring packet from a given task
running on a PE, we must verify if this task has already written
monitoring data in the monitoring table. To avoid unnecessary
memory accesses, the DMNI received a LUT (look-up table)
indexed by the tuple {task ID, PE address}. The LUT address
is used as an offset to be added to the MTBA when there is
a match between the received {task ID, PE address} with the
one stored in the LUT. If the tuple is not available in the LUT,
it is written in the first position indexed by the PE. When a task
finishes its execution, the OS notifies this event by broadcast,
causing all DMNIs with the {task ID, PE address} entry to
invalidate the position in the LUT.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:48:39 UTC from IEEE Xplore. Restrictions apply.

After computing the monitoring line address, the DMNI
writes it into the monitoring table. Note that monitoring
messages can be overwritten without compromising the obser-
vation. Therefore there is no need to verify if the Observer task
consumed the previous data before writing it into the table.
For example, consider that the Observer task is monitoring
the temperature. The temperatures sent by PEs have slight
differences between successive monitoring messages, being
the behavior of the thermal trend observed after the reception
of several monitoring messages.

The previous discussion presented the reception of a mon-
itoring or control message through brNoC. The processor
does not need to use DMA to send a control message through
brNoC. Instead, it directly injects the single flit message into
the brNoC using MMRs.

As the MCSoC may have several Observer tasks, each of
these tasks broadcasts its capabilities. The monitoring software
stack receives this broadcast and configures, in each PE, the
nearest Observer for each announced capability.

At the task level, the monitoring messages are generated
by Low-Level Monitors (LLM), responsible for fetching the
metrics being monitored without complex computation. The
OS invokes the LLMs periodically, collecting data from, e.g.,
instruction counters for power and temperature estimation
or QoS monitors. By joining the LLMs with the proposed
monitoring framework, it is possible to either send a moni-
toring message to the nearest Observer task or send it to all
Observers.

The hardware and software infrastructure meets the third
characteristic that the monitoring framework must provide:
reduced performance penalty. Writing monitored data directly
into the observer task memory space avoids the time spent
handling interrupts, executing context saving, and running the
packet reception driver.

V. RESULTS

The proposed monitoring framework is evaluated using the
following metrics:

1) Communication volume: the number of transmitted flits
through both Data NoC and brNoC;

2) Management responsiveness: latency between manage-
ment actuations;

3) Applications performance: the execution time of applica-
tions running in the many-core.

A. Experimental setup

• MCSoC size: 7x7.
• Applications: Encryption (9 tasks), A/V Decoding (7

tasks), Dijkstra’s graph shortest path algorithm (7 tasks),
and Pattern Recognition (9 tasks). Each application has a
distinct parallel model, such as pipeline or master-slave.

• ODA management with two distinct monitoring ap-
proaches: (i) a clustered monitoring with four 3x3 virtual
clusters, without the proposed monitoring framework; and
(ii) the proposed monitoring framework as described in
Section IV.

The ODA management has the following tasks:

• 4 Observers: capable of monitoring RT statistics of
executing tasks. Each PE sends these metrics of all its
executing tasks to its nearest Observer;

• 4 Deciders: each Observer sends its data to its nearest
Decider, which knows the RT constraints of the executing
application, decides whether or not to perform a task
migration to avoid or stop violating these constraints.

• 1 Actuator: capable of negotiating task migrations with
the OS executing in each PE upon requests coming from
the Deciders.

The RT tasks monitoring window is set to 500 µs. This
means that all RT tasks generate a monitoring message at every
500 µs. This period is smaller than the default scheduling
timeslice for RT OS, such as FreeRTOS, providing enough
actuation triggers even with short simulation times.

Each application has most of its tasks statically mapped
to the same PE to simulate high resource usage and induce
deadline violations to trigger task migration, which is used as
the actuation mechanism.

B. Communication Volume

Figure 5 presents the communication volume with the
two monitoring approaches, executing the complete set of
applications. The transmitted flits through Data NoC, in blue,
are reduced by 12% in the proposed approach. The number
of messages transmitted by brNoC, in yellow, is only 2%
of the transmitted flits through Data NoC in the proposed
approach, evidencing the efficiency of brNoC for monitoring
and management purposes.

Note that Data NoC is still used for management messages
with payloads larger than the brNoC flit size. In Figure 5, the
reduction in flits transmitted through Data NoC could translate
to better energy efficiency due to the lower complexity of the
brNoC compared to the Data NoC.

Proposed

Clustered
0

100

200
3.8

204.5
233.1

N
um

be
ro

f fl
its

(×
10

3
)

Data NoC brNoC

Fig. 5. Communication volume in the proposed approach versus clustered
monitoring. A brNoC flit (80 bits) is normalized to the same size as the
Data NoC flit (32 bits), i.e., the number of brNoC flits is multiplied by 2.5.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:48:39 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Encryption

Encryption

A/V Dec.

A/V Dec.

Dijkstra

Dijkstra

Pat. recog.

Pat. recog.

Time (ms)

Proposed Clustered Migration Event

Fig. 6. Management responsiveness for the proposed approach and clustered monitoring scenarios.

C. Management Responsiveness

Figure 6 evaluates the management responsiveness for each
application. The x-axis represents the simulation time, and
the bars on the y-axis represent the applications execution
lifetime, evaluated for two scenarios: (i) the proposed approach
in yellow; and (ii) the clustered monitoring approach in blue.
Additionally, white columns inside the bars represent a task
migration event triggered by the Decision task. The average
task migration time is 140 µs, with the hop distance having a
negligible impact on the migration time.

Applications Encryption, A/V Decoding, and Pattern Recog-
nition start migrating earlier with the clustered monitoring.
This may seem that the proposed approach reacts later. Ac-
tually, we observed that deadline violations are delayed as
a consequence of two factors: (i) reduction of monitoring
and management traffic volume in the Data NoC, resulting in
greater communication availability; (ii) faster communication
protocol due to the use of brNoC for the communication API
of applications.

The migration actuation of tasks violating deadlines occurs
in bursts for Encryption, Dijkstra, and Pattern Recognition
applications. The parallel execution of the ODA tasks enables
faster actuation, reducing the average minimum latency be-
tween actuations by 77%.

Summarizing Figure 6, the proposed monitoring framework
reduces the interference of monitoring with data traffic and
provides faster management responsiveness. This can be ob-
served by migration actuations occurring later than in the
clustered monitoring and in moments closer to each other.

D. Applications performance

Another data revealed in Figure 6 is the applications execu-
tion time reduction. On average, the application execution time
reduces by 8%. When a deadline miss occurs, the Decision
task migrates tasks that share a processor, increasing execution
parallelism, thus reducing its execution time.

The faster management responsiveness, which induces exe-
cution time reduction, is promoted by:

• faster monitoring supported by brNoC (low latency and
DMA);

• reduced hardware interrupts. The four PEs holding Ob-
server tasks reduced on average 45% the number of
hardware interrupts using the monitoring framework com-
pared to the clustered monitoring.

These two factors enhanced the overall performance of the
Observer tasks.

VI. CONCLUSION AND FUTURE WORK

This paper presented a monitoring framework using a
dedicated NoC for management purposes. We compared the
monitoring framework integrated with an ODA management
to a clustered monitoring. Results showed faster management
reactivity (77%), with burst actuations enabled by parallel
monitoring and lower performance overhead. The features of
the monitoring framework that enabled this improvement are:
(i) smaller communication volume in the Data NoC, reducing
NoC congestion; (ii) use of the dedicated NoC for management
messages, such as monitoring, enhancing its handling and
delivery latency; and (iii) DMA usage to transfer monitoring
data directly to the observer tasks, reducing the overhead due
to the packet handling.

Other identified advantages of using the dedicated broadcast
NoC are:

• A separate network for management messages reduces
the interference in user application data traffic, enhancing
performance;

• The management messages flow in a separate network to
which user tasks do not have access, enhancing system
security;

• Broadcast messages follow a flood behavior that is fault-
tolerant, thus desired for management purposes;

• The treatment performance of management messages is
enhanced due to their small size;

• Provides a separate flow to monitoring messages through
DMNI, reducing processor interrupts.

Future work includes using the proposed monitoring frame-
work in multi-objective management, and evaluating power-
performance-area of the PE in the proposed approach, since
only the brNoC area was evaluated in this work.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:48:39 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work was financed in part by CNPq (Con-
selho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico), grant 309605/2020-2; and CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior), Finance
Code 001.

REFERENCES

[1] X. Huang, X. Wang, Y. Jiang, A. K. Singh, and M. Yang, “Dynamic
Allocation/Reallocation of Dark Cores in Many-Core Systems for Im-
proved System Performance,” IEEE Access, vol. 8, pp. 165 693–165 707,
2020.

[2] H. Wang, J. Ma, S. X. Tan, C. Zhang, H. Tang, K. Huang, and
Z. Zhang, “Hierarchical dynamic thermal management method for high-
performance many-core microprocessors,” ACM Transactions on Design
Automation of Electronic Systems, vol. 22, no. 1, pp. 1–21, 2016.

[3] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel,
“DistRM: Distributed resource management for on-chip many-core
systems,” in CODES+ISSS, 2011, pp. 119–128.

[4] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, “A generalized software framework for accurate and efficient
management of performance goals,” in EMSOFT, 2013, pp. 1–10.

[5] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, R. de Lemos,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic et al., “Soft-
ware Engineering for Self-Adaptive Systems: A Research Roadmap,” in
Proceedings of the Dagstuhl Seminar, 2008.

[6] N. Dutt, A. Jantsch, S. Sarma, and others, “Self-Aware Cyber-Physical
Systems-on-Chip,” in ICCAD, 2015, pp. 46–50.

[7] K. Moazzemi, A. Kanduri, D. Juhász, A. Miele, A. M. Rahmani,
P. Liljeberg, A. Jantsch, and N. Dutt, “Trends in On-chip Dynamic
Resource Management,” in DSD, 2018, pp. 62–69.

[8] G. Kornaros and D. N. Pnevmatikatos, “Real-Time Monitoring of
Multicore SoCs Through Specialized Hardware Agents on NoC Network
Interfaces,” in IPDPSW, 2012, pp. 248–255.

[9] A.-M. Rahmani, M.-H. Haghbayan, A. Kanduri, A. Y. Weldezion,
P. Liljeberg, J. Plosila, A. Jantsch, and H. Tenhunen, “Dynamic power
management for many-core platforms in the dark silicon era: A multi-
objective control approach,” in ISLPED, 2015, pp. 219–224.

[10] L. L. Caimi, R. Faccenda, and F. G. Moraes, “A Survey on Security
Mechanisms for NoC-based Many-Core SoCs,” Journal of Integrated
Circuits and Systems, vol. 16, no. 2, pp. 1–15, 2021.

[11] O. Gheibi, D. Weyns, and F. Quin, “Applying Machine Learning in Self-
Adaptive Systems: A Systematic Literature Review,” ACM Transactions
on Autonomous and Adaptive Systems, vol. 15, no. 3, pp. 1–37, 2021.

[12] A. L. da Silva, A. L. d. M. Martins, and F. G. Moraes, “Fine-Grain
Temperature Monitoring for Many-Core Systems,” in SBCCI, 2019, pp.
1–6.

[13] V. Tsoutsouras, S. Xydis, and D. Soudris, “Application-Arrival Rate
Aware Distributed Run-Time Resource Management for Many-Core
Computing Platforms,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 4, no. 3, pp. 285–298, 2018.

[14] C. Sudusinghe, S. Charles, and P. Mishra, “Denial-of-Service Attack
Detection Using Machine Learning in Network-on-Chip Architectures,”
in NOCS, 2021, pp. 35–40.

[15] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, “Virtual Channels
and Multiple Physical Networks: Two Alternatives to Improve NoC Per-
formance,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 12, pp. 1906–1919, 2013.

[16] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P. Pande, R. Mar-
culescu, and D. Marculescu, “Hybrid Network-on-Chip Architectures
for Accelerating Deep Learning Kernels on Heterogeneous Manycore
Platforms,” in CASES, 2016, pp. 1–10.

[17] D. Gregorek, J. Rust, and A. Garcia-Ortiz, “DRACON: A Dedicated
Hardware Infrastructure for Scalable Run-Time Management on Many-
Core Systems,” IEEE Access, vol. 7, pp. 121 931–121 948, 2019.

[18] A. C. Sant’Ana, H. M. Medina, K. B. Fiorentin, and F. G. Moraes,
“Lightweight Security Mechanisms for MPSoCs,” in SBCCI, 2019, pp.
1–6.

[19] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba,
and L. Benini, “OpenPiton+ Ariane: The First Open-Source, SMP
Linux-booting RISC-V System Scaling From One to Many Cores,” in
CARRV, 2019, pp. 1–6.

[20] D. Giri, P. Mantovani, and L. P. Carloni, “NoC-Based Support of
Heterogeneous Cache-Coherence Models for Accelerators,” in NOCS,
2018, pp. 1–8.

[21] J. L. Abellán, E. Padierna, A. Ros, and M. E. Acacio, “Photonic-
based express coherence notifications for many-core CMPs,” Journal
of Parallel and Distributed Computing, vol. 113, pp. 179–194, 2018.

[22] K. Berestizshevsky, G. Even, Y. Fais, and J. Ostrometzky, “SDNoC:
Software defined network on a chip,” Microprocessors and Microsys-
tems, vol. 50, pp. 138–153, 2017.

[23] M. M. Real, P. Wehner, V. Lapotre, D. Göhringer, and G. Gogniat,
“Application Deployment Strategies for Spatial Isolation on Many-Core
Accelerators,” ACM Transactions on Embedded Computing Systems,
vol. 17, no. 2, pp. 55:1–55:31, 2018.

[24] E. M. Benhani and L. Bossuet, “DVFS as a Security Failure of
TrustZone-enabled Heterogeneous SoC,” in ICECS, 2019, pp. 489–492.

[25] E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes,
“BrNoC: A broadcast NoC for control messages in many-core systems,”
Microelectronics Journal, vol. 68, pp. 69–77, 2017.

[26] M. Ruaro, F. B. Lazzarotto, C. A. Marcon, and F. G. Moraes, “DMNI:
A Specialized Network Interface for NoC-based MPSoCs,” in ISCAS,
2016, pp. 1202–1205.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 19,2023 at 19:48:39 UTC from IEEE Xplore. Restrictions apply.

