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“Logic will get you from A to B. Imagination

will take you everywhere.”
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ARQUITETURA DE ESCALONAMENTO EM NUVEM CIENTE DE

INTERFERÊNCIA PARA CARGAS DE TRABALHO DINÂMICAS E

SENSÍVEIS À LATÊNCIA

RESUMO

Os sistemas de computação continuam a evoluir para facilitar o aumento do de-

sempenho ao processar cargas de trabalho em grandes data centers. A virtualização é

uma tecnologia que permite que vários aplicativos sejam executados em um único com-

putador físico, gerando várias vantagens, incluindo rápido provisionamento de recursos

e melhor utilização de hardware. Os provedores de computação em nuvem adotam essa

estratégia para usar sua infraestrutura de forma mais eficiente, reduzindo o consumo

de energia. Apesar disto, nossas pesquisas na área têm mostrado que vários serviços

em nuvem competindo por recursos compartilhados são suscetíveis à interferência en-

tre aplicativos, o que pode levar a uma degradação significativa do desempenho e, con-

sequentemente, a um aumento de quebras no número de acordos de nível de serviço.

No entanto, o escalonamento de recursos de última geração em ambientes virtualizados

ainda depende principalmente da capacidade dos recursos, adotando heurísticas como o

bin-packing, ignorando essa fonte de sobrecarga. Mas, nos últimos anos, o escalonamento

com reconhecimento de interferência ganhou força, com a investigação de maneiras de

classificar os aplicativos em relação ao seu nível de interferência e a proposta de modelos

estáticos e políticas para o escalonamento de aplicativos co-hospedados em nuvem. Os

resultados preliminares nesta área já mostram uma melhoria considerável na redução de

quebra de SLAs, mas acreditamos fortemente que ainda existem oportunidades de me-

lhoria nas áreas de classificação de aplicações e estratégias de escalonamento dinâmico.

Portanto, o objetivo principal deste trabalho é estudar o comportamento dos perfis de

interferência dos aplicativos em nuvem ao longo de todo o seu ciclo de vida e sua susce-

tibilidade às variações da carga de trabalho, em busca de oportunidades para melhorar o

compartilhamento de recursos em ambientes virtualizados com novas estratégias de es-



calonamento dinâmico. Para tanto, exploramos algumas questões específicas de pesquisa

relacionadas à natureza dinâmica do processo, tais como: Como classificar aplicações ba-

seadas na interferência de recursos em tempo real? Quando as classificações devem ser

executadas? Quantos níveis devem ser usados? Quando devem ser escalonados? Quais

são as compensações com o custo de migração? Para responder a todas essas perguntas,

criamos uma arquitetura de escalonamento com reconhecimento de interferência que in-

tegra esses tópicos mencionados para lidar com cargas de trabalho dinâmicas sensíveis à

latência em ambientes virtualizados. As contribuições deste estudo são: (i) uma análise

do impacto das variações da carga de trabalho no perfil de interferência de aplicativos em

nuvem; (ii) uma forma precisa e otimizada de classificar aplicativos em tempo real; (iii)

uma nova estratégia de escalonamento com reconhecimento de interferência dinâmica

para aplicativos em nuvem; e (iv) uma arquitetura dinâmica que combina as técnicas

acima para entregar um escalonamento eficiente com reconhecimento de interferência

em ambientes virtualizados. Os resultados evidenciaram que nossa arquitetura melho-

rou em média 25% a eficiência geral de utilização de recursos quando comparada com

estudos relacionados.

Palavras-Chave: Escalonamento Ciente de Interferência, Cargas de Trabalho Dinâmicas

Sensíveis à Latência, Aprendizado de Máquina, Gerenciamento de Recursos, Com-

putação em nuvem, Simulação.



INTERFERENCE-AWARE CLOUD SCHEDULING ARCHITECTURE FOR

DYNAMIC LATENCY-SENSITIVE WORKLOADS

ABSTRACT

Computing systems continue to evolve to facilitate increased performance when

processing workloads in large data centers. Virtualization technology enables multiple

applications to be created and executed on a single physical computer, yielding various

advantages, including rapid provisioning of resources and better utilization of hardware.

Cloud computing providers have adopted this strategy to use their infrastructure more

efficiently, reducing energy consumption. However, our research in this field has shown

that multiple cloud services contending for shared resources are susceptible to cross-

application interference, which can lead to significant performance degradation and con-

sequently an increase in the number of broken service level agreements (SLA). Neverthe-

less, state-of-the-art resource scheduling in virtualized environments still relies mainly on

resource capacity, adopting heuristics such as bin-packing, thus overlooking this source

of overhead. But in recent years interference-aware scheduling has gained traction, and

applications are now being classified based on their interference level and the proposal

of static cost models and policies for scheduling co-hosted cloud applications. Preliminary

results in this area already show a considerable improvement in the reduction of broken

SLAs, yet we strongly believe that there are still opportunities to improve in the areas of

application classification and dynamic scheduling strategies. Therefore, this work’s pri-

mary goal is to study the behavior of cloud applications’ interference profiles over their

entire life cycle, and their susceptibility to workload variations, looking for opportunities

to improve resource sharing in virtualized environments with novel dynamic scheduling

strategies. To this end, we explored some specific research questions related to the dy-

namic nature of the process, such as: How can applications be classified based on resource

interference in real-time? When should classifications be executed? How many levels

should be used? When should they be scheduled? What are the trade-offs with migra-



tion cost? To answer all of these questions, we created an interference-aware scheduling

architecture that integrates the aforementioned topics to better manage dynamic latency-

sensitive workloads in virtualized environments. The contributions of this study are: (i) an

analysis of the impact of workload variations in the interference profile of cloud applica-

tions; (ii) a precise and optimized way to classify applications in real-time; (iii) a novel dy-

namic interference-aware scheduling strategy for cloud applications; and (iv) a dynamic

architecture that combines the above techniques to deliver efficient interference-aware

scheduling in virtualized environments. Our results show an average 25% improvement

of overall resource utilization efficiency with our architecture compared to related studies.

Keywords: Interference-aware Scheduling, Dynamic Latency-sensitive Workloads, Ma-

chine Learning, Resource Management, Cloud Computing, Simulation.
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1. INTRODUCTION

Cloud computing has received a considerable amount of attention in the last

decade and is widely accepted as the most promising technology for managing data uti-

lization and resources, as well as delivering various IT services [PKK19]. Many latency-

sensitive applications have begun to take advantage of cloud computing due to the promise

of unlimited computing resources and the pay-as-you-go model [AKF15]. A cloud sys-

tem offers capabilities through virtualization techniques, executing multiple virtual in-

stances on each physical machine in a data center. This strategy allows cloud comput-

ing providers to use their infrastructure more efficiently, reducing energy consumption

expenses [ZAL19]. However, related work [XNR+13, Xav19] shows that several cloud-

services contending for shared resources can generate cross-application interference,

which may lead to significant performance degradation and consequently to an increase

in the number of broken Service Level Agreements (SLAs).

Efficient and automatic resource scheduling strategies are essential [ZCG+18]

for virtualized platforms to deliver SLA guarantees for high user satisfaction. Therefore,

resource scheduling is a core function of the Cloud Computing providers and a central

component when coordinating all the other platform elements to deliver performance-

oriented solutions [ZCV+19]. Large data centers generally schedule resources through

heuristics, such as bin-packing, which only considers resource capacity aspects, overlook-

ing the original source of overhead [CRO+15].

In the search for alternatives, previous work from our research group [LXK+19]

explored scheduling policies based on interference generated by co-allocated applica-

tions. An attraction/repulsion method built upon the workload profile of each application

was proposed in order to get around the traditional concept of simply observing resource

usage and capacity. Web applications were investigated, since they are a latency-sensitive

category that is not well handled by proposals found in the literature and could profit from

our novel strategies [IEM18].

Performance interference among applications is known to adversely impact the

Quality of Service (QoS) properties and Service Level Agreements of applications [NKG10].

This becomes particularly more problematic for latency-sensitive applications. Dynamic

service demands and workload profiles further increase the challenges cloud service providers

face when managing resources on-demand to satisfy SLAs while minimizing operational

costs [ZCB10]. Therefore, any solution that addresses these issues requires an approach

that accounts for workload variability and performance interference due to the dynamic

nature of the process [SAB+18]. But a dynamic approach has its own challenges, such as:

How to classify applications in real-time based on the interference they generate? When

to execute the classification? When to schedule them and how to tradeoff migration costs?
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Given the aforementioned issues, it is crucial to investigate a performance eval-

uation, resource configuration, and workload scheduling to reduce the SLA violations in

latency-sensitive applications within virtualized data centers. It is not easy to find a solu-

tion that comprehensively covers all of the subjects above. Although recently proposed

approaches in interference-aware related-studies present a significant improvement in re-

source usage, we strongly believe that there are still research opportunities available for

interference classification and dynamic scheduling strategies. After analyzing the results

of our previous work, we formulated the following thesis: dynamic interference-aware

scheduling architecture, which analyzes workload variations of latency-sensitive applica-

tions over time, could further improve the utilization of consolidated resources in data cen-

ters while reducing costs and minimizing SLA violations. Our main goal in this study was

to create a scheduling architecture, considering interference aspects among co-located

latency-sensitive applications that have dynamic workload patterns over time. Therefore,

the following research questions (RQ) must be addressed:

• RQ1 Do the interference levels of applications with dynamic workloads change over

time?

• RQ2 Could a dynamic interference classification system lead to better resource

scheduling?

• RQ3 What architectural changes are needed to move from static to dynamic interference-

aware scheduling?

• RQ4 Is there a way to implement these changes so that the resulting overhead of a

dynamic strategy will not invalidate the improved scheduling gains?

Understanding the interference behavior over time from latency-sensitive appli-

cations which have dynamic workloads (RQ1) made it possible to verify if a dynamic in-

terference classification system would result in better resource scheduling (RQ2). Then

we began to explore which architectural characteristics needed to be changed in order

to move from static to dynamic interference-aware scheduling (RQ3). Consequently, an

analysis was performed to determine if the resulting overhead of a dynamic strategy would

invalidate the improved scheduling gains (RQ4).

1.1 Motivation and Challenges

Our research group is interested in studying cross-application interference and

its impact on application performance degradation and hardware utilization. Xavier et al.

[XMLDR16] analyzed the performance interference tolerated by multi-tenant e-commerce
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cloud databases in resource-sharing infrastructures. They concluded that multiple-different

workloads (e.g. memory-/CPU-intensive, and e-commerce applications) may be consoli-

dated with database systems to minimize performance interference and increase resource-

efficiency. Recently, Ludwig et al. [LXK+19] proposed a method that profiles each appli-

cation workload and delivers better scheduling decisions in order to efficiently use the

available resources. Although this approach improves resource usage and scheduling de-

cisions, it uses a static classification method. Therefore, it creates a single label over the

entire execution of the application and according to its interference metrics, this reduces

the performance degradation across the entire system.

Following this trend, we started to move towards interference-aware dynamic

scheduling. We noticed that if a static classification had the potential to substantially

improve resource utilization, a dynamic one could further improve resource scheduling.

After analyzing the outcomes of preliminary experiments, we confirmed that there was

indeed a great research opportunity. However, changing the scheduling architecture from

static to dynamic is a challenging task and some modifications are required to adjust the

system due to the following issues:

• Dynamic resource scheduling needs to have a classification method that adapts its

outcomes according to workload variations;

• Since dynamic workloads presents variations over time, a method must analyze

time-series information to find the right time to make scheduling decisions;

• It is essential to build a manager module to coordinate and schedule all resources

and application executions at runtime;

• Implementing all these features will most likely generate system overhead. We need

to investigate methods to keep this overhead as low as possible so that scheduling

outcomes from the proposed approach are not invalidated.

1.2 Document Organization

The rest of this document is organized as follows. Chapter 2 introduces the

background concepts of this doctoral dissertation. Chapter 3 explains how applications

are profiled and presents a general analysis of dynamic workloads and the interference

they generate. Chapter 4 demonstrates a dynamic classification scheme and its impact

on resource scheduling. Chapter 5 introduces in detail the dynamic interference-aware

scheduling architecture, which is the main goal of this doctoral dissertation. Chapter 6

presents related work in the literature. Finally, Chapter 7 offers conclusions and directions

for future research.
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2. BACKGROUND AND STATE-OF-THE-ART

This chapter provides the essential context, key concepts, and state-of-the-art

research intrinsic to this dissertation. It describes how resource scheduling is currently

handled, as well as its technologies and capabilities. It is also presents performance in-

terference aspects, interference classification methods, dynamic latency-sensitive work-

loads, and some limitations found in previous contemporary related studies.

2.1 Resource Scheduling in Cloud Infrastructures

Cloud computing is an emerging technology that has become increasingly pop-

ular in recent years. It allows customers to deploy its services, greatly simplifying the

process of acquiring and releasing resources to run applications while only paying for the

resources allocated (pay-as-you-go model). According to NIST 1 definition, “Cloud com-

puting is a model for enabling ubiquitous, convenient, and on-demand network access to

a shared pool of configurable computing resources that can be rapidly provisioned and

released with minimal management effort or service provider interaction”. To allow vir-

tualized platforms to deliver SLA guarantees for high user satisfaction, efficient and au-

tomatic resource scheduling strategies are essential [ZCG+18]. Resource scheduling is a

core function of cloud computing providers and a central component to coordinate all other

platform features to deliver performance-oriented solutions [ZCV+19]. However, resource

scheduling is a challenging task since cloud service providers must deliver a sufficient

amount of resources while meeting users’ QoS requirements such as deadline, execution

time, and budget restrictions. This section describes how cloud providers currently han-

dle resource scheduling. Also, it presents virtualization technologies, performance inter-

ference issues, and machine learning techniques used to support resource management

decisions in cloud data centers.

2.1.1 Virtualization Technology

Orchestration systems in data centers must be highly elastic and scalable infras-

tructures that allow the dynamic allocation of different resources (such as compute, stor-

age, networking, software, or a service) at the right location and in a short period of time,

enabling the deployment of applications [TRA15]. The elasticity in cloud environments is

obtained abstracting physical resources from an underlying layer through virtualization.

1http://www.nist.gov/
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There are different virtualization technologies, but the two most relevant in the cloud

computing landscape are Hardware virtualization and System-level virtualization:

• Hardware virtualization (Hypervisor) abstracts the underlying hardware layers to en-

able complete operating systems to run inside the Hypervisor as if they were ap-

plications. Paravirtualization solutions (Xen 2) and hardware virtualization solutions

(KVM 3), together with hardware-specific support, integrated into a modern CPU (In-

tel VT-x and AMD-V), can achieve a low level of overhead due to the new layer added

between the virtual instance and the hardware.

• System-level virtualization (Container) is based on fast and lightweight process vir-

tualization and allows an entire application to run on every Linux distribution, with its

dependencies in a virtual container. It provides its users an environment as close as

possible to a standard Linux distribution. Due to the fact that containers are lighter

weight than VMs (Figure 2.1), the same host can achieve higher densities with con-

tainers than with VMs. This approach has radically decreased the start-up time of

instances as well as processing and storage overhead, which are typical drawbacks

of Hypervisor-based virtualization [Ros14].

Fig. 1. Comparison of containers vs VMs footprint on the host system

physical resources form underlying layer by means of virtu-
alization. There are different virtualization technologies, but
the two most relevant in the cloud computing landscape are
Hardware virtualization and System-level virtualization.

• Hardware virtualization (aka Hypervisors) abstracts the
underlying hardware layers to enable complete operating
systems to run inside the hypervisor as if they were
an application. Paravirtualization solutions (Xen) and
hardware virtualization solutions (KVM), in combination
with hardware specific support integrated in modern CPU
(Intel VT-x and AMD-V), can achieve low level of
overhead due to the new layer added between the virtual
instance and the hardware.

• System-level virtualization (aka Containers) is based on
fast and lightweight process virtualization and allows to
tie up an entire application with its dependencies in a
virtual container that can run on every Linux distribution.
It provides its users an environment as close as possible
to a standard Linux distribution. Due to the fact that
containers are more lightweight than VMs (see Fig. 1),
the same host can achieve higher densities with containers
than with VMs. This approach has radically decreased
both the start-up time of instances and the processing
and storage overhead, that are typical drawbacks of
Hypervisor-based virtualization [11].

The two approaches differ in complexity of implementation,
breadth of OS support, performance in comparison with
standalone server, and level of access to common resources.
Hardware virtualization has wider scope of usage but poorer
performances; containers provide the best performance and
scalability, are usually also much simpler to be managed as
all of them can be accessed and administered from the host
system [12].

Currently, most of the several different implementations of
system-level virtualization relies mainly of two kernel features,
namespaces and cgroups:

• namespaces provide per-process isolation of the operating
system resources, in other words create barriers between

processes. There are six namespaces, each covering a
different resource: pid, net, ipc, mnt, uts and user;

• cgroups is a kernel feature that isolates resource usage
and provides resource management and accounting. The
resources that can be controlled through this feature are
memory, CPU and block I/O.

Neither namespaces nor cgroups intervene in critical paths
of the kernel, and thus, in general, they do not incur a
high performance penalty. The only exception is the memory
cgroup, which can incur significant overhead under some
workloads [11].

A. Existing solutions

All container-based systems have a near-native performance
of CPU, memory, disk and network, but there are more
differences in the resource management implementation: some
projects implement their own capabilities beyond standard
Linux features, introducing more resource limits, such as the
number of processes, which give more security to the whole
system [13]. Below a list of some of the most known container-
based systems:

• OpenVZ is an open-source solution used for providing
hosting and cloud services, and it is the basis of the
Parallels Cloud Server. It is based on a modified Linux
kernel. In addition, it has command-line tools (primarily
vzctl) for management of containers, and it makes use of
templates to create containers for various Linux distribu-
tions. OpenVZ also can run on some unmodified kernels,
but with a reduced feature set [12].

• LXC (LinuX Containers) project provides a set of
userspace tools and utilities to manage Linux containers.
As opposed to OpenVZ, it runs on an unmodified kernel.
LXC is fully written in userspace and supports bindings
in other programming languages like Python and Go.
Current LXC uses different kernel features to control
processes, such as Kernel namespaces (ipc, uts, mount,
pid, network and user), Apparmor and SELinux profiles,
Seccomp policies, Chroots, Kernel capabilities, CGroups.
LXC containers are often considered as something in
the middle between a chroot and a fully-fledged virtual
machine. The goal of LXC is to create an environment
as close as possible to a standard Linux installation but
without the need for a separate kernel. It is available in
the most popular distributions. It is also possible to run
Linux containers on architectures other than x86, such as
ARM [14].

• Linux-VServer is a soft partitioning concept based on
Security Contexts which permits the creation of inde-
pendent virtual instances that run simultaneously on a
single physical server. The guest runs on an almost
identical operating environment as a conventional Linux
server. Each Virtual Private Server (VPS) has its own
user account database and root password and is isolated
from other virtual servers, except for the fact that they
share the same hardware resources. The basic concept of
the Linux-VServer solution is to separate the user-space

7272

Figure 2.1 – Comparison of containers vs VMs footprint on the host system [TRA15].

Containerization is the state-of-art virtualization of the cloud platform [Mer14].

Containers only need seconds to bootstrap, initiate, versus minutes for a regular VM

2https://xenproject.org/
3https://www.linux-kvm.org/
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[ZTL+19] (seen in Table 2.1). Container technologies effectively virtualize the operating

system and are becoming popular in cloud computing. By encapsulating runtime contexts

of software components and services, containers improve portability and efficiency for

cloud application deployment [HZdLZ20]. In addition, a container can be scaled out/in

within a minute, and consequently can react immediately when it encounters a possi-

ble unforeseen crash. Therefore, containers are capable of tolerating fluctuating stress

and reducing overhead [Sch14], coincidentally precisely the features which auto-scaling

needs.

Table 2.1 – Comparison between container and virtual machine [ZTL+19].

Kinds of virtualization

Performances Container Virtual Machine

Size Megabytes Hundreds Megabytes

Start time Seconds Minutes

Management overhead Low High

Portability High Low

A container holds self-contained, ready-to-deploy packaged parts of applications

and, if necessary, middleware and business logic (in binaries and libraries) to run the

applications [PBSJ19]. Containerization facilitates the step from single applications in con-

tainers to clusters of container hosts that can run containerized applications across cluster

hosts [PL15]. The latter benefits from the built-in interoperability of containers. Individ-

ual container hosts are grouped into interconnected clusters. There are many well known

container solutions, such as: Docker 4, Linux LXC 5, OpenVZ 6 and Linux-VServer 7.

Cloud Simulation Tools

As previously mentioned, cloud data centers have been widely adopted by com-

panies to purchase resources like computing, storage, and networking. However, con-

ducting research or practical tests on live cloud environments for individuals or small in-

stitutions is very difficult due to the costs involved in setting up a cloud ecosystem. To

tackle this issue, the research community has developed several cloud simulation tools.

A cloud simulator helps to model various kinds of cloud applications by creating data cen-

ters, virtual machines, and other capabilities that can be configured appropriately. Since

we aimed to test our solution within an environment as close to a real scenario as possi-

4http://www.docker.com
5https://linuxcontainers.org/
6https://openvz.org/
7http://www.linux-vserver.org
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ble, we decided to perform some analysis with a cloud simulation tool as well. This section

presents cloud simulation research initiatives and explains which was adopted here.

MDCSim [LSN+09] is a commercial, comprehensive, flexible, and scalable simula-

tion tool that is used to simulate a framework to perform detailed performance and power

analysis of multi-tier data centers. It is an event-driven tool that offers IaaS to multiple

clients. Performance is measured by calculating throughput and response time. The data

center topology is fed as a directed graph by the MDCSim network package. MDCSim is

a library and does not provide a user interface, which limits its modeling and simulation

capabilities when for complex business configurations.

GreenCloud [KBK12] is an extension of the NS2 [IH12] simulator for energy-aware

networking in cloud infrastructures. This tool considers specific data center components,

such as servers, switches, and links, which makes it an exceptionally powerful tool for

simulating power consumption because it considers the power consumed by computing

and communication elements of the available data center, unlike other simulators such as

MDCSim [LSN+09] and CloudSim [CRB+11] which do not. GreenCloud uses mathematical

models of power consumption to simulate workload provision. The graphic user interface

is limited to a certain level due to the number of the simulated cloud configurations.

ICanCloud [NLC+12] is a discrete event simulator that has been designed using

the E-mc2 framework [CNLC13], a formal framework for advanced analysis of energy mod-

elling in cloud computing. The main design aspects of iCanCloud are to provide a platform

for large experiments, which is a difficult with all of the previously described simulators.

iCanCloud allows the Hypervisor to be modeled, which permits flexibility for integrating

any cloud brokering policy. The graphic user interface of iCanCloud is proving to be the

best in terms of complex configuration, because it can convert from a single VM to large

cloud computing systems composed of thousands of machines. iCanCloud is also open

source and can be used by the application developer or regular cloud users.

CloudSim [CRB+11] is the most widely spread cloud simulator and also the most

sophisticated by far. It was first developed as an add-on-top of the grid network simulator

GridSim [Cas01]. CloudSim is a completely customizable tool which supports modeling,

creating one or more VMs, and mapping tasks to the appropriate virtual machine. This

gives CloudSim the ability to handle a complex simulation environment. It mainly tar-

gets application developers or testers, allowing one to configure several variables such

as the number of users, data centers, and cloud resources along with the location of both

users and data centers. In addition to many other studies extending CloudSim, such as

[BB12, GMC+13, XRR+17, KMX+20], there is one in particular that supports Container as a

Service (CaaS), namely ContainerCloudSim [PDCB17]. This extension provides a platform

for modeling and simulating containerized cloud computing environments. Our decision

to apply this tool in our work is two-fold. Firstly, our research group participated in its
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development, giving us specific knowledge about its features and usage. Moreover, it is

the most appropriate current simulation tool.

2.1.2 Performance Interference

With the advent of resource sharing techniques, physical machines can host mul-

tiple applications. Even though the use of resource sharing methods, such as virtualization

or containerization, provide approaches to fairly share resource between co-hosted appli-

cations, when multiple services intensively use a resource at the same time, resource

contention problems will occur. This is known as performance interference, and it may

lead to severe performance degradation [CRO+15].

Virtualization technologies and server consolidation are the main drivers of high

resource utilization in modern data centers. Combining virtual machines into the same

server may lead to severe performance degradation, known as virtual machine interfer-

ence. Supporting a higher virtual machine interference may result in a higher consoli-

dation, while strict low interference requirements may demand more resources. Jersark

and Ferreto [JF16] claim that applications are affected by other virtual machines, which

use the same resource intensively in the same physical machine. Furthermore, each re-

source is affected differently. CPU intensive applications lead to performance degradation

of 14%. Whereas, memory and disk I/O intensive applications, the performance degrada-

tion was as high as 90%. Therefore, performance interference is clearly a problem, and

the performance degradation varies depending on resource use.

Performance interference affects container-based environments as well. Appli-

cations with disk-intensive characteristics running over containers promote performance

degradation that uses different resources intensively. Xavier et al. [Xav19] have tested

several combinations of co-hosted workloads. While some of these combinations led to

performance degradation up to 38%, workloads could also be combined without interfer-

ence.

Cluster systems usually run several applications-often from different users con-

currently, with individual applications competing for access to shared resources such as

the file system or the network. Low application performance may be caused by interfer-

ence from different sources. Shah et al. [SWZV13] state that mapping performance data

related to shared resources into time slices can establish the simultaneity of application

usage across jobs, which can be indicative of inter-application interference. In some cases,

inter-application interference causes performance degradation of up to 50%.

A scheduler which considers interference issues is a common solution to mini-

mize interference effects and improve application performance [ZT12, BRX13, ZRWZ14,

WKNG19, CRO+15]. Zhu and Tung [ZT12] and Bu et al. [BRX13] present task scheduling
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strategies that include interference aspects, based on task performance prediction models

to make better workload placement decisions. Proposed models achieve an average error

of less than 8% and a speedup of 1.5 to 6.5 times for individual jobs, respectively. Zang

et al. [ZRWZ14] and Wang et al. [WKNG19] developed interference-aware job scheduling

algorithms to estimate the effect of interference among multiple instances of virtualized

environments. Results show that the proposed scheduling algorithms reduce the execu-

tion time of tasks by an average of 6.5%.

Chen et al. [CRO+15] present CloudScope, a system for diagnosing interference

for multi-tenant cloud systems. It (re)assigns virtual machines to physical machines and

optimizes the Hypervisor configuration for different workloads. The interference-aware

scheduler improves virtual machine performance by up to 10% of the default scheduler.

IntP: a Tool to Measure Interference

IntP [Xav19] is a tool for the quantification of per application resource sensitivity

developed by our research group. IntP profiles running applications using low level kernel

instrumentation, returning the utilization levels generated on each resource subsystem.

Each module is responsible for each type of access on a specific resource at the infras-

tructure level, and produces the percentage of hardware resources utilization, per appli-

cation, in an isolated fashion. This isolated measurement provides analytical information

to the system to determine how much applications interfere with each other. The higher

the metric, the more interference the application that is being profiled generates. More

specifically, the tool determines the percentage of interference of the following metrics:

• netp - physical network;

• nets - network queue;

• blk - disk;

• mbw - memory bandwidth;

• llcmr - last-level cache miss rate;

• llcocc - last-level cache occupation;

• cpu - CPU utilization;

By using instrumentation techniques to infer application behaviors during run-

time, IntP gives users information about how sensitive their applications are to hardware

components and OS layers. Results provided by IntP can assist data center administrators

create scheduling strategies to place applications that cause more noise between each

other on different machines. In addition, the infrastructure becomes more balanced, since
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applications with different characteristics can be split up, making the data center resource

efficient.

IntP extracts information from hardware in a manner that was not possible in

the recent past. The advanced feature developed by Intel, called Intel Cache Monitoring

Technology (CMT), makes it now entirely viable to collect information from cache utilization

by running applications. This technology allows us to use an ID denominated Resource

Monitoring ID (RMID) to metrify threads scheduled within the operation system. For each

thread, there is one ID associated with it. Therefore, these metrics can be collected within

an MSR interface. This was not possible before the creation of this technology 8.

IntP not only quantifies the interference application tasks cause on hardware re-

sources, but also provides insights about application demands during runtime. This en-

ables users to decide which piece of hardware is most likely to be the bottlenecked and

to make the best informed decision about the queued application that fits best. Or if one

application begins to affect others, it could be migrated to other machines to minimize

interference and maximize performance. Figure 2.2 depicts IntP’s overall architecture.

Here is an example to illustrate: suppose an application is running in a server and

it is using half of its CPU and a third of its memory bandwidth capacity over its entire exe-

cution, hypothetically without variations. IntP will present, every second, the interference

percentage of each resource generated by this application. Therefore, every second, IntP

will provide the information presented in Table2.2. It is worth noting that, in the case of

resource usage variations, these metrics will change.

Table 2.2 – IntP outcomes at a given second of an application execution.

netp nets blk mbw llcmr llcocc cpu

0 0 0 0.33 0 0 0.50

As mentioned before, IntP runs at the kernel layer, so it has low overhead over

the system as a whole, not affecting the execution of applications. Since IntP is able to

read hardware counters in an isolated manner, it can profile each application separately.

Thus, this tool is considered the state-of-the-art interference profiler currently, which is

why it was chosen for this work.

Methods to Classify Resource Interference

The interference classification method is the strategic basis of this work and will

allow us to identify the resources utilization for each application’s workload over time.

Classification is a necessary step in the identification of tasks that can be scheduled at the

8https://github.com/intel/intel-cmt-cat
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where the data will be read or written. This scenario makes
the disk to become busy while the I/O bus keeps below of its
full capacity. Furthermore, when expressive short operations
(under 4KB) arrive in the disk, it makes the disk to handle a
bunch of operations without reaching its maximum throughput.

F. Network Back-pressure

Network card vendors have often changed the way that
packets are handled from the hardware buffers up to the
networking data-path of the operating system. The more fast
becomes the network devices, the more processing time is
necessary to handle hardware interrupts and process incoming
packets at the same rate as they arrive. The time for processing
a packet is strongly related to the multitude of protocol
functions that it pass through after being fetched from NIC
internal buffers and before reaching application sockets. In
NUMA (Non-Uniform Memory Access) architectures, where
there are different costs for accessing memory across CPU
sockets, it becomes even worse. It turns out that data to be
traversed between the sockets consume CPU cycles resulting
in less work per unit of time, since the tasks consume resources
to deal with the cross-talk. Many efforts have been made in
Linux kernel from past years, but the improvements sometimes
depend on the workload type and not always are system-
agnostic. This requires the system to be tuned by manually
adjusting depth queues, flow control, DMA delay, etc. With
an understanding of the underlying factors that actually affect
network packet processing and the need to do so, it is possible
to minimize overheads and mitigate the network backpressure.

III. INTP DESIGN

IntP not only quantify the interference application’s tasks
cause on hardware resources, but also provides insights about
application demands during runtime. Since such an application
has been instrumented, the users are capable of deciding which
piece of hardware is more likely to be the bottleneck and take
a decision about the queued application that best interleaves
with it. Or if one application starts to affect others, it could
be migrated to other machines to minimize interference and
maximize performance. In this section, we present the devel-
opment of IntP, its architecture, and built-in components. Some
requirements were posed during the designing phase including
(1) IntP should not be intrusive to workloads; (2) IntP should
run during application runtime; (3) IntP should instrument an
application independent of how many applications are running
together in the same machine. These requirements were raised
considering limitations found in state-of-the-art solutions and
are part of our effort to be constraints in this work. We devel-
oped IntP in the operating system level (kernel mode). This
allowed us to instrument all OS’s components from drivers to
scheduler queues with minimal performance intrusion. Figure
2 depicts IntP’s components and the relationship between all
them.

Every time a userland tasks is waiting for an I/O event or
synchronization operation to be completed, the OS needs to
execute privilege instructions to take it place. This operation
requires the OS’s dispatcher to perform a context switch,
saving the current task state in PCB to be restored/resumed
later. The IntP’s scheduling module is responsible for mea-
suring the number of context switches a task performs per
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Fig. 2. Communication of IntP with kernel subsystems

unit of time, and provide the level of interference that task
can generate for other tasks during its lifetime. While in
kernel mode, such task can be waiting for storage block I/O
interrupt, meaning that it invokes a disk-related system call
(read, write, seek, etc.) and is waiting data to be retrieved
from disk. All data requests that comes from userland tasks are
queued, scheduled and dispatched as the I/O controller is able
to handle new requests. Hence, many queued requests make
the I/O controller overloaded and unable to handle requests
at the same rate as they arrived, given that the disk speed is
slower than CPU. The IntP’s block storage module quantify the
level of pressure a task puts on I/O dispatch queue, classifying
those that are disk-intensive from those that do not disturb
the I/O queue. The IntP’s network module works similarly,
but it rely on transmitted and received queues of network
buffers, assessing network back-pressure generated per task.
All instruction requires memory to be mapped and switched
from user to kernel stack. However, there are tasks that requires
even more memory to process their instruction. This is the
case of memory-intensive tasks such as those that belongs
to machine learning or streaming applications. This tasks not
only use a lot of RAM memory to compute data, but also
pollute CPU’s caches while running on it. The IntP’s memory
module connects to CPU to collect per task cache occupation
and derives with cache hits to generate cache sensitivity level.
The level of memory bandwidth usage is also measured to
classify memory-intensive tasks and differentiate them from
cache-intensive tasks.

IV. INTERFERENCE MODELING

Unlike current solutions, IntP is composed of a set of
modules running in the operating system level, which collect
metrics from different hardware subsystems and operating
system levels. Once started the modules consist of hooks that

Figure 2.2 – IntP overall architecture [Xav19].

same virtual instance. An accurate classification leads to high task throughput in a virtual

instance while an inaccurate classification may lead to interference among the tasks in

same virtual instance which adversely affects application performance. The other major

concern of classifying the tasks is how fast a task can be classified. A slow and heavy

classification technique may increase the execution time of an application [KS17].

Caglar et al. [CSGK16] presents iSensitive, which is an intelligent, performance

interference-aware resource management scheme for IoT cloud backends. iSensitive clas-

sifies the VMs based on their historic mean CPU, memory, and network usage features by

using k-means clustering to classify the VMs in different classes. Experimental results

evaluating iSensitive illustrate its advantages in deploying VMs to more aptly-suited host

machines than traditional schemes, such as first-fit bin packing
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Javadi and Gandhi [JG17] presents DIAL, an interference-aware load balancer for

cloud environments. Interference detection is accomplished using a decision tree-based

classifier to find the dominant source of resource contention. It monitors the impact of

interference on user metrics such as CPU utilization, I/O wait time, etc. The model is

trained by running controlled interference experiments using microbenchmarks and mon-

itoring the metrics in each case. After training, the decision tree can classify the source

of interference, even for unseen workloads, based on the observed metric values. Experi-

mental results show that DIAL can reduce application tail latencies by as much as 70% and

48% compared to interference-oblivious and existing interference-aware load balancers,

respectively.

Kumar and Setia [KS17] introduce an interference free scheduling algorithm with

better performance for cloud computing applications. Random Forest [LW02] is used to

classify applications into class labels: CPU intensive, Network-intensive, and Memory in-

tensive. When each task is then recognized by the system, it is immediately classified and

scheduled on the desired VM to better utilize the available resource.

In order to avoid cross-application I/O interference, Kougkas et al. [KDSL18] ex-

plore the negative effects of interference at the burst buffer layer. Their studies applied

a Code-block Classifier [DKCS18] that categorizes the nodes into two classes: compute or

I/O blocks. Their results claim that through better I/O scheduling, their work can triple the

performance of existing state-of-the-art buffering management solutions and can lead to

better resource utilization.

Ludwig et al. [LXK+19] propose placement algorithms based on resource interfer-

ence profiled from applications. These algorithms apply a static classification method that

produces an interference level for each resource within the application execution. The au-

thors’ approach achieved a reduction in response time of 10% when compared to related

interference strategies. It is considered to be the most recent and relevant study done in

the interference classification field directly related to this thesis.

2.1.3 Machine Learning Applied to Resource Scheduling

Machine learning (ML) is the discipline of teaching computers to predict outcomes

or classify objects without being explicitly programmed for such tasks. One of its basic

assumptions is that it is possible to build algorithms that can predict future, previously

unseen, values using training data and the application of statistical techniques [DLCO19].

ML has gained increased traction and is being adopted in some critical planning and con-

trol areas [MMRB20]. Its success is mostly due to the availability of large datasets and

the continuous improvements in the computational power of servers. Cloud providers

rely increasingly on machine learning algorithms for prediction [AL17] and classification
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[GdSTd20] purposes in real time services, lowering the cost of implementing and deploy-

ing resource scheduling solutions.

ML techniques are mainly grouped into three categories: (i) reinforcement learn-

ing, (ii) supervised, and (iii) unsupervised. Reinforcement learning allows a machine to

learn behavior from the feedback it receives through interactions with an external envi-

ronment. Unsupervised machine learning is used to draw conclusions from a given dataset

consisting of input data without a labeled target. On the other hand, supervised machine

learning techniques attempt to find out the relationship between input attributes and a

target attribute. These can be further classified into two main categories: classification

and regression. In regression, the output variable creates continuous values while in clas-

sification it produces class labels [AHK17]. In this study, two machine learning algorithms

were adopted: (i) SVM for classification and (ii) K-Means for clustering.

SVM

Support Vector Machine is a supervised technique. It is derived from a hyper-

plane that maximizes the separating margin between the positive and negative classes in

dimensional space. To achieve this, it considers the support vectors nearest to the mini-

mum cost line. To accommodate curved lines or polygon regions, it scales the data into

higher dimensions for predictions. Aiming to minimize performance degradation in cloud

computing, Sotiriadis et al. [SBB18] introduced a virtual machine scheduling algorithm. It

applied SVM to classify resource usage. Performance degradation was minimized by 19%

and CPU real time was maximized by 2%. Sant’Ana et al. [SCSCC19] presented a real-time

scheduling policy selection algorithm. They evaluated the use of logistic regression and

SVM to perform the mapping of running queue job characteristics and machine states.

Their SVM reached a classification method of up to 81%.

K-Means

Known as a clustering algorithm, K-means is an unsupervised method that at-

tempts to split a given dataset into a fixed number of clusters. Each centroid (k) is an

existing data point in the given input dataset. The process of classification and centroid

adjustment is repeated until the values of the centroids stabilize. The final centroids will

then be used to produce the final clustering. Gill et al. [GGS+19] proposed a resource

scheduling technique for holistic management of cloud computing resources. This method

uses K-Means for clustering the workloads for execution on different set of resources. Their

proposed technique was capable of reducing energy consumption by 20.1% while improv-

ing reliability and CPU utilization by 17.1% and 15.7% respectively. Xu et al. [XWHW19]

formulated a generic job scheduling problem for parallel processing of big data in hetero-

geneous clusters and designed a K-Means based task scheduling algorithm, referred to
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as KMTS. Simulation results show that KMTS improves execution performance in existing

models by 25% and 30% on average in single job scheduling and parallel job scheduling,

respectively.

2.2 Dynamic Latency-Sensitive Workloads

Applications may present a variety of workload patterns and QoS demands in

data centers. For example, non-interactive batches require completion times, whereas

transactional web services are concerned with throughput guarantees. Different applica-

tion workloads require distinct types and amounts of resources. Batch jobs tend to be

relatively stable, while latency-sensitive jobs tend to be highly unpredictable and bursty

in nature [GTGB14]. Latency-sensitive applications can also include short latency-critical

user-facing tasks, such as responding to web requests. Moreover, this type of workload

can be characterized by short deadlines of tens of milliseconds [CGD+17].

On the other hand, multi-tenancy services need to efficiently manage resources

within and among data centers taking time-varying demands into account [IEM18]. Their

workload is not deferrable, meaning that every time a request is received the response

must be generated immediately afterward. Consequently, these applications must per-

form real-time load scheduling, ensuring the quality of the request flow [TQdAB17]. This

kind of application presents an unpredictable intensity variation of resource utilization at

run time due to the user’s different request patterns and periodicity [IEM18]. Therefore,

latency-sensitive applications and multi-tenant services are ideal candidates for evalu-

ating the interference effects suffered by dynamic workloads and are considered target

applications in this work.

Garg et al. [GTGB14] creates a scheduling mechanism to guarantee that users’

QoS requirements are met, according to SLA specifications. They state that it is important

to be aware of different types of SLAs and the mix of workloads for better resource provi-

sioning. Results show an improvement, reducing SLA violations. Sampaio et al. [SBP15]

address the resource allocation issues running different application workload types (CPU-

and network-intensive). After performing experiments with synthetic workloads, their re-

sults indicate that their strategy can fulfill contracted SLAs in real-world scenarios while

reducing expenses due to energy use.

2.2.1 Benchmark Frameworks

This study aims to analyze interference generated by applications which present

dynamic workloads. Therefore, four benchmarks that offer such applications capabilities
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have been adopted: Bench4Q, LinkBench, TPC-H, and Node-Tiers. Each tool is detailed as

follows:

• Bench4Q [ZWWZ11] - This application designs a distributed architecture based on

load agents for large-scale load simulation. There can be one load console and a

number of load agents at the same time for benchmarking. Each load agent can have

specific load settings and be controlled by the load console individually. Bench4Q has

features to deduce a controllable and flexible representation of complex session-

based workloads and to simulate authentic customer behavior;

• LinkBench 9 - This tool is a benchmark developed to evaluate database performance

for workloads, similar to Facebook. It is highly configurable and extensible. LinkBench

can be reconfigured to simulate a variety of workloads and plugins can be written for

benchmarking additional database systems;

• TPC-H 10 - Also known as a decision support benchmark, TPC-H evaluates the per-

formance of various decision support systems by executing sets of queries using

a standard database under controlled conditions. It consists of a suite of business-

oriented ad-hoc queries and concurrent data modifications. The queries and the data

populating the database were chosen to have broad industry-wide relevance while

maintaining a sufficient degree of ease of implementation.

• Node-Tiers 11 - It is a multi-tier benchmark suite that enables fine-grained personal-

ization of resource utilization. Since Node-Tiers was built based on the Stress-ng 12

benchmark, it is able to stress the computer system in various selectable ways. This

tool was designed to exercise various physical subsystems of a computer through

web requests. This benchmark can be useful to observe performance changes across

different operating system releases or types of hardware.

2.3 State-of-the-art Limitations

After investigating interference-aware dynamic resource scheduling aspects, we

have noticed that the state-of-the-art presents the following limitations:

• Current works do not analyze the performance interference aspects from applica-

tions which have dynamic workload patterns in container-based clusters. Their in-

terference scheduling strategies have not been tested in distributed architectures.

9http://github.com/facebookarchive/linkbench
10http://www.tpc.org/tpch/
11https://github.com/uillianluiz/node-tiers
12https://wiki.ubuntu.com/Kernel/Reference/stress-ng
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In Hypervisor-based clusters, the interference comes from two main sources: co-

existing tasks in the same scheduled virtual instance and co-located instances on

the same physical server. This primarily happens in container environments, but

the subtle difference relies on the absence of the Hypervisor layer. Shekhar et al.

[SAB+18] have adopted container-based technology to analyze interference from

different types of applications on a single server, performing vertical elasticity and

checkpoint/restore techniques to meet QoS requirements. But they do not use a dis-

tributed architecture, such as a cluster, and that is precisely what we are interested

in;

• Most of the current related-studies are limited to a simple interference classifica-

tion method which considers if there is interference among applications. In addition,

they only analyze interference generated by some resources: CPU [CSG14, CSGK16,

JG17], memory [CSG14, CSGK16, AdAD17] and I/O aspects [JG17]. In [KDSL18], ap-

plications are classified with labels: compute or I/O blocks. Ludwig et al.[LXK+19]

proposed an interference classification using levels, but they only perform a static

classification over the entire application’s execution. Within our research, we did not

find studies which dynamic classified interference in levels from many sources at

runtime;

• The state-of-the-art lacks a time series analysis to deal with interference metrics.

Wang et al. [WKNG19] tackle this issue segmenting their jobs into stages and creat-

ing a prediction model for each. Since real-time applications can not be divided, this

solution cannot be applied to our study. Therefore, we needed to find a solution that

detects the best moment to make scheduling decisions;

• Recent studies do not address resource scheduling strategies based on cross-application

interference generated only from applications with have dynamic workloads. Shekhar

et al. [SAB+18] evaluate interference generated from latency-sensitive and batch-

job applications, but do not consider the full range of abrupt changes in workloads

of all applications. Therefore, we saw an opportunity for improvement through the

implementation of our proposed interference-aware scheduling architecture.
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3. INITIAL ANALYSIS OF THE INTERFERENCE PROFILE OF

DYNAMIC WORKLOADS

Uncontrolled access to shared resources can cause performance variations that

lead applications to fail or run unsteadily. The friction generated by the competition to

access RAM, disk storage, cache, or internal busses is known as resource contention, which

in this dissertation is also called interference. Many efforts have been made to alleviate

it at the operating system level, ranging from better scheduling techniques in multi-core

architectures [ZBF10] to dynamically addressing mapping to minimize memory contention

[Pot03]. I/O contention, for instance, occurs when multiple tasks compete for a portion

of disk bandwidth when the demand is higher than the available resources. The steady

growth of virtual data centers has raised a concern about resource contention, and the

impact it might cause in environments where performance is crucial and SLA cannot be

violated, such as clouds.

In addition, performance interference may also arise due to isolation issues in the

virtualization layer, which occurs when a virtual instance exceeds the amount of allocated

resources. Because resource limit settings are capacity-driven (e.g. GB, VCores, etc.)

rather than throughput-driven (e.g. bandwidth, IPC, etc.), even though a virtual instance

receives a limited portion of a resource, there is nonetheless leakage due to uncontrolled

access to operating system queues and uncore hardware components. Data center ad-

ministrators have exaggerated the amount of resources allocated to sidestep contentious

scenarios, thus underutilizing data centers.

Due to the systems’ current complexity and users’ needs, cloud computing has

played a pivotal role, delivering resources on-demand on the pay-as-you-go model. How-

ever, dynamic workload demands raise additional challenges for cloud computing providers

to deliver resources while still satisfying SLAs, and consequently QoS properties [NKG10].

In order to understand interference effects in dynamic workloads in a more appropriately,

we first need to see how does each resource fundamentally behaves and is handled by

internal devices if workloads vary. Furthermore, we may also need to look at possible

problems that could be caused when contention-related issues are applied to all those

types of resources. Overall, each of the main resources such as cache, CPU, memory,

disk, and network, suffer the most when consolidated applications that may share the

same infrastructure [XNR+13].

By starting to answer the RQ1, which intends to find out if dynamic workloads

change their interference levels over time, this chapter aims to present how such ap-

plications act under different circumstances. First, we present an interference analysis,

pointing out how each hardware resource behaves when the workload varies, and then

the impact on the interference on response time.
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3.1 Analyzing Distinct Hardware Resources Interference

To perform an in-depth analysis of interference generated on different hardware

resources from applications with dynamic workloads, Node-Tiers has been adopted. As

mentioned before, this tool is a multi-tier benchmark that allows fine-grained personaliza-

tion of resource utilization. Node-Tiers stresses the computer system in various selectable

ways and was designed to stress various physical subsystems of a computer through web

requests. This tool explores the concept of web applications (client-server) and allows

workload variations to be created. The server-side was performed on a server (presented

in chapter 2), whereas the client-side was configured on a different computer. Both pieces

of equipment were connected through a Gigabit Ethernet Network. The goal was to stress

a server in many ways (distinct resources), through latency-sensitive applications, increas-

ing the request arrival rate, and observing interference effects over the changes in work-

load behavior. To characterize the interference generated by each application, we used

IntP [Xav19] (previously presented). All experiments were performed on a Dell PowerEdge

R740xd equipped with: 2x Intel Xeon Gold 5118 Processor, 300GB DDR4 RAM Memory,

1TB Hard Drive, and 4x Gigabit Ethernet Interface. The Ubuntu Server 16.04 LTS (Xenial

Xerus) operating system was adopted.
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Figure 3.1 – Isolated and Parallel executions from Node-Tiers algorithms that stress when

cache, CPU, memory, disk, and network resources are increased.

Firstly, we chose Node-Tiers algorithms that put added stress on a given resource.

Then an increasing workload was created, varying from 0 to 300 requests per second,

within 300 seconds. Each algorithm was executed two ways: in isolation and two applica-

tions’ instances co-hosted, labeled here as parallel. Figure 3.1 presents the results of all
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experiments, depicting how each resource is affected by interference over time. Below, is

a discussion and detailed analysis.

3.1.1 Cache

Last Level Cache (LLC) memory is a hardware device created to minimize the

performance gap between the processing cores and the main memory [MK19]. When two

or more processes are assigned to the same CPU node, threads occasionally share on-

chip memory space, and it may lead to resource contention [Xav19]. The chip industry

has introduced a new feature in the hardware that allows an OS to determine the usage

of cache through applications running on the platform. This is the case of Intel Cache

Monitoring Technology (CMT) [HVA+16]. CMT provides mechanisms for an OS to indicate

a software-defined ID for each of the threads that are scheduled to run on a core. This ID

is called the Resource Monitoring ID (RMID). Since there are associations between threads

and RMIDs, they are programmed via a thread-specific model-specific register called MSR,

and can be read by system software at any time through an MSR interface.

At the isolated execution, it is possible to observe that the resource that suffers

the highest interference is the cache, with increasing but non-linear behavior. Memory and

CPU, which pursue a linear trend are the next most affect resources. In parallel execution,

cache interference increases significantly, and some peaks in cache-miss occurred at the

end of the experiment. Although the interference suffered by the memory produced a

linear trend in the isolated test, it doubled its indexes in the parallel execution. The same

occurred with the CPU metric.

3.1.2 CPU

When multiple co-hosted applications run and they outstrip the available amount

of CPU cycles, it is called CPU contention [Xav19]. In our experiment, even though the

target resource stressed was the CPU, the cache suffered the most from the interference.

The CPU followed a linear trend, both in isolated and parallel execution. In this case, the

CPU, on average, duplicated over time, generating the highest proportionality among all

experiments. The memory rates doubled from isolated to parallel tests as well.
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3.1.3 Memory

Memory contention occurs when the memory requirements for the active pro-

cesses exceed the system’s available physical memory, causing the it to run out of mem-

ory while dramatically decreasing performance. There are two possibilities for an operat-

ing system (OS) to overcome this problem: (i) System Paging, when the OS starts to move

fractions of active processes to the disk and tries to recover physical memory and reestab-

lish stability; and (ii) System Swapping, when the OS starts to swap an entire process to

the disk to reclaim memory, causing tremendous disk overhead [ENBH13]. The IntP’s

memory module collects counters from the memory controller, which is a digital circuit

that manages the flow of data going to and from the main memory. It is usually called an

integrated memory controller (IMC). However, the problem was that the LLC_MISS counter

did not include prefetch misses. This can be a huge issue when there are many prefetching

activities involved (for example, when there is streaming access involved in the program).

Recent CPU architectures have available counters that can be fetched from the uncore

IMC, allowing for more precise observations.

In the isolated execution, the memory followed a linear tendency up to a given

amount of requests. When requests hit this number, the CPU increased considerably,

reaching interference rates over 90%. This abrupt CPU growth happened when the request

arrival rate was more than 300 requests per second, approximately. Since workloads are

co-hosted in parallel execution, the request rate was reached earlier, close to 150 seconds,

creating a significant resource usage increment. So, it is possible to note that not only

were many resources consumed, also the experiment that should have finished within

300 seconds, ended close to 310 seconds, generating performance degradation.

3.1.4 Disk

Disk throughput can be seen as the most volatile performance metric in a sys-

tem, because it is architecture-driven and might be affected by external components,

such as virtual memory, buses, and I/O controllers [MGXD18]. Although many optimiza-

tion techniques have been developed, such as page caches for Writeback operations, the

performance of block devices has a big impact on overall system performance. When a

block request arrives into elevator scheduling queues, the scheduler sorts or merges re-

quest queues to get efficient I/O. Thus, requests are merged with others if either request

ever grows large enough that they become contiguous. Then, they are sorted, not allow-

ing a read to be moved ahead of a write or vice-versa. These optimization algorithms

allow the most contiguous read/write operations to be dispatched to disks, reducing seeks
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and head movements in hard drives per unit of time. However, the higher the number of

requests arriving at the elevator queues, the less efficient the general operation becomes,

since the disk handles incoming requests at lower rates than the CPU. This overload there-

fore increases the queue depth (number of pending requests), which becomes even more

noticeable in SMP machines, where multiple tasks contend for a single disk [MLX+20].

In the isolated execution, the increase in the disk was smooth, following a linear

trend. In the parallel execution, the interference that co-allocated applications generated

followed an exponential trend. Since the arrival request rate doubled every second, it was

possible to observe that the interference generated by the block storage contention was

significantly amplified.

3.1.5 Network

Network contention appears when processes send messages that travel over the

same network interface card (NIC), passing through internal buffers concurrently, thereby

increasing job communication time and degrading performance [Sav19]. With the ad-

vances in CPU architectures and operating system structures, network performance has

also improved in modern operating systems by changing packet receipt from interrupt-

driven to polling mode. Previously, the network cards would typically fire a hardware inter-

rupt whenever a packet arrived, suspending the executing software, affecting application

performance. Current operating systems have changed the way that network packets are

handled once they are pulled off the wire. They implement a polling mechanism which

is periodically interrupted. While the poll method is executing, receive interrupts for the

network device are disabled. Thus, the operating system can potentially drain multiple

packets from the network device receive buffer, increasing throughput, and decreasing

latency at the same time as reducing the interrupt overhead. In Linux operating systems,

packet processing begins when the interrupt handling process (ksoftirqd) determines that

a softirq is pending. It calls the net_rx_action driver-specific method, which begins pro-

cessing all packets available in the network device ring-buffer before cpu-time is up (lim-

ited to 2 jiffies). The processing ends when the data is copied to the application-specific

socket buffer. Yet, applications still suffer from throughput issues due to back-pressure

caused by cross-application tasks, making either the interrupt handling mechanism un-

able to drain packets from the network device fast enough or the application unable to

remove queued packets from the socket buffer fast enough [Xav19].

Moreover, network back-pressure grows linearly in isolated and parallel execu-

tion. When comparing the two, it is possible to note that even if the load doubles in a

parallel execution, network interference does not double proportionally. Furthermore, in
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parallel execution, the use of cache is intensified, generating some cache-miss incidents

and revealing a strong relationship between network and cache resources.

3.1.6 General Findings

In general, we can conclude that each application has a specific resource usage

behavior, creating different interference rates. Applications can generate interference in-

dexes according to the workload variation, proportional to the load changes, which are the

cache and CPU examples. On the other hand, the opposite also happens, when the inter-

ference generated does not follow the rising workload trend, in the cases of memory, disk,

and network. Moreover, we found that these results could change if they were executed

over different hardware, because they are strongly dependent on their characteristics or

capabilities.

3.2 Interference Impact on Response Time

Left unmanaged, the competition for machine resources can lead to severe response-

time degradation and unmet SLAs [IAK+18]. Latency-sensitivity does not only imply lit-

eral real-time applications, but also applications that have flexible limits for response

times. For instance, users expect a web search to complete within a specific amount

of time[SAB+18]. Hence, delays in latency-sensitive applications runtime do not always

represent their performance degradation properly or demonstrate SLA violations. There-

fore, to accurately evaluate such applications’ deterioration, we analyzed the response

time degradation through a set of experiments. With Node-Tiers, we combined all algo-

rithms, mentioned in the previous section, in parallel executions and captured their re-

sponse times. In other words, the application that uses more the cache was combined

with the one that uses more the CPU, memory, disk, and network. This experiment was

performed with all algorithms, combining them all. All executions took the same workload

and time interval: 0 to 300 requests per second within 300 seconds. Figure 3.2 depicts all

the response times collected from all tests. Note that this image combines two applica-

tions per frame, indicated in the labels on the right side (black) and on the top (gray).

It is clear that each application has its specific response time increment and none

of them have a linear growth trend. For example, in the CPU-network execution, the Net-

work application starts to increase its response time before the CPU. In the CPU-memory

case, memory practically does not change its response time behavior whereas CPU does.

Furthermore, all executions with the same application, on the diagonal line (i.e.

cache-cache, CPU-CPU, and so on), present the same behavior and start to increase their
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Figure 3.2 – Response time collected combining cache, CPU, memory, disk, and network
algorithms from Node-Tiers. Each frame presents the combination of two applications,
indicated in the labels on the right side (black color) and at the top (grey color).

response times almost at the exact same time. This is because the same resource is being

used, causing approximately the same response time degradation.

It is worth mentioning that although each application presents specific character-

istics and different behavior, the interference generated between the two when co-hosted,

tends to proportionally affect their response times, on average. This means that response

time degradation is proportional to each resource.
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4. INTERFERENCE CLASSIFICATION’S IMPACT ON RESOURCE

SCHEDULING

Resource scheduling can be defined as the ability of cloud infrastructures to dy-

namically change the amount of resources allocated to a running application. Hardware

resources should be allocated according to the changing workload, enabling resource

management to preserve the quality of service requirements at reduced costs [AETEK13].

The previous chapter stated that workload variations can affect the behavior of applica-

tions differently, not only in resource usage but also response time. Each application’s

execution might have a different hardware subsystem behavior, strongly dependent on

workload variability. Therefore, an interference classification system that perceives the

changes of application behavior over time becomes essential to perform interference-

aware scheduling strategies in cloud computing environments.

The most challenging aspect of this problem is to find a classification system

that can accurately determine how cross-application interference affects each specific

resource when they are being shared over time [ZBF10].

In section 2.1.2, we discussed how interference classification has been addressed

recently. In that study phase, we ran some tests with the classification method from

[LXK+19], considered here as the state-of-the-art work in this field. However, we no-

ticed that the authors’ technique presented some limitations when applied to a dynamic

scheduling scenario. Their solution creates only one interference label per resource over

the entire application’s execution, producing a static classification. Yet, as discussed in

chapter 3, interference levels can change over time with dynamic workloads and static

classification outcomes might be inaccurate and lead to less than ideal resource schedul-

ing. Therefore, in this chapter, we introduce a dynamic classification system, segmenting

the workload to verify if it possible to improve the efficiency of hardware resources. More-

over, this chapter presents a preliminary evaluation of how different interference clas-

sification techniques can impact interference overhead. We first discuss the influence of

workload variation on the classification phase. Then, we evaluate their efficacy in reducing

the overhead and improving resource utilization in these scenarios.

4.1 Transitioning from a Static to a Dynamic Classification Schema

To evaluate alternative scheduling policies, Ludwig et al. [LXK+19] created a clas-

sification method that explores levels of interference. It analyzes interference in machine

resources (CPU, memory, disk, network, and cache) over the entire application’s execu-
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tion. The authors’ technique categorizes resources with their respective interference level

labels, according to Table 4.1.

Table 4.1 – Interference intervals and their respective level labels, introduced by Ludwig
et al. [LXK+19].

Interval Label

0% Absent
1% - 20% Low
21% - 50% Moderate
51% - 100% High

For example, we ran a benchmark developed to evaluate database performance

for workloads, similar to those of Facebook’s production, named LinkBench. First, we cre-

ated an increasing workload, starting with a low load and gradually going up to a high

load, and profiled it with IntP. In the LinkBench benchmark, it is possible to set the number

of requests (operations) and the number of requesters (threads). The number of requests

was configured into 1,000 (fixed) and the number of requests varied from 10 to 50 (by

10 to 10). The entire execution was profiled with IntP. Figure 4.1 shows interference suf-

fered by each resource in this experiment. The top chart presents the static classification

method proposed by [LXK+19], analyzing the interference levels over the application’s

entire life process, assigning just one label per profiled resource based on mean values.

In this work, we refer to this classification format as Unique. To evaluate how well this

technique deals with workload variations and its impact on the classification, we redid the

same experiment segmenting the trace in four parts and applying the same static classi-

fication technique to each part. Results are shown at the bottom chart of the same figure

and we refer to it as Segmented.

The top chart (Unique) shows that only disk and cache suffer low rates of inter-

ference. By classifying the application in four parts, in the bottom plot (Segmented), it

is possible to notice that the overall interference generated in each resource remains the

same. This means that the interference metrics do not have a significant change to modify

their labels. Concluding that: (i) there are cases where interference levels do not change,

even when their workload does; and (ii) in these cases, the Ludwig et al. [LXK+19] clas-

sification method works well since there is no representative variation in the interference

metrics.

While there are applications with no expressive variations in the interference

metrics over a given period, this is not always the case. We thereofre did the same exper-

iment with a QoS-oriented e-commerce benchmark called Bench4Q [ZWWZ11]. Again, an

increasing workload was created. Bench4Q emulates active e-commerce users through

entities called Emulated Browsers (EBs). Thus, the load started with 10 simultaneous EBs

and every minute we added 10 more, ending the execution with 120 EBs (720 seconds).



42

cpu
mem
disk
net

cache

absent
absent

low
absent

low

cpu
mem
disk
net

cache

absent
absent

low
absent

low

cpu
mem
disk
net

cache

absent
absent

low
absent

low

cpu
mem
disk
net

cache

absent
absent

low
absent

low

cpu
mem
disk
net

cache

absent
absent

low
absent

low

U
nique

S
egm

ented

0 100 200 300 400 500 600 700

0

50

100

0

50

100

Time (seconds)

In
te

rf
er

en
ce

 (
%

)

Resources Cache Disk

Figure 4.1 – Unique (top) and Segmented (bottom) LinkBench static interference classifi-
cation. To facilitate the visualization, a Loess function was applied to smooth short-term
variations in each resource. IntP metrics that do not suffer any interference in these ex-
periments were not depicted.

Also, a single classification was performed after the entire application was executed. Then

the execution was also split into four parts, and each part was classified again. Results

are presented in Figure 4.2.

One can see that some resources do not change their labels, for instance, mem-

ory, cache, and network. Because their interference metrics remain at the same level,

with no expressive variation on average, their labels are maintained. On the other hand,

some resources do change their labels. Namely, CPU and disk. Disk’s behavior smoothly

decreased, from a low to an absent label, halfway through execution. In addition, the CPU

had the biggest behavior change, starting low, then going to moderate levels, and ending

with a high interference level.

In conclusion, LinkBench execution did not generate a significant variation in

terms of interference effects, whereas Bench4Q did. Therefore, due to their dynamic

workload nature, each application should be handled differently. Thus answering RQ1,

confirming that applications with dynamic workloads may change their interference levels

over time.
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Figure 4.2 – Unique (top) and Segmented (bottom) Bench4Q static interference classifi-
cation. To facilitate the visualization, a Loess function was applied to smooth short-term
variations for each resource. Resources labels that changed are shown in bold in the bot-
tom plot. IntP metrics that did not suffer any interference in these experiments were not
shown.

4.1.1 Impact on Interference Overhead

Aiming to evaluate the impact of cross-application interference on the final schedul-

ing over time, by profiling the total interference generated by running an application pro-

filing, a tool called CIAPA 1 was used. This is a scheduling analysis tool, originally proposed

by [LXK+19], that uses an interference overhead function, represented by interference set

I ′. The interference level for each resource is denoted as follows:

g(I ′res) = {I | I ∈ I ′res, I > 1} (4.1)

1https://uillianluiz.github.io/ciapa
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Where res = {CPU,memory ,disk ,cache,network}. The function g, denoted in

Equation 4.1, returns a set of values that are greater than 1. All resource interference

metrics are measured and allocated into an interval. Depending on the interval in which

they are set, the interference overhead (I’) index value varies according to Table 4.2.

Table 4.2 – Performance degradation generated by resource interference, introduced by
Ludwig et al. [LXK+19].

Level CPU Memory Disk Network Cache

Absent 1.00 1.00 1.00 1.00 1.00
Low 1.03 1.07 1.12 1.05 1.07
Moderate 1.15 1.62 1.82 1.32 1.18
High 1.33 1.74 2.25 1.57 1.26

CIAPA tries to minimize the total interference overhead by testing all possible

combinations of applications per host. Therefore, the result is finally given by the multi-

plication of the cost of each resource, which is calculated by using the function in Equa-

tion 4.2.

fi(I ′) = fi ′(I ′cpu)∗ fi ′(I ′mem)∗ fi ′(I ′disk)∗ fi ′(I ′cache)∗ fi ′(I ′net) (4.2)

To execute applications with dynamic workloads, we have chosen three different

applications that can execute workload variation. The first and second were mentioned

before, Bench4Q and LinkBench. The third is a decision support benchmark called TPC-H.

Different workload variations can change applications’ behavior in terms of re-

source usage and performance. In order to evaluate their behavior, four workload patterns

were set for each application. We created the following workloads: Increasing, Periodic,

Decreasing and Constant. This was inspired by Iqbal et al.’s [IEM18] study, where Increas-

ing starts with a low load and gradually goes to a high load. Periodic has continuously

high-to-low and low-to-high load variations. Decreasing is the opposite of Increasing, it

starts with a high load and gradually goes down to a low load. Finally, Constant always

maintains the same workload.

To evaluate interference variations, each application was submitted to the 4

workload patterns, resulting in 12 different examples. These examples have been tested

over different numbers of hosts, as follows: 4, 6, 8, 10, and 12. Then, we applied two

classification formats on each workload: (i) Unique and (ii) Segmented. Unique represent-

ing a single classification over the entire application’s execution, while Segmented divides

each execution into four parts and runs the classification on each. Because the applica-

tion was divided into four parts for the Segmented format, each part produced a set of

interference level labels. Therefore, Unique format results were multiplied by for to keep

both proportionals.
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Figure 4.3 – Comparison of interference overhead.

Classification outcomes were inserted into CIAPA and the results are presented

in Figure 4.3. As previously mentioned, CIAPA uses an interference overhead function that

represents the total interference generated in the system. The lower the result, the better

the hardware is being utilized. Thus, lower indexes present better hardware efficiency,

reducing response time, makespan, etc.

Overall, the largest difference occurred with the smallest number of hosts. Namely

the cases with more cross-application interference, resulted in greater performance degra-

dation among co-located applications. As the number of hosts rose, the difference be-

tween interference overhead incidence decreased. Therefore, resource concurrency among

co-hosted applications tended to decrease as well. Only with the largest number of hosts,

both classification methods achieved the same values. This occured because each host

only ran one application instance. Since there is no incidence of cross-application interfer-

ence, the result has been left minimum.

It is interesting to note that in all experiments performed in Figure 4.3, the Seg-

mented format reached lower interference overhead indexes than the Unique. The results

demonstrate that the Segmented format improved the hardware utilization efficiency by

22%, on average, reducing resource consumption and also performance degradation at

the application level. This highlights that a workload-aware fine-grained classification can

reduce interference overhead while only one can lead to less efficient scheduling deci-

sions. In addition to evaluating cross-application interference at time intervals tends to

improve the performance of applications while preserving the quality of service require-

ments.

From this point on, Classification Method in this study refers to the method of how

each resource receives its interference level within a given execution period, while Clas-
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sification Format indicates how many time slices the Classification Method is applied in:

Unique format for a single interference classification over the entire application execution,

and Segmented for multiple classifications.

4.2 ML-driven Interference-aware Application Classifier

In the previous section, we performed experiments under high workload vari-

ations running a static interference classification only once (Unique) and several times

along the execution (Segmented). Comparison results showed that the Segmented format

achieved better resource utilization efficiency than the Unique. However, the thresholds

of the interference levels (Table 4.1) of the applied static classification method ([LXK+19])

were empirically defined. Although this still resulted in better overall results in the ap-

plications’ scheduling, we observed that applying the method in applications with high

workload variations could lead to an unrepresentative classification estimate. When deal-

ing with a dynamic scenario, applications’ workload could have unpredictable patterns,

possibly presenting abrupt changes over time, making it necessary to run a real-time

classification process. In addition, the thresholds used in the classification strategy were

empirically defined, and therefore the user needed to have previous knowledge of the

application’s execution to perform an accurate classification.

To tackle this issue and beginning to answer RQ3, which aims at exploring what

architectural changes are needed to move from a static to a dynamic scheduling, we cre-

ated an interference-aware application classifier based on the combination of two well-

known machine learning techniques: Support Vector Machines (SVM) and K-Means. After

it is trained, the proposed classifier receives monitored metrics from applications and dy-

namically defines the interference level thresholds for each resource. This application

classifier was first introduced in [MKdD20] with its static variant. It was then improved by

introducing a dynamic version [MKDD21b], where we applied the classifier several times

during the execution of an application to better react to workload variations and possible

changes in interference levels.

This section outlines the both how the classifier works and evaluates its perfor-

mance through different experiments. First, we explain the classifier overall, including its

dependencies and capabilities. Then, we present an evaluation of the dataset and model

validation. Lastly, we compare its efficiency with related work.
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4.2.1 Classifier Design

Two machine learning algorithms work together to implement the proposed clas-

sifier: SVM for classification and K-Means for clustering. Initially, the SVM receives interfer-

ence metrics from the target application collected each second by IntP, and those metrics

are classified and stored into resource queues for their respective classes: memory, CPU,

disk, network, and cache. Subsequently, K-Means quantifies values for each queue and

returns their interference level for a specific period. Both machine learning algorithms

use a previously defined training dataset to assist them in decision making. Figure 4.4

illustrates an overview of how the classifier works. More details about the classification

method are presented in the next subsections.

SVM	
(supervised)

K-Means	
(unsupervised)

CPU

Memory

Disk

Network

Cache

Interference	
Metrics

CLASS:31

2 Training	Dataset

CPU

Memory

Disk

Network

Cache	

LEVEL:

Figure 4.4 – Classifier architecture overview: Component 1 represents the collecting of

interference metrics; Component 2 depicts the training dataset assisting machine learning

algorithms; Component 3 illustrates the classification process and its outcomes [MKdD20].

Interference Profiling

To characterize the interference generated by each application we used IntP. The

general idea is to profile applications at runtime, returning the interference for each re-

source used during execution: memory (mbw), CPU (cpu), disk (blk), network (netp and

nets), and cache (llcocc and llcmr). IntP returns these metrics every second, based on the

workload variability (higher values correspond to higher interference overhead).

Training Dataset

To take advantage of selected machine learning techniques, it is essential to

have as much data as possible to use as input in order to train the models. However, no

available datasets were found in the literature with cross-application interference traces.

Therefore, Node-Tiers was used. This tool is able to stress the computer system in many
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ways, through web requests and we could generate a diversified interference dataset by

performing various algorithms.

To maintain a data history from each interference class, we had to stress the

main resource classes and store their interference metrics. For example, to collect CPU

interference metrics, Node-Tiers was set with the cpu parameter, which means only the

CPU was stressed. To collect the cache class, the cache parameter was set, and so on.

We produced five major interference classes: memory, CPU, disk, network and cache.

More precisely, 10,000 samples were collected from each interference class, resulting in

a dataset with 50,000 samples.

Classification Process

The proposed ML-based interference classifier dynamically defines thresholds

and assigns interference levels for each resource used by the monitored applications for

a particular time period, without the need for user intervention.

The target application is monitored with the IntP tool, every second, generating

data from 7 resource metrics. This data is passed to SVM as input data to be classified.

SVM is a supervised technique, so it uses labeled data from a training dataset to label the

new data. SVM takes these tuple 7 interference values and categorizes them into one of

the 5 resource classes: memory, CPU, disk, network, or cache. The idea here is to select

the class that best represents the interference generated by this application in this second

and store the interference value(s) in its respective queue. Since this is done at runtime

for all applications that are being executed, its a way to reduce overhead, selecting the

most representative values for each class. After a system has defined the time interval,

the values stored in these resource queues become K-Means input data, so that the cor-

responding interference level for each resource is assigned. This two-step classification

process is repeated until the end of the execution, characterizing the dynamism of our ap-

proach. In fact, interference levels are reevaluated regularly so that we are able to better

react to workload changes.

Inspired by [LXK+19], we used four possible levels: absent, low, moderate, and

high. However in our work, these thresholds were not empirically predefined, instead they

varied for each different resource and were automatically defined in the K-Means training

phase. When there was no interference incidence from a class (no data in the respective

queue for the period), the classifier interpreted it as Absent.

K-Means, previously trained, determins the interference levels of each resource

class. K represents class divisions: low, moderate, and high. Its value was set to 3 (k=3).

At the beginning of the classification process, SVM trains its model and K-Means finds its

centroids. Since both techniques are supported by an already created dataset, the SVM

model and K-Means centroids are the same until they are retrained.
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For example, we may have an IntP tuple for a running application (i.e. [0%, 0%,

3%, 15%, 5%, 10%, 80%]) as input in a particular second classified by SVM as “CPU”.

This output is buffered in the respective class queue, in this case CPU. This classification

phase is repeated for the duration of a time interval, and then these class queues become

K-Means input to determine an application interference level for each class within the

monitored interval. These queues are only used to buffer the SVM output for each class

since SVM runs each second and K-Means runs for each time interval. The goal here is to

reduce overhead since this is done at runtime.

The classifier was implemented using the free statistical software tool R 2. To

execute SVM and K-Means algorithms we chose e1071 [MDH+19] and stats [R C19] R

packages, respectively. Basically, SVMs can only solve binary classification problems. To

allow for multi-class classification, libsvm performs the “one-against-one” technique by

fitting all binary subclassifiers and finding the correct class through a voting mechanism

[MDH+19]. Even though we chose R in this work, the model design is not limited to this

specific tool, other software or libraries, such as Keras 3 for Python or Weka 4 for Java,

could also potentially be used. One factor in choosing (or dismissing) a machine learning

platform is its coverage of existing algorithms [LKRH15]. R provides flexibility for imple-

menting several types of model architectures.

Many machine learning techniques are available in the literature, and there are

different sets of parameters to be configured depending on which is chosen. In order to:

(i) not over- or under-fitting the training model; (ii) to eliminate the user responsibility of

setting these parameters; and (iii) to find the best set of parameters for machine learning

techniques, caret 5 package were used. This package provides a standard syntax to exe-

cute a variety of machine learning methods, thus simplifying the process of systematically

comparing different algorithms and approaches.

Since our application classifier analyzes workload behavior through interference

metrics, this approach can be applied with other interference metrics and monitoring tools

(like PAPI 6). All files, including source codes and results, are available at GitHub 7 and Code

Ocean [MKdD21a].

2https://www.r-project.org/
3https://keras.io/
4https://www.cs.waikato.ac.nz/ml/weka/index.html
5https://cran.r-project.org/web/packages/caret/index.html
6https://icl.utk.edu/papi/
7https://github.com/ViniciusMeyer/interference-classifier
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Figure 4.5 – Bench4Q execution under an oscillating workload.

To better understand the classifier functionality, Figure 4.5 presents the execution

of Bench4Q under an oscillating workload. Each interference class is shown separately,

together with its classification level for the elapsed time. Overall, CPU and cache are

more stressed than memory, disk, and network. It is worth noting that disk and network

resources had low interference rates, on average less than 2% and 5%, respectively. In

this case, network classification is categorized as absent while the disk was labeled as low.

Although memory values didn’t seem particularly elevated (less than 25% on average),

our classifier labeled this resource class as high, based on the K-Means threshold setting.

4.2.2 Classifier Evaluation

In this section, we analyze the training dataset and validate the proposed ML

model presenting its quality metrics.

Dataset Analysis

In reference to data analysis, machine learning techniques process the dataset

and produce a set of descriptive statistics from the analyzed data. In addition to a hand-

ful of metrics, these techniques support statistics on configurable data slices and cross-

feature statistics such as the correlation between them. The correlation between a com-

ponent and a variable estimates the information they share. The variables can be plotted

as points in the component space using their correlation as coordinates [AW10].
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Figure 4.6 – Correlations circle of dataset interference classes.

Figure 4.6 presents the Circle of Correlations. This image shows the correlations

between all of the interference metrics that were collected to develop the training dataset

and the principal components (PC) are shown as coordinates. The relationships between

all variables can be interpreted as follows:

• Different assets moving in the same direction are positively correlated; if they move

exactly together, they are perfectly positively correlated;

• Uncorrelated returns have no relationship to each other and have a correlation coef-

ficient of close to zero; so, they are orthogonal to each other;

• Negatively correlated returns move in opposite directions (quadrants). Series that

move in exactly opposite directions are perfectly negatively correlated.

By looking at this image, observing all features, we can get important insights

into the shape of the dataset. It is worth noting that there is a strong positive correlation

between some interference classes, such as llcocc and mbw. On the other hand, there are

those that present negative correlations, such as cpu and blk. This means that: (i) while

the cache is used, memory bandwidth is used as well; and (ii) while CPU is consumed, the

disk is practically not required. This information is essential for the clustering phase (K-

Means) since it uses these findings to train and find the optimal arrangement of centroids

(interference interval levels). Moreover, information comes from the training dataset, and

if it is changes, the correlation between resources will probably behave differently (direc-

tions), strongly depending on the data.
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Model Validation

Usually when a model is created with the support of machine learning techniques,

a validation step is performed to find out if it has a good quality rate. A validated model is

safe when a simple premise is reached: the quality measures have to achieve reasonable

rates. Therefore, we chose two classification quality measures [FHOM09]: (i) Accuracy is

the most common measure to evaluate a classification process. It is defined as the degree

of the model’s correct predictions (or conversely, the percentage of miss-classification

errors); and (ii) F1-Score (or F-Measure), that correlates Precision and Recall metrics. The

SVM algorithm was evaluated by repeating a 5-fold stratified cross-validation 10 times,

with different randomly selected partitions. It gave this model with the highest possible

validation score.

For clustering, we defined Rand Index [MA19] (or Rand Measure) as the quality

measure. Rand Index is a measure of the similarity between two sets of clustered data.

It has become the index of choice in comparing the agreement between two separate

partitions of the same data set. It adjusts for chance agreement and is not restricted

to comparing partitions with the same number of segments. Complete independence

between the two divisions yields a Rand Index of essentially zero. Complete association

yields an index of 1.0. From a mathematical standpoint, this index is related to accuracy,

but is also applicable even when class labels are not used.

All quality measures range between 0 and 1. The higher the measured value, the

better the quality. All metrics mentioned above are presented in Table 4.3.

Table 4.3 – Quality measures of machine learning techniques. ( - not applicable)

Measure SVM K-Means

Accuracy 0.97 -

F1-Score 0.98 -

Rand Index - 0.82

In all experiments, the quality metrics presented acceptable rates. This means

that both machine learning techniques used in the classifier prompt good quality training.

4.2.3 Comparison with State-of-the-Art

To evaluate the proposed dynamic ML classifier, we compared it to two static

classification approaches (Ludwig et al), using customized classification intervals and a

variation that uses proportional intervals (Proportional) to verify our claim that we would
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perform better with applications that have dynamic workloads. We also compared it to the

state of the art in round-robin scheduling as a baseline (Even). More details about these

techniques are presented below:

• Even implements the EvenScheduler algorithm, which is the Apache Storm 8 default

scheduler. This algorithm distributes computation tasks across nodes in a Round-

Robin manner [ASZ20]. When tasks are scheduled, this approach counts all available

slots on each node and places application instances to be scheduled one at a time

to each node while keeping the order of nodes constant. We have decided to use

this method because Apache Storm is a well-known framework that processes real-

time data, such as cloud multi-tenant systems, which are the target applications in

this work. Furthermore, we chose Even as a baseline since it is the less optimized

approach.

• Ludwig et al. [LXK+19] evaluate the profile of application workloads and use in-

terference classification levels. This approach was introduced with details in subsec-

tion 4.1 and was chosen because it is the work most closely related to ours. The

difference between this work and ours lies in the fact that the classification is static,

done only one time in the beginning and the definition of interference levels thresh-

olds are fixed and empirically defined.

• Proportional is similar to [LXK+19] but categorizes the interference from each pro-

filed resource through a proportional division of the interference levels ranges (1/3

for each level, low [0%-33%], medium [34%-66%], high [67%-100%]). This technique

was chosen because defining fixed thresholds is commonly adopted in the resource

management field [ZLT+16, KMX+20].

One of the main challenges when classifying the interference levels of an appli-

cation is to define thresholds at each level for a specific resource (for example, is 30% CPU

interference low or moderate? And 60% memory interference, moderate or high?). Even

uses an “in order” scheduling strategy, and therefore does not take interference classifi-

cation aspects into account. Thus, it does not need to define interference levels. Ludwig

et al. (A) and Proportional (B) are similar approaches, interference classification based

on fixed thresholds. In our approach, we use variable thresholds automatically defined

for each resource using ML. This is one of the main contributions of this work. To better

visualize these differences, Figure 4.7 shows how the definition of interference levels for

each technique. It is worth mentioning that the two broken lines (close to the points 30

and 70, on the x-axis) in our classification approach (C), are for illustrative purposes only,

and the arrows indicate that they can vary depending on the workload.

8https://storm.apache.org/
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Figure 4.7 – Interference levels used in each classification method and their respective

intervals. Ludwig et al. (A) and Proportional (B) use static thresholds for determining their

interference classes while in our classifier (C), they are variable, automatically defined

without user intervention.

To perform the comparison, we took the same workloads, with the same pat-

terns (increasing, periodic, decreasing, and constant) and adopted the same applications

(Bench4Q, LinkBench, and TPC-H).

As we saw in the experiments in section 4.1, employing the Segmented format

to classify workload interference levels can reduce interference overhead, since a classi-

fication scheme that better represents workload variations tends to use resources more

efficiently. Therefore, in this experiment, we expanded this approach into dynamic classifi-

cation methods that reclassify the workload after regular time intervals. More specifically,

the monitored period was set to 180 seconds, that is a common interval found in related

work that dynamically reevaluates classifications at runtime, such as [ZT12]. Classifica-

tion outcomes were inserted into CIAPA over different numbers of hosts, as follows: 4, 6,

8, 10, and 12. The results are presented in Figure 4.8.
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Figure 4.8 – Comparison of interference overhead with state-of-the-art.

In this figure, it is possible to observe that, the Even method presented the worst

results (higher indexes) in all executions, which was already expected since this method

ignores interference among applications. In general, our solution demonstrated the best

placement results, presenting a 27% improvement of resource utilization efficiency, on

average, compared to the other strategies from related work. The only exception appears

with 12 hosts. In this case, each host handled only one application, producing no inter-

ference rate and generating the lowest possible interference overhead. As the number of

hosts decreased, interference overhead indexes became higher. Therefore, the resource

concurrency among co-hosted applications tended to increase as well. With 4 hosts, the

highest indexes occurred, revealing the case with more cross-application interference in-

cidences and greater performance degradation.

Preliminary results with different workloads, have confirmed that resource inter-

ference has a high impact on application performance, which was already demonstrated

by related work. All these conclusions guide us to answer RQ2, confirming that a dynamic

interference classification system, which better represents the variability of workloads

over time, indeed lead to better resource scheduling decisions.
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5. DYNAMIC INTERFERENCE-AWARE SCHEDULING

ARCHITECTURE

Performance interference is known to adversely impact applications’ QoS prop-

erties and dynamic service demands. In fact, workload profiles create even more chal-

lenges for cloud service providers when it comes to managing resources on-demand to

satisfy SLAs while simultaneously minimizing operational costs [NKG10]. Therefore, any

solution that addresses these challenges must account for the workload variability and

performance interference [SAB+18]. Due to the dynamic nature of the process, some

questions arise. Specifically: How to classify applications in real-time based on the inter-

ference they generate? When to execute classification? When to schedule? And how to

tradeoff migration costs?

Finding a solution that comprehensively covers all the issues mentioned is not a

straightforward task. Recently approaches have been proposed that present significant

improvements concerning interference classification and dynamic scheduling strategies.

However, there are still gaps in the state-of-the-art. One example is the lack of a complete

scheduling architecture that automatically handles dynamic workloads, finding the best

intervals to classify and schedule applications among cluster nodes. Furthermore, the

architecture should be able to address performance interference aspects without earlier

workload know-how and also without user mediation.

Based on the concept that dynamic scheduling algorithms based on interference,

which analyzes workload variations over time, could further improve resource utilization,

and consequently reduce SLA violations, in this chapter we propose IADA. It is a full-

fledged interference-aware scheduling architecture for dynamic workloads in clouds. This

architecture aims to efficiently schedule applications based on the interference they gen-

erate, without user intervention and with no knowledge of the previous workload.

In the next sections, we introduce the proposed architecture, describing its capa-

bilities and tools in detail.

5.1 A Novel Interference-aware Architecture Design

In general, interference-aware task schedulers are created by combining three

main steps [CH11, ZT12, BRX13, ZRWZ14, Xav19, WKNG19]: (i) profiling queued tasks

based on their resource needs; (ii) predicting the performance interference; and (iii) schedul-

ing the task on the best-suited node, which is the node that causes the lowest performance

interference effects. Since we are interested in scheduling real-time applications based

on workload variability, we decided to use a reactive approach. Thus, we adjusted the
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prediction step by splitting in two: (ii-A) classifying interference and (ii-B) analyzing the

best time intervals from applications at runtime in order to perform the scheduling (next)

step.

Hence, to build a dynamic interference-aware scheduling architecture, we used

four main components, presented as follows: (i) a profiler that reads hardware metrics; (ii)

a technique to determine significant workload changes, based on profiling data at runtime;

(iii) an interference classification method supported by a combination of machine learning

techniques; and (iv) a scheduling algorithm that interprets all data generated by previous

components and makes efficient placement decisions.

To perform the proposed architecture, all these aforementioned components were

assigned in a node which works over the entire computational environment analyzing and

executing scheduling decisions, referred to here as Node Manager. Also, an IntP pro-

filer module is executed inside each cluster node, profiling all applications and sending

all data to the Node Manager. First, these metrics are received and analyzed by Data

Analyzer component, which is responsible for examining and finding abrupt changes in

the behavior of the applications. Then, these metrics are sent to Classifier component

that is responsible for classifying each application in a given period, defined by the previ-

ous component, into interference levels. Finally, the Scheduler module makes scheduling

decisions by running an algorithm based on information that was generated by the two

previous components. Figure 5.1 presents an overview of the proposed architecture, dis-

tinguishing each layer.

Container
App1

Worker Node 1

...
Profiler

Cluster Infrastructure

Container
App3

Container
App2

Worker Node 2

...
Profiler

Container
App n

Worker Node n

...
Profiler

Node Manager

Resource Management

Profiling DataScheduling
Decisions

...

Data AnalyzerClassifierScheduler

Figure 5.1 – Architecture general overview.

The Node Manager is continually monitoring and analyzing information that could

potentially interfere from the cluster infrastructure. It is worth noting that the Profiler

module is always monitoring the entire infrastructure while feeding the Data Analyzer

and Classifier components. While both modules analyze and classify the data received,

when they find there is room to make scheduling decisions, they send that information to

the Scheduler module to apply it over the cluster infrastructures. Figure 5.2 depicts the
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architecture data flow, where it is possible to observe how collected metrics are processed

through each component.

Time-Series
Analysis

Classifier Scheduling
DecisionsIntP

Interference Metrics

Time Segmentation

Interference 
Levels

Figure 5.2 – Architecture data flow.

This cycle will always run while more than one application is running in the clus-

ter. To clarify, let us look an example: suppose that an application1 starts on Node1,

together with application2. At a certain time, application1 and application2 contend for

CPU (or another resource, i.e.) and the Node Manager perceives this contention and de-

cides to migrate the container which runs application2 to Node2. This scheduling action

aims to use the resources more efficiently, improving QoS and consequently reducing SLA

violations. In the next subsections, each component is presented in detail.

5.1.1 Interference Profiler

Profiling runtime applications is not a straightforward task, given that different

tasks may stress arbitrary resources, causing variations in resource consumption. In ad-

dition, an intrusive profiler can induce the performance of applications and compromise

reliability. The literature presents works that address resource contention aspects among

applications in a simple way, either present or not present [LXK+19]. Also, a number of

application profiling mechanisms, ranging from kernel-based [Yag02] to runtime [USR03]

profiling that use especially linked libraries, have been proposed in the past.

In this study we adopted, the previously mentioned IntP tool [Xav19], which pro-

files the application at execution time, returning the interference the application gener-

ates on each resource subsystem. IntP allows us to profile applications at runtime (every

second), so it is possible to analyze what resources receive the most interference gener-

ated by target applications. This gives us interesting information to perform an analysis

of applications’ interference behavior changes over time.

5.1.2 Time-Series Analysis

We aim to evaluate the influence of application interference over time, but deal-

ing with dynamic workloads at runtime is a challenging task. Time is an important factor

that must now be considered in our model, regardless of the online trend. For example, to



59

perform dynamic scheduling actions on-the-fly, it is necessary to define when our architec-

ture will execute. As already mentioned, in previous work [MKDD21b], we moved a step

forward and created a static-defined time interval scheme to start analyzing segmented

scheduling, and preliminary results presented a considerable improvement in hardware ef-

ficiency. Since we are interested in accomplishing automatic scheduling decisions based

on interference levels generated across applications, we needed to carry out a statistical

time-series analysis to address the profiled data and point to patterns. However, there

are some specific aspects that arise when working with time series, such as: Is this data

stationary? Is there seasonality? To work around these questions, we performed an online

change point analysis [Pag19] aiming at determining the time points with the most signif-

icant behavior changes, considered crucial for analyzing and classifying the profiled data,

and subsequently, performing scheduling actions.

Change points are abrupt variations in the generative parameters of a data se-

quence. Online detection of change points is useful in modelling and predicting time series

in application areas such as finance, biometrics, and robotics [Pag19]. A time series con-

sists of multiple assessments of a specific outcome measure, at a group level, at regularly

spaced time intervals. The “interruption” or “change point” of the time series is an identi-

fiable real-world event.

Since IntP profiles each application in an isolated manner and provides multiple

metrics (different resources) from each, we first had to reduce dimensionality. There-

fore, we applied Principal Component Analysis (PCA) [R C19] over each application. PCA

is a method to reduce dimensionality that is often used to reduce the dimensionality of

datasets, by transforming a set of variables into a smaller one that still contains most of

the valuable information in the large dataset. In our case, we decided to reduce the seven

metrics profiled in IntP to only one for each application. Depending on the order the algo-

rithm sorts the metrics, the PCA outcome changes. Thus, to determine how to best arrange

the interference metrics, we performed several tests and decided to place the metrics in

order of performance degradation priority. In previous work [MKDD21b], we introduced

this priority order, arguing that when there is resource contention, some hardware com-

ponents present more elevated performance degradation indexes than others. Thus, we

decided to apply PCA with the following resource order: disk, memory, cpu, cache, and

network. Because performance degradation caused by disk resource contention is bigger

than that caused by network, for example. If there is no disk usage, PCA takes the next

resource in the queue order, memory in this case. If there is no memory utilization, the

next resource will be considered as the main one, and so on.

After reducing the profiled data from each application to a single dimension, ob-

serving its performance degradation priority, we applied the Online Change Point Detec-

tion (OCPD) function, from R Package [Pag19], over all applications’ metrics. This tech-

nique implements the Bayesian online change point detection to handle multivariate data,
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computing the set of change points with the highest probability online (updating the re-

sults with each incoming point). This method outputs a list of change points over time

(x-axis) while running the model, in an online fashion. The entire process of reducing and

analyzing profiled data is depicted in Figure 5.3.

AppN
7 Dimensions

Principal Component Analysis

App1
1 Dimension

App2
1 Dimension

AppN
1 Dimension

Online Change Point

...

...

IntP Profiling Data

Time points (x-axis)

App2
7 Dimensions

App1
7 Dimensions

Figure 5.3 – Data scheme of data profiling (IntP), dimensionality reduction (PCA), and dis-
covering change points over time (OCPD).

To present a simple use case example, we ran an experiment adopting Node-

Tiers. First, we chose two memory-intensive applications from the Node-Tiers suite, then

we created a synthetic workload for each one. Each workload purposely produced an

interval with a high-load request rate: (A) between 60 and 120 seconds; and (B) between

180 e 240 seconds, accordingly Table 5.1.

Table 5.1 – A and B applications’ workloads behavior.

Intervals (s) A (req/s) B (req/s)

0 - 60 100 100

61 - 120 200 100

121 - 180 100 100

181 - 240 100 200

241 - 300 100 100
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Both applications (A and B) were executed together while profiled with IntP, and

the results are presented at the top of Figure 5.4.
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Figure 5.4 – Profiled data (IntP) from A and B execution (top); PCA resulting data along with

found OCPD change points (bottom).

The metrics collected passed through the PCA phase and then produced A and

B data results, shown at the bottom of the same Figure. Finally, this data was submitted

to the OCPD function, returning the moments where both applications presented abrupt

behavior changes (60s, 120s, 180s, and 240s), seen in the same image. It is possible to

observe that OCPD is able to handle multiple applications due to its multivariate charac-

teristics, making it a good candidate tool for our architecture.

5.1.3 Interference Classification

A number of techniques have been proposed regarding interference classifica-

tion, such as: collaborative filtering [DK13], decision-tree [MYXW13, JG17], major interfer-

ence source [KS17, DKCS18] and resources historic mean [CSG14, CSGK16]. The authors
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from [LXK+19], the most closely-related to our study, developed a scheduling model that

considers interference levels among applications to increase resource usage. Even though

the authors’ approach increases the state-of-the-art in the scheduling resource field, their

classification was developed with fixed thresholds that are empirically defined.

In order to find alternatives to minimize interference overhead effects on schedul-

ing decisions, we proposed a classifier that quantifies cross-application interference in

levels over time in the previous chapter. It is an interference classifier method that bet-

ter represents the workload variability and improves hardware utilization. The main pur-

pose of our classification method is to return the hardware resources’ that the interfer-

ence produced by applications had caused, within a time slice, to a given degree. This is

achieved by exploiting the combination of two different machine learning algorithms: (i)

SVM for classification and (ii) K-Means for clustering. Initially, SVM receives interference

data from applications, collected each second by IntP, and those metrics are classified

and stored into resource queues for their respective classes: memory, CPU, disk, network,

and cache. Subsequently, K-Means quantifies values for each queue and returns their in-

terference level for a specific period. In addition, we adopted four interference levels: (i)

absent, when there is no interference incidence; (ii) low; (ii) moderate; and (iv) high. Both

machine learning algorithms use a previously defined training dataset to assist them in

making decisions.

The proposed ML-based interference classifier dynamically defines thresholds

and assigns interference levels for each resource used by the monitored applications for

a particular time slice, without the need for user intervention. This classification process

is repeated until the end of the execution, characterizing the dynamicity of our approach.

In fact, interference levels are reevaluated regularly, accordingly to the OCPD function, to

ensure that we are able to better react to significant workload changes.

To present an example, we will use a decision support benchmark called TPC-H.

We created an increase workload, starting with a low load and gradually moving up to

a high load. This workload execution was profiled with IntP, arbitrarily divided into four

segments, and each one was classified by our approach. The classification result is shown

in Figure 5.5.

There are resources that do not change their labels, for instance, memory, disk,

and network. Since they keep their interference metrics at the same level, on average,

with no expressive variation, their labels are maintained. On the other hand, there are

some resources that do change their labels, which are the CPU and Cache.

The CPU has a smooth increase in its behavior, moving from moderate to high.

Cache keeps its high level label while executing, then changing to moderate and then back

again to high interference levels. This highlights that, due to the dynamic nature of the

workload, the application presents different interference labels during its execution.
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Figure 5.5 – Segmented TPC-H static interference classification. To facilitate the visual-
ization, a Loess function was applied to smooth short-term variations in each resource.
Resources labels that changed are shown in bold in the bottom plot. IntP metrics that do
not suffer any interference were not depicted.

5.1.4 Scheduling Algorithm

Scheduling consists of ordering running jobs across available computational re-

sources [HZdLZ20, TVN+20]. To do this with interference awareness, the Node Manager

first pulls the task into the available node slot. It then profiles the interference from each

application and, based on the information generated from previous components, assigns

them on the best candidate nodes to minimize the overall performance interference. IADA

is an architecture that relies manly on a reactive approach, so that the applications are

constantly profiled and when OCPD technique finds significant workload variations, the

most recent interval data is used to perform scheduling decisions.

The applications start at zero and are monitored continuously every second. The

time-series analysis evaluates the data and returns X , which is the point found by the

OCPD function with the greatest relevance in the workload variation of the applications.

When X is found, the classification module generates an interference label for each appli-

cation resource running in each container. The interval between X(n−1) and Xn is defined

as ∆Tn. When a ∆Tn is found, the scheduling is performed based on the most recent data,

which means, the last ∆Tn outcome.

The traditional view for real-time scheduling problems focuses on how to find a

feasible schedule for an application set. However, the scheduling of a given application

set is not straightforward. With the rapid increase in the use of powerful cloud systems,
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an efficient task scheduling policy, which deals with the assignment of tasks to resources,

is required to reduce performance degradation. Task scheduling is an established NP-

Hard optimization problem that can be effectively tackled with meta-heuristic algorithms

[CSK20]. Taking this statement into account, we decided to use a heuristic algorithm to

solve our problem. Ludwig et al. [LXK+19] tested many heuristics to schedule applications

with interference awareness and concluded that Simulated Annealing (SA) presented the

best overall results. Therefore we decided to apply a modified SA algorithm that addresses

interference-aware aspects in this work.

The SA algorithm is an optimization method which mimics the slow cooling of

metals, which is characterized by a progressive reduction in the atomic movements that

reduce the density of lattice defects until a lowest-energy state is reached [KGV83]. In

a similar manner, the simulated annealing algorithm generates a new potential solution

to the problem by altering the current state, according to predefined criteria. The new

state solution is then based on the satisfaction criteria, and may be accepted even if they

do not lead to an improvement in the objective function.Table 5.2 shows the summary of

notations that we used along this work.

Table 5.2 – Notations for the problem formulation.

Symbol Meaning

X The point found by the OCPD function with the greatest
relevance in the workload variation of the applications.

X(n−1) Start of the interval analyzed by the scheduler.

Xn End of the interval analyzed by the scheduler.

∆Tn The interval between X(n−1) and Xn.

S Initial set of applications that IADA is handling.

P Set of physical machines (hosts) that IADA is handling.

Smodified
New placement solution suggests every iteration to
compare with the best one.

k Index of hosts’ summation, ranging from 1 to Nh.

Nh Total number of hosts in the environment.

j Index of applications’ summation, ranging from 2 to Na.

Na Total number of applications in each cluster node.

L Interference level index in each resource.

Since our architecture moves applications among cluster nodes at runtime, we

developed an algorithm based on SA to find the best arrangement of applications in order
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to minimize performance degradation. The algorithm 1 presents how our architecture

scheduling policy works.

Data: P, A, temperature, coolingRate
Result: solutionbest
s = roundRobin(P,A);
bestsolution = s;
while (temperature > 1) do

newsolution = randomFunction(s);
bestscore = bestsolution.getInterferenceScore();
newscore = newsolution.getInterferenceScore();
if (newscore < bestscore ) then

if (bestsolution.getMig() < newsolution.getMig() ) then
bestsolution = newsolution;

end
end

end
Algorithm 1: Optimized Simulated Annealing

Initially, the algorithm creates an application set S, in which each container re-

ceives one application instance to execute. All containers are then distributed among

cluster nodes by a RoundRobin function that receives a set of physical machines P an

a set of applications A to be executed. Every SA iteration generates one new solution

Smodified that is compared to the best solution at that point. This new solution is generated

by the Random Swap Function, presented in Algorithm 2.

Data: solution
Result: Smodified
p = Math.random();
if (p < 0.5) then

app1 = getRandomApp(solution);
app2 = getRandomApp(solution);

else
app1 = getHigherScoreApp(solution);
app2 = getLowerScoreApp(solution);

end
swap(app1, app2, solution);

Algorithm 2: Random Swap Function

This function relies on a randomized approach, in which the function has a 50%

chance of swapping random applications in the cluster and 50% chance of swapping the

application of the cluster node with highest score to the cluster node with lowest score.



66

After finding the new solution, if Smodified presents an interference degradation

index lower than the current one, the algorithm replaces the current (best) solution with

the new one. To compare both solutions, we created a function InterferenceScore() that

analyzes the interference levels in ∆Tn and returns a total interference score, which is

calculated by using the function seen in Equation 5.1.

TotalIntScore∆T =
Nh

∑
k=1

IntScoreHost , ∀k ∈ s | k ≥ 1. (5.1)

The total interference score is the result of the sum of all interference scores from

each cluster node, where k represents the index of hosts’ summation in the environment,

ranging from 1 to Nh (total number of hosts). Each cluster node has its own interference

score as well, this is calculated with a function demonstrated by the Equation 5.2.

IntScoreHost =

∏
Na
j=1 IntScoreApp, if j ≥ 2

0, otherwise
(5.2)

Where j denotes the index of applications’ summation in each cluster node, rang-

ing from 2 to Na (total number of applications). If there are less than two applications

running in a cluster node, it will not generate an interference incidence in that specific

node and consequently will return a zero-score, since only one or no one application does

not cause interference. Finally, the application interference score is calculated by the

Equation 5.3.

IntScoreApp = cpu(L)×mem(L)×disk(L)×net(L)×cache(L) (5.3)

All resource interference metrics (cpu, memory, disk, network, and cache) were

measured and allocated into a level L. Depending on the level they are assigned, the

interference overhead index value varies, according to Figure 5.6.

To find these Interference Degradation Indexes (IDI), first we ran applications with

each resource-intensive (e.g. cpu-intensive, memory-intensive and so on) in isolation and

took the average response time. Then we ran each one again co-hosted with one more

application instance at a specific level (low, moderate, and high), according to the clas-

sifier method, and found the average response time from both. Based on these metrics,

we discovered how much each resource degraded at each interference level by using the

Equation 5.4.

IDI =
ResponseTime(level+absent)

ResponseTimeabsent
(5.4)

To illustrate this scenario for memory, lets take an example: We executed a mem-

ory intensive application in isolation, which resulted in ResponseTimeabsent = 23.2ms.
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Figure 5.6 – Interference degradation index by resource.

While co-hosted with a low-intensive memory application, the runtime increased to ResponseTime

(low+absent) = 24.4ms, which produced IDI of 1.10. When co-hosted with a Moderate-

intensive application, the response time increased to ResponseTime(moderate+absent) = 39.2ms,

resulting in an IDI of 1.69. Finally, when co-hosted with a High-intensive memory applica-

tion, the response time increased to ResponseTime(high+absent) = 41.5ms, resulting in an

IDI of 1.79.

Another important aspect that is analyzed in SA algorithm, is the number of mi-

grations with the new generated solution. If the number of migrations performed in the

new solution is higher than the best solution, this new solution is eliminated and another

one is considered. The migrations number is found with the help of the getMig() function,

as seen in algorithm 1.

5.2 Evaluation and Results

In this section, we describe how the experiments were conducted, the scope, and

the limits of the project. Also, the details about workload, application, and the computa-

tional environment adopted in this work are discussed.
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5.2.1 Application and Workload

To investigate applications that present dynamic workloads (unpredictable load

variation) by stressing different hardware resources, Node-Tiers was adopted. This tool ex-

plores the latency-sensitive application’s concept (client-server) and enables the creation

of workload variations. The goal is to stress hardware resources in many ways (distinct

resources), through many latency-sensitive applications from this suite benchmark, in-

creasing and decreasing the request arrival rate, and executing scheduling decisions at

runtime, handling changes in the workload.

To create a most realistic scenario, we evaluated our architecture using three

real-world workload traces. The first one was from NASA 1 dataset, consisting of all the

requests made to the 1998 World Cup Web site between April 30, 1998, and July 26, 1998.

The second one was from the Wikimedia project, found in Wikipedia 2 traces. Specifically,

we collected the page view statistics for the main page in the English language for the

month of January 2021. The last one is from Alibaba Open Cluster Trace 3, this one is

sampled from one of our production clusters. There are both online services and batch

workloads, and we collected only information from Sigma, the online service scheduler.

5.2.2 Experiments Scenarios

To explore the efficiency of our architecture, we dived all experiments into two

phases: first, we used a real-scenario with a small number of machines to ensure all

chosen technologies worked together correctly and to guarantee the simulation phase

outcomes were real, reflecting reliable results; and second, based on the previous phase,

we built a simulated environment, to test our architecture with a bigger number of cluster

nodes, and consequently, more applications. In the next sections we describe how each

phase was performed and the results.

5.2.3 Practical Experiments

To run our experiments within a practical testbed, we used the Pantanal cluster

from the LAD Laboratory 4 from PUCRS. This cluster has Dell PowerEdge R740xd nodes,

each one equipped with: 2x Intel Xeon Gold 5118 Processor, 300GB DDR4 RAM Memory,

1ftp://ita.ee.lbl.gov/html/contrib/
2https://dumps.wikimedia.org/other/analytics/
3https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
4https://www.pucrs.br/ideia/lablad/
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1TB Hard Drive, and 4x Gigabit Ethernet Interface. Also, as the Node Manager, we used

one Dell Optiplex 990 outside of the cluster, equipped with 8GB of RAM, and one Core i5

processor.

To stress different resource subsystems (CPU, memory, disk, network, and cache),

we used different applications from the Node-Tiers suite. The server-side was performed

over the cluster, while the client-side was configured on a single computer, using Artlillery 5,

a load stress testing tool. The server-side applications were executed inside containers,

more specifically one container per application. Since containers present many benefits

compared to traditional virtual machines, we decide to adopt LXC/LXD containers as a

target virtualization technology, allowing us to schedule the applications with live migra-

tion across the cluster nodes with Checkpoint/Restore In Userspace (CRIU 6) functions. All

pieces of equipment were connected through a Gigabit Ethernet Network.

We ran four applications inside each cluster node, and each one was submitted to

two hours of a workload trace (randomly chosen), mixing the chosen datasets and creating

greater variation among application workloads.

To evaluate the proposed architecture efficiency, we compared it to three sched-

ulers found in the literature: (i) EVEN, the state-of-the-art round-robin scheduler, also con-

sidered a baseline in this work; (ii) CIAPA, considered the most closely-related work that

applies interference levels to make placement decisions; and (iii) Segmented, a schedul-

ing scheme from our previous work. More details are presented below:

• EVEN implements the EvenScheduler algorithm, which is the Apache Storm 7 default

scheduler. This algorithm distributes computation tasks across nodes in a Round-

Robin manner [ASZ20]. When tasks are scheduled, this approach counts all available

slots on each node and places application instances to be scheduled one at a time to

each node while keeping the order of nodes constant. We decided to use this method

because Apache Storm is a well-known framework that processes real-time data, like

cloud multi-tenant systems, which are the target applications in this work. Moreover,

we consider EVEN as a baseline since it is the less optimized approach. In this case,

the applications are placed into the cluster nodes in a round-robin fashion, meaning

that they are not moved while the experiment is executing.

• CIAPA [LXK+19] evaluates the profile of the application workloads and uses an in-

terference classification in levels. This approach was chosen because it is the work

most closely related to ours. The difference between this work and ours lies in the

fact that the classification is static, done only one-time at the beginning of the exe-

cution, and the definition of interference levels thresholds are fixed and empirically

5https://artillery.io/
6https://criu.org/
7https://storm.apache.org/
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defined. Firstly, the applications are placed in a round-robin manner and then the col-

lected data is analyzed in 10-minute intervals, and only one scheduling movement

is done. The placement of the application is not changed after that.

• Segmented [MKDD21b] applies an interference classification using levels, similar to

CIAPA. The difference is that the Segmented scheduler arbitrarily divides the appli-

cations’ executions into four parts (proportional), and based on that division, it clas-

sifies the generated interference in levels per segment. The goal of this approach

is to find an alternative to classify applications’ interference considering workload

variability, not only using a simple average over the entire execution.

For this experiment phase, we used four nodes of the Pantanal cluster, each

one executing four Node-Tiers applications, totaling 16 applications. When using latency-

sensitive applications, the response time (latency) metric quantifies how long the user

must wait for a response to a query, regardless of the quality of the response. Together

with data quality metrics, latency metrics provide the best indication of the end-user ex-

perience under normal conditions and during outages [Bro04]. For this reason, we decided

to use the Average Response Time as the main performance metric in these experiments,

which represents the total latency for the test divided by the number of requests sub-

mitted to the server-side by the users-side. The response time was collected from each

application during the entire experiment with Artillery, and their total average is presented

in Figure 5.7.
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Figure 5.7 – Average Response Time from practical experiments phase.

It is worth noting that in all experiments, our proposed architecture presented

the best results, improving the average response time by 26% when compared to other

solutions. When compared to EVEN scheduler, our proposed architecture reached a 40%

average reduction of response time. EVEN scheduler reached the highest response time
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indexes (worst results), as predicted since this scheduling strategy is not interference-

optimized. Compared to the CIAPA approach, IADA reduced the average response time by

24%. In contrast to Segmented, IADA obtained a reduction of 15% of the average response

time.

By running 16 applications with a mix of workload variations, IADA detected 12-

time points with expressive (global) behavior change. Consequently, 12 periods were clas-

sified and each one provoked scheduling actions. As mentioned before, the Data Analyzer

component uses a bayesian change point detection to find a workload behavior modifi-

cation, but this does not imply that all applications, in all analyzed intervals, had their

interference labels modified, changing their interference degree (levels). The applications

only have their labels modified if the workload variation has an abrupt alteration.

To give an example of how much the interference in a node is affected by schedul-

ing actions, we collected the average interference generated in Node1 and Node2 within

a given period, every second, while a scheduling rearrangement was performed. This is

presented in Figure 5.8.
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Figure 5.8 – Average interference indexes in Node1 and node2 while performing a schedul-
ing action. Applications which have migrated across nodes are shown in bold.
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This image illustrates the average interference generated by the 8 applications

running in Node1 and Node2 before and after a scheduling change. The red broken line

demonstrates the exact moment the scheduling was executed.

By looking at the interference measures, it is possible to perceive two interesting

facts: (i) after the scheduling, Node1 and Node2 exchanged app2 (disk intensive) and

app6 (cpu intensive) applications (in bold at the image); and (ii) after this rearrangement,

Node1 had its disk interference ratios considerably reduced while Node2 had its disk ratios

increased. Also, Node2 had its cpu interference indexes reduced while Node1 had its

overall cpu usage increased. In general, it is possible to observe that this scheduling

operation provided a balance across interference indexes, improving resource usage and

reducing the response time of the applications.

Therefore, these results show that a technique that frequently analyzes the gen-

erated interference over time is able to reduce the overall system’s overhead, using the in-

frastructure more efficiently, and consequently, improving QoS requirements. Also, these

experiments show that the proposed architecture presents interesting and trustworthy

outcomes, and they will be used to calibrate and perform the simulation experiments,

presented in the next section.

5.2.4 Simulated Experiments

In order to carry out experiments closer to a real scenario, a large physical ma-

chine set is necessary. To have more flexibility to perform different host arrangements,

we decided to scale our approach through simulation as well. First, we searched in the

literature for tools that simulate cloud infrastructures [LSN+09, KBK12, NLC+12, CRB+11].

After exploring each simulation tool, we concluded that none of them offerd an environ-

ment able to handle interference aspects from applications. Then, we confirmed that

CloudSim [CRB+11] is the most widely spread cloud simulator and by far the most so-

phisticated. It was developed as an add-on-top of the grid network simulator GridSim

[Cas01]. CloudSim is a completely customizable tool that supports modeling, creation

of one or more VMs, and mapping tasks to appropriate virtual machines. This gives

CloudSim the ability to handle a complex simulation environment. It mainly targets ap-

plication developers or testers as it gives the ability to configure several variables such

as the number of users, data centers, and cloud resources along with the location of both

users and data centers. Though there are many studies extending CloudSim, such as

[BB12, GMC+13, XRR+17, KMX+20], one in particular supports Container as a Service

(CaaS), namely ContainerCloudSim [PDCB17]. This extension provides a platform for mod-

eling and simulating containerized cloud computing environments. Therefore, it is the

most fitting simulation tool to use nowadays and the one we chosen to extend with ap-
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plication interference features. We developed the CloudSimInterference version, which

is a trace-driven simulation tool. Thus, to perform our simulated experiments, first each

application execution was performed in a physical machine and all IntP metrics were kept

and used as input for our workload simulations.

To implement our simulation plugin, we made many class modifications in Con-

tainerCloudSim. First, we extended the containerCloudlet() class to InterferenceContain-

erCloudlet(). This class is responsible for representing the application behavior, and we

included all Interference metrics measured with IntP, each keeping the information from

each application trace generated from the real execution. Another major modification, was

the integration with the R algorithms to perform the OCPD and ML functions, presented

in the sections 5.1.2 and 5.1.3. To perform this integration, we included the JRI (Java-R-

Integration) library on the java side and the rJava library on the R side. Also, we extended

containerDatacenter() class to InterferenceContainerDatacenter(), including several func-

tions to handle the modifications done with interference metrics utilization. All source

codes are available in a GitHub repository8.

To generate a considerable number of applications (InterferenceContainerCloudlets)

for the simulation experiments, we executed several hours of each workload trace (seen

in section 5.2.1) with five application instances from Node-Tiers suite, stressing the main

hardware resources (cpu, memory, disk, net, and cache). Then, we randomly divided

those execution traces collected with IntP into two-hour segments to use as input data in

our simulation experiments.

To run the simulated experiments, we used four different arrangements of cluster

node numbers and application instances, presented in Table 5.3.

Table 5.3 – Hosts/applications arrangements used in simulated experiments.

Hosts Applications

6 24
12 48
24 96
48 192

As mentioned before, we used the real experiments as a base to calibrate our

simulator. To produce more reliable results and as close as possible to real case scenarios,

we continued to use four applications in each node as well. Figure 5.9 presents the results

from the simulated experiment phase.

It is noteworthy that in all experiments, IADA achieved the best results (lower in-

dexes). When compared to EVEN scheduler, our proposed architecture reached a 37%

8https://github.com/ViniciusMeyer/CloudSimInterference
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Figure 5.9 – Average Response Time from simulated experiments phase in each host ar-
rangement (6, 12, 24, and 48).

average reduction of response time. Not surprisingly, EVEN had the worst results as

well, similar to the real experiments, because this scheduler was not developed based

on interference-awareness. Compared to the CIAPA approach, IADA reduced the average

response time by 21%. In contrast to Segmented, the state-of-the-art strategy, IADA ob-

tained a reduction of 14% of the average response time.

To analyze the variation of response time, we took the average response times in

each scheduled interval, during the experiments running with 24 nodes (96 applications),

and compared them with EVEN, CIAPA, and Segmented schedulers’ results. These results

are presented in Figure 5.10.

It is interesting to observe that EVEN scheduler places the applications at the

beginning of the execution and they are not moved later. That is the reason its represen-

tation in the image is a straight line, depicting the total average in the entire execution.

Something similar happens with the CIAPA strategy, within the first 300 seconds the inter-

ference metrics are collected and analyzed, and after that just one placement decision is

made, not executed again, and it is represented by a straight line as well in the total aver-

age over the entire execution. In the Segmented approach, the application execution was

divided into four segments, and at the end of each one, scheduling actions were taken.

This strategy improved the overall response time compared to EVEN and CIAPA strategies

because it adjusted the infrastructure to applications, taking into account the variability

of workloads [MKDD21b], even considering only a few segments (four in this case).
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Figure 5.10 – Average Response Time in each scheduled interval from the 24-nodes exper-
iment.

In general, IADA achieved the lowest response time rates (best results). How-

ever, there was an interval that presented worse results than CIAPA’s scheduler, depicted

in point A. This happened because IADA relies on a reactive approach, using the most

recent data and not a general view to make scheduling decisions, so that in interval A

the workload had an abrupt behavior change, not presenting the best scheduling arrange-

ment, but still is considered as an acceptable result.

There were intervals that IADA was close to CIAPA’s outcomes, which were the B

and C intervals’ cases. Also, the major response time reduction can be seen in the interval

D, reaching an average improvement of 57% in relation to EVEN, CIAPA, and Segmented

scheduling approaches.

It is important to highlight that the proposed scheduling architecture adjusts ap-

plications over the hardware based on the workload oscillation, in real-time, and in a reac-

tive manner. So far, the outcomes found in this work support our idea that an interference-

aware dynamic scheduling architecture designed to observe workloads tends to reduce

the overhead generated by cross-application interference over the system, and conse-

quently utilizing the available hardware resources more efficiently.

With these results, the RQ3 is answered, affirming that to move from static to

dynamic interference-aware scheduling some architectural changes must be made. We

discovered that a common approach used in the state-of-the-art is to profile applications,

somehow classify them, and make scheduling actions, which was what we did in the pre-

vious chapter. To build a dynamic interference-aware scheduling architecture, we had to

include in our Node Manager, a module that finds the right moments to analyze profiled

data and coordinate with the entire system. This component guarantees that our archi-
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tecture has the capability of performing scheduling decisions automatically, without user

intervention. Also, we had to develop some modifications in the scheduling algorithms to

reduce the number of migrations as much as possible, since we are performing schedul-

ing actions at runtime and this type of operation can generate more overhead than we

are trying to prevent, if not controlled. It turns out that our strategy tackled this issue,

ensuring improvement in hardware utilization and reduction in applications’ degradation.

5.2.5 Overhead Evaluation

Considering the dynamic nature of the problem, it was necessary to run some

preliminary steps in order to make the scheduling decisions. As mentioned before, those

steps are profiling applications, analyzing time-series data, and performing interference

classification with ML techniques. After that, with a heuristic-oriented algorithm, it was

possible to execute scheduling actions.

All these techniques put some overhead pressure on the cluster system, as well

as on the Node Manager. To examine these aspects, in the next sections, we performed

some analysis to find out if the overhead generated by the proposed architecture could

make it infeasible.

Overall Migration Cost

When running experiments with the practical scenario, we performed many con-

tainer migrations across the cluster. In terms of hardware resource usage, the overhead

rate created by a single LXC/LXD migration can be considered low over the entire com-

putational environment. To present how much this operation affected the system, we

executed one container migration and profiled LXC/LXD processes with IntP. Figure 5.11

illustrates the hardware utilization while performing a single container migration across

the cluster.

In our experiments the migration time took about 18 seconds to be performed,

on average. However, when the number of container migrations increased, the resulting

overhead considerably increased as well. So, such operations should be minimized as

much as possible. As mentioned in section 5.1.4, IADA uses a heuristic to find the best

applications’ set to schedule applications over the cluster. We developed an optimized

version of CIAPA [LXK+19] scheduler algorithm, taking the number of migrations into ac-

count when deciding the best scheduling actions. The IADA scheduling algorithm was

developed to dynamically deal with workload behavior changes, adjusting its decisions

considering the most recent data and its behavior. It is important to keep the number of

migration operations at the minimum, and therefore, the amount of migrations operations
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Figure 5.11 – Resources’ behavior while running a container migration across cluster
nodes.

is contemplated as a quality measure to decide if the new solution created is better than

the actual one.

Considering that IADA automatically finds the best moments to classify data in-

tervals, and it runs scheduling decisions based on this, in all experiments we also observed

the number of intervals found by the Data Analyzer component and how many migration

actions were performed. These metrics are presented in Table 5.4 for each host arrange-

ment.

Table 5.4 – Number of intervals found by Data Analyzer component and how many migra-
tions were performed per host arrangement.

Hosts Applications Intervals Migrations Migrations/Interval

6 24 18 115 6
12 48 23 245 11
24 96 24 712 30
48 192 27 1323 49

Observing this table, it is evident that the more applications IADA is controlling,

the more intervals will be found. The more data (more applications with distinct workload

patterns) the proposed architecture is analyzing, the greater the amount of information

to be processed, consequently increasing the dynamism in the environment and gener-

ating greater optimization opportunity. Of course, this is also highly dependent on the

variation of workloads, but since we are monitoring dynamic applications, these are not

unexpected outcomes. Looking at the number of migrations performed, the more appli-

cations running in the cluster, the greater the number of migrations as well, practically

following a linear trend with applications’ number. At the first sight, the number of migra-

tions performed with 192 applications seems to be exaggerated, but when dividing the

number of migrations by the interval (Migrations/Interval), it is possible to notice that the
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number of migrations makes sense, being proportional in relation to the number of hosts,

almost one migration per host per interval, demonstrating a reasonable outcome.

Machine Learning Utilization Boundaries

According to section 5.1.4, when P is defined, then ∆T is established. After, this

data interval is sent to the Classifier component so that depending on the data quantity

(interval length), this process time can vary. On average, in our experiments, each applica-

tion took about 1 second to be classified. To improve the performance of this proceeding,

we used the doParallel library [CW20] from R packages. This library can be adopted to

send tasks (encoded as function calls) to each of the processing cores on a machine in

parallel. This is done by using a function that distributes the tasks to multiple processors.

After this function gathers the responses up from each process call and it returns a list

of responses, which is the same length as the list or vector of input data (one return per

input item). To speed the classification process up, we performed the ML training phase

previously, generating RDA files. These files are the results from the R programming lan-

guage within the training dataset phase so that it is not necessary to execute the model

training phase each time the classification process is performed.

Depending on the number of applications running inside the cluster and the

length of data sent to the Classifier component, the ML analysis can take longer to be

performed. In our experiments, the largest classified interval took less than 25 seconds,

which is very reasonable, since each scheduling decision was not performed within less

than a 20-seconds interval, that is the meantime to migrate containers across the cluster

nodes. To mitigate how much time the classification process takes, in an isolated manner,

we performed a partial experiment only with this component. It was applied a set of appli-

cation workloads quantity with varied interval lengths. We used fixed intervals, between

30 and 600 seconds, with a 30-seconds variation. For each selected interval, we ran 24,

48, 96, and 192 application workloads, from the simulated experiment phase. Figure 5.12

presents theses results.

When looking at this image, it is possible to observe the classification follows a

linear trend, which is already expected since the classification is not a distributed process,

and at certain times we are allocating more tasks than the number of cores our Node

Manager owns. It is interesting to notice that it takes less than 30 seconds to accomplish

the classification of 192 application workloads with a 10-minutes interval length, meaning

the biggest application quantity with the largest period in this experiment. This result can

be considered acceptable if the target applications do not have workloads with extreme

behavior patterns variability.

In conclusion, if there are an expressive number of applications or the length of

the monitored period will be increased, it could be necessary to adopt a different machine
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Figure 5.12 – Classification makespan from a set of applications with different interval
lengths.

with more computational power (more CPUs) than our Node Manager, in order to ensure

the architecture works correctly.

A Non-intrusive Profiler

To ensure that IntP does not input a considerable overhead over the hardware,

we ran an experiment with NAS Parallel Benchmarks (NPB)9, which are a small set of

programs designed to help evaluate the performance of parallel supercomputers. First,

we ran BT.d, CG.c, DC.b, EP.d, LU.c, MG.d, and UA.c algorithms without any profiler. Then,

we ran each one again with IntP profiling them. Each execution was performed 10 times

and the resulting meantimes are presented in Figure 5.13.

Since IntP core works with low-level kernel events instrumentation, in our experi-

ments, when it was enabled, its execution practically did not generate overhead. Meaning

that IntP plays a non-intrusive role over the entire system.

General Findings

When a layer of control is included in a system, it is expected to incur a cer-

tain level of overhead. The larger the environment the system will control, the greater

the amount of expected overhead. In this section, we analyzed the three major over-

head sources of our proposed architecture: Migration movements, Machine Learning tech-

9https://www.nas.nasa.gov/publications/npb.html
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Figure 5.13 – NAS Parallel Benchmark (NPB) algorithms’ executions with and without IntP
profiling them.

niques, and the profiling strategy. The modifications carried out in the scheduling algo-

rithms presented satisfactory results in terms of the number of migrations, which could

be scaled out without an excessive increase in overhead. To classify the running applica-

tions, our approach uses machine learning techniques, and these techniques add a layer

of overhead. However, after analyzing the results, we found that even with a large num-

ber of applications, the classification overhead is still in an acceptable ratio. Finally, we

ensured that our profiling technique did not add a substantial layer of overhead to the sys-

tem. After processing all of the outcomes, RQ4 was answered, confirming that there are

ways to implement the changes in the proposed architecture in a manner that controls the

overhead in an acceptable status, not invalidating the gains of the improved scheduling.
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6. RELATED WORK

Many studies have been previously conducted on building interference-aware

scheduling strategies. The main challenge is to find fast and scalable tools for address-

ing real-world applications. Furthermore, with virtualization technology, it has become

possible to easily consolidate and quickly adapt resource allocation. Consequently, many

recent efforts have studied performance interference issues in light of these new capabili-

ties. In this chapter, we focus solely on those works that are concerned with interference-

aware scheduling issues.

Kansal and Ghaffarkhah [NKG10] claim that cloud providers should transparently

provide additional resources as necessary to achieve customer performance requirements

if they are running their applications in an isolated manner. Taking this statement into

account, the authors developed Q-Clouds, a QoS-aware control framework that alters re-

source allocations to mitigate the effects of performance interference. Q-Clouds uses

online feedback to build a multi-input multi-output (MIMO) model that captures perfor-

mance interference interactions and uses it to perform closed-loop resource management.

Q-Clouds dynamically provisions underutilized resources to enable elevated QoS levels,

thereby improving system efficiency. To make its scheduling decisions, Q-Clouds must

first determine applications’ requirements. Therefore, to begin with, VMs are profiled on

a staging server to measure the amount of resources needed to attain a desired level of

QoS in an interference-free environment. The resource capacity determined in the stag-

ing phase dictates what the VM owner will pay, regardless of whether additional resources

need to be provisioned in real-time due to performance interference. Then, Q-Clouds is

able to run its hardware rearrangements based on Q-States, previously defined. Experi-

mental evaluations using several workload mixes from well-know benchmark applications

show that performance interference is mitigated completely when feasible, and system

utilization is improved by up to 35% using the authors’ solution.

Aiming to reduce the runtime and improve the I/O throughput for data-intensive

applications in a virtualized environment, Chiang and Huang [CH11] created TRACON, a

Task and Resource Allocation CONtrol framework that deals with the interference effects

from data-intensive applications, trying to improve the system performance, and conse-

quently minimizing the overall overhead. TRACON utilizes machine learning-based tech-

niques to perform an interference model prediction that infers application performance

from resource consumption observed from different VMs and an interference-aware sched-

uler that is designed to take advantage of the model for effective resource management.

Data-intensive applications normally consume a significant amount of I/O bandwidth and

CPY cycles, therefore the authors decided to assign each application four key characteris-

tics: (i) the read throughput, (ii) the write throughput, (iii) the local CPU utilization in the
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current guest VM domain (DomU), and (iv) the global CPU utilization in the virtual machine

monitor (Dom0). TRACON explores three different scheduling strategies:

• MIOS - an online scheduler that reduces the queuing time for each incoming task by

quickly dispatching them to various virtual machines. This technique was designed

based on the concept of the minimum completion time (MCT) heuristic [BSB+99].

With the goal of minimizing the sum of execution times of all tasks, MCT maps each

incoming task to the machine that completes the task in the shortest time;

• MIBS - a batch scheduler that pairs the incoming tasks based on predicted interfer-

ence. It is based on the concept of the Min-Min heuristic [IK77]. In a batch scheduling

scenario, the scheduling process takes place when the queue that holds the incom-

ing tasks is full. Firstly, the Min-Min heuristic finds a machine with the minimum score

for each task on the queue. Secondly, among all task-machine pairs, Min-Min finds

the pair with the minimum score and assigns the selected task to its corresponding

machine. This procedure repeats until the queue is empty.

• MIX - a mixed scheduler that aims to balance between both batch and online schedul-

ing. It gives every job a chance to be the first job in the queue when executing MIBS,

and hopes that future assignments can possibly offer new opportunities for better

scheduling decisions. The obvious drawback here is that for each task, the delay

may be increased, although the overall performance could potentially be improved.

MIOS has the lowest scheduling overhead, MIX has the potential to achieve the

best performance while incurring the highest possible overheads, and MIBS is in between

which can lead to a good balance between the scheduling performance and overhead.

Evaluation results show that TRACON can achieve up to 50% improvement in application

at runtime, and up to 80% for I/O throughput for data-intensive applications in virtualized

data centers.

Zhu and Tung [ZT12] developed an interference model which predicts the ap-

plication QoS metric. The authors built an influence matrix that estimates the additional

resources required by an application to overcome the interference of consolidated applica-

tions and achieve a desired level of QoS. The most important feature is the consideration

of time-variant inter-dependency among different levels of resource interference. The ap-

plication resource utilization depends on the workload that could be dynamic throughout

the application’s execution, so the authors apply the Kalman filter to predict the applica-

tion workload with the assumption that applications’ future behavior is related to execu-

tion history. To prove the effectiveness of the proposed model, the authors tested several

applications from a test suite and SPECWeb2005 and achieved an average prediction er-

ror of less than 8%. In addition, they demonstrated that using the proposed interference
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model to optimize the cloud provider’s metric (number of successfully executed applica-

tions) to realize better workload placement decisions and thereby maintaining the user’s

application QoS.

Delimitrou and Kozyrakis [DK13] propose Paragon, an online and scalable data

center scheduler that is heterogeneity and interference-aware. Paragon is an improve-

ment of robust analytical methods and instead of profiling each application in detail, it

leverages information the system already has about applications it has previously seen.

It applies collaborative filtering techniques to accurately and quickly classify an unknown,

incoming workload with respect to heterogeneity and interference in multiple shared re-

sources, by identifying similarities to previously scheduled applications. In an offline

setup, the authors choose applications and profile them on all different server arrange-

ments. Then, they normalize and save the performance results. This only needs to happen

once. If a new configuration is added in the DC, these applications must be profiled on it

and the results added to the past results. In the online mode, when a new application ar-

rives, Paragon profiles it for a period of 1 minute on any two server configurations, inserts it

as a new performance result and uses this information to perform its system decisions. Co-

scheduled applications may contend for a large number of shared resources. Therefore,

the authors identified ten such sources of interference (called SoI) and designed a tunable

microbenchmark for each. SoIs span resources such as memory (bandwidth and capac-

ity), cache hierarchy (L1/L2/L3 and TLBs) and network and storage bandwidth. Paragon

also evaluates the accuracy of interference classification addressing single- and multi-

threaded workloads and the same systems for heterogeneity classification. The average

error achieved by the classifier is 5.3% in estimating interference across all SoIs. Results

show Paragon keeps QoS guarantees for 52% of the applications and bounds degradation

to less than 10% for an additional 33% out of 8,500 applications.

Bu et al. [BRX13] introduce a task scheduling approach to alleviate interference

and simultaneously preserving task data locality for applications with MapReduce charac-

teristics (Hadoop). The authors’ strategy includes an interference-aware scheduling pol-

icy, based on a task performance prediction model, and an adaptive delay scheduling algo-

rithm for data locality improvement. The interference and locality-aware (ILA) scheduling

strategy have been developed in a Hadoop virtual cluster. ILA’s engine works with four

major components: (i) the Interference-Aware Scheduling Module (IASM) to analyze the

interference between tasks running on co-allocated virtual machines supported by an in-

terference prediction model; (ii) the Locality-Aware Scheduling Module (LASM) keeps good

data locality for map tasks by applying an Adaptive Delay Scheduling algorithm; (iii) the

Task Profiler (TP) estimates the task’s requirements of each job and feeds task information

to IASM and LASM modules; (iV) the ILA scheduler instructs IASM and LASM modules to

execute interference scheduling actions. The scheduler module executes the interference

and locality-aware scheduling movements based on fair scheduling. At each interval, ILA
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selects a task from a queue, according to the job’s fairness. However, occasionally the

goal of alleviating interference and maintaining data locality may conflict. In this case,

the ILA scheduler always considers the interference mitigation first, since virtual machine

interference causes much more performance degradation than remote data access and no

interference is a precondition for achieving good data locality. Effectiveness and efficiency

evaluations on a 72-node Xen-based virtual cluster showed that ILA was able to achieve a

speedup of 1.5 to 6.5 times for individual jobs and improvement system throughput up to

1.9 times compared to the four other MapReduce schedulers.

Zang et al. [ZRWZ14] propose two schedulers: one in the virtualization layer

designed to minimize interference on high priority interactive services, and one in the

Hadoop framework that helps batch processing jobs meet their own performance dead-

lines. The authors’ approach uses performance models to match Hadoop tasks to the

servers that will benefit them the most, and deadline-aware scheduling to effectively or-

der incoming jobs. The combination of these schedulers allows data center administra-

tors to safely mix resource-intensive Hadoop jobs with latency-sensitive web applications,

and still achieve predictable performance for both. Together, these schedulers form the

Minimal Interference Maximal Productivity (MIMP) system, which enhances both the Hy-

pervisor’s scheduler and the Hadoop job scheduler to better manage their performance.

MIMP monitors resource usage information on each node to support task scheduling and

prevent overload. MIMP runs a monitoring agent on each dedicated and shared node,

and sends periodic resource measurements to the centralized Job Scheduler component.

MIMP tracks the CPU utilization and disk read and write rates of each virtual machine on

each host. These resource measurements are then passed on to the modeling and task

scheduling components. The evaluation shows that both schedulers allow a mixed cluster

to reduce web response times by more than ten fold while meeting more Hadoop dead-

lines and lowering total task execution times by 6.5%.

Chen et al. [CRO+15] present CloudScope, a system for diagnosing interference

for multi-tenant cloud systems. It employs a discrete-time Markov Chain model for the

online prediction of performance interference of co-resident VMs. It uses the results to op-

timally (re)assign VMs to physical machines and to optimize the Hypervisor configuration,

e.g. the CPU share it can use, for different workloads. CloudScope has tree main compo-

nents: (i) The Monitoring Component collects application and virtual machine metrics at

runtime. A daemon script reads the resource usage for Dom0 and every virtuak machine

within Dom0 via xentop. The resource metrics include CPU utilization, memory consump-

tion, disk I/O request statistics, network I/O, number of virtual CPUs (vCPUs), and number

of virtual network interfaces. External monitoring tools are used to keep track of applica-

tion SLOs in terms of application metrics such as response time, disk/network throughput,

or job completion time. The resource and SLO profiling metrics are fed to the Interfer-

ence Handling Manager; (ii) The Interference Handling Manager analyses the monitoring
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data from each VM and obtains the application metrics, and provides migration-based

interference-aware scheduling and adaptive Dom0 reconfiguration; (iii) The Dom0 con-

troller calls the corresponding APIs to trigger virtual machines migration or Dom0 recon-

figuration based on the prediction results and the SLO targets. Authors have implemented

CloudScope on top of the Xen Hypervisor and conducted experiments using a set of CPU,

disk, and network-intensive workloads and a real system (MapReduce). The interference-

aware scheduler improves virtual machine performance by up to 10% compared to the

default scheduler, achieving an average error of 9%. Authors claim that the Hypervisor

reconfiguration can improve network throughput by up to 30%.

Alves et al. [MTFD18] have developed an interference-aware virtual machine

placement strategy for HPC applications in cloud computing. The authors’ approach im-

plements a method which predicts interference level in order to minimize the number of

used physical machines. To solve this problem, a mathematical formulation and a strategy

based on the Iterated Local Search framework were proposed. This framework defines the

total interference by applying an average slowdown produced in all applications allocated

to the same physical machine. The slowdown is defined as the percentage of additional

time spent by the applications when they are executed concurrently in the same machine.

To evaluate the proposed approach, the authors used two metrics: (i) first, they deter-

mined the percentage of test cases where the solution achieved a strictly smaller sum of

interference levels than the one reached by the heuristic. Concerning the minimization of

interference, this metric allows to quantify the number of cases where the solution outper-

formed the tested heuristic; (ii) second, it was calculated the percentage of cases where

the solution used a smaller or equal number of physical machines than the one used by

the heuristic. Results show the method reduced interference in more than 40%, using the

same number of physical machines as the most widely employed heuristics.

To address latency-sensitive applications issues, such as QoS impact, and over-

come limitations in existing offline approaches, Shekhar et al. [SAB+18] present an online,

data-driven approach which utilizes Gaussian Processes-based machine learning tech-

niques to build runtime predictive models of the performance of the system under dif-

ferent levels of interference. The predictive online models are then used in dynamically

adapting to the workload variability by vertically auto-scaling co-located applications such

that performance interference is minimized and QoS properties of latency-sensitive appli-

cations are met. The performance of the entire system is monitored using a resource us-

age and performance interference statistics collection framework, called FECBench. The

measurements include macro and micro resource metrics, such as CPU, memory, network

I/O, disk I/O, context switches, page faults, cache, retired instructions per second (IPS),

memory bandwidth, scheduler wait time and scheduler I/O wait time. These system per-

formance metrics are calculated together with application workload and latency data, and

passed on to the model predictor. The performance of the latency-sensitive application
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is predicted and forwards the information to a decision engine. The decision component

then makes makes scheduled actions, which can be add/remove cores to the application

and, remove/add cores, or checkpoint/restore for batch applications. A comparison with a

representative latency-sensitive application reveals up to 39.46% lower tail latency than

reactive approaches.

Wang et al. [WKNG19] developed data-driven analytical models to estimate the

effect of interference among multiple Apache Spark jobs on job execution time in virtu-

alized cloud environments. After, they present the design of an interference aware job

scheduling algorithm leveraging the developed analytical framework. As different stages

of a job are expected to have different characteristics in terms of resource utilization (e.g.,

CPU, I/O, memory), different stages of multiple jobs running con currently on a system

are expected to result in different interference patterns, affecting the execution time dif-

ferently. That is the reason each stage is represented as a vector consisting of execution

time, CPU usage, disk I/O rate, and network I/O rate. The evaluation of model accuracy

was measured using real-life applications on a 6 node cluster while running up to four jobs

concurrently. Experiment results show that the scheduling algorithm reduces the average

execution time of individual jobs and the total execution time significantly, and ranges

between 47 and 26% for individual jobs and 2 to 13% for total execution time respectively.

6.1 Differences to our Proposal

When addressing interference-aware scheduling issues, most of the above men-

tioned related studies apply prediction models [CRO+15, NKG10, SAB+18, DK13, CH11,

ZT12, BRX13, MTFD18, WKNG19], since they perform scheduling actions based on previ-

ously measured tasks. Also, many of them employ online scheduling approaches [CRO+15,

NKG10, SAB+18, DK13, CH11, ZT12, BRX13, ZRWZ14], since they keep profiling their job

metrics at runtime to improve scheduling decisions. Moreover, some of them [NKG10,

SAB+18, DK13, ZT12] are concerned about meeting QoS requirements while improving

the system efficiency.

In contrast to the related work cited above, we have utilized a dynamic and reac-

tive system that analyzes the applications in real-time. Based on the individual interfer-

ence they generate, we then run scheduling actions aimed at accomplishing a substantial

improvement in hardware utilization.

Our work differs from related studies due to the evolution of technology and the

update of operating systems and Kernels versions. Such evolution makes it possible to

extract information from hardware in a manner that was not possible in the recent past.

For example, the advanced feature developed by Intel, called Intel Cache Monitoring Tech-

nology, makes it now entirely viable to collect information about the usage of the cache
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by applications running inside any piece of equipment. This is essential, because multi-

thread architectures are exponentially growing within the computer market. This technol-

ogy allows us to use an ID denominated Resource Monitoring ID to metrify the number of

threads scheduled among the operation system. For each thread, there is one ID associ-

ated with it. Therefore, these metrics can be collected within an MSR interface. This was

not possible before the creation of this technology.

Q-Clouds [NKG10] requires at least one application execution to understand its

behavior in order for the system to be able to manage this application. In our work, it is not

necessary to learn how the applications behave, we only train our classification method

with a mix of workloads once, then the new incoming applications are handled automati-

cally. Another important aspect is that Q-Clouds focuses only on CPU bound to make VM

placement decisions, while ours uses five main resources. TRACON [CH11] monitors only

I/O and CPU hardware counters and tackles static and dynamic workloads. However, the

dynamic workloads used follow the Poisson distribution process, unlike our approach that

deals with real dynamic workload datasets. Zhu and Thung [ZT12] do not consider cache

in their approach, while ours technique does.

Paragon [DK13] is an interference-aware scheduling approach which uses col-

laborative filtering to identify how well an incoming application will run on the different

hardware platforms available. This approach analyzes ten different resources, focusing

on heterogeneous data centers, while our architecture handles homogeneous clusters.

Bu et al.’s [BRX13] study is limited to analyzing only CPU from Hypervisor through xen-

top counters and disk metrics through linux iostat from Hadoop workloads. Similar to

[BRX13]’s work, Zhang et al. [ZRWZ14] propose ILA, where only CPU and disk counters

are monitored from Hadoop applications.

Similar to our work, Chen et al. [CRO+15] includes in their Cloudscope strategy

some different components to distribute systems’ responsibilities. Also, the authors’ ap-

proach profiles specific virtual machine characteristics, such as VCPUs and VNICs. The

main difference from our architecture is that we run applications over containers instead

of traditional virtual machines. As mentioned before, this kind of virtualization presents

many benefits over the traditional method, such as low management overhead and porta-

bility [ZTL+19]. Alves et al.’s [MTFD18] work utilizes a slowdown factor that measures the

applications’ time and how much (percentage) each one has increased regarding isolated

execution. Also, an average period is calculated for each host to compare them with each

other. Our work on the other hand, applies interference levels instead of the raw percent

of performance degradation. Moreover, we also use automatic techniques that produce

the interference levels, with no user intervention.

Similar to our work, Shekhar et al. [SAB+18] investigate the interference gener-

ated by container-based instances with workload variations. However, our work is distinc-

tive in the following ways: (i) instead of focusing on a single server, our proposed approach
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is performed over a distributed architecture (cluster). Furthermore, our proposed archi-

tecture focuses exclusively on applications that have dynamic workloads, such as latency-

sensitive applications, while the others mix them with batch-jobs. Wang et al. [WKNG19]

are interested in improving Apache Spark job makespans. Since this type of application is

workflow-oriented, they present multiple job stages, and the authors analyze each stage

separately, stating that each one has different (specific) resource behaviors. The authors

consider only execution time, CPU usage, disk I/O rate, and network I/O rate, not observing

cache and memory metrics, which our approach does.

In addition, it was possible to scale the problem out through the simulation.

We developed an extension of a well-know simulator tool, namely ContainerCloudSim

[PDCB17], to analyze performance interference aspects from applications. This strategy

makes it possible to test the proposed architecture in an environment closer to a real world

scenario, which had not been done in any related work we found.
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7. CONCLUSIONS

Cloud computing has been attracting a great deal of attention from the IT com-

munity due to its promise of unlimited computing resource provisioning and the pay-per-

use model. It can offer these benefits through the virtualization technique, allowing large

data centers to dynamically take advantage of their infrastructure while reducing energy

consumption, and the costs related to it. Cloud computing providers also apply resource

scheduling policies to manage their hardware efficiently and improve applications’ per-

formance. Therefore, improving user satisfaction. However, multiple cloud-services con-

tending for shared resources generate cross-application interference and this can lead to

severe performance degradation. Evidence shows that interference is related to applica-

tion performance penalty and it may occur depending on the application’s workload and

variation.

After searching for related-studies in the literature, this work evaluated how interference-

aware resource scheduling has been covered recently and discovered that there are still

research opportunities to explore regarding dynamic strategies and workload variation

patterns. This dissertation’s main goal is to determine whether dynamic interference-

aware scheduling algorithms, which analyze workload variations of latency-sensitive ap-

plications over time, can further improve resource utilization.

Four research questions were defined to conduct this study and they were an-

swered through the work. To begin solving RQ1, which aimed to discover if dynamic

workloads modify their interference levels over time, chapter 3 presented how applica-

tions with those characteristics act under different circumstances. We introduced an inter-

ference analysis, highlighting how each hardware resource behaves when the workload

varies, and its interference impact on response time. We concluded that each application

demonstrates specific resource utilization characteristics, generating distinct interference

rates. When observing specific hardware resources, applications may or may not generate

interference indexes according to workload variability, enforcing the need for an in-depth

interference profile analysis.

After better understanding the effects of workload variations on hardware re-

sources, an interference classification technique [LXK+19] was adopted to validate if in-

terference levels truly vary. This classification analyzes the interference levels over the

entire application life process and assigns just one label per profiled resource. Since this

technique applies a static approach, we created a segmented version of this classifica-

tion in chapter 4 and ran some experiments with different workloads. These experiments

answered RQ1, confirming that applications with dynamic workloads are susceptible to

change their interference levels over time. Even though this strategy leads to better re-

source utilization, it still relies on a static interference classification technique. Therefore,

moving into a dynamic scheduling environment, we developed an interference-aware ap-
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plication classifier by combining two machine learning techniques. This tool automatically

classifies applications without user intervention or previous knowledge of application be-

havior. We then explored dynamic resource scheduling issues based on the interference

profile through the proposal of an ML-driven classification scheme. Preliminary results

revealed a 27% improvement in resource utilization efficiency, on average, when this

classification approach was applied in cloud scenarios. We could therefore answer RQ2,

confirming that a dynamic interference classification system, which represents better the

workload variability over time, can lead to better resource scheduling.

Moving in the direction of dynamic scheduling, in chapter 5 we introduced IADA,

a full-fledged interference-aware scheduling architecture for dynamic workloads in clouds.

IADA combines and improves different techniques studied in previous work, including ma-

chine learning, bayesian algorithms, and heuristics to find abrupt changes in applications’

workload behavior, classifying and placing them in a way that minimizes overall resource

contention. We compared our solution with closely-related studies in this field using real

workloads from NASA, Wikimedia, and Alibaba Open Cluster Trace datasets and results

showed that IADA reduced the resulting performance degradation by 26% when compared

to EVEN, CIAPA, and Segmented scheduling approaches in practical experiments, and by

24% in simulated experiments. These conclusions made it possible for us to answer RQ3,

that it is necessary to develop some architectural modifications to move from static to dy-

namic interference-aware scheduling. To build IADA, we had to create a module that finds

the right moments to analyze profiled data and coordinates with the entire system. Also,

we had to develop some modifications in the scheduling algorithms to reduce the number

of the migrations as much as possible. Since we are performing scheduling actions at run-

time, such operations can generate more overhead than we are trying to prevent, if not

controlled.

Moreover, an overhead analysis was also performed and presented under the

Migration, Machine Learning, and Profiler techniques used by IADA. We concluded that: the

scheduling algorithm was developed and optimized to reduce the number of migrations

as much as possible. Our solution presented a reasonable numbers of scheduling actions

per interval, keeping the general overhead at an acceptable rate; the chosen machine

learning techniques generated a layer of overhead, but in our experiments, these indexes

are considered acceptable. However depending on the number of nodes and applications

the architecture controls, the resulting overhead could be bigger than ours. Consequently,

the Node Manager might need to be resized. Yet, the profiler chosen (IntP) practically

does not put any overhead pressure over the system, since this tool was built to analyze

hardware events at the kernel layer. After highlighting all of these outcomes, RQ4 was

answered. We confirmed that there are ways to implement modifications in the proposed

architecture in a way that keeps the overhead to a controlled status, not invalidating the

gains of the improved scheduling.
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7.1 Contributions

The main contributions of this dissertation are as follows:

• Applications with dynamic workloads were shown to be susceptible to change their

interference levels over time.

• An interference-aware application classifier based on machine learning techniques

which sets interference levels ranges automatically, considering dynamic workloads,

was proposed.

• Our classifier was found to have the potential to significantly improve application

placement in consolidated environments.

• A resource scheduling architecture observing cross-application interference aspects

for dynamic workloads was proposed. Unlike previous work, which has tackled partial

issues, in this study, we present a full scheduling architecture solution targeting real

production systems.

• An online bayesian changepoint detection (OBCD) algorithm that finds time-points

automatically to perform classification and scheduling decisions. This specific topic

was considered to be a gap in previous work [MKDD21b]. Since we did not know

how to find the best moments to run classification and scheduling actions, we used

a static-defined interval scheme to analyze our strategy. Therefore, we included

an OBCD algorithm as a new feature in the proposed architecture to overcome this

issue.

• An optimized version of a Simulated Annealing heuristic to tackle dynamic schedul-

ing aspects was proposed. The original version, presented by [LXK+19], was built

upon static interference models, and to apply it in a dynamic scenario, we had to

perform some modifications.

• An extension for the CloudSim toolkit was developed to execute interference-aware

scheduling, using real case provisioning requirements and constraints, making it

available in a GitHub repository to allow reproducibility.

7.2 Publications

The work presented in this dissertation has been partially or completely derived

from a set of papers published/submitted during the doctoral period, listed as follows:
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• MEYER, V. ; LUDWIG, U. L.; XAVIER, M. G. ; KIRCHOFF, D. F.; DE ROSE, C. A. F..

“Towards Interference-aware Dynamic Scheduling in Virtualized Environments”, IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

Proceedings of the 23nd International Workshop on Job Scheduling Strategies for

Parallel Processing (JSSPP). New Orleans, USA, 2020, pp. 1-24. [MLX+20].

• MEYER, V.; KIRCHOFF, D. F.; SILVA, M. L.; DE ROSE, C. A. F.. An “Interference-aware

Application Classifier Based on Machine Learning to Improve Scheduling in Clouds”,

Proceedings of the 28th Euromicro International Conference on Parallel, Distributed,

and Network-Based Processing (PDP), Västerås, Sweden, 2020, pp. 80-87. [MKdD20].

• MEYER, V.; KIRCHOFF, D. F.; SILVA, M. L.; DE ROSE, C. A. F.. ML-driven “Classification

Scheme for Dynamic Interference-aware Resource Scheduling in Cloud Infrastruc-

tures”, Journal of Systems Architecture (JSA), v.116, p.102064, 2021. [MKDD21b].

• MEYER, V.; SILVA, M. L.; KIRCHOFF, D. F.; DE ROSE, C. A. F.. “IADA: A Dynamic

Interference-aware Cloud Scheduling Architecture for Latency-sensitive Workloads”,

submitted for publication - Under Review.

In addition to the papers included in this work, the following publications arose

from work conducted by the author during his doctoral studies:

• MEYER, V.; KRINDGES, R.; FERRETO, T. C.; DE ROSE, CESAR A.F.; HESSEL, F.. “Sim-

ulators Usage Analysis to Estimate Power Consumption in Cloud Computing Environ-

ments”, Proceedings of the Symposium on High Performance Computing Systems

(WSCAD), 2018. p. 70. São Paulo, Brazil. [MKF+18].

• THAMSEN, L.; VERBITSKIY, I; NEDELKOSKI, S; TRAN, V. T.; MEYER, V.; XAVIER, M.

G.; KAO, O.; DE ROSE, C. A. F.. “Hugo: A Cluster Scheduler that Efficiently Learns to

Select Complementary Data-Parallel Jobs”, Euro-Par 2019: European Conference on

Parallel Processing Workshops (EUROPARW), 2019. v. 1. p. 519-530. Goettingen,

Germany. [TVN+20].

• MEYER, V.; XAVIER, M.; KIRCHOFF, D.; RIGHI, R.; DE ROSE, C. A. F.. “Performance and

Cost Analysis between Elasticity Strategies over Pipeline-structured Applications”,

Proceedings of the 9th International Conference on Cloud Computing and Services

Science (CLOSER), 2019. v. 1. p. 404-411. Heraklion, Greece. [MXK+19].

• KRZYWDA, J.; MEYER V.; XAVIER, M.; ALI-ELDIN, A.; ÖSTBERG, P.; DE ROSE, C. A.

F.; ELMROTH, E.. “Modeling and Simulation of QoS-Aware Power Budgeting in Cloud

Data Centers”, Proceedings of the 28th Euromicro International Conference on Par-

allel, Distributed, and Network-Based Processing (PDP), Västerås, Sweden, 2020, pp.

88-93. [KMX+20].
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• SILVA, M. L.; MEYER, V.; KIRCHOFF, D. F.; SANTOS, J. ; VIEIRA, R.; DE ROSE, C. A.

F.. “Evaluating the performance and improving the usability of parallel and dis-

tributed Word Embeddings tools”, roceedings of the 28th Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing (PDP), Västerås,

Sweden, 2020, pp. 201-206. [DSMK+20].

• SILVA, M. L.; MEYER, V.; DE ROSE, C. A. F.. “Edge Computing and its Boundaries to

IoT and Industry 4.0: A Systematic Mapping Study”, International Journal of Grid and

Utility Computing (IJGUC), vol. xx, pp. xxx–xxx.

• KIRCHOFF, D. F.; MEYER, V.; CALHEIROS, Rodrigo N.; DE ROSE, C. A. F.. “Evaluat-

ing machine learning prediction techniques and their impact on proactive resource

provisioning for cloud environments”, submitted for publication - Under Review.

7.3 Future Directions

There are several possible directions for future research based on this work. We

suggest some possibilities for future research as follows.

7.3.1 Proactive Scheduling Techniques

We presented a solution to perform dynamic scheduling decision based on a re-

active approach. However, there are several works presenting the benefits of applying

proactive techniques in order to improve resource rearrangement actions. As a possibility,

we expect to evaluate proactive scheduling approaches by applying machine learning pre-

diction algorithms and comparing them with the current work. The goal is to analyze how

much the performance degradation can be reduced by forecasting the workload variabil-

ity and anticipating the arrangement of hardware resources within a dynamic scheduling

architecture.

7.3.2 Interference Classification

In the interference classification strategy, we adopted four interference levels

(absent, low, med, high) to execute scheduling actions. The decision of using this inter-

ference subdivision was based on [LXK+19] work. However, are four interference levels

enough to improve resource scheduling? Why not to use more levels? How many levels

should be used? To solve these answers, we intend to deeply explore the classification
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process by creating more ranges of interference levels to analyze how they can affect

scheduling decisions and consequently applications performance.

7.3.3 Cloud Elasticity

Cloud elasticity or scalability in cloud computing refers to the ability to increase

or decrease computational resources as needed to meet changing demands. Scalability

is one of the hallmarks of the cloud and the primary driver of its exploding popularity with

businesses. Since our approach did not handle scaling issues yet, as an interesting future

direction, we plan to explore horizontal and vertical cloud elasticity techniques to improve

the use of our architecture in real scenarios even more.

7.3.4 Scheduling Heuristics

The proposed architecture operates at a level above certain decisions of the in-

frastructure, such as which containers and where to migrate them. This doctoral disserta-

tion used a heuristic known as Simulated Annealing (SA), one of the heuristics presented

by Ludwig et al. [LXK+19], which aims to optimize applications performance, observing in-

terference issues. Other heuristics that decide in what ways container should be migrated

can be tested along with our solution, and it can provide even better results of resource

utilization, applications performance, and energy expenses reduction.

7.3.5 Power Optimization

Power optimization techniques are becoming increasingly important in cloud com-

puting system design. Virtualization allows the deployment of co-existing computing en-

vironments over the same hardware infrastructure in cloud ecosystems. However, the

co-existing environments often create scenarios that lead to performance degradation.

This issue, known as Performance Interference, introduces a non-negligible overhead that

affects both a data center’s Quality of Service and its energy efficiency. In future work,

we expect to combine power-aware or energy-oriented scheduling algorithms with our

solution to reduce the impact of performance interference on energy efficiency.
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