
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

ADRIANO VOGEL

SELF-ADAPTIVE ABSTRACTIONS FOR EFFICIENT
HIGH-LEVEL PARALLEL COMPUTING IN MULTI-CORES

Porto Alegre

2022

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

SELF-ADAPTIVE
ABSTRACTIONS FOR EFFICIENT

HIGH-LEVEL PARALLEL
COMPUTING IN MULTI-CORES

ADRIANO VOGEL

Doctoral Dissertation submitted to the
Pontifical Catholic University of Rio
Grande do Sul in partial fulfillment of
the requirements for the degree of Ph.D.
in Computer Science. This Doctoral
Dissertation is in joint-supervision with
the University of Pisa - Italy.

Advisor: Prof. Ph.D. Luiz Gustavo Fernandes
Advisor: Prof. Ph.D. Marco Danelutto (UNIPI)

Co-Advisor: Prof. Ph.D. Dalvan Griebler

Porto Alegre
2022

ADRIANO VOGEL

SELF-ADAPTIVE ABSTRACTIONS FOR EFFICIENT
HIGH-LEVEL PARALLEL COMPUTING IN

MULTI-CORES

This Doctoral Dissertation has been submitted

in partial fulfillment of the requirements for

the degree of Ph.D. in Computer Science, of

the Computer Science Graduate Program,

School of Technology of the Pontifical

Catholic University of Rio Grande do Sul.

Sanctioned on March 21st, 2022.

COMMITTEE MEMBERS:

Prof. Ph.D. Rodrigo da Rosa Righi (Unisinos)

Prof. Ph.D. Virginia Niculescu (BBU)

Prof. Ph.D. Fernando Luís Dotti (PUCRS)

Prof. Ph.D. Dalvan Griebler (PUCRS- Co-Advisor)

Prof. Ph.D. Marco Danelutto (UNIPI - Advisor)

Prof. Ph.D. Luiz Gustavo Fernandes (PUCRS - Advisor)

“And it’s whispered that soon, if we all call the tune

Then the piper will lead us to reason

And a new day will dawn for those who stand long

And the forests will echo with laughter”

(Led Zeppelin)

ACKNOWLEDGEMENTS

I would like to to express my gratitude to everyone who helped me during this

doctorate in one way or another. A special thanks to my advisors, who supported and

guided me throughout this project.

I would like to thank to my peers and PUCRS/GMAP research group colleagues for

their assistance. I am also grateful to UNIPI’s Parallel Computing Group for the fruitful dis-

cussions. I would like to extend my sincere thanks to the evaluation committees members

for the constructive advices.

I would also like to extend my deepest gratitude to my family and friends, your

encouragement was essential.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pes-

soal de Nivel Superior - Brasil (CAPES) - Finance Code 001 and by SAP Labs Latin America.

Acknowledgements to the High-Performance Computing Laboratory of the Pon-

tifical Catholic University of Rio Grande do Sul (LAD-IDEIA/PUCRS, Brazil) for providing

computing resources.

RESUMO

Atualmente, uma parte significativa dos sistemas computacionais e aplicações

do mundo real demandam paralelismo para acelerar suas execuções. Embora a progra-

mação paralela estruturada e de alto nível tenha como objetivo facilitar a exploração

do paralelismo, ainda há questões a serem abordadas para melhorar as abstrações ex-

istentes na programação paralela, onde os desenvolvedores de aplicações usualmente

precisam definir configurações de paralelismo não intuitivas ou complexas. Nesse con-

texto, a autoadaptação é uma alternativa potencial para fornecer um nível mais alto de

abstrações autonômicas e capacidade de resposta em tempo de execução em aplicações

paralelas. No entanto, um problema recorrente é que a autoadaptação ainda é limitada

em termos de flexibilidade, eficiência e abstrações. Por exemplo, faltam mecanismos para

aplicar ações de adaptação e estratégias eficientes de decisão sobre quais configurações

devem ser aplicadas em tempo de execução. Este trabalho é focado em abstrações al-

cançáveis com autoadaptação gerenciando de forma transparente as execuções enquanto

os programas paralelos estão sendo executados. Os principais objetivos são: aumentar

o espaço de adaptação para ser mais representativo para aplicações e tornar a autoad-

aptação mais eficiente com metodologias de avaliação abrangentes, que podem fornecer

casos de uso que demonstrem os verdadeiros potenciais da autoadaptação. Portanto,

esta tese de doutorado traz as seguintes contribuições científicas: I) Uma revisão sis-

temática da literatura fornecendo uma taxonomia do estado da arte. II) Um framework

conceitual para apoiar a concepção e abstração do processo de tomada de decisão dentro

de soluções autoadaptativas, o que é utilizado nas contribuições técnicas para ajudar a

tornar as soluções mais modulares e potencialmente generalizáveis. III) Mecanismos e

estratégias para réplicas autoadaptáveis em aplicações com estágios paralelos simples

e múltiplos, suportando múltiplos requisitos não-funcionais. IV) Mecanismo, estratégia e

otimizações para autoadaptação dos Padrões Paralelos/topologias de grafos de aplicações.

Aplicamos as soluções propostas ao contexto de aplicações de processamento de streams,

um paradigma representativo presente em várias aplicações do mundo real que com-

putam dados em tempo real (por exemplo, feeds de vídeo, imagem e análise de dados).

Uma parte das soluções propostas é avaliada com a SPar e outra parte com o framework

de programação FastFlow. Os resultados demonstram que a autoadaptação pode fornecer

abstrações de paralelismo eficientes e responsividade autonômica em tempo de execução

e alcançando um desempenho competitivo em comparação com as melhores execuções

estáticas. Além disso, quando apropriado, a solução proposta é comparada com soluções

relacionadas, demonstrando que as estratégias de decisão propostas neste trabalho são

altamente otimizadas e alcançam ganhos significativos de desempenho e eficiência.

Palavras-Chave: Processamento de streams, Software autoadaptativo, Abstrações

de paralelismo, Programação paralela, Sistemas autônomos.

SOMMARIO

Una parte significativa dei sistemi informatici e delle applicazioni del mondo reale

richiede l’utilizzo di parallelismo. Sebbene la programmazione parallela strutturata miri a

facilitare lo sfruttamento del parallelismo, ci sono ancora diversi problemi da affrontare

per migliorare le astrazioni della programmazione parallela messe a disposizione dei pro-

grammatori. Gli sviluppatori di applicazioni al momento devono ancora utilizzare tecniche

di esplicitazione del parallelismo che risultano poco intuitive e in generale piuttosto com-

plesse. In questo contesto, l’auto-adattamento costituisce una potenziale alternativa che

può essere sfruttata per fornire un miglior livello di astrazioni autonome e una migliore

reattività dei runtime nelle esecuzioni parallele. Tuttavia, un problema ricorrente è che

l’autoadattamento è ancora limitato in termini di flessibilità, efficienza e astrazioni. Ad

esempio, mancano meccanismi per applicare azioni di adattamento e strategie decision-

ali efficienti per decidere quali configurazioni vadano applicate in fase di esecuzione. In

questo lavoro prendiamo in considerazione le astrazioni realizzabili con l’autoadattamento

che siano in gradi di gestire in modo trasparente le esecuzioni durante l’esecuzione stessa

dei programmi. I nostri obiettivi principali sono quelli di espandere lo spazio delle soluzioni

di adattamento per essere in grado di trattare applicazioni del mondo reale e renderne

più efficiente l’autoadattamento con metodologie di valutazione complete, che possano

fornire casi d’uso che dimostrano le reali potenzialità dell’autoadattamento. Questa tesi

di dottorato fornisce i seguenti contributi scientifici: i) una SLR che fornisce una tassono-

mia dello stato dell’arte. ii) un framework concettuale per supportare la progettazione

e l’astrazione del processo decisionale all’interno di soluzioni autoadattative; tale quadro

concettuale viene quindi impiegato nei contributi tecnici per aiutare a rendere le soluzioni

più modulari e potenzialmente generalizzabili. iii) meccanismi e strategie per repliche

autoadattative in applicazioni con stadi paralleli singoli e multipli, in grado di fornire sup-

porto per molteplici requisiti non funzionali. iv) meccanismi, strategia e ottimizzazioni per

l’auto-adattamento delle topologie dei grafi di Parallel Patterns utiizzati nelle applicazioni.

Applichiamo le soluzioni proposte al contesto delle applicazioni di elaborazione stream par-

allel, un paradigma rappresentativo presente in diverse applicazioni del mondo reale che

calcolano il flusso di dati sotto forma di flussi (ad esempio feed video, immagini e analisi

dei dati). Parte delle soluzioni proposte viene valutata utilizzando SPar e parte utilizzando

il framework di programmazione FastFlow. I risultati dimostrano che l’auto-adattamento

può fornire astrazioni di parallelismo efficienti e una reattività autonomica a tempo di

esecuzione, ottenendo prestazioni competitive rispetto a quelle ottenute dalle migliori es-

ecuzioni “statiche”. Inoltre, quando appropriato, confrontiamo soluzioni all’avanguardia e

dimostriamo che le nostre strategie decisionali altamente ottimizzate ottengono guadagni

significativi in termini di prestazioni ed efficienza. Parole Chiave: Stream parallel, Soft-

ware adattativo, Astrazioni di parallelismo, Programmazione parallela, Sistemi autonomi.

ABSTRACT

Nowadays, a significant part of computing systems and real-world applications

demand parallelism to accelerate their executions. Although high-level and structured par-

allel programming aims to facilitate parallelism exploitation, there are still issues to be ad-

dressed to improve existing parallel programming abstractions. Usually, application devel-

opers still have to set non-intuitive or complex parallelism configurations. In this context,

self-adaptation is a potential alternative to provide a higher-level of autonomic abstrac-

tions and runtime responsiveness in parallel executions. However, a recurrent problem is

that self-adaptation is still limited in terms of flexibility, efficiency, and abstractions. For

instance, there is a lack of mechanisms to apply adaptation actions and efficient decision-

making strategies to decide which configurations to be enforced at run-time. In this work,

we are interested in abstractions achievable with self-adaptation transparently managing

the executions while the parallel programs are running (at run-time). Our main goals are

to increase the adaptation space to be more representative of real-world applications and

make self-adaptation more efficient with comprehensive evaluation methodologies, which

can provide use-cases demonstrating the true potentials of self-adaptation. Therefore,

this doctoral dissertation provides the following scientific contributions: I) An Systematic

Literature Review (SLR) providing a taxonomy of the state-of-the-art. II) A conceptual

framework to support designing and abstracting the decision-making process within self-

adaptive solutions, such a conceptual framework is then employed in the technical con-

tributions to assist in making the solutions more modular and potentially generalizable.

III) Mechanisms and strategies for self-adaptive replicas in applications with single and

multiple parallel stages, supporting multiple customizable non-functional requirements.

IV) Mechanism, strategy, and optimizations for self-adaptation of Parallel Patterns/appli-

cations’ graphs topologies. We apply the proposed solutions to the context of stream

processing applications, a representative paradigm present in several real-world applica-

tions that compute data flowing in the form of streams (e.g., video feeds, image, and data

analytics). A part of the proposed solutions is evaluated with SPar and another part with

the FastFlow programming framework. The results demonstrate that self-adaptation can

provide efficient parallelism abstractions and autonomous responsiveness at run-time,

yet achieve a competitive performance w.r.t. the best static executions. Moreover, when

appropriate, we compare state-of-the-art solutions and demonstrate that our highly opti-

mized decision-making strategies achieve significant performance and efficiency gains.

Keywords: Stream processing, Self-adaptive software, Parallelism abstractions,

Parallel programming, Autonomic systems.

LIST OF FIGURES

2.1 Representation of parallel pattern examples. 24

2.2 SPar runtime: activity graph and communication queues. 27

2.3 The SPar’s compiler representation. 28

2.4 Types of parallelism in the context of data stream processing. 30

2.5 Conceptual model for a self-adaptive system. 33

2.6 Simple example of a Queueing System. 34

2.7 Example of a feedback control. 34

3.1 Proposed taxonomy for self-adaptiveness in stream processing. 39

3.2 Results overview. 59

4.1 A conceptual view of self-adaptation in parallel computing. 72

4.2 Framework’s reference model. 76

4.3 Framework’s architecture implemented. 78

5.1 Workflow of self-adaptive parallelism management. 82

5.2 Target Throughput 60. 83

5.3 Average Throughput of Lane Detection. 84

5.4 Lane Detection Characterization. 85

5.5 Latency Constraint of 180 ms (Left) and Replicas Used (Right). 86

5.6 A methodology to define SLOs for stream parallelism. 87

5.7 Characterization of Pbzip2 Application with slo::CPU(60). 89

5.8 Applications Throughput. 90

5.9 Characterization with Different Number of Replicas. 91

5.10High-level representation of the decision-making. 92

5.11Lane Detection - Sequential (Left) and Parallel Strategies (Right). 94

5.12Average Throughput of Lane Detection. 94

5.13Average Memory Usage of Lane Detection. 95

5.14Overview of the Analyze and Plan Phases. 97

5.15Characterization - Parallel Executions. 98

5.16Example of SPar’s self-adaptive code generation. 100

6.1 Example of compositions for stream processing. 104

6.2 Example on a Video Processing App. 105

6.3 Proposed solution implemented in FastFlow. 107

6.4 Self-adaptation characterization. 110

6.5 Performance evaluation. 110

7.1 PARSEC’s Ferret Pipeline structure. 113

7.2 Input Rate 10 items/s.Latency is on logarithmic scale 114

7.3 Input Rate 20 items/s.Latency is on logarithmic scale 114

7.4 Characterization with the synthetic application. 122

7.5 Throughput (items/s) Characterization. 123

7.6 Latency Characterization. 124

7.7 Ferret with IR 10. Latency on logarithmic scale. 125

7.8 Ferret with IR 20. Latency on logarithmic scale. 126

7.9 Performance comparison with the Person Recognition Application. 126

8.1 DS2 representation. 129

8.2 Integrated of the proposed solution within the FastFlow framework. 132

8.3 Experiments’ roadmap. ES means experimental scenario. 136

8.4 Synthetic App With IR and Target Throughput of 400 I/s. 137

8.5 Synthetic App With IR and Target Throughput of 400 I/s. 138

8.6 Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s. 140

8.7 Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s. 141

8.8 Synthetic: Unbalanced Stages. IR and Target Throughput of 1500 I/s. 142

8.9 Synthetic: Unbalanced Stages. IR and Target Throughput of 1500 I/s. 143

8.10Synthetic: Unbalanced Stages. IR and Target Throughput of 500 I/s. 144

8.11Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s. 145

8.12Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s. 146

8.13Synthetic: Unbalanced Stages. IR and Target Throughput of 500 I/s. 147

8.14Synthetic: Unbalanced Stages. IR and Target Throughput of 500 I/s. 148

8.15Ferret with IR and Target Throughput 30 I/s. 149

8.16Ferret with IR and Target Throughput 60 I/s. 150

8.17M2 - Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s. . . 151

8.18M2 - Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s. . . 152

8.19M2 - Ferret with IR and Target Throughput 30 I/s. 153

8.20M2 - Ferret with IR and Target Throughput 60 I/s. 154

8.21M2 - Ferret with IR and Target Throughput 90 I/s. 155

LIST OF TABLES

3.1 Search terms. 37

3.2 Self-adaptive properties and tools. 58

3.3 Self-adaptive validation . 65

3.4 Summary of research questions and literature results. 66

LIST OF ACRONYMS

AKA Also Known As

API Application Programming Interface

AST Abstract Syntax Tree

CEP Complex Event Processing

CINCLE Compiler Infrastructure for New C/C++ Language Extensions

CPUs Central Processing Units

DAG directed acyclic graph

DDR3 Double Data Rate three

DSL Domain-Specific Language

DVFS Dynamic Voltage and Frequency Scaling

EE Experimental environment

ES Experimental scenario

FPGA Field-Programmable Gate Array

FORMS FORmal Models for Self-adaptation

FPS Frames Per Second

GB Gigabyte

GHz Gigahertz

GPU Graphics Processing Unit

HPC High Performance Computing

IoT Internet of Things

IR Input Rate

IT Information Technology

I/O Input/Output

I/s Items per second

JVM Java Virtual Machine

MAPE-K Monitor-Analyze-Plan-Execute-Knowledge

MB Megabyte

MBPS Megabytes Per Second

MDP Markov Decision Process

MHz Megahertz

MPC Model Predictive Control

MPI Message Passing Interface

OS Operating System

PARSEC Princeton Application Repository for Shared-Memory Computers

PS Parallel Stage

QoS Quality of Service

RL Reinforcement Learning

RQ Research Questions

SASO Stability, Accuracy, Settling time and Overshoot

SDF Synchronous Data Flow

SF Scaling Factor

SLO Service-Level Objective

SLR Systematic Literature Review

SMT Simultaneous Multithreading

SPar Stream Parallelism

SPE Stream Processing Engine

TBB Threading Building Blocks

VM Virtual Machine

CONTENTS

1 INTRODUCTION 17

1.1 RESEARCH PROBLEM CONTEXT . 18

1.2 RESEARCH GOALS . 19

1.3 CONTRIBUTIONS . 19

1.4 DOCUMENT ORGANIZATION . 20

2 BACKGROUND 22

2.1 PARALLEL COMPUTING . 22

2.1.1 PARALLELISM PROPERTIES . 22

2.1.2 HIGH-LEVEL PARALLELISM . 23

2.1.3 SPAR . 25

2.1.4 FASTFLOW . 28

2.2 STREAM PROCESSING . 28

2.2.1 PARALLELISM IN STREAM PROCESSING 29

2.3 SELF-ADAPTATION OVERVIEW . 30

2.3.1 DEFINITION . 31

2.3.2 APPLYING SELF-ADAPTATION . 32

3 LITERATURE REVIEW 35

3.1 RESEARCH METHOD . 35

3.1.1 RESEARCH QUESTIONS . 35

3.1.2 SEARCH STRATEGY . 37

3.1.3 STUDY SELECTION CRITERIA . 38

3.2 SELF-ADAPTATION: CATEGORIZATION AND TAXONOMY 38

3.2.1 SELF-ADAPTATION CATEGORIES . 39

3.2.2 CATEGORIZATION OF PARALLELISM PROPERTIES 40

3.2.3 SELF-ADAPTIVENESS VALIDATION . 42

3.3 RESULT ANALYSIS AND DISCUSSION . 43

3.3.1 STUDIES OVERVIEW AND THEIR EXECUTION ENVIRONMENTS 44

3.3.2 SELF-ADAPTATION CLASSIFICATION . 55

3.3.3 ADAPTATION ACTIONS AND ENTITIES MANAGED 59

3.3.4 MONITORING ON SELF-ADAPTATION . 61

3.3.5 ADAPTATION DECISIONS . 61

3.3.6 SELF-ADAPTIVE PARALLELISM IN STREAM PROCESSING 62

3.3.7 VALIDATION METRICS AND VARIATIONS 63

3.3.8 OVERHEAD MEASUREMENT . 65

3.3.9 RESULTS SUMMARY . 66

3.4 RESEARCH CHALLENGES . 66

3.4.1 SELF-ADAPTIVE PARALLELISM IN COMPLEX COMPOSITIONS 66

3.4.2 IMPROVING RESOURCES EFFICIENCY AND PERFORMANCE 67

3.4.3 IMPROVING SELF-ADAPTATION FOR DYNAMIC ENVIRONMENTS 68

3.4.4 SELF-ADAPTIVENESS VALIDATION AND OVERHEAD MEASUREMENT . . . 68

3.4.5 GENERALIZATION AND REPRODUCIBILITY OF SELF-ADAPTIVE SOLUTIONS 69

3.5 THREATS TO VALIDITY . 70

3.6 SUMMARY . 70

4 A DECISION-MAKING FRAMEWORK FOR SELF-ADAPTATION IN PARALLEL

APPLICATIONS AT RUN-TIME 71

4.1 CONTEXT . 71

4.2 CONCEPTUAL FRAMEWORK . 74

4.3 APPLYING THE PROPOSED FRAMEWORK . 76

4.4 SUMMARY . 78

5 SELF-ADAPTIVE AND SEAMLESS DEGREE OF PARALLELISM 80

5.1 PREVIOUS WORK . 80

5.2 SELF-ADAPTIVE STRATEGIES . 80

5.2.1 SELF-ADAPTIVE DEGREE OF PARALLELISM IN MULTI-CORES 81

5.2.2 SELF-ADAPTATION FOR THROUGHPUT 82

5.2.3 SELF-ADAPTIVE PARALLELISM WITH LATENCY CONSTRAINTS 85

5.2.4 MANAGING RESOURCES UTILIZATION THROUGH SELF-ADAPTATION . . 87

5.2.5 MINIMIZING SELF-ADAPTATION OVERHEAD IN STREAM PROCESSING . . 91

5.2.6 SEAMLESS PARALLELISM MANAGEMENT FOR STREAM PROCESSING . . 96

5.3 DISCUSSION . 99

5.3.1 APPLYING THE PROPOSED STRATEGIES 99

5.3.2 CLOSING REMARKS . 101

6 A MECHANISM FOR SELF-ADAPTATION OF STREAM PARALLEL PATTERNS

AT RUN-TIME 102

6.1 CONTEXT . 102

6.2 PROPOSED SOLUTION . 105

6.2.1 DESIGN GOALS AND REQUIREMENTS 105

6.2.2 DECISION-MAKING STRATEGY . 106

6.2.3 IMPLEMENTATION . 106

6.2.4 SOLUTION’S USABILITY . 107

6.3 EVALUATION . 108

6.3.1 EXPERIMENTAL SETUP . 108

6.3.2 EXPERIMENTAL RESULTS . 109

6.4 SUMMARY . 111

7 AN OPTIMIZED DECISION-MAKING STRATEGY FOR SELF-ADAPTATION OF

STREAM PARALLEL PATTERNS 112

7.1 MOTIVATION . 112

7.2 AN OPTIMIZED STRATEGY . 115

7.2.1 TRANSITIONING BETWEEN CONFIGURATIONS 117

7.2.2 SOLUTION’S USABILITY . 118

7.3 EVALUATION . 119

7.3.1 EXPERIMENTAL SETUP . 119

7.3.2 APPLICATIONS AND CONFIGURATIONS 119

7.3.3 SELF-ADAPTIVE STRATEGY CHARACTERIZATION 121

7.3.4 PERFORMANCE EVALUATION . 125

7.4 REMARKS . 126

8 SUPPORTING SELF-ADAPTIVE DEGREE OF PARALLELISM IN COMPLEX COM-

POSITION STRUCTURES 128

8.1 CONTEXT . 128

8.1.1 DS2’S DECISION-MAKING . 129

8.1.2 POTENTIAL LIMITATIONS OF DS2’S DECISION-MAKING 129

8.2 PROPOSED SOLUTION . 130

8.3 EXPERIMENTAL PLAN . 132

8.3.1 EXPERIMENTAL SETUP . 133

8.3.2 APPLICATIONS . 134

8.3.3 EXPERIMENTS ROADMAP . 135

8.4 EVALUATION WITH TWO PARALLEL STAGES . 136

8.4.1 ES 1 - BALANCED STAGES . 136

8.4.2 ES 2 AND 3 - UNBALANCED STAGES . 137

8.5 EVALUATION WITH FOUR PARALLEL STAGES 143

8.5.1 ES 4 AND 5 - ONE BOTTLENECK STAGE 143

8.5.2 ES 6 - TWO UNBALANCED BOTTLENECK STAGES 147

8.6 ES 7 - FERRET . 149

8.7 COMPLEMENTARY RESULTS WITH MACHINE 2 151

8.8 CLOSING REMARKS . 156

9 CONCLUSION 158

9.1 IMPLICATIONS . 158

9.1.1 ADVANCES IN SELF-ADAPTATION APPLIED TO PARALLEL COMPUTING . . 158

9.1.2 SELF-ADAPTATION GENERALIZABILITY 160

9.2 LIMITATIONS AND FUTURE WORK . 161

9.3 PUBLICATIONS . 162

REFERENCES 164

17

1. INTRODUCTION

Currently, parallelism is everywhere as computer systems support many archi-

tectural paradigms (e.g., multi-cores, co-processors) [88]. However, automatic paralleliza-

tion of sequential codes is still not fully achievable. Hence, parallel programming is essen-

tial to exploit the machines’ resources properly.

Although the great potential of parallelism exploitation to provide high perfor-

mance for real-world applications, it increases complexity in terms of programmability.

Parallelism requires managing low-level aspects (e.g., communication, synchronization,

load balancing, scheduling). Introducing details of parallelism exploitation remains too

complex for application programmers, who are focused on developing applications and

may not necessarily have expertise in parallel architectures.

Considering the mentioned above inherent parallelism complexities, different

parallel programming frameworks and libraries are being proposed to facilitate paral-

lelism exploitation in multi-core machines, such as OpenMP [27], Intel Threading Building

Blocks (TBB) [134], FastFlow [3] and Stream Parallelism (SPar) [47]. These solutions are

applicable to support parallelism in various applications domains.

A relevant example of a domain of applications is stream processing applica-

tions, which are applications that compute streams of data and provide insightful results

in a timely manner [6, 122]. This application domain emerged due to the increasing use

of techniques to collect data from different sources (e.g., sensors, cameras, and radar).

Stream processing applications have unique aspects, such as continuous data processing

and varied workload trends. There is a considerable number of applications that must

gather and analyze data in real (or near-real) time [58, 6, 16, 133], which is a complex

demand.

Complementing the programming frameworks mentioned above for multi-core

machines, there are also distributed Stream Processing Engine (SPE) in stream processing

such as Apache Storm [120], Apache Spark [142], and Apache Flink [11]. These SPE are

designed for large-scale clusters using Java Virtual Machine (JVM) to provide hardware

abstractions. However, as shown in [143], Java-based SPE achieve a limited performance

and efficiency due to the suboptimal data serialization, memory accesses, and garbage

collection. Therefore, we have seen C++ based solutions running on a single multi-core

machine outperforming cluster solutions, where representative case studies are provided

by PiCo [94] and WindFlow [90]. Thus, we expect that the efficient use of a multi-core

machine provides a level of performance suitable for a significant part of (soft) real-time

stream processing applications. Therefore, in this work, we use multi-cores as execution

environments.

18

1.1 Research problem context

Many domains of parallel applications are subject to changing conditions and

fluctuations (e.g., workload, input rates, and environment) while they are running (at run-

time) [6], where a configuration that sustained some quality of services can become in-

stantly suboptimal [131]. Additionally, the unbounded data arrival requires many applica-

tions (e.g., stream processing) to execute for long or infinite periods. Therefore, applying

adaptation actions online (at run-time) can improve responsiveness to changes [101].

Consequently, new techniques are being developed to cope with scenarios that

suffer changes at run-time, where self-adaptation is a relevant example [111, 56, 71].

Self-adaptation can be broadly defined as the capability of the systems and environments

to be autonomous, deciding and changing their behavior in response to some behaviors

or uncertainties [137]. Many entities can be changed to achieve self-adaptiveness, e.g.,

in stream processing, self-adapting entities such as the batches size, and the parallelism

degree to pursue a given performance or efficiency. Importantly, self-adaptation can be

viewed as a broader context encompassing many optimizations and entities. For instance,

auto-scaling can be a facet within self-adaptation as the management of computing re-

sources can be autonomous using mechanisms for providing elasticity.

On the one hand, self-adaptation can make the executions of parallel applications

more intelligent, reducing human efforts and assisting in error-prone configurations [127,

137]. On the other hand, self-adaptation at run-time is still challenging to increase flexibil-

ity and efficiency. First, the adaptation space possible at run-time is still limited. There is

a lack of mechanisms to apply adaptation actions and efficient decision-making strategies

to decide which configurations to be enforced. For instance, the applications’ composi-

tions structures (parallel patterns, graph topology) are non-intuitive configurations that

are still up to the programmers to designate [131]. Second, a representative part of paral-

lel applications has complex composition structures 1, making the parallelism exploitation

and the enactment of adaptation actions more difficult [118]. Third, the design of the

self-adaptive solutions is expected to be improved to support the decoupling of modules

and enable more reusable/generic approaches. Fourth, the evaluation of self-adaptation

is also a rising concern not receiving the necessary attention, where we argue that this

part demands new comprehensive methodologies and guidelines [127].

Moreover, self-adaptation can also be used for providing additional parallelism

abstractions to application programmers, which is a potential opportunity to simplify the

process of running parallel applications [132, 127, 51]. However, considering the state-

of-the-art, it is an open question to what extent self-adaptation can be applied and how

1We consider complex composition structures the ones comprising more than one parallel stage.

19

efficient it is to provide abstractions of the parallelism exploitation and the applications’

executions [127].

1.2 Research goals

In this Ph.D. dissertation, we address parallelism abstractions for parallel applica-

tions. We aim at providing research perspectives for supporting additional parallelism ab-

stractions and efficiency. Hence, a potential adaptation space is to apply new self-adaptive

strategies to manage and optimize applications at run-time. We apply the proposed so-

lutions to the representative context of stream processing applications. Therefore, the

research goals can be summarized as follows:

• Improve the existing knowledge about the state-of-the-art of self-adaptation on stream

processing;

• Increase the adaptation space to enable self-adaptation of applications’ composi-

tions structures, which can provide more flexibility and efficiency for high-level ab-

stractions;

• Within the self-adaptable applications’ compositions structures, many inner compo-

sitions are complex formed by many parallel stages. There is a need to provide

self-adaptation of the number of replicas in these complex compositions;

• Improve the evaluation of self-adaptive solutions. We argue that the impact of self-

adaptation can be better measured to estimate its implications in terms of resources

consumption, performance, and efficiency.

1.3 Contributions

Considering the research challenges and goals explained above, we provide the

following main scientific contributions in this Ph.D. dissertation:

• Categorizations, a taxonomy, a catalog of self-adaptation optimization, and a discus-

sion of research challenges and perspectives of self-adaptive executions in parallel

stream processing. More details can be seen in Chapter 3 where we present an SLR;

• A conceptual framework for decision-making in self-adaptive parallel executions,

which is described in Chapter 4;

20

• Strategies for a self-adaptive number of replicas for applications with a single paral-

lel stage. The strategies support non-functional requirements such as latency and

throughput, and Service-Level Objective (SLO) for managing resources utilization,

minimizing self-adaptation overhead, and providing seamless parallelism manage-

ment. The context and these strategies are addressed in Chapter 5;

• Mechanism, models, and strategies for self-adaptive applications’ compositions struc-

tures. In Chapters 6 and 7 we describe and discuss this contribution;

• Mechanism and strategy for a self-adaptive number of replicas in complex compo-

sitions within the applications’ compositions structures. In Chapter 8, we provide a

mechanism implementation and an optimal decision-making strategy that is com-

pared to the state-of-the-art solution called DS2 [64].

The majority of these contributions have already been presented and published

in international workshops, conferences, and journals. New ideas were published in spe-

cific workshops, such as the Workshop on Autonomic Solutions for Parallel and Distributed

Data Stream Processing. Other research articles were presented in relevant conference

venues, particularly in Euromicro International Conference on Parallel, Distributed and

Network-Based Processing and The Parallel Computing Conference. Research articles were

published in Journals of the area, such as in The Journal of Supercomputing, Communica-

tions in Computer and Information Science, Springer Computing, and Concurrency and

Computation: Practice and Experience.

1.4 Document organization

The content of this Ph.D. dissertation is organized into different chapters. Chap-

ter 2 presents this work’s background. Chapter 3 provides a revision of the related litera-

ture. Then, Chapter 4 introduces the proposed conceptual framework.

Moreover, after providing the fundamentals, state-of-the-art, and conceptual frame-

work, then in this Ph.D. dissertation, there are four technical chapters with specific scien-

tific contributions. Chapter 5 provides strategies to self-adapt the parallelism degree in

applications with one parallel stage, where we introduce relevant non-functional metrics

(throughput, latency), and discuss the limits of self-adaptive abstractions, and optimize

the self-adaptation overheads.

Then, considering the demand for additional mechanisms to increase the flexibil-

ity to self-adapt parallel applications, Chapter 6 introduces a new mechanism to self-adapt

the Parallel Patterns and online change the applications’ graphs topologies. Additionally,

Chapter 7 provides an optimized decision-making strategy for the mechanism proposed in

21

Chapter 6. Chapter 8 introduces a proposed mechanism and decision-making strategy for

supporting self-adaptation of replicas in applications with complex composition structures

composed of many parallel stages. Finally, Chapter 9 contains the conclusion discussing

this work’s closing remarks, implications, and potential future works.

22

2. BACKGROUND

In the past decades we have seen the rise of a new type of applications. The

stream class of applications was needed to process data in a continuous fashion without

having a predefined end to the execution (sometimes never ending) [16]. Section 2.1

introduces parallelism aspects. Then, Section 2.2 provides an overview of the stream

processing paradigm. Additionally, Section 2.3 presents an overview of concepts related

to self-adaptation.

2.1 Parallel computing

Potential performance optimization for real-world applications concerns paral-

lelism. However, performance gains are usually conditioned to introducing parallel rou-

tines to applications. As emphasized in [46], a high percentage of applications are still se-

quential and thus cannot run in parallel. This is due to the fact that introduce parallelism

techniques tends to be challenging for application programmers that are not experts in

performance. Refactoring code to introduce parallelism usually results in application pro-

grammers facing a trade-off between coding productivity and performance. This occurs

because parallelism increases the performance, but use efficiently parallelism routines is

a time-consuming task that usually decreases the programmers’ productivity.

2.1.1 Parallelism properties

In recent efforts for improving coding productivity, [118] argued that parallel pro-

grammers and frameworks should focus on three parallelism aspects: Programmability,

Portability, and Performance.

Programmability concerns the development costs for coding effective and ef-

ficient parallel solutions [118]. We argue that a relevant aspect of programmability is

to offer programming interfaces/languages that allow application programmers to intro-

duce parallelism maintaining their code similar to the sequential one. This aspect has a

synergy with code reuse that was a priority mentioned in [118], code reuse enables the

usage of optimization available in the original sequential code without rewriting it. More-

over, abstracting from the application programmer the need to control parallelism aspects

such as synchronization, communication, and task scheduling is a potential opportunity

for enhancing the programmability. Another facet of programmability is code productiv-

ity, improving the programmability certainly helps application programmers to be more

23

productive. Aiming at improving programmability and productivity, in Section 2.1.2 we

present high-level parallel programming concepts.

Portability code portability is basically the idea to enable a given program to

be run in different platforms and architectures. A further optimization that is far more

complex is performance portability, which encompasses the idea that the same program

would achieve an expected (high) performance in different environments. [118] argued

that code rewriting and tuning is required for achieving the expected performance when a

parallel program is ported to new hardware. We believe that performance portability can

be improved by employing self-adaptivity to autonomously managing parallelism aspects,

Section 2.3 will introduce foundations for this topic.

Performance is another very relevant aspect related to parallelism, which usu-

ally is the primary goal for parallel programming. However, achieve the performance

needed can be a challenging task. Firstly, it is not possible to efficiently parallelize every

computation, there are also code parts that cause serialization (e.g., strict tasks order or

dependency). A theoretical limit is known by Amdahl’s Law [4]. Moreover, performance

gains are even harder lately with the end of Moore’s Law [95, 116]. On the other hand, the

performance of running applications is expected to continue increasing, where properly

use available resources and scale the performance is a common objective. We believe

that scalability can be achieved while maintaining high-level abstraction for application

programmers, the capacity to let an application to self-adjust its configurations is a long-

term goal that is discussed in Chapters 5, 6 , 7, 8.

2.1.2 High-level parallelism

The use of high-level parallel programming methodologies is a potential alterna-

tive to provide coding abstractions for application programmers [28]. Abstractions can

reduce the application programmers’ burden. The main goal of high-level parallel pro-

gramming can be defined as reducing programming efforts while ensuring a reasonable

performance and portability. High-level abstractions tend to be provided by approaches

that hide from programmers the complexities related to parallelism [85].

There are two related concepts attempting to raise the abstractions for parallel

programming in a more structured mode: parallel patterns [88] and algorithmic skele-

tons [23, 2, 21]. The basic idea is to provide for programmers recurrent constructors

(skeletons) to be used for modeling parallel applications, where the common goal is to

increase the coding productivity. Such constructors are called patterns, where several

patterns may exist with different communication models, synchronization techniques, and

task execution [88].

24

Structured Parallel Programming may be viewed as a methodology that uses li-

braries or languages to facilitate coding. A usual approach towards structured parallel

programming consists in using parallel patterns, which are well-accepted concepts that

emerged from best coding practices in software engineering for optimizing and reusing

specific code parts. The term parallel pattern refers to how the task distribution and data

access are used recurrently in the design of a parallel program [88].

Patterns are expected to be generic and universal, which can theoretically be

implemented in any programming interface [88]. Consequently, flexibility is targeted by

providing a vocabulary with several different patterns. In this study, important examples

of patterns are Map, Pipeline, and Farm [21, 88]. A Map can be simplistically defined as

a function replication of elements that are processed in collections separated by indexes,

where the replication is mostly suitable for independent elements. A Pipeline is a pattern

handling tasks in a producer-consumer fashion (like an assembly line) that is composed

of connected stages. In a Pipeline pattern, the data items flow through an acyclic graph,

where each stage performs different computations/tasks.

Farm is a pattern composed of a Pipeline. While a Pipeline is composed of sequen-

tial stages, a Farm has one or more parallel (replicated) stages. A Farm has also at least

one stage called Emitter (A), which gets the input tasks and sends them to the next stage,

according to a scheduling policy. In a Farm, the stage following an emitter is usually fis-

sioned (Also Known As (AKA) replicated, parallel) with a number N of parallel agents (called

workers or parallelism degree), where N is the parallelism degree. A Collector (C) gathers

the tasks from the workers and places them into the output stream. In the context of

stream processing, the stream items flow through the graph, continuously gathering input

items as well as producing output results. The Farm pattern used in a parallel execution

characterizes a composition, which can be seen as the applications’ graphs topologies. In

Figure 2.1 we show a representation of parallel patterns, where data items can be seen

as elements to be processed and tasks are a generalization of computations that are exe-

cuted (e.g., by a thread). Moreover, parallel patterns can be semi and arbitrary nested to

compose new parallel patterns [88].

Figure 2.1: Representation of parallel pattern examples.

Source: [127].

25

These parallel patterns have been implemented with programming abstractions

as languages and Application Programming Interface (API) for parallel stream process-

ing [28]. Some of them are known as distributed SPE, for instance, Apache Storm [120],

Apache Spark [142], and Apache Flink [11]. These SPEs are designed for large scale clus-

ters using JVM to provide hardware and communication abstractions. There are also lan-

guages/frameworks for multi-core parallelism exploitation, such as Intel TBB [134], Fast-

Flow [3]. Additionally, there are domain-specific languages for exploiting stream paral-

lelism, like StreamIt [117] and SPar [47].

2.1.3 SPar

Considering the inherent challenges of high-level parallelism abstraction in stream

processing applications, SPar1 was specifically designed to simplify the stream paral-

lelism exploitation in C++ programs for multi-core systems [46, 47]. It offers a stan-

dard C++11 annotation language to avoid sequential source code rewriting. SPar also

has a compiler that generates parallel code using source-to-source transformation tech-

nique2. SPar uses FastFlow [3] as the main runtime library, where all low-level paral-

lel programming advanced concepts and implementations (scheduling, load balancing or

parallelism strategies) are resolved by SPar’s compiler. Moreover, recent efforts have ex-

tended SPar for supporting other runtime frameworks as backends for the code generated,

such as supporting TBB [59], OpenMP [60]. Other works have supported SPar to execute

in additional environments: distributed [98] and Graphics Processing Unit (GPU) acceler-

ators [102]. Additional works increased SPar abstractions for data parallelism [75] and

self-adaptation [124, 129].

It is also important to note that SPar’s primary goals are to increase application

programmers’ productivity and provide scalable higher-level abstractions. In our under-

standing, self-adaptation can assist in enhancing productivity and abstractions for execu-

tions in several environments and support different user goals.

Attributes can be used in C++ to express parallelism in code annotations [28].

SPar’s language is composed of five attributes to express the key properties of the stream

parallelism. Listing 2.1 is showing the use of the attributes in the source code annotation.

The ToStream attribute represents the beginning of a stream region, which is the code

block between the ToStream and the first Stage (lines 1 and 2). The ToStream attribute

therefore labels where a stream parallel region starts in a given program. The Stages are

defined inside the ToStream region to label the computing phases where stream items will

be processed, like an assembly line. Usually, stream processing applications will never end

1SPar’s home page: https://gmap.pucrs.br/spar
2The content of this section utilizes some material from SPar’s background section shown in refer-

ence [129].

26

like in Listing 2.1, but the users may want to finish the application at some point during

the execution. They can do so by introducing a stop condition in the while loop as well as

introducing an if condition before the first stage that breaks the current loop, which can

be any kind of loop from the host language.

1 [[spar : :ToStream]] while(1){

2 i = read_item () ;

3 [[spar : :Stage,spar : : Input(i) ,spar : :Output(i) ,spar : : Replicate (n)]]

4 {

5 i = f i l t e r i ng (i) ;

6 }

7 [[spar : :Stage,spar : : Input(i)]]{

8 write_item (i) ;

9 }

10 }

Listing 2.1: Demonstrative example of the SPar language.

Once the Stage and ToStream are annotated, the Input or Output attributes are

inserted to define the input and output data dependencies. The attribute arguments can

be one or more variables from different data types, which label the stream items that

will be consumed or produced by a given region. Finally, the Replicate attribute may be

inserted in the attribute list of Stage to define the degree of parallelism of that region. The

argument of this attribute is the degree of parallelism (the number of stage’s replicas),

which can be a constant integer number or variable. SPar is not able to automatically

manage stateful operations. Thus, only Stages with stateless operations can actually be

replicated without any user intervention.

The SPar compiler performs source-to-source transformations by generating calls

to the FastFlow library. The compiler interprets the annotations in the source code, per-

forms semantic analysis, and applies transformation rules based on stream parallel pat-

terns [47]. The outcome is that from the high-level SPar annotations, parallel patterns

such Farm, Pipeline or a combination of Pipeline with Farm stages are generated using the

FastFlow programming framework. The parallel code generated is what we call the SPar

runtime.

Figure 2.2 depicts the activity graph and communication between stages of the

SPar runtime system generated from the example of Listing 2.1. This provides an overall

idea how it works. Note that the Replicate attribute applies the replication role over

the Stage. Each replicated stage has its own input and output lock-free queue, where this

term refers to an operation that eventually completes after a given number of steps [118].

The first stage is actually the code left inside a ToStream region, which generates stream

items for the subsequent stages. It is also responsible for scheduling items, which by

default is round-robin. However, users may need an on-demand scheduler that is made

possible through a compiler flag in the SPar compiler (-spar_ondemand). When this flag is

27

present, the queues size is one (stream item). Thus, as soon as one stream item is popped

by the current stage, another will be pushed from the previous stage.

Figure 2.2: SPar runtime: activity graph and communication queues.

Source: [129].

In the SPar runtime, the default configuration is the stages actively trying to push

or pop stream items from the queues. If the queue is full or empty, the stage thread

remains in a loop, trying to perform push or pop until it finally succeeds. Every time that a

given stage fails in perform push or pop, the stage generates a push or pop lost event. This

may generate an extra overhead for coarse-grain computations. Therefore, users may set

the SPar runtime to behave in a blocking mode through the spar_blocking compiler flag.

In this case, the stage thread will not stay in a loop, it will wait until it can perform push or

pop in the shared queue.

Another important concern is to preserve the order of stream items, the ordering

is implemented in stage after the replicated one. SPar is able to automatically handle

out-of-order stream items in the last stage when -spar_ordered compiler flag is defined.

A relevant part of SPar is its code generation, which is provided by a compiler

tool. The SPar’s compiler is powered by Compiler Infrastructure for New C/C++ Language

Extensions (CINCLE)3. In short, CINCLE applies a parser step following the standard C++

grammar with an interface that creates the Abstract Syntax Tree (AST). As an illustrative

example, Figure 2.3 shows the generic compilation flow, where blue boxes correspond

to SPar implementations and the orange boxes relate to the CINCLE modules provided

to generate SPar compiler. Note that semantic analysis and the AST transformations are

those implemented to support SPar language and parallel code generation.

3Technical implementation details can be found in [46].

28

Figure 2.3: The SPar’s compiler representation.

Source: [47].

2.1.4 FastFlow

FastFlow is a programming framework developed guided by the structured par-

allel programming methodology to support efficient parallel computing on heterogeneous

multi-cores [2, 118]. FastFlow has a specific C++ API to interact with application pro-

grammers, which is included in the form of a header-only library and provides several

ready-to-use parallel patterns to be instantiated. A given parallel application is usually de-

veloped using FastFlow by instantiating patterns in the application’s business logic code

and connecting these patterns creating a data-flow graph (e.g., composition structure).

FastFlow also has its streaming runtime system that executes the data-flow graphs. Con-

sidering that the FastFlow is the primary runtime system of SPar’s code generated, the

description about SPar runtime provided in Section 2.1.3 is actually representative of the

FastFlow runtime system.

Moreover, the reader interested in a more detailed description about FastFlow

can refer to reference [118] that is a recent Ph.D. dissertation of the leading developer of

FastFlow, where a new version of FastFlow is thoroughly explained that provides flexible

optimizations in terms of performance and programmability.

We use FastFlow’s flexibility to validate our proposed solutions in this work. As an

organization matter, further FastFlow’s details are presented when necessary to explain

the implementations in the following chapters. Moreover, in some cases, we can improve

our solutions’ usability by employing SPar to generate a self-adaptive parallel code that

uses FastFlow as the runtime system.

2.2 Stream Processing

Stream processing applications can be defined as programs that continuously

compute data items. A stream is a given input that arrives from sources in the form of an

infinite sequence of items [58]. Examples of stream sources can be equipment (radars,

telescopes, cameras, among others) and file bases (text, image). Moreover, processing

stages (a.k.a. operators) are entities that consume the incoming streams by applying

29

computations. Usually, a stream processing system is composed of stages that communi-

cate between them and provide results in a timely mode. The stages tend to be organized

as a directed acyclic graph (DAG) where each stage performs specific computation and the

stream item flows through the graph. Currently, there is available a large number of ap-

plications that characterize stream processing, these applications represent a significant

workload in our computing systems.

The characteristics of stream processing applications vary depending on the data

source and computations performance. One of the most highlighted aspects is the con-

tinuous and unbounded arrival of data items [6]. Lately, we have witnessed a significant

increase in the number of devices producing data to be processed in real-time. As stream

processing systems usually have to process streams with low latency and high throughput,

parallelism emerged as an opportunity to process faster those data items. Consequently,

parallelism can be seen as an opportunity to increase the overall performance of a stream

processing system. In the context of this study, we refer to parallelism as the possibility

to concurrently perform different operations over independent stream items. The next

section provides further parallelism details related to stream processing.

The generic concept of stream processing systems was splitted by [103] into two

parts: General stream processing systems and Complex Event Processing (CEP) systems.

General stream processing represents the broad concept, encompassing systems and ap-

plications that may receive different data types and produce a result in real-time. CEP

systems, on the other hand, concerns systems dedicated to detecting information from

streams coming in the form of events. CEP is highly associated with the processing of

data coming from Internet of Things (IoT) devices, where each stream sent from a given

sensor is handled as an independent event. In this work, we focus on the general stream

processing system, but our solution can be also suitable for CEP systems.

2.2.1 Parallelism in stream processing

Previously, in Section 2.1, we described parallelism aspects that can be generic

to a wide range of applications. Parallelism is also very important for improving the per-

formance of stream processing applications. In stream processing, several types of par-

allelism can be exploited. [58] classifies the three main types of parallelism suitable for

processing data streams, which are shown in Figure 2.4. Pipeline-parallel (a) is related

to the concurrent running of different stages (A,B) in a producer and consumer model.

Task-parallel (b) on the other hand, concerns the concurrent execution of different compu-

tations (D,E), where it is usually a function that performs operations over duplicated data.

Moreover, in Data-parallel (Figure 2.4(a)) the same computation G is replicated in such a

way that each instance processes different data or different partitions of the same data.

30

Figure 2.4: Types of parallelism in the context of data stream processing.

Source: Extracted from [58].

The classification of [58] can be viewed as a categorization for the processing of

data streams. In a broader view from a stream processing perspective, we adopted and

derived three parallelism types from [118, 46].

Data parallelism is similar to the data-parallel from [58] that can be general-

ized to data parallelism divided into sub-collection or partitions. As stated by [118], data

parallelism can be characterized by the replication of functions and partitioning of data.

Data parallelism usually provides profitability with the parallel processing of loops over

independent read-only data. This technique can decrease execution times in case the

data partitions are mostly independent. In the case of dependencies, an internal state is

usually maintained which then characterizes stateful computations that are very usual in

data stream processing [100, 103, 89].

Stream parallelism can be seen as a combination of pipeline and data paral-

lelism. In this type, sequential and parallel stages run simultaneously over independent

items. The logical view is usually a graph where stages communicate via dedicated chan-

nels. In stream parallelism, heavy stages can be replicated in such a way that the same

computation is performed over different data items.

Task parallelism characterizes the task-parallel definition from [58] where func-

tions are replicated attempting to improve the overall performance.

2.3 Self-adaptation overview

The software engineering field has been evincing that modern software systems

should operate in dynamic conditions without downtime [18, 136, 111]. There, concepts

of self-adaptation are being used in software systems to collect data and to adjust them-

selves. In the context of this work, foundations of self-adaptivity are aimed to be used

for managing parallelism aspects as well as for providing high-level abstractions. Conse-

quently, in this section, we provide an introduction to self-adaptive theories and concepts.

31

2.3.1 Definition

The concepts of self-adaptation are not strictly defined in the related literature [18,

136, 111]. In Cheng et al. [18], self-adaptation was described as a characteristic of a sys-

tem that “is able to adjust its behavior in response to their perception of the environment

and the system itself”. Although other similar definitions are available, such a short and

precise definition allows us to reason about the theoretical foundations of self-adaptive

systems.

Moreover, Weyns [137] defines:

“The basic idea of self-adaptation is to let the system collect new data (that

was missing before deployment) during operation when it becomes available.

The system uses the additional data to resolve uncertainties, to reason about

itself, and based on its goals to reconfigure or adjust itself to maintain its quality

requirements or, if necessary, to degrade gracefully.”

From Weyns [137] quote, one can note that self-adaptation focus on applying

actions at run-time due to the need to adapt to specific unknown execution scenario,

which is a possible way to handle the uncertainties. This is usually done by collecting

data and extracting knowledge from such data (not so easy in practice). Then, it becomes

possible to decide which actions to take with knowledge. For instance, try to increase

the Quality of Service (QoS) with optimal configurations. In short, this is an interpretation

from an outside angle (external) where a self-adaptive system is viewed as a black box

that abstractly performs optimal decisions.

Our understanding is that this view as a black box is suitable for non-expert users

that determine their goals, and the self-adaptive system ideally behaves to meet them.

Thus, providing user abstractions.

A complementary interpretation is the “internal” one, which Weyns [137] deter-

mines that a self-adaptive system is composed of two parts:

“The first part interacts with the environment and is responsible for the domain

concerns – i.e. the concerns of users for which the system is built; the second

part consists of a feedback loop that interacts with the first part (and monitors

its environment) and is responsible for the adaptation concerns – i.e. concerns

about the domain concerns.”

Our perspective is that these two basic principles are complementary, and using

one does not implicate ignoring the other. In fact, from a practical angle, we believe that

both can be employed in the same solution, where what would determine the principle

32

is the angle and abstraction level of the one who views the self-adaptive system. The

strategy designers and system developers tend to have an internal view that usually com-

prises two parts. On the other hand, the user tends to have an external perspective from

a higher abstracted angle.

Understanding the views from different perspectives of self-adaptive is relevant

for this work because we are interested in providing abstractions by employing self-adaptation.

For instance, in Chapter 4 we use the internal view and its two parts to propose a concep-

tual framework intended to help the strategy designers and system programmers. By

using this framework, we expect that it enables us to improve the self-adaptive solutions

applied to parallel computing. Then, the technical chapters 5, 6, 7, 8 use the framework

and its parts in practical solutions. However, the external principle is the level of abstrac-

tion that we intend to provide to users of parallel systems and application programmers

that intend to have self-adaptation in the executions of their parallel applications.

Yet regarding definitions of self-adaptive systems, a non-intuitive part is how self-

adaptation relates to other concepts that are also used to apply actions and make sys-

tems more dynamic. Weyns [137] explains that other concepts like autonomous systems,

multi-agent systems, self-organizing systems, and context-aware systems are not well

compliant with the basic principles above-explained of self-adaptation. These additional

concepts are not compliant with the second principle. They do not distinguish between the

different parts. Although these concepts can be extended to comply with all self-adaptive

principles, we understand that not separating the system into parts/modules implies lim-

ited modularity and flexibility. Hence, other concepts are represented in the literature but

usually refer to narrow solutions where the adaptation actions are entangled within the

systems, which reduces their generalizability.

2.3.2 Applying self-adaptation

Considering relevant aspect of the self-adaptation is how to adapt, [136] pro-

posed a conceptual model of self-adaptive systems. This model is depicted in Figure 2.5

that encompasses the following parts:

• Environment: Refers to the “world” that the system runs inside. The environment

tends to be a part that the system does not have full control, which is subject to

uncertainties and variations. For instance, the environment of a parallel application

in the operating system and machine that it runs.

• Managed System: Is the entity that usually receives additional components (sen-

sors, actuators) in order to be controlled and adapted. The adaptation actions are

expected to be applied while ensuring safety to the managed system. For instance,

33

in the case of a self-adaptive parallel application the managed system the business

logic code of the application.

• Adaptation goals: Are usually concerns handled by the self-adaptivity. [136] pro-

vides four main types of goals: self-configuration (a system that arranges itself),

self-optimization (autonomously optimizing the execution), self-healing (seamlessly

detecting and repairing issues), and self-protection (a system that transparently de-

fends itself from problems). For instance, a parallel application can have an adapta-

tion goal to increase its performance or the efficiency of the resources usage.

• Managing System: Its policy, strategy or system that controls the managed sys-

tem. The adaptation goals are used for deciding whats actions to take and the low-

level constraints of the managed system are usually defining what to adapt.

Figure 2.5: Conceptual model for a self-adaptive system.

Source: Extracted from [136].

The workflow of sensing and applying adaptations usually characterizes a feed-

back loop. Control engineering proposed the use of feedback loops as entities for providing

adaptation capabilities. Moreover, feedback loops are conceptually essential entities for

enabling self-adaptation to computing systems. The most relevant concepts of feedback

loops are described in the next paragraphs.

Control engineering and theory is a concept aimed to automate systems. The

concepts used in this work are based on [56], which uses the term feedback control for

monitoring a system’s execution to optimize it. This is performed by monitoring aspects

such as throughput, latency or system utilization and, by triggering optimization in the

next execution. Monitoring the outputs of the system and performing actions according to

its behavior results in an architecture called feedback or closed loop [56].

34

Control theory can be used in the context of stream applications and it is applied

in order to implement service levels regulating the application processes. The implemen-

tation of control theory into stream applications requires a control framework to manage

execution [56]. An example of is a feedback control in computers is using Queueing Sys-

tems mainly for performance modeling. A simple example is shown in Figure 2.6, where

the items are placed in a queue and processed by the servers (circle).

Figure 2.6: Simple example of a Queueing System.

Source: Extracted from [56].

Figure 2.7 shows an example of a feedback control loop to manage response

times in a queuing system. It is relevant to point out that such a system has an SLO to

maintain a given response time (constraint).

Figure 2.7: Example of a feedback control.

Source: Extracted from [56].

A closed loop using a feedback control is considered a simple system model that

can adapt to disturbances [56]. Thus, it fits the requirements of a many real-world ap-

plications. Existing approaches applying self-adaptation to the context of parallel stream

processing are described in Chapter 3.

35

3. LITERATURE REVIEW

We conducted an SLR to map and comprehend the current state-of-the-art re-

garding self-adaptation applied to parallel stream processing. Our research scope con-

siders the known characteristics of dynamic, irregular, and unbounded stream processing

applications, where self-adaptation can potentially improve for different goals and sce-

narios applications with such characteristics. The content of this chapter was published

in [127] as an article presenting a SLR survey, where the material provided here is a

slightly modified version reproduced here in accordance with the signed copyright agree-

ment. The interested reader can access the complete original version in an article format

in reference [127]. In summary, this chapter provides the following main scientific contri-

butions:

• Categorizations of self-adaptation characteristics, parallelism properties, and valida-

tion categories in existing tools /frameworks for self-adaptive executions in parallel

stream processing.

• A unified taxonomy for categorization and validation of self-adaptation in parallel

stream processing.

• A catalog defining self-adaptation goals and entities managed.

• A discussion of open research challenges and perspectives for future enhancements

on stream processing with self-adaptiveness.

3.1 Research method

This section first overviews the research questions. Then, we contextualize our

search strategy and protocol.

3.1.1 Research questions

Considering the research scope and research problem, we distilled the following

Research Questions (RQ):

• RQ1: Which are the publication’s goals when applying self-adaptation to stream pro-

cessing?

• RQ2: Which entities that enact adaptation are being dynamically adapted in existing

solutions?

36

• RQ3: Which information is considered for performing adaptation?

• RQ4: How is the adaptation decision-making performed?

• RQ5: What parallelism aspects are being exploited in self-adaptive solutions for

stream processing?

• RQ6: Are the approaches focusing on providing parallelism abstraction to application

programmers when applying self-adaptation?

• RQ7: Which experimental procedures are used for validating the proposed solutions?

• RQ8: Which variations (e.g., workload, application) are considered for evaluating the

proposed solutions in the experiments?

• RQ9: Are the approaches considering the overhead that adaptation may cause?

RQ1 aims to show up the main goals for applying software adaptation to stream

processing. RQ1 also aims to provide a better understanding of the motivations and po-

tential advantages of self-adaptation in the context of stream processing.

RQ2, RQ3, and RQ4 concern internal aspects of the self-adaptive solutions avail-

able. As parameters or system settings may be changed, it is very relevant to list what

each solution is changing at run-time. Moreover, for performing adaptation, it is required

that an entity decides for it. Thus, an entity has to consider some information for deciding

what change to make, RQ3 aims at answering which information or statistical data is used

in the decision-making step. Additionally, RQ4 attempts to unveil which mechanisms are

used on specific scenarios for actually performing adaptation actions.

RQ5 relates to how parallelism is being exploited on self-adaptive solutions, specif-

ically the framework/language used and which architecture/environment is the solution

targeting. Moreover, a relevant aspect for parallel stream processing is how many repli-

cated stages the self-adaptive solution is able to manage, where in this broad SLR differ-

ent scenarios of stream-like applications are being considered (e.g., data stream, complex

event processing, streaming systems). Considering the importance of providing high-level

parallelism abstraction described in Section 2.1.2, RQ6 focuses particularly on evaluating

if the self-adaptation properties can be used/adapted for providing parallelism abstrac-

tions for application programmers.

Another relevant aspect of self-adaptation is how to validate a proposed solution.

RQ7 seeks representative aspects used for evaluating self-adaptive solutions. Addition-

ally, a representative and the broad experimental setup is expected to properly evaluate

the quality of self-adaptive solutions. Thus, RQ8 intends to identify whether the solutions

are being comprehensively evaluated regarding variation that can be application charac-

teristics, workloads, environments, etc. Yet concerning the validation of the proposed so-

lutions, the overhead caused by the self-adaptation is very relevant. RQ9 has this concern,

37

looking at whether the validation of the solution is considering the potential overhead of

adaptation.

3.1.2 Search strategy

The search strategy is composed of incremental steps. The first step was to

elaborate on the search string that was used for automating the search. As recommended

by Kitchenham’s guidelines [68], the research questions of this literature review were

separated into facets related to three main aspects: stream processing, self-adaptiveness,

and parallelism. We defined 5 control studies [44, 31, 113, 110, 107] that were previously

known as relevant primary studies from our previous works [132, 129, 131, 125, 51]. Pilot

searches were conducted on Scopus with the different terms and synonyms for testing

if the string found the control studies. Thus, we converged to a search string evinced in

Table 3.1 with the terms of the three main aspects separated by boolean ANDs, where

these terms searched studies’ titles, abstracts, and keywords.

In the area of stream processing, we included relevant terms known to represent

stream processing characteristics and paradigms. In the self-adaptation properties, we

included also terms related to “autonomic" that can be seen as a way to achieve self-

adaptation. Regarding the parallelism scenario, we included also terms like the ones re-

lated to concurrency because it is used interchangeably with parallelism in some works. In

short, we included similar known terms in order to find a high number of relevant studies.

But at the same time, we avoid broader terms that bring irrelevant papers. In Section 3.5,

we discuss a compromise between these two objectives.

Area: Stream Processing Scenario:
Parallelism

Property: self-adaptation

“stream processing" OR
“data stream" OR “com-
plex event processing" OR
“streaming application"
OR “streaming system"

“parallel"
OR “con-
curren*" OR
“scal*"

“adapt*" OR “autonomic" OR
“autonomous" OR “elastic" OR
“on-the-fly reconfiguration" OR
“online reconfiguration" OR
“self-*" OR automatic scaling

Table 3.1: Search terms.

The next step was running the search string in the most relevant research databases

and digital libraries for finding primary studies. The research databases used are Scopus1

and Web of Science2. Moreover, the two digital libraries, namely ACM Digital Library3

and IEEE Explore4. The search string was defined according to the systematic review

1https://www.scopus.com
2https://webofknowledge.com
3https://dl.acm.org
4https://ieeexplore.ieee.org

38

procedure adapted to the syntax of each repository. The search string was executed in

November of 2020.

In the third step, the titles and abstracts of the papers were read and filtered

accordingly to the inclusion and exclusion criteria presented in Section 3.1.3. Then, we

performed a skimming step, similar to what was performed in related surveys [100], cov-

ering a full-text view (figures, tables, flowcharts, graph results) of the papers. In the fifth

step, we read the full papers for performing the final decision. This was the most intensive

step, where we critically double-checked the paper considering the inclusion and exclusion

criteria.

3.1.3 Study selection criteria

The following criteria were used for filtering the papers:

• Inclusion criteria 1: The study applies self-adaptation properties to stream pro-

cessing. Rationale: we include technical studies that do not explicitly mention self-

adaptive systems, but that encompass self-* properties.

• Exclusion criteria 1: Not a scientific paper that is not written in English or that is a

short version (e.g., editorial, abstract, poster). Rationale: This type of study lacks in

space for proposing and validating relevant solutions.

• Exclusion criteria 2: A publication that has no self-adaptation aspects, concerning

only stream processing. Rationale: Our focus is on adaptive properties applied to

stream processing.

• Exclusion criteria 3: a publication that has no aspects related to parallelism, i.e.,

only concerning self-adaptation. Rationale: Considering that parallelism is a perva-

sive topic that is relevant for several optimizations, we focus on studies addressing

self-adaptation in parallel systems.

• Exclusion criteria 4: publications that are not considering stream processing. Ra-

tionale: we focus on solutions for the stream processing context where applications

have unique characteristics, i.e., long-running and dynamic.

3.2 Self-adaptation: categorization and taxonomy

Here we propose categorizations and taxonomy to organize and extract relevant

results from the literature. There are some classifications of studies addressing self-

adaptive properties in the context of parallel stream processing. This study intends to

39

unify these existing classifications into a taxonomy. Moreover, we propose new categories

to improve the categorization of proposed solutions and answer our research questions.

Figure 3.1 depicts the structure of the proposed taxonomy that has three main classifica-

tion groups described in the next sections: self-adaptiveness (Section 3.2.1), parallelism

properties (Section 3.2.2), and validation of the proposed self-adaptive solutions (Sec-

tion 3.2.3).

Figure 3.1: Proposed taxonomy for self-adaptiveness in stream processing.

3.2.1 Self-adaptation categories

The categorization presented here concerns self-adaptiveness foundations and

we divided the self-adaptation characteristics into three major properties described below.

Category of adaptation

One category is the adaptation goals (RQ1) and the entities managed in adapta-

tion actions (RQ2) for pursuing a given goal. Regarding where the adaptation is performed,

[100] provides a taxonomy that helps in our scenario. Here, the scope of adaptation con-

siders three adaptation classes: resources, data, and system processing. Resources adap-

tation concerns the modifications applied only to the physical execution environment that

40

is agnostic to the application/system. For instance, adapting the amount of Central Pro-

cessing Units (CPUs) computing resources available while a given application is running.

Data adaptation is related to modifying the data stream/items that are the application is

processing, such as adapting the size of data batches. The processing adaptation category

covers adaptations performed in the application processing entities. Examples of this cat-

egory are changes applied in the application processes/threads (parallelism degree) and

task scheduling.

Monitoring (abbreviated: Mon.)

Considering that the managing system needs updated information and statistics

to self-adapt the executions, monitoring is a potential way of feeding the system to mea-

sure/evaluate the execution. In this work, we divide monitoring into system and applica-

tion level, which is a categorization related to RQ3. System-level relates to monitoring the

operating system and hardware (the environment). Application monitoring relates to the

collection of information from the application and its runtime systems, such as application

performance metrics or indicators.

Decision-making

The managing systems decide to perform adaptation actions, which enables a

managed system to achieve self-adaptiveness. The alternative of applying an action to

change a given entity considering a goal can make a system and the executions more in-

telligent. RQ4 considers how is the decision-making performed. AS explained in [103], the

decision may have different timing, reactive or proactive. A reactive decision responds

to a specific scenario, while the proactive one attempts to anticipate a given occurrence.

Additional categories that we created for evaluating the decision-making regards the the-

oretical technique and realization approach used. Considering that designing and imple-

menting support for adaptation to real-world stream processing applications tends to be

complex, there are several theoretical foundations available [56, 111]. Thus, the category

theoretical technique attempts to survey which theories are being used for designing the

self-adaptive strategy. Moreover, the realization approach category is the core of the

decision-making that is represented by a decision algorithm and control mechanisms.

3.2.2 Categorization of parallelism properties

Considering that parallelism is relevant for stream processing applications and

the RQ5, we also propose a categorization of the properties concerning the parallelism

exploitation in self-adaptive approaches.

41

Tool

This category concerns which existing tools are supporting self-adaptive paral-

lelism in stream processing. It is also important to note that the existing runtime or frame-

works can be extended by approaches proposing new tools that enable self-adaptiveness.

Runtime library or framework

A relevant aspect to survey the literature relates to which existing parallel run-

time libraries or frameworks have features supporting self-adaptation. Our SLR attempts

to list all parallel tools/frameworks that support self-adaptation in the context of stream

processing.

Parallel stages

Figure 2.1 shows a Farm with one parallel (AKA fissioned, replicated) stage, which

represents a graph composition or application topology [132]. Such a graph composition

is suitable for embarrassingly parallel computation that easily executes in parallel. How-

ever, there is a trend in software applications to be more complex with several functions

that can be decomposed using parallel patterns, resulting in complex (AKA robust) graph

compositions. We consider complex compositions the ones comprising more than one fis-

sioned stage or a combination of patterns (e.g., a Pipeline with Farms). The property of

fissioned parallel stages aims at surveying how many replicated stages are supported by

the existing self-adaptive approaches/tools. Manage a single fissioned parallel stage tends

to be less complex. On the other hand, complex compositions with multiple fissioned par-

allel stages tend to require additional control mechanisms for managing the execution at

run-time.

Execution environment

The execution environment category inside the group parallelism properties con-

siders the characteristics of the execution architecture of a given stream processing appli-

cation, which is a very relevant aspect for parallelism. A single machine environment can

be composed of a multi-core or heterogeneous architecture (co-processors, GPU, FPGA).

The environment may also be a cluster with a distributed shared-nothing memory sub-

system. The target environment used tends to be related to performance requirements.

Some applications running in a multi-core machine can sustain a suitable QoS while other

applications may require several machines for achieving QoS.

42

Parallelism abstractions

This category evaluates if the self-adaptation employed is able to optimize stream

processing aspects for providing abstractions to users/programmers. Examples of abstrac-

tion can be a parallelism abstraction (Section 2.1.2), attempting to simplify the execution,

or self-optimize specific concerns. Providing abstraction can be an advanced goal of self-

adaptiveness because it tends to be difficult to facilitate the application programmers’

tasks by transparently managing the systems. Additionally, considering stream process-

ing and parallelism abstractions, RQ6 attempts to conceptually highlight whether paral-

lelism abstractions are being considered for self-adaptive stream processing.

3.2.3 Self-adaptiveness validation

A relevant aspect related to RQ7 is how the literature approaches available are

validated. Although self-adaptivity can provide several advantages, we expect the ap-

proaches to be properly evaluated for maintaining performance and execution safety.

In [100], evaluation metrics were extracted from the papers found in their context. In

this work, we intend to extract relevant information and evaluate the current validation

state of the approaches. Hence, we propose a categorization to assess the characteristics

and variations used in the validation. Below we describe the categories and properties

covered by the proposed categorization.

Evaluation metric

Considering that the self-adaptive solutions are expected to be extensively eval-

uated, this category intends to survey the evaluations metrics. Examples of metrics to be

considered are performance, energy, and resource consumption. For instance, the perfor-

mance metric can be utilized to measure the effectiveness of the self-adaptive solutions,

where examples of relevant metrics are execution time, throughput (how many stream

items are computed per second), and latency (time taken to compute the stream items).

Experiments variation

Experiments variation is a relevant concern related to RQ8. Considering that

a representative and broad testbed is expected to be used for evaluating the proposed

solution under different scenarios, this category is divided into subcategories for better

assessing the approaches:

43

• Application considers whether different applications were used for characterizing

and evaluating the behavior of the proposed approaches. The self-adaptive manag-

ing systems are supported in applications that are executed for evaluation purposes.

• Processing pattern considers whether the tested applications present changes in be-

havior or processing characteristics. In our context, we consider as relevant exam-

ples of different processing patterns if the applications have a different performance

trend with respect to the parallelism (degree, level, grain, scheduling, placement)

used or processing characteristics (e.g., CPU bound, memory-bound, Input/Output

(I/O) bound).

• Input characteristics evaluate if different input types or rates were considered for

the applications used.

• Resources available considers if the number of computational resources available

for the running applications changed during their executions. This is a concern of

applications running in modern dynamic environments.

• Execution environment is a variation related to evaluating the approaches in more

than one scenario/environment. An example can be executing the application and

characterizing the self-adaptive decision-making in different computational architec-

tures (multi-core, GPU, Field-Programmable Gate Array (FPGA), Clusters) or paradigms

(Cloud, Fog).

Overhead measurement

This category is related to the overhead (RQ9) that can be caused by self-adaptation,

where it attempts to survey what is the impact on real-world applications. For instance,

self-adaptation demands additional mechanisms and processing parts, which consume

more computational resources. Moreover, being adaptive can impact positively or neg-

atively in the performance of the applications. The overhead measurement intends to

evaluate whether the related literature considers the drawbacks that self-adaptiveness

can cause in some cases.

3.3 Result analysis and discussion

In this section, we discuss the results found in the literature with respect to the

categorizations.

44

3.3.1 Studies overview and their execution environments

This section presents an overview of the literature approaches that are separated

according to their execution environment and ordered by publication year. The execution

environment is classified according to the description provided in each study. The exe-

cution environments are classified in multi-cores, cluster, cloud, and heterogeneous envi-

ronments with multi-core and accelerators (GPUs or co-processors). It is important to note

that cloud environments support multi-core environments (a single instance) or a virtual

cluster with multiple instances. Consequently, a parallel application running in a cloud

environment can be still running in a multi-core or cluster. However, as we focus on the

environment instead of the programming model, studies that are executed in clouds are

only presented in the cloud category. The same organization is applied to studies showed

in the accelerators section because GPUs and co-processors are added to multi-core ma-

chines that may or may not be part of a cluster.

Multi-cores

The first approach proposing self-adaptiveness for stream processing applica-

tions was found in Schneider et al. [106]. They proposed elasticity as an adaptation

that extended SPADE [43], a language and compiler for developing stream processing ap-

plications. The solution was implemented using a dispatcher thread, which manages the

stream system (load distribution, queues). The dispatcher thread is characterized as a

component that manages the number of active threads. A key component of the system

is the alarm thread which runs periodically for monitoring the system.

The work of Choi et al. [22] proposed a solution for detecting performance bot-

tlenecks with a performance model and adaptation algorithm. The proposed solution was

validated in different scenarios comparing its performance to the related solution from

[106]. The validation considered a different number of bottlenecks and a scenario with

changes regarding the availability of computing resources. The proposed solution outper-

formed the related approach in terms of performance. It is also important to note that

the solution of [22] assumes a stable workload, where the application load has only one

processing phase. Consequently, this approach only configures streams programs once.

Tang and Gedik [115] proposed an autopipelining solution for stream processing

that transparently attempts to improve the application efficiency and throughput. It is

important to note that the approach concerns a scenario where each thread executes a

pipeline. Autopipelining was implemented with a runtime profiling that performs optimiza-

tions concerning the number of threads aiming to overcome application bottlenecks. The

solution was evaluated on real-world applications with different tuple sizes.

45

Selva et al. [110] provided runtime adaptation for streaming languages. The

StreamIt language was extended in order to allow the programmer to specify the de-

sired throughput. The adaptation is provided by the runtime system that controls the

environment. Moreover, an application and system monitor was implemented to check

the throughput and system bottlenecks. The adaptation concerns the migration of actor

(stage) according to the load on specific CPU cores.

Proposing the term “self-aware" to be applied in stream processing, Su et al.

[113] introduced StreamAware. It is a programming model with adaptive parts targeting

dynamic environments. The aim was to allow the applications to automatically adjust at

run-time. The adaptivity implemented was based on the Monitor-Analyze-Plan-Execute-

Knowledge (MAPE-K) closed-loop. The adaptive parts proposed adjusts the runtime in

three aspects: integration and removing of idle nodes and adjusting data parallelism.

However, the mechanisms and policies used for adapting the programs at run-time are not

described. The adaptive method is evaluated and validated using the PARSEC benchmark

suite.

Matteis and Mencagli [31] presented elastic properties for data stream process-

ing to improve performance and energy efficiency (number of cores and frequency). They

argue that using the maximum amount of resources is expensive and inefficient. There-

fore, they proposed elasticity as a solution for efficient usage according to QoS require-

ments. The latency was managed using a Model Predictive Control (MPC) method while

the energy consumption was reduced with Dynamic Voltage and Frequency Scaling (DVFS)

techniques. The solution was validated in a high-frequency trading application as well as

compared to related solutions. Matteis and Mencagli [33] extended [31] with strategies

for energy-aware on data stream processing.

Additional parallelization techniques for stream processing on multi-cores were

presented by Gad et al. [41]. There, a new Domain-Specific Language (DSL) was pro-

posed. The self-adaptive part encompasses a mechanism providing data distribution op-

timizations among the CPU cores, where functions to be computed can be moved from

processing elements. The solution was tested on “pleasingly" parallel tasks, which are

easily parallelized and showed promising results.

Karavadara et al. [65] proposed a framework for stream processing on embedded

systems with many-cores processors that was implemented in the library called S-Net. The

adaptive part is performed by the control system that uses DVFS for reducing, at run-time,

the power consumption. The DVFS proposed solution was evaluated showing significant

energy savings.

Sahin and Gedik [105] proposed C-Stream, which is a stream processing engine

for customizable and elastic executions. C-Stream empowers users with the option to set

SLA, such as high throughput or low latency. Importantly, the solution has an adaptation

module that adjusts the number of threads and the level of parallelism. The main goal

46

of adaptation was to detect bottlenecks and increase performance. The solution was val-

idated with real-world applications and compared to Storm, where C-Stream achieved a

good performance.

Schneider and Wu [108] presented an elastic scheduler for the IBM Streams sys-

tem. The work tackled the problem of determining the best number of threads in stream

processing. Particularly, they proposed an elastic algorithm that finds the number of

threads that yields the best performance without user inputs. The solution was tested

on different machines showing a good performance. Later, Ni et al. [97] provided an elas-

tic threading model for IBM Streams.

De Sensi et al. [35, 36] proposed Nornir, a framework applicable for stream pro-

cessing. Nornir aims to predict performance and power consumption using linear regres-

sion as a learning technique. Their goal was to reduce power consumption with "accept-

able" performance losses. Nornir enables the application to change different knobs at

run-time. The Nornir system was aimed to satisfy power consumption or performance

bounds, which have to be defined by the user. It then triggers actions when it detects

changes in the input rate or application. Nornir interacts with the Operating System (OS)

and with FastFlow’s runtime. Importantly, Nornir also includes a flexible framework that

can be used for designing custom decision-making strategies as well as non-intrusive in-

strumentation of executions.

The impact of parallelism on the latency of stream processing items was ad-

dressed on Vogel et al. [128]. There was showed that although more parallel replicas

usually increase the throughput of stream processing applications, more replicas also

increase the latency. The proposed solution was a compromise between latency and

throughput, where the application programmer is expected to provide a latency constraint

in the SPar DSL. With the latency constraint, the proposed solution controls the latency by

autonomously managing the number of replicas, in such a way that the throughput is in-

creased while the latency constraint is met. The solution was validated with a real-world

application showing its effectiveness.

Griebler et al. [48] designed SLO attributes for the user to express the target

QoS. The solution combines SPar for parallelization and Nornir for power-aware runtime.

From the language side, SPar is able to generate parallel code from annotations added by

the user on a sequential code. Nornir provides changes in terms of the number of cores

and their frequency for enforcing a given power or performance SLO. The solution was

validated with real-world stream processing applications showing its effectiveness. An

extended version of this work was provided in [51] for supporting additional SLOs as well

as a comparison to related solutions.

The work of Kahveci and Gedik [63] proposed optimization for solving bottle-

necks on stream processing applications. They proposed a development API and a run-

47

time library in a system called Joker, which runs in multi-core machines. The solution was

validated with different applications and compared to related solutions.

The work of Vogel et al. [126] addressed another relevant facet of self-adaptiveness:

converge faster to a suitable configuration and minimize instability for reducing the decision-

making overhead. The proposed solution improved the decision-making step and the eval-

uation with different applications and workloads show performance gains as well as lower

overhead.

Moreover, Vogel et al. [125] provided completely seamless parallelism man-

agement for video stream processing applications. Higher parallelism abstractions were

achievable thanks to a smarter decision-making strategy that detects workload change

for adapting the parallelism degree. The seamless strategy was evaluated with different

applications showing its effectiveness.

Clusters

The work of Gulisano et al. [52] proposed StreamCloud, a solution to scale data

stream processing applications running in cloud environments. StreamCloud (SC) imple-

ments parallelism to process queries and distribute the tasks among nodes where a major

concern is to handle load balancing through optimized task distribution. Parallelism opti-

mizations are triggered considering the number of active nodes and their CPU loads. The

evaluation shows that elasticity and dynamic load balancing optimized resources con-

sumption.

Balkesen et al. [8] proposed a framework for actively managing parallelism con-

figurations on SPE. The framework attempts to optimize the parallelism configuration re-

lated to the cluster size where the decision considers the input events. Moreover, latency

minimization was the main goal, which was optimized with load balancing. Additionally,

the framework attempts to predict the future behavior of input streams. The proposed

solution was integrated with the Borealis system. Although in the evaluation conducted

the latency was significantly higher than static cluster size, the authors claim that the

approach is effective by reducing resources consumption.

Yet another approach to stream processing is provided by Heinze et al. [54]. It

addressed the complexity of determining the right point to increase or decrease the de-

gree of parallelism. The authors investigated issues of elasticity in the data stream to

meet requirements for auto-scaling (scaling in or out). They explored the impact of la-

tency in distributed processing. These authors categorize the approaches for auto-scaling

applications in five groups: Threshold-based, time series, reinforcement learning, queu-

ing theory, and control theory. They argue that time series is not feasible for adaptivity

on stream processing applications, because it considers historical data and the stream

load is unpredictable. The queuing model was also excluded due to its limited adaptivity.

48

The remaining classes were then tested with stream processing applications. Threshold

approaches are characterized by the need for the user to set upper and lower bounds

with respect to the resource utilization and/or performance. On the other hand, rein-

forcement learning is based on the system state for taking optimization actions, using a

feedback control that monitors the execution and chooses another configuration the next

time. Control theory is based on an independent controller that responds fast to input

changes based on a feedback loop.

Gedik et al. [44] tackled elastic auto-parallelization[107] to locate and paral-

lelize parallel regions. They also address the adaptation of parallelism during the exe-

cution. Moreover, these authors argue that the parallelism profitability problem depends

on workload changes (variation) and resource availability. They propose an elastic auto-

parallelization solution, which adjusts the number of channels in their runtime to achieve

high throughput without wasting resources. It is implemented by defining a threshold and

a congestion index in order to control the execution regardless of if more parallel chan-

nels are required. This approach also monitors the throughput and adapts to increase

performance. The experimental evaluation shows that the proposed approach performs

adaptations and maintains a fair performance.

Wu and Liu [139] proposed DoDo that is a load-adaptive software layer. DoDo

runs on top of cluster nodes and dynamically manages the stages distribution considering

the load of the physical servers. DoDO attempts to increase the application through-

put by improving the load balancing and resource utilization on the cluster nodes. The

experimental evaluation conducted demonstrated performance gains with the proposed

solution.

Chatzistergiou and Viglas [17] addressed job reconfiguration approaches for im-

proving tasks distribution in stream processing. Their solution monitors the performance

of running applications and reconfigures the jobs placement in case of bottlenecks. The

implementation and validation of the proposed solution evinced throughput increases with

synthetic and real-world workloads.

Martin et al. [83] proposed StreamMine3G, an Event Stream Processing engine

that is scalable and elastic. A relevant part is the elasticity support that enables efficient

processing under fluctuating workloads. The elasticity concerns the number of nodes

used, and the decision algorithm simply monitors the utilization of the node and takes

action in case of underloading or overloading.

Zacheilas et al. [141] proposed an approach for scaling performance in complex

event processing systems. Their solution attempts to predict fluctuations in terms of input

rates or latency. The technique used for prediction was Gaussian Process. However, the

prediction concerns the application case study and requires previous historical data for

making predictions. The challenge is that it tends to be very application specific, is hard

to generalize the prediction to other applications and workloads. Moreover, it takes a

49

significant amount of time to train the model which performs dynamic adaptations. The

solution was evaluated and showed performance improvements and a fair prediction’s

accuracy.

Lohrmann et al. [76] provided a reactive strategy for guaranteeing latency con-

straints on stream processing. The proposed solution was validated on Nephele system,

where a queuing model estimated latency responses and performed scale actions when

necessary. The solution was validated with synthetic and real-world applications. The

solution was also compared to the state-of-the-art and achieved performance gains.

Mayer et al. [86],[87] proposed a technique to timely adapt the degree of par-

allelism in CEP. The adaptation is performed aiming to limit the buffer size, where huge

buffering is assumed to negatively affect the detection of the events. Consequently, a

method was proposed to predict event rates and proactively adapt to the degree of paral-

lelism. The validation of the proposed solution measured the queue lengths under differ-

ent workloads, where the results were compared to a CPU threshold approach. The pro-

posed solution showed to work well in the CEP scenario. However, it was not measured the

impact of buffering in common performance metrics (throughput, latency, service time)

of stream processing applications.

Heinze et al. [55] provided an elastic scaling technique focused on the trade-off

between monetary cost and latency of stream processing. An online parameter optimizer

was proposed for finding a scaling configuration that yields less cost. Moreover, the pa-

rameter optimizer attempts to facilitate usability by requiring the user to set only the

expected service rate instead of several error-prone parameters. The evaluation of the

solution evinced that it reduced costs and maintained a reasonable quality of services.

Adaptive fault tolerance for stream processing was addressed by Martin et al. [84].

The proposed solution dynamically changes the fault tolerance scheme (e.g., active repli-

cation, active or passive standby, passive replication) aiming to facilitate for users that

are not required to manually set the best replication scheme. Consequently, the users are

expected only to provide high-level constraints, such as recovery time, gap, or precision.

This is provided by the adaptive controller that sets and changes to the most suitable

scheme considering the user constraints, workload, and the lowest resource consump-

tion. The validation showed a low resources consumption overhead and without losses in

recovery time.

Zhang et al. [144] aimed to minimize latency on stream processing by adapting

the batch and block size. They proposed DyBBS, which uses a heuristic to learn and set

the batch configuration according to the current workload. The solution was validated

compared to related solutions showing that it reduces the latency.

Meet latency requirements on stream processing was also a goal of Liu et al. [74].

There, the latency is controlled from the perspective of resource management, schedul-

ing, and load balancing. Presuming load fluctuations, the authors proposed scheduling

50

solutions for tasks redistribution aiming at reducing the latency and achieving more sta-

bility by avoiding overloading specific servers. The evaluation evinced the performance

gains of the proposed solution.

Gil-Costa et al. [24] provided an elastic strategy that balances the load according

to the processing time and the load of each specific node. Using a monitor and manager,

the overloaded nodes are released while new nodes process the bottleneck stages. The

evaluation showed a good performance considering the throughput of applications.

Li et al. [72] presented an approach for elastic scaling in distributed stream pro-

cessing. The proposed techniques for scheduling stream processing with batch process-

ing. The stream processing part was implemented on Storm. A very relevant aspect of this

approach is that they highlight downtimes that occur in Storm when scaling actions are

taken. The downtime occurs because Storms can only scale by reconfiguring and restart-

ing the application that results in shutting down all active operators. Consequently, the

data stored in operator’s memory is lost which results in downtime that lasts from 20 to

30 seconds. Previous efforts working with adaptivity in Storm did not consider this issue.

Consequently, the authors proposed a solution that saves the state of the operators for

minimizing downtime when scaling the application. In order to decide when to perform

elasticity actions, the proposed solution includes a monitor for congestion detection at-

tempting to avoid application bottlenecks. The solution was validated showing gains in

terms of latency and throughput.

Kombi et al. [69] provided an approach that monitors the congestion attempting

to improve the performance and resources efficiency. The continuous dynamic adaptation

was proposed as a solution. The solution encompasses an estimation of the future input

size with time series analysis algorithms. This estimation has the potential to forecast

the load for the near future. Additionally, they proposed a technique that evaluates and

adapts the degree of parallelism. The solution was validated emphasizing improvements

in latency and resources consumption.

De Matteis and Mencagli [32] extended [31] and [33] for supporting execution on

distributed cluster environments. They proposed a control-theoretic strategy for elastic

scaling in data stream processing. The solution targets latency sensitive applications by

providing a Model Predictive Control (MPC). The solution was experimentally evaluated in

terms of latency and reconfigurations.

Cardellini et al. [12] extended [14] by proposing and evaluating optimizations re-

garding replication and placement of operators for stream processing. The model supports

multiple QoS metrics (response time, inter-node traffic, cost, availability) and attempts to

find a balance between those multiple metrics. Moreover, Cardellini et al. [15] proposed

an elastic distributed Framework for stream processing applications. The important self-

adaptive part concerns tasks migration and adaptation in the degree of parallelism. A

threshold-based policy and two Reinforcement Learning (RL) policies were implemented

51

for adapting the configurations. One RL policy is Q-learning that uses a cost function for

learning from samples and estimating optimal actions. The second policy is a model-based

RL algorithm that exploits different system knowledge for estimating an approximate con-

figuration.

It is important to note that the policy proposed by Cardellini et al. [12] requires

configurations and parameters from the user, such as cost weights, scaling thresholds,

and response time. Such parameter definitions may be difficult and error-prone for appli-

cation programmers. The proposed policies were implemented in Storm, which is worth

mentioning the known downtime on reconfigurations [13, 72]. The validation covered a

real-world application, where it was noted limitations in the resources threshold policy

and that the Q-learning policy requires too much time to learn and find a suitable con-

figuration. The model-based RL policy was the best performing solution in the evaluation

conducted.

Cheng et al. [19] provided a new scheduler for Spark Streaming. This new sched-

uler is adaptive in a way that dynamically schedules and adapts the parallel jobs. Adaptiv-

ity makes it possible to reconfigure the execution with the implemented solution in such a

way that the level of parallelism (number of concurrent jobs) and the sharing/availability

of resources. The approach was evaluated on a security event application showing im-

provements in terms of performance and energy efficiency. [19] was extended in Cheng

et al. [20] for supporting dynamic batching.

Lombardi et al. [77] proposed Elysium, an approach for elasticity on stream pro-

cessing. The novelty of Elysium concerns evaluating, estimating, and managing elasticity

in two independent dimensions: application parallelism and resources. The solution also

presents a resource estimator that computed the expected resource utilization, which

proactively runs elasticity actions. The solution was validated with real-world applications

showing gains in terms of elasticity adaptations.

Kalavri et al. [64] addressed a very important aspect of online adaptiveness:

find fast and accurate new configurations. They proposed the DS2 controller that has a

performance model which estimates the true processing capacity of stages and converges

faster, accurately, and in a stable mode to a new parallelism configuration. DS2 was

implemented as a decoupled decision-making that was implemented in two frameworks,

Flink and Timely. The experimental results show a fast convergence and a low monitoring

overhead.

Wang et al. [135] proposed Elasticutor for faster elasticity on data stream pro-

cessing. The solution encompasses elastic executors (operators processes) that optimizes

the load balancing and a dynamic scheduler that elastically manages computational re-

sources. Elasticutor was implemented on Storm and tested with benchmarks and real-

world applications, where it demonstrated significant performance improvements.

52

Bartnik et al. [9] addressed aspects related to elasticity and fault tolerance of

stateful stream processing applications in Apache Flink. Their solution was a protocol that

provides the alternative to adapt the execution at run-time in three aspects: migration

of operators, adding new operators, and changing the functions computed by operators.

The proposed solution was evaluated with benchmarks running on a cluster, emphasizing

the straightforward result that, in distributed stateful stream processing, the adaptation

overhead is impacted by the job’s state size that has to be migrated.

Kombi et al. [70] presented DABS-Storm for elastic stream processing on Storm

by dynamically adapting the parallelism degree. Importantly for generalization purposes,

they argued that the proposed solution could be implemented is other related solutions.

Talebi et al. [114] proposed elasticity for CEP running in cluster environments.

The proposed solution called ACEP adapts the degree of parallelism is using a cost model

for improving the load balance. ACEP was evaluated showing its effectiveness.

Clouds

Das et al. [29] explored the impact of batch size on the latency of stream pro-

cessing applications. Based on an understanding of the relation between throughput and

latency, they proposed a control algorithm that autonomously adapts the batch size. The

experimental validation of the proposed solution evinced that it seamlessly optimizes the

latency.

Tudoran et al. [121] tackled inter network transfer overhead by providing an

adaptive transfer strategy that self-optimizes the batch sizes. The strategy sets the batch

size to the value that considers the instant environment condition, such as transfer rates,

aiming to reduce the latency. The proposed solution was validated on a real-world cloud

environment showing its effectiveness.

Heinze et al. [53] presented an approach addressing latency aspects on stream

processing. There, it was stated that scaling decisions performed for optimizing resources

utilization tend to result in latency violations. Consequently, they proposed a solution at-

tempting to minimize latency violation by estimating latency spikes before running scaling

decisions. The adaptation regarding the scaling strategy was implemented and compared

to related solutions, where their solution evinced fewer latency violations.

A game-theoretic controller was proposed by Mencagli [89] as a control strategy

for distributed stream processing. In this model, each fissioned parallel stage is man-

aged with a local controller that sets the internal degree of parallelism, while there are

several global controllers. In order to settle globally, two strategies were proposed, a non-

cooperative and an incentive-based. In the non-cooperative, each controller only con-

siders its local configuration. On other hand, the incentive-based proposes a controller

that senses global conditions for improving the system globally, which tends to improve

53

in terms of performance and efficiency. The theoretical solution was validated with simu-

lations of a mobile cloud computing platform.

An application profiler for stream processing was proposed by Liu et al. [73].

Profiling was used to identify potential bottlenecks and applying self-adaptivity in the par-

allelism configuration to improve the performance. The relation between resources and

application performance was handled by the profiler with resource provision at an opti-

mization level, attempting to further improve the performance with the combination of

provisioning, scheduling, and placement. The solution was evaluated with real-world ap-

plications, where it achieved higher performance in comparison to related solutions.

Adaptivity was considered by Floratou et al. [40] for real-time stream processing

analytics, where the notion of self-regulation in Twitter’s Heron framework was introduced

with the proposed system called Dhalion. In this solution, the user sets a target throughput

and Dhalion transparently configures the number of processes and cloud instances for

achieving the user goal. Dhalion was validated with real-world applications, showing that

the system can dynamically self-regulate to meet SLOs.

Venkataraman et al. [122] observed that stream processing systems need to con-

stantly adapt to failures and workload fluctuations. They proposed Drizzle, a solution for

reducing the overhead in case of a recovery adaptation that maintains a QoS. Compared to

related solutions, Drizzle achieved lower latencies and significantly faster recovery adapt-

ability.

Tolosana-Calasanz et al. [10] proposed an autonomic controller based on queue-

ing theory for managing resources. The controller manages and controls the number of

VMs allocated for the running stream processing applications. The controller also monitors

the items queuing time. The approach was evaluated showing its effectiveness.

Mai et al. [80] proposed Chi, a control-plane that dynamically adapts stream pro-

cessing applications. The goal can be seen as facilitating the usage and efficiency of users.

With Chi, users can simply express SLOs (latency, throughput) while the control plane en-

forces the goal by using feedback for adjusting the system parameters/configurations.

The adaptivity concerns mainly the number of nodes used. The solution was validated in

comparison to related solutions showing significant performance gains.

The very relevant problem of downtime on reconfigurations of distributed stream

processing was addressed in Rajadurai et al. [101]. There, Gloss was proposed as a solu-

tion for avoiding downtime on Synchronous Data Flow (SDF) applications. Such an appli-

cation scenario is arguably a narrow part of stream processing where parallel executions

are stable, static, synchronous, and deterministic. Consequently, SDF is a solution only

for specific regular applications. However, Gloss can be viewed as a quite elaborated

solution. With Gloss, live reconfiguration and optimizations are possible at run-time. In or-

der to avoid downtime, Gloss employs input duplication and concurrent execution of new

54

and old graph topologies during reconfiguration. The solution was validated on real-world

cloud environments showing to be effective for avoiding application downtime.

Fardbastani et al. [39] proposed adaptive load balancing for complex event pro-

cessing. The solution periodically collects the load of each node and decides if the nodes

are balanced or not. Considering the decision based on load, the solution redistributes the

tasks. The approach was evaluated emphasizing an increase in terms of performance.

Marangozova-Martin et al. [81] provided a strategy for elastic management of re-

sources on Storm in cloud environments. This approach attempts to reduce latency while

consuming minimum resources. The solution is multi-level in the sense that covers ap-

plication (performance) and environment (number of Virtual Machine (VM)). The solution

was validated in a real-world stream processing application.

Lombardi et al. [78] proposed PASCAL for automatic scaling of distributed appli-

cations. PASCAL is combined with a performance model attempting to predict incoming

workloads and a system for estimating the number of computing resources to be provi-

sioned. The performance model was evaluated with synthetic and real-world traces that

generate the input load (workload). However, it is difficult to estimate how representative

and generalizable are the workloads used for other stream processing applications. Impor-

tantly for stream processing, different workloads were tested using Storm. The solution

was validated in a cloud environment.

Abdelhamid et al. [1] showed Prompt, a solution for the dynamic data partition. In

this scenario, the data is partitioned in micro-batches and the dynamism concerns the size

of the batches. Noteworthy, adaptive parallelism properties are also covered with an elas-

tic part that dynamically adapts the parallelism degree in case of workload changes. The

solution was validated with different applications and workloads showing its effectiveness.

Russo et al. [104] addressed the very relevant problem of heterogeneous com-

puting infrastructures for running stream processing applications. Most of the works con-

sidering elasticity for distributed applications assume that all machines and clusters will

be homogeneous in such a way that each machine provides the same performance/prof-

itability. However, this assumption is not true anymore in most cases because the en-

vironments and machines are becoming more dynamic and irregular. The authors use

Markov Decision Process (MDP) for controlling elasticity and Reinforcement Learning acRL

algorithms for optimizing the definition of parameters. The solution was validated in cloud

environments in terms of performance and cost.

Accelerators

Lars et al. [109] proposed AdaPNet, an approach aiming at maximizing the per-

formance of streaming applications by adapting the degree of parallelism. In AdaPNet,

parallelism is adapted for responding to changes in terms of resources availability. The

55

performance and overhead of the proposed solution were evaluated, where the overhead

considers the time taken to change the application at run-time as well as the related mem-

ory usage.

Vilches et al. [123] addressed aspects related to efficiently running stream pro-

cessing applications on heterogeneous architectures composed of CPU and GPUs. They

proposed a framework that at run-time finds the best mapping of processing stages on

CPU cores, GPUs, or the combination of them. The framework collects runtime statistics

for performing the decision-making, where the goal was throughput, energy, or a trade-

off between both goals. The solution was validated on different architectures showing

performance improvements.

Mencagli et al. [91] proposed Elastic-PPQ, a layered autonomic system for dy-

namic data stream processing. The layered architecture comprises two adaptation lev-

els. One is a load balancing mechanism for fast variations using the control-theoretic

approach. Moreover, a relevant part regarding the parallelism level for slower variations

uses Fuzzy Logic. The solution was evaluated showing effectiveness in terms of adaptabil-

ity and performance.

Matteis et al. [34] proposed Gasser, a system for running windowed stream pro-

cessing applications on hybrid architectures composed by CPU and GPUs, where computa-

tions are offloaded to GPUs. Importantly, the proposed solution has an adaptive feedback

part for auto-tuning, which tests and tries several configurations for finding the one that

achieves the best performance. The configuration considers the different batch sizes and

degrees of parallelism. Gasser was validated with data stream processing applications and

compared to related solutions. An arguable shortcoming of Gasser is that it only performs

adaptation once, which is only suitable for stable and regular workloads.

Stein et al. [112] provided techniques for dynamically adapting the batches size

of the specific class of stream processing applications that perform data compression.

Moreover, the work targets particularly applications suitable for running on GPUs, where a

different decision-making algorithm was proposed. The solution was evaluated consider-

ing latency as the target and the suitability of algorithms varies according to the specific

workloads.

3.3.2 Self-adaptation classification

Table 3.2 5 characterizes self-adaptation and parallelism properties of the ap-

proaches described in the previous section. Table 3.2 has the following abbreviations:

Experimental environment (EE), migration (mig.), propagation (propag.), theoretical tech-

nique (theoret. tech.), system (sys.), distribution (distr.), adaptation (adapt.), algorithm

5In reference [127], the interested reader can view the content of this table in another format.

56

(algo.), frequency (freq.), utilization (util.), regression (regr.), theory (th.), reinforcement

learning (reinf. learn.), placement (placem.), Optimal DSP Replication and Placement

(ODRP), Model Predictive Control (MPC).

It is important to note that here the approaches are separated according to their

execution environment and ordered by publication year. Regarding the RQ1 and the cat-

egorization proposed in Section 3.2.1, in column “Goal" of Table 3.2 it is possible to note

that there are several purposes of applying self-adaptiveness to stream processing. Thus,

we propose the following catalog and definitions to organize the self-adaptation goals:

• Throughput (maximize): is the number of stream items/tasks processed in a given

time interval. A high throughput tends to be a goal. Additionally, there are some

studies that intend to allow the user to define throughput as a performance goal,

which we refer to as target throughput.

• Latency (minimize): Latency in stream processing is a performance metric that

refers to the time taken to process stream items/tasks. A lower latency tends to

be better, which can be set as a constraint in some approaches.

• Resources usage (maximize, limit, optimize): In the context of this study, we refer

to resources as computational power available for processing computations. Other

terms like resource utilization, system utilization (abbreviated sys. util.) are con-

sidered synonymous and used interchangeably in this study. Some works attempt to

utilize resources as much as possible. On the other hand, some approaches try to

limit how much resources a given application uses in order to avoid interference in

multi-tenant environments or for limiting energy consumption. Energy consumption

is also a goal that we categorize as related to resources. There are also goals for op-

timizing (abbreviated opt.) the usage of resources in such a way that a performance

goal is met with minimum resources, which is also related to limiting resource usage.

This aforementioned resource optimization characterizes the goal of computing effi-

ciency, which is also pursued by some approaches.

• Buffering (limit, minimize): we refer to buffering as queueing stream items before

processing them. The term queue size tends to mean a similar aspect in the stream

processing applications. Limiting the buffer sizes impacts the performance of stream

processing mainly in terms of latency, which is a potential optimization.

• Cost (reduce): On pay-per-use paradigms like cloud computing, the resources usage

impacts directly the cost. Consequently, there are efforts that aim to reduce the cost

of stream processing by self-adapting executions considering resource usage.

• Fault (tolerance): This aspect concerns the running stream processing applications,

where avoiding faults is relevant. There are some approaches that autonomously

57

adapt to the fault tolerance scheme for optimizing executions. Moreover, avoid

downtime when running a stream processing application is a facet of fault tolerance

considered by some approaches.

• Load (balance): Balancing the load of stream processing is an objective pursued

for optimizing executions, which can achieve gains in terms of performance or re-

sources. Some approaches explicitly mention load balance as a goal, where it is

assumed that optimizing the load balance will provide gains to applications.

Throughput improvement of stream processing applications was the goal of 31

studies. Latency Reduction was mentioned as a goal in 29 studies. Noteworthy, some of

these studies attempt to reach a combination of optimal throughput and latency. In fact, a

significant part of approaches has more than a single objective, often targeting a trade-off

between different metrics.

Considering the motivation for a taxonomy discussed in Section 3.2, in this sur-

vey, it was possible to extend the revision for covering unique approaches focusing on

additional applicabilities of self-adaptiveness. For instance, studies with new goals were

found, such as minimize energy consumption [35, 36, 65, 123, 51], avoid downtime [101],

and tolerate faults [84]. We believe that this is relevant to enable self-adaptiveness to be

evaluated in the future for supporting new applicabilities.

Approach Goal
Adaptation ac-

tion/Entities

Theoret.

tech.

Realization Ap-

proach
Tool Framework EE

Schneider [106] Throughput Parallelism degree / Adapt. algo. Algorithm SPADE-Sys. S

M
u
lt

i-
co

re
s

Choi [22] Throughput Parallelism degree Delay propag.
Bottleneck detec-

tion
Algorithm /

Tang [115] Throughput Parallelism degree / Optimization algo. Algorithm System S

Selva [110] Throughput Task mig. / Adapt. algo. Algorithm StreamIt

Su [113] Resource util. Parallelism degree Feedback loop Adapt. algo. StreamAware StreamMDE

Matteis [31] Energy, latency
Parallelism degree,

cores freq.
MPC Queuing

Runtime mecha-

nisms
Strategy FastFlow

Gad [41] Throughput data distr. Feedback loop Adapt. algo. java DSL /

Karavadara [65]Energy Cores freq. / DVFS strategy Algorithm S-Net

Gedik [105] Latency,throughputParallelism degree / Bottleneck det. Algorithm C-Stream

Schneider [108] Throughput Parallelism degree / Adapt. algo. Scheduler SPL

De

Sensi [36]
Efficiency

Parallelism degree,

cores freq.
/ Linear regression Nornir FastFlow

Vogel [128] Latency Parallelism degree Feedback loop Adapt. algo. Algorithm SPar

Griebler [51]
Performance,

energy

Parallelism degree,

cores freq.
Feedback loop

Linear Regres-

sion/Adapt. algo.

SPar and

Nornir
FastFlow

Kahveci [63] Throughput Parallelism degree / Adapt. algo. Algorithm Joker

Vogel [126] Throughput Parallelism degree Feedback loop Adapt. algo. Algorithm SPar

Vogel [125] Throughput Parallelism degree Feedback loop Adapt. algo. Algorithm SPar

Gulisano [52] Throughput Tasks distr., nodes / Load thresholds StreamCloud Borealis

C
lu

st
e
rs

Balkesen [8] Latency Tasks distr., nodes / Adapt. algo. Algorithm Borealis

Heinze [54]
Resource

util.,latency
Task mig. / Threshold, R.L. Algorithm FUGU

Gedik [44] Throughput Parallelism degree / Control algo. algorithm SPL IBM S.

Wu [139] Throughput Task distr. / Adapt. algo. DoDo S4

Chatzistergiou [17]Throughput Tasks distr. / Group-aware Algorithm Storm

Martin [83] Throughput Nodes, tasks mig. / Threshold algo. Algorithm StreamMine3G

58

Table 3.2 continued from previous page

Approach Goal
Adaptation ac-

tion/Entities

Theoret.

tech.

Realization Ap-

proach
Tool Framework EE

Zacheilas [141]
Resource

util.,latency
Parallelism degree / Short path algo. Esper Storm

C
lu

st
e
rs

Lohrmann [76] Latency Parallelism degree Queuing th. Scaling policy Algorithm Nephele

Mayer [86] Limit buffering Parallelism degree Queuing th. Adapt. algo. Algorithm /

Mayer [87] Limit buffering Parallelism degree Queuing th. Adapt. algo. Algorithm /

Heinze [55] Reduce cost Nodes / Threshold algo. Algorithm FUGU

Martin [84] Fault tolerance Tolerance scheme Controller Checkpoint algo. Algorithm StreamMine3G

Zhang [144] Latency Batch and block size / Isotonic Regr. DyBBS Spark

Liu[74] Latency Tasks distr. / Adapt. algo. Algorithm Storm

Gil [24] Throughput Nodes, tasks distr. / Adapt. algo Algorithm S4

Li [72] Latency,throughputNodes / Adapt. algo. Algorithm Storm

Kombi [69] Latency Parallelism degree / Time service Autoscale Storm

Matteis [32] Latency Parallelism degree Control theory Adapt. algo. Algorithm FastFlow

Cardellini [15] Latency
Parallelism degree,

tasks mig.
Feedback loop Reinf.learn. Algorithm Storm

Cardellini [12] Response time
Task placem., paral-

lelism degree
/ Additive Weight. ODRP Storm

Cheng [19] Throughput Job parallelism level / Reinf. learning A-scheduler
Spark

Stream.

Cheng [20] Latency,throughputBatch size, jobs Feedback loop Fuzzy, reinf.learn. A-scheduler
Spark

Stream.

Lombardi [77] Throughput
Parallelism degree,

nodes
/ Adapt. algo. Elysium Storm

Kalavri [64] Throughput Parallelism degree / Controller DS2 Flink, Timely

Wang [135] Throughput,latencyCPUs, tasks mig. / Adapt. algo. Elasticutor Storm

Bartnik [9] Latency Parallelism degree / Adapt. protocol Protocol Flink

Kombi [70] Latency
Parallelism degree,

Tasks distr.
/ Adapt. algo. DABS Storm

Talebi [114] Latency Parallelism degree MPC Queuing Adapt. algo. Algorithm /

Das [29] Latency Batch size Feedback loop Control algo. Algorithm
Spark

Stream.

C
lo

u
d
s

Tudoran [121] Latency Batch size / Simple testing Algorithm JetStream

Heinze [53] Latency Task mig. Cost model Bin packing Algorithm FUGU

Mencagli [89] Efficiency Parallelism degree Game th. Adapt. algo. Algorithm /

Liu [73] Latency,throughputTasks distr., IR Feedback loop Trial algo. Algorithm Storm

Floratou [40] Throughput Operator instances / Adapt. algo. Dhalion Heron

Venkataraman

[122]

Latency,

throughput
Batch size, nodes / Adapt. algo Drizzle Spark

Tolosana [10]
Minimize

Queues size
Nodes / Adapt. algo. Algorithm CometCloud

Mai [80]
Throughput, la-

tency
Nodes, batch size Feedback loop Adapt. algo. Chi

Flare, Or-

leans

Rajadurai [101] Avoid downtime Data, grain, nodes / Adapt. algo. Algorithm StreamJIT

Fardbastani [39]Load balance data and tasks / Adapt. algo. Algorithm CCEP

Marangozova

[81]

Resource util.,

latency
Nodes / Adapt. algo. Algorithm Storm

Lombardi [78] Resource util. Nodes / Neural network PASCAL Storm

Abdelhamid [1] Throughput,latency
Parallelism degree,

batch size
/ Adapt. algo. Prompt Spark

Russo [104] Reduce cost Parallelism degree /
Markov, reinf.

learn.
/ /

Schor [109] Throughput Parallelism degree / Adapt. algo. AdaPNet POSIX

A
cc

e
le

ra
to

rsVilches [123] Throughput,energy Stages Mapping Queuing th. Adapt. algo. Algorithm Intel TBB

Mencagli [91] Throughput Parallelism degree Feedback loop Fuzzy logic Elastic-PPQ FastFlow

Matteis [34] Throughput,latency
Parallelism degree,

batch
/ Adapt. algo. Gasser FastFlow

Stein [112] Latency Batch size Queuing th. Adapt. algo. Algorithms SPar

Table 3.2: Self-adaptive properties and tools.

59

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Adaptation−scope

Monitoring

Decision−timing

Fissioned−stages

Evaluation−metrics

P
e
rc

e
n
ta

g
e

28.5

15.7

75.7

Resources
Data

Processing

System
Application

31.4

88.5

Reactive
Proactive

87.1

12.8

Not−specified
Single

Multiple

27.3

58.5

14.2

Performance
Cost

Energy
Overhead

92.8

7.1 8.5

12.8

Figure 3.2: Results overview.

3.3.3 Adaptation actions and entities managed

Considering the classification of the scope of adaptation from Section 3.2.1, the

’adaptation-scope’ section of Figure 3.2 shows the percentage of approaches that adapted

a given scope. These results represent the sum of the percentages exceeds 100% because

some approaches adapted more than one item, for instance, adapting the parallelism and

the underlying resources. Noteworthy, the majority of approaches are applying adapta-

tions at the application level, specifically the processing and data aspects. In some cases

adapting the resources utilized may not be so important because it can be adapted trans-

parently by the abstraction, like in a cloud environment where the applications are usually

adapted to reduce the costs and the resources are adapted by the lower infrastructure

layer [26].

Regarding the entities controlled in self-adaptive solutions (RQ2), in Table 3.2 it

is possible to note a high number of different entities. In the environment, it is possible to

manage nodes, CPUs, cores, frequency, and cores mapping. Moreover, in the application,

it is possible to manage the placement, scheduling, parallelism degree, batches size, data

distribution, etc. Thus, we propose the following catalog and description of entities self-

adapted:

• Parallelism degree (a.k.a. Degree of parallelism): is a generalization for adapta-

tions at the system/application level related to the number of active processing ele-

ments. The parallelism degree is also referred to as the number of threads/processes

and the number of replicas. The number of threads/processes is the degree of paral-

lelism in applications running on multi-core or cluster machines. Moreover, the num-

ber of replicas is the number of entities processing in a given fissioned parallel stage,

60

where each replica sometimes is related to one thread at the OS level. For the sake of

precision, we have a subcategory inside the parallelism degree called job parallelism

level, which is specific to some scenarios where parallelism is achieved by running

multiple simultaneous jobs. The number of concurrent jobs can be self-adapted char-

acterizing an autonomous job parallelism level. Other similar terms used in specific

contexts for referring to the parallelism degree are Operator instances and Operator

Parallelism.

• Data: is a generalization for adaptation concerning the data items. Adaptation of

Batch and block size concerns the changes performed at run-time in the data gran-

ularity. Data speed Attempts to control the speed that data is ingested, such as the

arrival time. Data migration corresponds to changing the place where data items are

executed. Data distribution relates to changing the way that data items are assigned

to computing elements. In data stream processing, a data item tends to be treated

as a task. Consequently, task distribution is a generalization that we used when the

distribution of task changes but it is not defined if each task corresponds to a data

item.

• Cores: this category encompasses changes at the computing resources level, par-

ticularly in the CPUs. The Number of cores corresponds to the number of active

cores that can be changed in modern processors. Additionally, the Cores frequency

(abbreviated freq.) can be modified by setting fixed clock rates. Mapping refers to

policies for mapping software threads to CPUs.

• Nodes: is a resource adaptation that refers to the number of physical computing

nodes where applications are executed. Usual adaptation actions are adding or re-

leasing nodes.

• Tolerance scheme: concerns the technique(s) used for assuring fault tolerance

mechanisms in stream processing tools. A tolerance scheme has been implemented

in distributed processing scenarios.

Different entities can be managed for pursuing the same metric (throughput, la-

tency). However, the difference lays in how effective each entity is for optimizing the

executions. The entities used are also highly related to the approaches’ runtime, specific

solutions may or may not support adapting a given entity at run-time. For instance, sev-

eral approaches adapt the parallelism degree at run-time [44, 105, 89, 128] while others

have to change the graph topology to adapt to the parallelism degree [101].

In [101] the graph topology is transformed at run-time, but it remains unclear

if the graph was transformed because of their runtime constraints or if their targeted

advanced optimizations (e.g., efficiency). A runtime constraint can prevent adaptation at

run-time. Thus, in [101] the graph topology is transformed because this could be the only

61

way to adapt the executions at run-time. We identify graph topology transformations as

a complex adaptation action that has the potential to further optimize stream processing

applications in terms of performance and efficiency.

3.3.4 Monitoring on self-adaptation

Information about the executions is necessary to perform adaptation actions,

where RQ3 examines which data is used according to the category described n Sec-

tion 3.2.1. It is possible to note from the section ’Monitoring’ of Figure 3.2 that the majority

of approaches are monitoring information from the application level, but there is also a

reasonable number of studies that monitor low-level system indicators. Noteworthy, the

section ’Monitoring’ of Figure 3.2 shows the percentage of approaches that collected infor-

mation from the applications and/or from the system, where the sum of the percentages

exceeds 100% because some approaches monitored the application and the system.

The monitoring part is also related to the tools/technologies used, as in some

cases, it is only possible to monitor the system, or only monitoring the application when

system indicators are unreachable. It is also important to note that monitoring actions are

performed to some extension in all approaches, adapting the execution without collecting

information can be unfeasible. However, in the literature, we lack in-depth discussions of

the limitations and advantages of specific monitoring statistics and the potential overhead

that the monitoring routines can cause.

3.3.5 Adaptation decisions

Regarding how the decision-making for adaptation is performed (RQ4) described

in the proposed classification in Section 3.2.1, the section ’Decision-timing’ of Figure 3.2

shows that the timing of the majority of studies is reactive. The reason behind this it is

challenging to predict the load of stream processing applications. Consequently, reactive

approaches may eventually violate QoS, but they tend to respond better to fluctuating

workloads. References [141, 86, 87, 31, 33, 32, 77, 70, 78] claimed to be proactive.

Another aspect from RQ5 is related to the theoretical technique used for decision-

making, some utilized are feedback loops from control theory. However, the majority of

works in the fourth column of Table 3.2 are filled with a slash “/” meaning that they do

not mention the theoretical technique used when designing self-adaptiveness. The use of

a slash is one to represent the lack of information in surveys [130]. In the categorization

of Realization approaches, we catalog algorithms designed for performing the decision-

making with different goals, design goals, and entities controlled. These algorithms that

62

are designed in specific solutions are called here Adaptation algorithm, where there are

some approaches that it is not possible to classify how the realization is performed. Yet

regarding the decision-making, there are also more complex ones like heuristics and re-

inforcement learning, however, a low complexity is expected for a given approach to be

computationally feasible on highly dynamic stream processing scenarios. For instance,

in [15] the authors concluded that some learning algorithms require a long time to find an

optimal decision policy. Some approaches use trial-and-error for finding a configuration

with the best performance. However, it tends to be less efficient as several suboptimal

or poor configurations lead to performance losses. Additionally, under eventual temporal

changes, several trials are required again.

3.3.6 Self-adaptive parallelism in stream processing

Parallelism is commonly used for improving the performance of stream process-

ing applications [30, 103]. RQ5 concerns parallelism aspects of self-adaptive approaches

proposed in the classification in Section 3.2.2. In the last column of Table 3.2 we present

the parallel library or framework used, 13 works used Storm for providing self-adaptive

properties. It is also notable that in some studies it remains unclear in which tool they

designed and implemented the self-adaptive entities, the last column of Table 3.2 is filled

with a slash “/”. In such cases, it is assumed that self-adaptiveness was implemented on

prototypes, which are not necessarily integrated with any existing runtime library/frame-

work.

The number of fissioned parallel stages (described in Section 3.2.2) is another

relevant aspect related to RQ5. It is possible to note in the section ’Fissioned-stages’ of

Figure 3.2 that the majority of studies focus on managing applications’ graphs topologies

with a single fissioned parallel stage. It is also notable that a part of the approaches does

not describe well enough the characteristics of the applications used, for the sake of pre-

cision these approaches are classified as “Not specified". Importantly, there are also ap-

proaches for self-adaptiveness in applications with multiple fissioned parallel stages [106,

22, 115, 44, 76, 89, 77]. However, the application having a multiple stage topology does

not mean that such a complex graph is adapted at run-time. The multiple stage topol-

ogy can be static while other aspects are adapted, such as the batch size [76] or tasks

distribution. In this sense, multiple fissioned parallel stage are utilized on specific sce-

narios, where the mechanism and the strategies’ decision-making are limited in terms of

generalization.

In this survey we are interested in specific aspects of parallelism exploitation, fo-

cusing particularly on self-adaptive parallelism abstractions. Additional parallelism details

can be found in references [103, 30]. RQ6 and the category described in Section 3.2.2

63

relate to whether the existing approaches focus on providing parallelism abstractions to

application programmers. Although nowadays we have frameworks providing high-level

programming abstractions for stream processing [30], a limited number of approaches

[106, 84, 89, 80, 128, 51, 70, 35, 36] mentioned abstractions as relevant for using/imple-

menting self-adaptation. Considering that it tends to be very complex and time-consuming

for application programmers to achieve self-adaptation in their domain-specific applica-

tions, we believe that the tools /frameworks should come with ready-to-use abstractions.

Examples are offering flags and parameters to enable users to provide hints on their ob-

jectives at a higher level. Such objectives could be met by intelligent and autonomous

systems that seamlessly use entities to self-adapt executions.

Providing additional parallelism abstractions is one aspect that certainly will re-

quire more effort in the future. We expect that the specific characteristics of stream

processing would need to be considered for assessing the feasibility of self-adaptive ab-

stractions. Moreover, evaluating if the existing approaches are suitable for parallelism

abstractions requires in-depth analysis, and new evaluation methodologies would need to

be proposed.

3.3.7 Validation metrics and variations

An often neglected aspect in literature approaches is the comprehensive vali-

dation, which is a concern covered by RQ7 and RQ8 and organized in taxonomy in Sec-

tion 3.2.3. Importantly, the section ’Evaluation-metrics’ of Figure 3.2 evinces the per-

centage of approaches that considered a given metric in the evaluation. Hence, the sum

of the percentage exceeds 100% because some approaches considered more than one

metric, e.g, covering the performance and the cost. In Figure 3.2, it is notable that per-

formance is the most evaluated aspect of self-adaptive solutions. The approaches [141,

55, 84, 114, 104] considered in the evaluation of the relevance of the cost and the ap-

proaches [65, 123, 19, 36, 51] evaluated energy consumption.

Concerning the variations (RQ8) considered for evaluating the solutions, Table 3.3

evinces the results from the proposed taxonomy. A number of works were only tested with

more than one application, but it is mostly unclear how different are the processing char-

acteristics of those applications. Only a few studies considered the processing pattern of

applications in their validation. The solutions mostly neglect the variability of resources

available and environments. Moreover, several studies have no variations, meaning that

the solution was validated with a single application, one workload, running in one en-

vironment. Evaluate a solution with different applications is relevant, mostly because

each application has specific characteristics (processing behaviors, memory access, I/O,

communication, etc.). Moreover, different workloads are relevant for evaluating the self-

64

adaptiveness of algorithms because if the testbed has only one behavior, it is hard to

estimate how the decision-making algorithms will behave under other conditions.

Approach Application
Processing

pattern

Input charac-

teristics

Resources

available
Execution environment

Schneider [106] X X

Choi [22] X X

Tang [115] X

Selva [110] X

Su [113] X X

Matteis [31, 33] X

Gad [41]

Karavadara [65] X

Gedik [105] X X

Schneider [108] X X

De Sensi [36] X X

Vogel [128]

Griebler [51] X

Kahveci [63] X

Vogel [126] X X X

Vogel [125] X

Gulisano [52]

Balkesen [8] X

Heinze [54] X

Gedik [44] X

Wu [139]

Chatzistergiou [17] X X

Martin [83]

Zacheilas [141]

Lohrmann [76] X

Mayer [86] X

Mayer [87] X

Heinze [55] X X

Martin [84] X

Zhang [144] X

Liu[74] X

Gil [24]

Li [72] X

Kombi [69] X X

Matteis [32] X

Cardellini [15] X

Cardellini [12]

Cheng [19]

Cheng [20]

Lombardi [77] X X

Kalavri [64] X X X

Wang [135] X X

Bartnik [9] X

Kombi [70] X X

Talebi [114] X

Das [29] X X

Tudoran [121] X

Heinze [53] X

Mencagli [89] X

Liu [73] X

Floratou [40] X

Venkataraman [122]

Tolosana [10] X

65

Table 3.3 continued from previous page

Approach Application
Processing

pattern

Input charac-

teristics

Resources

available
Execution environment

Mai [80] X

Rajadurai [101] X X

Fardbastani [39] X

Marangozova [81] X

Lombardi [78] X X

Abdelhamid [1] X X

Russo [104] X

Schor [109] X X

Vilches [123] X X X

Mencagli [91] X X

Matteis [34] X

Stein [112] X

Table 3.3: Self-adaptive validation

3.3.8 Overhead measurement

Regarding RQ9 that related to the overhead category described in Section 3.2.3,

the section ’Evaluation-metrics’ of Figure 3.2 provides results concerning the overhead

measurement in the literature. The measurement of the overhead requires a compre-

hensive validation scenario, only the references [8, 109, 110, 84, 31, 33, 77, 126, 125]

considered the overhead that can be caused by performing adaptation actions at run-time.

Relevant aspects could be the resource utilization and performance of the application. The

monitoring, self-adaptation algorithms, and reconfiguring entities for pursuing goals can

also cause overhead. We argue that self-adaptive solutions should further consider the

potential overhead caused, we believe that new validation methodologies for assessing

the overhead should be proposed.

Overhead is also highly related to the environment and programming models

used. For instance, it tends to be more complex to apply changes in distributed stream

processing and when the adaptation requires state migration [44, 9]. A relevant example

of overheads is an adaptation to Storm’s topologies, where changing the number of repli-

cas causes application downtime [13]. In [15] the reconfiguration applied in Storm caused

performance losses, thus, they neglected such overhead by excluding the performance re-

sults up to 2 min after each reconfiguration. Consequently, for two minutes, there are no

QoS guarantees. Thus, we argue that there is a need for better mechanisms and decision

algorithms for improving stream processing applications for real-world scenarios.

66

3.3.9 Results summary

Table 3.4 provides an overview of the research questions and the results afore-

mentioned throughout this section.

R.Q. Context Overview

RQ1 Goals Achieve goals such as latency and throughput are mostly pursued.

RQ2 Entities being
self-adapted

Adaptation can be in the environment (e.g., nodes, cores, fre-
quency) and at the application level (parallelism degree, place-
ment, scheduling, batches).

RQ3 Information
used

Most approaches are collecting information from the applications
to utilize for decision-making.

RQ4 Decision-
making timing

Most actions are reactive. Although feedback loops are widely
used as a theory for designing self-adaptation, several approaches
do not explain the theory used. There are a large number of adap-
tation algorithms for decision-making.

RQ5 Parallelism
characteristics

Several frameworks are being used. Storm is still popular in stream
processing. Most studies focus on applications with a single fis-
sioned stage.

RQ6 Parallelism ab-
stractions

A few approaches mentioned abstractions as relevant for using/im-
plementing self-adaptation, which is a potential aspect to be con-
sidered in future efforts.

RQ7 Experiments Performance is mostly considered as an evaluation metric.

RQ8 Variations in
experiments

Most studies were tested with different applications. The variations
in the validation of solutions certainly require more attention in the
future.

RQ9 Measuring the
overhead

Few studies considered the overhead caused by adaptation ac-
tions, which is a concern that arguably has to be included in new
evaluation methodologies.

Table 3.4: Summary of research questions and literature results.

3.4 Research challenges

In Section 3.3 we reviewed and discussed the current approaches from the liter-

ature. In this section, we introduce and discuss important aspects to be enhanced in the

future, such aspects are considered as open research challenges.

3.4.1 Self-adaptive parallelism in complex compositions

Considering that in this work we are focused on self-adaptation for parallel ex-

ecutions, it is relevant to cover parallelism adaptation in complex compositions (defined

in Section 3.2.2). The section ’Fissioned-stages’ of Figure 3.2 introduced how many fis-

sioned parallel stages are used in the related literature. Adapting parallelism aspects at

67

run-time in complex compositions is not a trivial problem. For instance, a simple strategy

that only adapts the parallelism degree would need to take actions considering at least

safety, load balancing between stages/compositions, and the amount of resources avail-

able. Consequently, such a solution would require several sensors and actuators with or

without coordination among them.

Furthermore, the approaches available in the literature are still not presenting a

self-adaptive solution that is generic and comprehensively validated. For instance, the IBM

stream tools are tuned to their runtime library and constraints. Such a claim is supported

by considering the high number of parameters that have to be set for using these tools

and by the comparison between different approaches provided by [31]. In Matteis and

Mencagli [31], the strategy from [44] was reproduced for comparison, where it achieved a

poor performance by being unable to adapt under unbalanced workloads. The implication

of this result provided in [31] is that the strategy of [44], which is a well-known solution

for complex application compositions, lacks in terms of generality by performing poorly

even with a simplistic composition of only one replicated stage. Kalavri et al. [64] found

a similar outcome where Dhalion [40] was replicated and showed poor performance and

slow convergence. Consequently, we argue that the scenario of complex application com-

positions demands a comprehensive evaluation of the literature’s decision algorithms.

3.4.2 Improving resources efficiency and performance

As far as the entities found in the SLR are concerned, a potential optimization is to

perform dynamic adaptations in the applications’ graphs topologies (e.g., compositions),

which can potentially self-optimize the application runtime in such a way that additional ef-

ficiency and flexibility is achieved. Hence, only the work of [101] was found that addresses

graph adaptation at run-time, where the application is recompiled and changed without

downtime using input duplication. However, this solution only performs such a complex

optimization because runtime constraints make it unfeasible to adapt the parallelism de-

gree at run-time, requiring program recompilation. However, dynamically changing the

parallelism degree is possible in other runtimes without the need for recompilation.

Considering that stream processing applications execute for long periods with

fluctuations, we argue that further enhancements are needed for providing the flexibil-

ity for changing the applications’ graphs topologies. Optimization in these aspects can

potentially improve the performance (stages separation), reduce resource consumption

(fusion), or achieving a trade-off between performance and resources. Also, we believe

that a mechanism for adapting graph topologies combined with self-adaptive strategies

could make it possible to detect and overcome bottleneck stages at run-time. The impor-

tance of the aforementioned aspects can be also seen for optimizing resource usage when

68

running stream processing applications in modern environments (e.g., Fog, Edge). In such

environments, the availability of computational resources tends to be more restricted than

in highly used multi-core machines.

3.4.3 Improving self-adaptation for dynamic environments

Our SLR also covered the important aspect related to the environment and ar-

chitecture that stream processing applications are being executed. Notable, considering

the evolution of the architectures, there are already efforts using hardware accelerators

(GPUs, FPGAs) for stream processing [109, 123, 91]. Additionally, distributed cluster en-

vironments are highly used. Multi-cores also have the potential for providing the per-

formance level required by a significant part of stream processing applications. This is

achievable considering the increasing number of cores and sockets available in a single

machine.

In the SLR it is notable that cloud environments are increasing in use for stream

processing applications. Cloud computing can be seen as a flexible and dynamic execution

environment, which can also be seen as a starting point for other environments like Fog

and Edge. However, there are still challenges. For instance, Rajadurai et al. [101] demon-

strated a peculiar issue of stream processing applications running in cloud environments.

Live migration, which is a technique for moving a virtual machine from one physical node

to another, causes downtime in stream processing applications. Downtime occurs due to

the characteristics of these applications of constantly inserting new data that modifies the

data saved in memory. A representation of this problem is provided by [101] where the

application throughput drops to 0 for several seconds. In the narrow scenario of [101],

they proposed techniques for mitigating downtime. However, a relevant aspect is that

the potential downtime of stream processing applications running in cloud environments

is not mentioned by other works targeting this kind of environment.

3.4.4 Self-adaptiveness validation and overhead measurement

Table 3.3 highlights the evaluation aspects of approaches from the literature.

With a critical view, it is possible to note that the validation of the proposed solutions

is not receiving the necessary attention. Although there are available efforts for bench-

marking the adaptiveness of stream processing systems [57], we argue that we need fur-

ther improvements in terms of methodologies and representative benchmarks for stream

processing characteristics [82, 42]. The majority of approaches consider only the perfor-

mance, neglecting the potential overhead caused. Additionally, only a few works con-

69

sidered a comprehensive testbed, with different application processing characteristics,

inputs, and running architectures and environments. In fact, we argue that no work yet

considered a wide combination of these evaluation categories in order to characterize how

the proposed solution would behave in different scenarios.

Although every work tends to have specific scenarios and goals, we believe that

the impact of self-adaptiveness may cause in applications must be better measured. The

validation must encompass different scenarios being as broad as possible. Proposing new

evaluation/validation methodologies and guidelines is a potential opportunity to improve

the validation of self-adaptive solutions, where it can potentially improve the QoS of ap-

plications using adaptiveness. These new approaches are expected to be representative

for measuring self-adaptation performance, energy, resource utilization metrics, and over-

head.

3.4.5 Generalization and reproducibility of self-adaptive solutions

The conducted SLR has covered and extracted relevant information regarding the

decision-making of existing self-adaptive solutions. Noteworthy, several approaches used

as theoretical techniques the feedback loops adapted from control theory [56]. Another

significant number of works also used queuing theory for modeling their solutions. The

theories used have similarities, and one complements another (discussed in Section 2.3),

but, notably, each approach tends to adapt suitable aspects to its specific scenario. Hence,

there is a lack of considering the potential of generalizing and make the proposed solutions

reproducible.

The proposed solutions could enable reproducibility by decoupling specific tech-

nical and low-level mechanisms from the potentially generalizable decision-making strate-

gies. Hence, the design of new solutions can be improved by modeling what can be gener-

alizable, which would enable new solutions to reuse existing parts and only implementing

specific runtime mechanisms.

Additionally, comprehensive evaluation methodologies would allow one to vali-

date the literature’s strategies to a broader context or different scenarios to determine

whether new strategies or decision algorithms must be proposed. Significantly, new tools

and languages being designed could include mechanisms to adapt parallel mechanisms,

especially for applications with multiple fissioned parallel stages. Hence, new tools could

support features based on generically designed and comprehensively validated strategies

for providing self-adaptation. For instance, reference [36] proposes a framework for devel-

oping self-adaptive solutions. We argue that there are further opportunities for providing

frameworks for modeling self-adaptive solutions on runtime libraries/tools.

70

3.5 Threats to validity

There are also potential threats to the validity of the SLR to be considered. Similar

to related SLR [100], the search for studies can be considered limited. Finding all relevant

studies is a known challenge in literature revisions. We attempt to mitigate this aspect

by searching in different databases and libraries as well as performing multiple search

rounds.

The search terms used can also limit the results, as generic terms could bring

much more irrelevant results. On the other hand, it is challenging to extract insightful

results from terms used on very narrow scenarios. For instance, we recently found the

term “malleability" being used as a synonym of adaptation, but “malleability" focuses on

dynamic modifications of the granularity in Message Passing Interface (MPI) distributed

applications [38]. In practice, the relevance of evaluating studies from other contexts is

low. Our search terms were validated considering their completeness, with pilot searches

evaluating whether previously known relevant studies were found.

Filtering studies and extracting data is another potential threat because different

terms can be used for referring to a single characteristic. Consequently, we considered

the general terminology of the area, where it is worth mentioning the catalog of similar

terms provided by [58]. The threats to the consistency of data extraction were potentially

minimized with a multi-step revision and an explicit revision protocol. Moreover, some

short abstracts were excluded as well as works that fail to provide detailed information

about their context and proposed solution. Other works without technical aspects and

experimental evaluation were also removed as they fail to provide a suitable validation.

3.6 Summary

In this chapter, we proposed a taxonomy of relevant aspects to comprehend the

related literature. We believe that self-adaptive parallelism can be exploited in several

classes of applications, even where online, dynamic, and continuous adaptation is not

needed. However, the strategies for monitoring and decision-making are still essential.

Consequently, provide flexibility and modularity for future solutions is of paramount im-

portance for their generalization and increase usage.

Considering the literature results, it is possible to observe that the research area

is expanding, but several research challenges are still existing. Noteworthy, new self-

adaptive approaches could provide flexible adaptations and parallelism abstractions to

applications with realistic complex compositions. In the next chapters we propose solu-

tions for help in addressing the above-mentioned research challenges.

71

4. A DECISION-MAKING FRAMEWORK FOR SELF-ADAPTATION

IN PARALLEL APPLICATIONS AT RUN-TIME

Previously, in Section 3.4 from Chapter 3, we discussed many relevant open re-

search challenges. In this chapter, we introduce a conceptual framework aiming at making

the decision-making of the self-adaptive solutions more generic and flexible.

4.1 Context

A recurrent challenge in real-world parallel applications is autonomous manage-

ment of the executions. This occurs because it is unfeasible for humans to monitor and

manually change the long-running executions continuously, timely, and efficiently. Con-

sequently, new techniques are being developed to cope with scenarios that could benefit

from autonomicity, e.g., applications that suffer changes or fluctuations at run-time. A rel-

evant example of a technique is self-adaptation [111, 56, 71] that can be broadly viewed

as the capability of the systems/environments to be autonomous, deciding and changing

their behavior under specific conditions.

Figure 4.1 shows a conceptual representation of our perspective of self-adaptation

applied to parallel computing. In this representation, the main objective is to provide ab-

stractions to the users/programmers. They are supposed to be enabled to define adapta-

tion goals driving a self-adaptive managing system. It is important to note that the ele-

ments presented in Figure 4.1 refer to the taxonomy described previously in Section 3.2.

The self-adaptation workflow shown in Figure 4.1 comprises decision-making strate-

gies and managed entities. The entities (AKA effectors, actuators, knobs) are controlled

to apply adaptation actions (Execute), see more details in Section 3.2.1. The mechanisms

for controlling specific entities tend to be more specific to each scenario. For instance, a

low-level mechanism for online changing the number of replicas in a given runtime system

or programming framework.

On the other hand, the decision-making strategy that decides when and how to

adapt (additional details can be seen in Section 3.2.1) is usually composed of analyti-

cal steps, where the decision-making can ideally be designed to work in more significant

scenarios. For instance, we expect that decision-making that is well-validated in one pro-

gramming framework can also work very well in similar systems with unique mechanisms

for applying changes. In short, a strategy can be viewed as a generic solution while a

mechanism represents ways to target more specific context.

Decision-making strategies and mechanisms comprise a self-adaptive managing

system, which is the main focus of this work. Such a system collects information (e.g.,

72

Figure 4.1: A conceptual view of self-adaptation in parallel computing.

monitoring) from the environment and software layers for sensing changes and applying

necessary adaptation actions. As displayed in Section 3.2.1, the scope of adaptation has

three classes (resources, data, system processing) used for applying adaptation. Impor-

tantly, in this work, we are interested in the self-adaptation context at the applications

and parallelism exploitation runtime libraries/frameworks1.

Traditional parallel applications and other specific applications classes such as

stream processing applications execute on specific computational environments, where

an environment is characterized by at least an operating system and a given hardware

architecture. In the software layer, right above the operating system, we usually have the

runtime library or framework used to support parallelism exploitation. Also, programmers

can use API and Patterns (Section 2.1.2) for introducing parallelism to their applications.

The top part of Figure 4.1 refers to the applications domain, which is a sensitive

layer where code and execution intrusiveness is mainly to be avoided. The applications’

business logic code represents the functional code of a parallel application. Moreover,

the parallelism expression is the first step for the parallel execution. When expressing

parallelism, the application programmers can define code regions that are suitable and

profitable for running in parallel.

In this sense, we argue that abstraction must be provided for application pro-

grammers since there is a significant gap between parallelism expression and an actual

self-adaptive parallel execution. Effective parallelism abstractions can be achieved when

self-adaptive systems regulate low-level mechanisms, which prevents users/programmers

1We acknowledge the existence and relevance of other entities in lower hardware and OS layers that can
be self-adapted, but here we focus on flexible adaptations applicable at the higher-level that can provide
powerful abstractions and efficiency.

73

from performing non-intuitive/error-prone activities. In this context, parallelism abstrac-

tions can potentially increase programmers’ productivity as well as provide system op-

timizations (additional performance or efficiency). In summary, self-adaptation can be

a potential solution to reduce costs and human efforts by reducing the need for human

interventions.

In Section 3.4, we discussed that one of the main research challenges is to make

the self-adaptation more generic. In practice, self-adaptation is still complex to design,

implement, and validate, mainly because it is currently challenging to reuse elements/-

modules of an adaptive solution when implementing another one [137]. Hence, we ex-

pect that enhanced self-adaptive systems can mitigate such challenges by ensuring the

following properties:

• Modularity: The components of a system (e.g., elements, modules) needed in a given

context are expected to be designed in a modular way to allow such parts to be

decomposed/decoupled. Then, these parts can potentially apply to other solutions

with technical compatibility. For instance, a monitor implemented in a given pro-

gramming framework designed in a modular way (decoupled from the programming

framework) could be easily integrated within other programming frameworks that

use the same programming language.

• Abstraction: Relieve application programmers from the burden of finding the best

configurations. Separation of concerns can enable programmers to set high-level

objectives like SLO instead of hand-tuning configurations.

• Lightweightness: Execute without demanding a significant extra amount of resources

or the self-adaptation causing intensive resources usage.

• Efficiency: An optimal configuration meets user/programmer goals and requires fewer

computing resources. Consuming fewer resources increases the system efficiency,

and reduces energy consumption and costs.

Therefore, we argue that the core of such a challenge is the decision-making

process that determines which adaptation actions to be applied. A better design of the

decision-making strategies is one way towards more generic solutions, which can be

achievable by treating the decision-making within a self-adaptive solution in the form of a

conceptual framework. In Section 4.2, we introduce a conceptual framework and describe

how it can help address the challenges and properties mentioned above.

74

4.2 Conceptual framework

Providing autonomous solutions in the form of frameworks is already present in

some scenarios. Noteworthy, NORNIR [36] was proposed as a framework for simplifying

the management of energy consumption in parallel applications. Additionally, E2DF [96]

was proposed to adapt the infrastructure resources availability and optimize the deploy-

ment of applications’ stages. From an interesting decoupling perspective, [92] proposed

an analytical framework for deciding the size of batches in parallel processing, where the

framework is decoupled from the runtime system utilized. Moreover, in reference [93], a

theoretical model of a framework was proposed. The framework provides optimizations

and mapping algorithms (only at compile time) targeting heterogeneous architectures,

which is based on a static performance model.

However, the frameworks mentioned above are applied to specific contexts, which

results in low flexibility and generalizability. For instance, it is unclear what and how those

frameworks’ given components could be applied to adapt other entities or design new

decision-making strategies. In our understanding, a potential approach is to focus pri-

marily on a modular design of the decision-making strategies. Then, an optimal decision-

making could be applied to specific contexts that provide the means (mechanisms) to

apply adaptation actions. Here, we propose a framework to make the design and decision-

making of self-adaptive solutions more modular and generic. It is important to note that

the decision-making framework proposed here is intended to help design, implement, and

evaluate the proposed self-adaptive solutions. Such a conceptual decision-making frame-

work is distinct from programming frameworks. Consequently, providing specific techni-

calities such as declarative API can be addressed in future efforts.

Usually, a given adaptation space must be managed manually by humans or

automatically by self-adaptive approaches. In this work, we are interested in studying

the new advances possible by employing self-adaptation to exploit online/at run-time the

adaptation space to find appropriate configurations or parameters. The appropriate ac-

tions provided by the self-adaptive decision-making are the ones that provide efficient al-

ternatives that enable abstractions to users/programmers. Consequently, here we argue

that the decision-making should be designed and modeled with the help of conceptual

frameworks. We expect that considering an adaptation space in a given parallel com-

puting scenario, conceptual frameworks can help in designing and implementing efficient

self-adaptive solutions.

From the parallelism abstraction standpoint, the decision-making system can pro-

vide new efficient abstractions to users/programmers. For instance, one can provide a

workflow that in a given adaptation space with many configurations possible, the decision-

making can find the best configuration.

75

Hence, we propose a decision-making framework to improve self-adaptation in

terms of design, generalizability, and efficiency. Such improvements are going to be dis-

cussed in upcoming chapters. With a decision-making framework, it could be possible to

encapsulate everything related to the best configuration to be employed, such that the

framework completely and conveniently abstracts the decision-making process.

The presentation of the proposed framework can be consistently linked with FORmal

Models for Self-adaptation (FORMS) [138], a formal model for specifying self-adaptive

systems that we consider as a reference model. In FORMS, self-adaptive systems are

composed of two parts/subsystems: a meta-level that makes decisions and controls the

base-level. The base-level is specific to domain functionalities, such as an execution en-

vironment of a given computing application that ranges from a multi-core machine to a

highly distributed and flexible cloud environment [127, 66, 26]. Hence, we comprehend

the FORMS relation to our proposed framework in the following way: the meta-level cor-

responds to the potentially generic decision-making strategy, while the base-level relates

to the mechanisms needed for applying adaptation actions in a given scenario.

Figure 4.2 shows the reference model of the proposed framework2. Although

Figure 4.2 relates to the conceptual view of self-adaptation in parallel computing illustrated

in Figure 4.1, here we focus on decision-making and how the conceptual view can be

practically applied here. For instance, the abstract self-adaptive managing system shown

in Figure 4.1 is here enacted by an autonomic decision-making loop, which is a closed-loop

between the decision-making and the base-level/domain.

Usability is a relevant aspect of the proposed framework. It is believed that ef-

ficient abstractions can be provided to improve the productivity of users/programmers.

We understand that users should only interact with the decision-making framework via

machine-readable descriptive languages or parameters to define their objectives. The

users are expected to set high-level objectives (e.g., expected throughput of 10 tasks

per second) and then rely on autonomous executions using the proposed framework to

achieve their objectives [51, 129].

Moreover, our proposed framework is intended to be flexible and execute interac-

tively. Hence, there is no strict order to the interactions shown in Figure 4.2 to occur, e.g.,

one can design a given decision-making strategy with fixed steps to apply optimizations to

increase efficiency without the users/programmers changing their objectives. We expect

that it begins with the users/programmers defining their goals. Then, the decision-making

is autonomic [67, 56] and interacts controlling the base-level (e.g., runtime/programming

frameworks, mechanisms) to enforce the user objectives. The decision-making at the

meta-level collects monitoring data using sensors to verify if the user objectives are being

achieved.

2This representation had some inspirations in how FORMS was mapped to the context of self-protecting
systems in reference [140]

76

Since parallel computing and adaptations at run-time are complex, the main fo-

cus on generalizability is at the meta-level that must be highly customizable to different

scenarios. For instance, heuristics, threshold algorithms, or auto profiling can be effective

decision-making in some scenarios [126, 132]. On the other hand, balancing complex con-

figurations in larger adaptations spaces may require advanced strategies encompassing

artificial intelligence and machine learning [137, 45].

Figure 4.2: Framework’s reference model.

Considering that generalization is very relevant, we expect some modules/sys-

tem parts can be flexible: a manager module that makes decisions, a monitor (sensors),

and an interfacing system module that integrates the meta-level with the base-level.

4.3 Applying the proposed framework

Previously, in Section 4.2 we proposed a conceptual framework for decision-

making in parallel systems. In this section, we describe how this conceptual framework

can be applied to provide decision-making for self-adaptive actions in a concrete scenario.

Background concerning this context can be found in Sections 2.2 and 2.1.

Considering the reference model evinced in Figure 4.2, this structure was applied

for implementing potentially generalizable decision-making solutions. Figure 4.3 shows

how the conceptual framework was ported to a real-world scenario of the FastFlow pro-

gramming framework (see Section 2.1.4), which is one of the runtime system generated

by the DSL SPar [47, 60, 129].

77

The decision-making framework represented in Figure 4.3 comprises generic mod-

ules to be implemented for an effective strategy:

• Application profiler: This is a module intended to measure the actual processing

capacity and computational weight of application’s stages, which is very relevant for

estimating the resources needed and the characteristics of an optimal configuration.

For instance, the application profiler helps in characterizing the applications for im-

proving the accuracy of the decision-making. See a concrete example in Section 7.2.

• Configuration characteristics: This is a module planned to percolate the possi-

ble configurations (adaptation space) and characterize them. This can be achieved

in different ways. For instance, the application programmers can provide the char-

acteristics of the configurations in a machine-readable descriptive way, or runtime

systems can have modules for auto-detecting the configuration characteristics.

• Search suitable configurations: Considering the applications and configurations

characteristics, this generic module is expected to utilize computational methods to

find which configurations can be suitable for a given user objective.

• Transitioning model: Applying adaptation actions at run-time should be imple-

mented as a smooth process such that they do not compromise QoS. Hence, an

appropriate transition can be necessary to be applied when changing from one con-

figuration to another. Section 7.2.1 provides a concrete example of employing a

draining phase to avoid adaptation instability.

• Data generator: Usually the data items are real-time generated/produced from the

network at a given speed, which can be simulated by a data generator module.

In Figure 4.3, it is evinced that the effectors managed in FastFlow are the replicas

and the parallel patterns. The replicas effector corresponds to managing the number of

replicas, e.g., the parallelism degree of parallel stages, and the Parallel Patterns is a more

powerful adaptation that changes the entire applications’ graphs topologies/composition

structure.

In this work, our solution is applied and validated to implement stream processing

applications, which is a representative paradigm present in several applications (see Sec-

tion 2.2) of typically long-running applications. The rationale behind this decision is mostly

because stream processing is a scenario with more strict requirements and dynamic exe-

cutions, motivating to propose elaborated solutions, i.e., the reshaping of parallel pattern

compositions used to exploit parallelism. We expect conceptual and technical efforts pro-

vided here to be easily applied to traditional parallel applications, which usually have less

dynamic executions, making it easier to utilize decision-making strategies.

78

Figure 4.3: Framework’s architecture implemented.

4.4 Summary

The proposed framework is a step to improve the design and engineering of self-

adaptive systems to provide efficient and more generalizable parallelism abstractions.

The framework’s model is based on components decoupling and separation of concerns,

which enables the self-adaptive solutions to be consistent with the conceptual definitions

of self-adaptive systems [137].

In the next chapters, we introduce and provide further details of cases on how

the decision-making framework was applied to design self-adaptive solutions and con-

tribute to the research area. Chapter 5 describes an existing replicas effector and dis-

cusses strategies for self-adapting the parallelism degree in applications with one parallel

stage, where it was possible to provide parallelism abstractions, introduce relevant non-

functional metrics (throughput, latency), study the limits of self-adaptation and transpar-

ent executions, and minimize overheads that can arrive when applying self-adaptation.

Moreover, considering the demand for additional mechanisms to achieve the nec-

essary flexibility for parallel applications, Chapter 6 introduces a new mechanism and

a simple strategy to self-adapt the Parallel Patterns and online change the applications’

graphs topologies. Then, Chapter 7 provides an optimized decision-making strategy for

the mechanism proposed in Chapter 6. Finally, Chapter 8 introduces a proposed mecha-

79

nism and decision-making strategy for supporting self-adaptation of the replicas effector

in applications with complex composition structures composed of many parallel stages.

80

5. SELF-ADAPTIVE AND SEAMLESS DEGREE OF PARALLELISM

This chapter presents the proposed solutions for self-adapting the number of

replicas in a parallel stage. Section 5.1 describes the first efforts proposed in the Master

Thesis. Then, in Section 5.2 we provide strategies provided for self-adapting the num-

ber of replicas in applications with one parallel stage. Finally, Section 5.3 discusses this

chapter’s perspectives and closing remarks.

5.1 Previous work

In the Master Thesis [124], which was later published([129]), we introduced ef-

forts for autonomously managing (through self-adaptation) the degree of parallelism in

stream processing applications. There, it was noted that the parallel programming frame-

works and libraries available for C++ programs like Intel TBB [134], StreamIt [117], Fast-

Flow [3], and SPar [47] require users/programmers to define the degree of parallelism.

The degree of parallelism was also too static for stream processing applications that have

dynamic executions due to the many changes and uncertainties that occur at run-time.

A notable aspect unveiled was that using a static degree of parallelism during

the entire execution was a suboptimal approach. Firstly, it was noted that it tends to be

complicated and time-consuming to set parallelism parameters because a programmer

would need to run the same program several times to find the optimal configuration. Sec-

ondly, the degree of parallelism depends on several aspects, which are usually related to

computer architecture, the application processing characteristics, and input rates.

With the Master Thesis [124] and in [129], we validated mechanisms for applying

adaptation and implemented reactive strategies for self-managing the degree of paral-

lelism. The implemented solution works in Farm patterns (one parallel/fissioned/replicated

stage).This was a first step for improving the parallelism abstractions related to the defi-

nition of the degree of parallelism in stream processing applications.

5.2 Self-adaptive strategies

The first part of the doctorate was related to improving the previously proposed

strategies for self-adapting the parallelism, characterizing these strategies under different

applications and workloads as well as proposing new strategies.

Section 5.2.1 describes the already implemented solution to self-adapt and ab-

stract the degree of parallelism. Then, Section 5.2.2 shows the solution proposed in the

81

Master Thesis [124] for parallelism adaptations when the goal is throughput. Moreover,

Section 5.2.3 introduces a strategy published in [128] that supports users/programmers

to define applications’ latency constraints, where a self-adaptive strategy autonomously

manages the latency.

Moreover, Section 5.2.4 describes a proposed strategy to enable the users/pro-

grammers to manage better the computational resources CPUs, where users are empow-

ered to provide a target utilization goal (SLO), and the self-adaptive strategy autonomously

enforces the goal at run-time. Additionally, Section 5.2.5 presents the optimizations pro-

posed in [126], where we minimized the self-adaptation overhead with a new decision-

making strategy that reduces the settling times and increases the stability. Finally, Sec-

tion 5.2.6 shows a strategy that detects performance fluctuations to manage the paral-

lelism configurations transparently.

5.2.1 Self-adaptive degree of parallelism in multi-cores

Here we describe the proposed solution for self-adapting the degree of paral-

lelism. Modules such as a monitor and actuator (effector) is a regulator are used for au-

tonomously adjusting the number of replicas. Figure 5.1 shows the architecture used for

performing adaptation in the number of replicas. This workflow was designed and imple-

mented following the conceptual framework proposed in Chapter 4. Hence, in the control

steps that applications and/or environments are monitored and decision-action are taken

when it is necessary to optimize the execution. By doing so, it is possible to be reactive

to select the best number of replicas even in presence of workload fluctuations, which is

a common characteristic of stream processing applications.

In Section 2.1.2, we introduced some patterns suitable for stream parallelism.

Considering that Farm is a very relevant pattern, in Figure 5.1 a Farm composition is

evinced that is used for implementing self-adaptivity. In this Farm, the first stage is the

task emitter that distributes the tasks to the next stage using a given scheduling policy.

Furthermore, the second stage is the most computationally heavy one, which is replicated

in several parallel replicas. Also, the last stage acts as a collector that gathers the tasks.

The strategy is implemented with different components. The collector stage runs

also the monitor routine that periodically collects performance metrics while the applica-

tion is running. Also, in the first stage runs the regulator component that corresponds

to the Analysis and Planning modules of the conceptual framework, where regulator gets

the information collected by the monitor, and decides which actions to take to optimize

the parallelism configuration. The actuator (execution module) changes the number of

replicas at run-time without restarting the application.

82

Figure 5.1: Workflow of self-adaptive parallelism management.

Source: [51].

5.2.2 Self-adaptation for throughput

This idea was introduced in [124] and the runtime system support was published

in [129] as a language abstraction. The motivation was that defining a performance goal

is presumably easier for application programmers than defining a low-level parallelism

parameter of the runtime library. Therefore, we studied ways to handle the configuration

challenges and abstract them from programmers to meet the requirement of a transpar-

ent degree of parallelism. Hence, we implemented a strategy that adapts the degree of

parallelism based on the applications’ throughput.

Considering the workflow shown in Figure 5.1, this strategy monitors the execu-

tion considering a performance metric to optimize the performance of the computation

in the next iteration. In this case, the actuator has a maximum value for the number of

replicas, which is defined according to the machine’s CPUs availability. The execution is

started when the emitter sends items to the active worker replicas.

We implemented this strategy through an algorithm that changes the number of

replicas and continuously monitors the program’s execution. The changes in the degree

of parallelism are based on the target (expected) and measured (actual) throughput. On

each adaptation step, several replicas can be activated or suspended, here the number of

replicas changed is called a Scaling Factor (SF).

The throughput value (tasks/second) is calculated by the monitor component con-

sidering the number of tasks processed in the current iteration by subtracting the previ-

ous total number of tasks from the current total number of tasks. In each iteration, the

83

throughput is the result of dividing the number of processed tasks by the time taken.

Consequently, the last stage gathers the tasks and also measures the throughput. The

throughput rates are then stored and accessed by the regulator/actuator. This solution

provides information to the actuator to decide if an adaptation is required and only re-

quires a target throughput to be defined by the programmer.

This strategy was firstly tested by adding the adaptive part to a parallel version

of the Lane Detection video application. Lane Detection is an application used on au-

tonomous vehicles to detect road lanes, which is used for maintaining the car on the road.

This is performed by reading a video feed from a camera. The road lanes are detected

through a sequence of operations where the parallel implementation is like an assembly

line composed of three stages, where the second stage is stateless and therefore repli-

cated [49]. The experiments shown here were carried out on a multi-core machine with 2

Sockets Intel(R) Xeon(R) CPUs 2.40 Gigahertz (GHz) (8 cores-16 threads), with a memory

of 16 Gigabyte (GB) - Double Data Rate three (DDR3) 1066 Megahertz (MHz). The oper-

ating system used was Ubuntu Server, G++ v. 5.4.0 with the -O3 compilation flag. The

parallel version used the on-demand scheduling policy that is suitable for stream process-

ing, which improves the load balancing by distributing one item to each replica.

 20

 40

 60

 80

 100

 120

 140

T
h
ro

u
g
h
p
u
t
(F

ra
m

e
s
 p

e
r

S
e
c
o
n
d
)

Lane Detection − Target throughput 60 with SF 2 and TI 0.5

Throughput (FPS)
Target Throughput

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Time (s)

Replicas

Figure 5.2: Target Throughput 60.

Source: [129].

In Figure 5.2, we present an experiment with a target throughput of 60 frames per

second and a scaling factor of 2. In the tested machine, the number of replicas used varies

from 8 to 14. As the number of replicas impacts the actual throughput, the execution

starts using half of the total available cores (with Simultaneous Multithreading (SMT)). In

the experiments, it is possible to notice a need to increase the number of replicas right

after the execution starts. The load from the input file caused most of the throughput

fluctuations. It is noteworthy that in some specific instances, even using the maximum

84

number of replicas, it was not possible to achieve the target throughput. However, it

was not caused by the adaptive strategy but is a consequence of the machine’s limited

processing capability.

This self-adaptive strategy was also tested in comparison with regular parallel

executions that use a static (AKA fixed) number of replicas, ranging in the tested machine

from 2 to 16 replicas. As aforementioned, the self-adaptive strategy tends to have a

more elaborate execution with monitoring and adaptations, which can reduce the overall

application performance. In this evaluation, we present the final throughput, which was

derived by taking the total number of processed items in a given execution divided by the

final execution time. Each execution was repeated 10 times and the results presented are

the arithmetic means. The results also present the respective standard deviation.

Figure 5.3 presents the results from the lane detection application. As expected,

in the static executions the throughput increased as more parallel replicas were added

until it reached the scalability limit of the application. The static parallelism achieved the

highest throughput with 14 replicas. The performance of the self-adaptive strategy with

a target throughput was almost as good as the best static parallelism configuration (14

replicas). This result demonstrates that even with the additional parts implemented, a

self-adaptive strategy can achieve performance similar to the best static cases. Additional

performance results of this strategy can be found in references [129, 51].

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
(f

ra
m

e
s
 p

e
r

s
e
c
o
n
d
)

Number of Replicas

Lane Detection Input 1 − Average Throughput

STDEV
Static Parallelism
Target Throughput strategy

Figure 5.3: Average Throughput of Lane Detection.

Source: [129].

85

5.2.3 Self-adaptive parallelism with latency constraints

In previous work [128], we demonstrated how the degree of parallelism impacts

the latency of stream items. For instance, there we executed again the Lane Detection

application on a multi-core machine composed of 12 cores with 2-way SMT for a total of

24 hardware threads. Extracted from [128], Figure 5.4(a) shows the throughput of the

application (i.e. how many stream elements per second are processed) for a different

number of replicas and time timestamps of one second1. In this case, the number of

replicas is statically defined and is not modified during the execution. These results prove

that the use of SMT is beneficial for the throughput of this kind of application since the

best throughput is obtained by using 22 replicas.

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16 18 20

T
h

ro
u

g
h

p
u

t
(F

P
S

)

Timestamp (s)

6 Replicas
10 Replicas
14 Replicas

18 Replicas
22 Replicas

(a) Throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12 14 16 18 20

L
a

te
n

c
y
 (

m
s
)

Timestamp (s)

6 Replicas
10 Replicas
14 Replicas

18 Replicas
22 Replicas

(b) Latency.

Figure 5.4: Lane Detection Characterization.

Source: [128].

Figure 5.4(b) extracted from our previous work [128] shows that increasing the

number of replicas may have detrimental effects on the latency of the application. It

is worth noting that a significant 2 increase in the latency (as well as a decrease in the

throughput) can be observed when more than 10 replicas are used. Moreover, it is possible

to note a significant increase in the oscillation of the latency when using more replicas.

These effects are caused by the contention between stages running on two SMT cores

corresponding to the same physical core.

There can be seen a correlation between throughput and latency. Achieving a

high throughput using many replicas tends to increase the latency. On the other hand,

using too few replicas decreases the throughput and latency. Consequently, it can be

relevant to achieve a balance between these two performance goals. The challenge is

1Some textual parts were extracted from[128]
2The term “significant” refers to a performance difference that can achieve a statistical significance [129].

86

that high throughput is commonly pursued, and at the same time low latency may also be

necessary. Consequently, in [128], we proposed a strategy that attempts to manage the

latency of stream items by continuously adapting the degree of parallelism. This strategy

uses a workflow similar to the one shown in Figure 5.1, the implementation and decision

strategy are abstracted here, as such aspects are described in [128]. Importantly, here

we present a representative result of the validation of this solution.

In [128] we demonstrated that pursue only the maximum throughput is not suit-

able for latency sensitive applications that need to rapidly produce results. Also, there we

showed that using a minimal number of replicas for reducing the latency tends to result

in a low throughput as well as inefficient usage of computational resources. Thus, the

decision-making strategy proposed in [128] attempts to find a balance between the ap-

plications’ throughput and latency by increasing the number of replicas when the latency

is below the constraint defined by the user. In relevant experiments, we tested SF of the

parallelism regulator was 1 or 2, meaning that on each reconfiguration one or two replicas

could be activated or suspended. Also, 1 second is a time interval between adaptation ac-

tions that are sensitive enough to react without causing performance instability. Latency

thresholds were used, where the threshold is a toleration value used in order to avoid os-

cillation in the number of replicas. The tolerated threshold makes the number of replicas

not be increased when the latency is lower but close to the constraint.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16 18
 0

 50

 100

 150

 200

 250

 300

 350

 400

L
a

te
n

c
y
 (

m
s
)

T
h

ro
u

g
h

p
u

t
(F

P
S

)

Timestamp (s)

Threshold
Latency Constraint
Latency (ms) SF 1
Throughput (FPS) SF 1
Latency (ms) SF 2
Throughput (FPS) SF 2

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16 18
 0

 2

 4

 6

 8

 10

 12

R
e

p
lic

a
s

R
e

p
lic

a
s

Timestamp (s)

Replicas SF 1
Replicas SF 2

Figure 5.5: Latency Constraint of 180 ms (Left) and Replicas Used (Right).

Source: [128].

In Figure 5.5, the left side shows the throughput and latency of the application,

while on the right side we plot the number of replicas used during the execution. In this

experiment, the latency constraint was set to 180 milliseconds with a 10% threshold. As

we can see from Figure 5.5, the number of replicas is reduced when the latency increases,

and the number of replicas are changed several times due to oscillations in the input

video. Comparing the configurations, we observed that SF of 2 reacts faster to changes

and increases the throughput at the price of more latency violations.

87

Finally, as emphasized in [128], there we provided a new parallelism abstraction

for SPar for latency sensitive applications. This was accomplished by implementing a

strategy that adapts, without any programmer intervention, the number of replicas in

order to have a latency lower than the constraints specified by the user. This is particularly

useful for stream processing applications, which are characterized by fluctuations in the

input rates.

5.2.4 Managing resources utilization through self-adaptation

We also implemented abstractions and strategies [48, 51] that enable users/pro-

grammers to express SLO, such as energy bounds, system utilization, and throughput.

There, we evinced the need to impose limits in terms of resource usage while improving

system utilization. We have shown that it is also relevant to allow programmers to define

objectives regarding the consumption of resources.

Therefore, in [51] we provided several SLO options that allow users/programmers

to set specific performance goals in source code. Relevant SLO provided were latency,

throughput, CPUs utilization, and power consumption. Figure 5.6 depicts the methodol-

ogy proposed in [51] to express SLO in the application source code. The first step in the

developing process is to code the stream processing application (not needed for legacy

applications). After, the programmer inserts the SPar annotations to express the stream

parallelism. Lastly, the programmer can insert SLO attributes along with SPar’s annota-

tions in the source code. Therefore, the only requirement is to choose the SLO metric and

its initial target value. No extra details have to be provided by the application program-

mers, which can spend most of their time coding the sequential application. For instance,

in Figure 5.6, an slo::cpu is set to use no more than 10% of the machine processing re-

source.

Figure 5.6: A methodology to define SLOs for stream parallelism.

Source: [51].

A very relevant SLO that is pursued by adapting the number of replicas is the

CPUs utilization SLO. Although there are available OS-level tools for controlling the CPUs

usage (e.g., CPUlimit [25]), such tools are arguably not flexible. Considering the dynamic

88

nature of stream processing applications, we expect to adapt the degree of parallelism

of the application at run-time for optimizing the CPUs utilization and meeting the target

SLO. The workflow scheme used by the self-adaptive strategy is also similar, which here

we again abstract the implementation aspects that are available in [51].

The slo::CPU SLO was validated in [51]. Here we present some representative

results that are relevant to be discussed in the current research context. The results

presented here are extracted from [51] and some text descriptions were also extracted

from there. These results were collected from the same machine described in the previous

section and the application used was Bzip2. Bzip2 is a data compression application that

uses Burrows-Wheeler algorithm for sorting and Huffman coding. This application is built

on top of libbzip2. Its parallel version using SPar is described in [50].

Figure 5.7 shows the execution of the Pbzip2 application with the attribute defin-

ing the maximum utilization to 60%, which is an empirically defined scenario, simulat-

ing an execution that could have a CPUs load slightly higher than half of the machine’s

resources. Such a scenario is representative of applications running on shared environ-

ments. We tested this SLO strategy with two representative threshold values: 10 and 20%.

These were the most suitable thresholds for stream parallelism, as seen in [128]. We also

executed a variant using the blocking mode (-spar_blocking compilation option in SPar)

that tends to consume fewer CPUs resources by only distributing new tasks upon requests

from the active threads. The results are compared to the CPUlimit utility tool, which also

was set to limit the CPUs usage is 60%. For the tests using CPUlimit, we set a number of

application threads equal to the number of hardware threads, which is what is done by

default in several runtimes. The self-adaptive strategy, on the other hand, uses a custom

number of active threads by changing the status of the replicas at run-time according to

the decision-making strategy implemented.

In the results from Figure 5.7, we can observe that CPUlimit was unable to en-

force the required SLO. It is relevant to highlight that all executions presented a high

CPUs utilization in the first second. This event is caused by the application startup rou-

tines, such as threads and queues creation. The threshold of 10% introduced instability

by triggering too frequent changes in the number of replicas, which also induced variation

in CPUs utilization. On the other hand, the threshold of 20% was the most accurate and

stable one. By using the -spar_blocking compilation flag, it reduced the CPUs utilization.

Consequently, this resulted in an opportunity to use more replicas in the parallel region.

We now show the results obtained by running with the slo::CPU SLO with all

the considered applications. The results presented are an average of 10 executions. In

Figure 5.8, is shown the throughput in Megabytes Per Second (MBPS) of the execution

considering the three representative applications, and two representatives slo::CPU SLO

configurations: 60 and 90%. It is important to note that the SLO strategies are compared

to a static degree of parallelism version using the CPUlimit for SPar and Intel TBB.

89

 30

 35

 40

 45

 50

 55

 60

C
P

U
s
 u

ti
liz

a
ti
o
n
(%

)

Pbzip2 − Max CPUs utilization 60%

Utilization−Thr10
Utilization−Thr20

Utilization−Blk−Thr10
Utilization−Blk−Thr20

CPUlimit
Max Utilization

 10

 11

 12

 13

 14

 15

 20 40 60 80 100 120 140 160

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Time (s)

Figure 5.7: Characterization of Pbzip2 Application with slo::CPU(60).

Source: [51].

Considering the SLO of 60%, it is possible to identify a similar outcome regarding

the different applications. In the self-adaptive executions, when using the spar_blocking

compilation flag, it achieved higher throughput rates than the default nonBlocking execu-

tion. The self-adaptive strategy dynamically tunes the number of replicas resulting in the

highest throughput rates. This result indicates that the way in which CPUlimit works (i.e.,

continuously pausing and resuming the target process) causes performance overhead.

CPUlimit in SPar had a lower throughput, while TBB and SPar Blocking achieved better

performance.

The result of running with slo::CPU in 90% showed similar results with respect to

60%. Although the contrasts between our generated self-adaptive strategy and CPUlimit

were smaller, our strategy again was significantly better in most cases. In Lane Detection

with 90% CPUs utilization SLO, both TBB and SPar blocking achieved the highest through-

put. CPUlimit blocked significantly less the threads with the low CPUs restriction of 90%

CPUs utilization SLO, which increased the application performance. In Lane Detection, the

TBB version outperformed SPar because TBB improves the load balancing, while in Person

Recognition and Pbzip2 both versions achieved similar performance. Considering the dif-

ferent applications and their execution characteristics, it is possible to note that CPUlimit

performed better in those applications with a more balanced load, while performing worst

in the irregular processing applications (Person Recognition). This indicates that CPUlimit

is not a suitable alternative for limiting CPUs utilization in stream processing applications,

which are usually unbalanced because of their intrinsic dynamic nature.

90

 20

 40

 60

 80

 100

 120

 140

LaneDetec.(60%)

PersonRec.(60%)

Pbzip2(60%)

LaneDetec.(90%)

PersonRec.(90%)

Pbzip2(90%)

 20

 40

 60

 80

 100

 120

 140

T
h
ro

u
g
h
p
u
t
(f

ra
m

e
s
 p

e
r

s
e
c
o
n
d
)

T
h
ro

u
g
h
p
u
t
(M

B
P

S
)

Average Throughput

slo::CPU−Threshold10
slo::CPU−Threshold20
slo::CPU−Blk−Threshold10
slo::CPU−Blk−Threshold20

CPUlimit
CPUlimit−Blk
TBB−CPUlimit

Figure 5.8: Applications Throughput.

Source: [51].

In order to further characterize CPUlimit, we also evaluated the impact of the

number of replicas. Figure 5.9 presents the results on Pbzip with a representative slo::CPU

SLO of 60%. In this test, the results from our self-adaptive strategy are compared to a

static number of replicas in SPar and TBB managed by CPUlimit. The throughput of our

strategies is presented in all numbers of replicas because any of those numbers could

be used during the execution, depending on the decisions made by the regulator algo-

rithm. It is possible to note that the configuration using 12 replicas was the best CPUlimit

configuration in SPar and TBB, although the self-adaptive strategy in blocking mode still

achieved the highest throughput. Regarding CPUlimit, the blocking mode only achieved

a better performance in specific cases compared to the default nonBlocking mode. Com-

paring the results where TBB outperformed SPar running with one application thread per

hardware thread in Figure 5.8, the several numbers of replicas in TBB only won with 14

and 16 replicas. On the other hand, SPar with the blocking mode outperformed TBB in

most cases.

The outcome from Figure 5.9 highlights the correlation between the number of

replicas and the application throughput, showing that using a tool like CPUlimit for lim-

iting the CPUs utilization SLO is inefficient in the stream processing context. The results

indicate that even if CPUlimit is used, a suitable number of replicas has still to be found.

However, finding a suitable number of replicas tends to be a complex task in stream pro-

cessing applications. Additionally, the number of replicas often has to be adapted during

91

 0

 10

 20

 30

 40

 50

 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t
(M

B
P

S
)

Number of Replicas

Pbzip2 − Max CPUs utilization 60%

slo::CPU−Threshold10
slo::CPU−Threshold20
slo::CPU−Blk−Threshold10
slo::CPU−Blk−Threshold20

CPUlimit
CPUlimit−Blk
TBB−CPUlimit

Figure 5.9: Characterization with Different Number of Replicas.

Source: [51].

execution according to performance or efficiency goals, because this class of applications

runs without a defined end of the computation. Therefore, rerun the application multiple

times until a suitable number of replicas is found, it becomes unfeasible for stream pro-

cessing applications. Consequently, our strategy that dynamically adapts the number of

replicas in SPar at run-time is a feasible and effective approach, which showed promising

performance outcomes.

5.2.5 Minimizing self-adaptation overhead in stream processing

Employing self-adaptation to stream processing applications can provide higher-

level programming abstractions and autonomic resource management. However, in [126]

we have shown that there are cases where the performance is suboptimal. There, we op-

timized parallelism adaptations in terms of stability and accuracy, which improved the

performance of parallel stream processing applications. The previous implementation

[128, 51] was extended to better encompass the Stability, Accuracy, Settling time and

Overshoot (SASO) properties [56]. Stability refers to the capacity of producing the same

output under a given condition. Accuracy is related to achieving the control goal with

sufficiently good decision-making, and Short settling times are desired for reaching fast

enough an optimal state. Moreover, overshooting should be avoided by using only the

amount of resources needed.

92

The validation of these self-adaptive strategies presented in [51, 129] showed

that comparing only the target throughput (expected) and measured (actual) through-

put sometimes resulted in too many and frequent reconfigurations, which in some events

caused performance instability. For efficiency purposes, the number of replicas was re-

duced only when the actual throughput was significantly higher than the target one. The

throughput oscillations and peaks induced the regulator to reduce the number of replicas.

But, it was notable that when the unstable workload trend passed, using fewer replicas

sometimes caused a lower performance than the target one. Also, the previous strategies

increased 1 or 2 replicas while the throughput was smaller than the target, which resulted

in settling times higher than the ideal one.

Consequently, in [126], we extensively analyzed the root causes and elaborated

mechanisms to improve it, resulting in a new optimized strategy for handling the stability

and performance violations. Here we present relevant pieces of information of this new

decision-making strategy 3. Figure 5.10 shows a high-level representation of the steps

performed by the new strategy’s decision-making. In order to respond to fluctuations,

the decision-making follows the conceptual framework design (described in Chapter 4) to

periodically (e.g., every second) iterate the steps: execute, decide, and when necessary

apply changes.

Figure 5.10: High-level representation of the decision-making.

Source: [126].

The new decision-making strategy checks if the current throughput is signifi-

cantly 4 lower than the target one. If true, it enters the Decision 1 (D1) for increasing

3Some textual parts and results were extracted from [126]
4The term “significantly” refers to a performance difference that can achieve a statistical signifi-

cance [129].

93

the number of replicas (R) with the following steps: 1) detects the machine processing

capabilities; 2) calculates the percentage that each processor has from the total process-

ing capability; 3) calculates the percentage of the difference between actual and target

throughput; 4) according to the percentage of the difference and the processing power

that each processor holds (from step 2), the regulator estimates how many replicas should

be added. Consequently, if the actual throughput is extremely lower than the target, this

new strategy attempts to increase the throughput by adding several replicas in one step

(the previous strategy added 1 or 2 per step), such a decision has the potential to reduce

the setting time. The regulator also checks if the current and previous throughputs are

higher than the target ones. If false, it applies Decision 3 (D3) maintaining the same

number of replicas. But, if this condition is true, the regulator applies Decision 2 (D2)

that decreases the number of replicas. Pursuing stability and avoiding frequent/unprof-

itable changes, three previous throughputs are compared to the target throughput 5 (the

previous strategy considered only one).

The new strategy was compared to the existing one. The adaptive part was in-

cluded in Lane Detection application, which was described previously and used the same

machine from the previous section. Figure 5.11(a) shows the throughput of a serial ex-

ecution of Lane Detection with the tested video file Input-1 (260 Megabyte (MB)), which

characterizes the load and shows the usual throughput fluctuations in stream processing,

between 2 and 9 Frames Per Second (FPS). Some frames require more (or less) time to be

processed resulting in load fluctuations, significant fluctuation can be viewed around the

second 180 with throughput falling and increasing after 600 seconds in another workload

phase.

Figure 5.11(b) characterizes the previous strategy and the new one with a target

throughput of 30 FPS. The top part shows the measured throughput, where the new strat-

egy had a stabler throughput that resulted in fewer throughput violations. Moreover, the

lower graph referring to the number of replicas highlights the stability of the new strat-

egy. The previous strategy reconfigured the number of replicas too many times causing

additional throughput instability. Regarding the settling time, it is possible to note that be-

tween the seconds 40 and 60 of Figure 5.11(b) a new workload phase required parallelism

reconfiguration. The new strategy reacted faster by adding 9 replicas that increased the

throughput. The execution of the new strategy ended before due to its higher throughput.

We also tested this solution in terms of performance compared to static exe-

cutions. Figure 5.12 shows the results of Lane Detection using input, presented in Fig-

ure 5.11(a). In the static executions, the throughput increased as more replicas were

added until it reached the maximum performance of the application. It is notable some

performance oscillations in the static executions between 10 and 21 replicas. These

5The three previous samples’ values can be customized to different scenarios. Here, it was determined
for this strategy considering empirical experiments.

94

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400 500 600 700

T
h
ro

u
g
h
p
u
t
(F

ra
m

e
s
 p

e
r

S
e
c
o
n
d
)

Time (s)

Throughput

(a) Input Workload Characterization.

 20

 40

 60

 80

 100

T
h
ro

u
g
h
p
u
t
(F

ra
m

e
s
 p

e
r

S
e
c
o
n
d
)

Throughput
New Strategy’s Throughput
Target Throughput

 4

 6

 8

 10

 12

 14

 16

 18

 20 40 60 80 100 120

N
u
m

b
e
r

o
f
R

e
p
lic

a
s

Time (s)

Replicas
New Strategy’s Replicas

(b) Parallel Strategies.

Figure 5.11: Lane Detection - Sequential (Left) and Parallel Strategies (Right).

Source: [126].

events were caused by the combination of these input load oscillations and the order-

ing performed in the last stage. When the load is too unbalanced (items have significant

computing time differences), there will be more unordered items in the last stage, where

a single thread has to reorder the items along with its operations (e.g., write). Therefore,

it becomes a bottleneck when there is such a combination of load oscillations and ordering

requirements.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4 8 12 16 20 24

T
h

ro
u

g
h

p
u

t
(f

ra
m

e
s
 p

e
r

s
e

c
o

n
d

)

Number of Replicas

Lane Detection − Input 1 Average Throughput

Static Parallelism
Target Throughput Strategy (50)

Figure 5.12: Average Throughput of Lane Detection.

Source: [126].

In the used machine, the self-adaptive execution started using 12 replicas, since

it is the number of available physical cores collected by the parallelism regulator. The

throughput from self-adaptive executions is the same for all replicas since any number of

95

replicas could be used during the execution. The performance of the self-adaptive strategy

with a target performance was as good as the best static parallelism configurations. This

demonstrates that even with the additional parts implemented, the self-adaptive strategy

can achieve a performance similar to the best static executions that have no control or

adaptability with respect to the number of replicas.

Several aspects of the execution are relevant to evaluate the strategies’ execu-

tions. Noteworthy, memory usage is relevant for evaluating the amount of resources that

a given program demands in order to run. The total memory usage was collected showing

average execution results.

Figure 5.13 illustrates how the number of replicas impacts memory usage. Al-

though the self-adaptive strategy has additional processing parts that could use additional

memory, it consumed less memory than the static execution with more than 12 replicas. It

is also worth noting a variation in memory consumption on the static execution with more

than 12 replicas, this aspect is caused by a combination of the load unbalance of threads

and by the ordering constraint. The results from memory usage of the self-adaptive strate-

gies demonstrated that decision-making does not cause a significant additional resources

consumption, which is relevant for running under a low overhead.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 4 8 12 16 20 24

M
e

m
o

ry
 (

M
B

)

Number of Replicas

Lane Detection − Input 1 Average Memory Usage

Static Parallelism
Target Throughput Strategy (50)

Figure 5.13: Average Memory Usage of Lane Detection.

Source: [126].

In short, our solution proposed in [126] provided high-level programming abstrac-

tions reduced the adaptation overhead and achieved a competitive performance with the

best static executions.

96

5.2.6 Seamless parallelism management for stream processing

The previous proposed strategies [128, 126, 124, 51, 129] require from users the

input of performance hints for adapting the number of replicas. However, performance

aspects tend to be complex for application programmers. Additionally, stream processing

applications are usually long running and with significant load fluctuations, where tem-

poral changes could require different performance objectives. Consequently, in [125] we

proposed a new strategy to manage the execution in an autonomous and seamless way.

The new strategy abstracts from users the parameters set. This solution enabled a fully

seamless execution, which was achieved by a new decision strategy that monitors the

application, detects changes in the workload, and performs optimizations in the number

of replicas used.

The workflow is similar to previous strategies, further details are available in [125].

Noteworthy, here we present relevant aspects fully described and discussed in [125]. The

relevant decision-making strategy’s parts decides whether the number of replicas should

be adapted using the Analyze and Plan modules from the cocneptual framework with the

following steps: 1) stores data regarding the application performance collected by the

monitor; 2) After the execution starts, when it has a minimum of three (a number defined

from empirical tests for having a balance between fast and accurate decisions) perfor-

mance results from monitor iterations, compares this previously collected data with the

current performance; 3) If the current performance is significantly lower than the previous

one, a new replica (R) is activated (D1); 4) If the current performance is significantly higher

than previous results, an active replica is suspended (D2); 5) After the monitor executed

at least 10 iterations with performance results 6, the regulator enters a new phase where

it has more performance data for deciding, which tends to improve the decisions accuracy.

Then, for the sake of stability, the average of the previous three throughputs collected is

compared to the average throughput from all historical data.

Figure 5.14 shows a high-level representation of decision phases and iterations

performed. It is important to note that in addition to decisions 1 and 2 (D1 and D2), there

is also the D3 that is performed when the decision is for maintaining the same number of

replicas. Moreover, the self-adaptive strategy runs continuously and decides if the number

of replicas should be adapted. Although the strategy runs several times and changes the

configuration, the adaptations do not affect the regular computations of the application.

In fact, while the application is running, the strategy periodically runs and then sleeps

for a time interval. In this study, we consider 1 second as the default sampling time

interval, which allows the strategy to achieve a suitable level of sensitivity to workload

fluctuations. Too frequent adaptations can cause instability, while too high sampling times

6This number of iterations can be customized to different scenarios. Here, it was determined for this
strategy considering empirical experiments.

97

Figure 5.14: Overview of the Analyze and Plan Phases.

Source: [126].

can result in unresponsiveness to changes. Also, two is the minimum number of replicas

in a parallel stage, which is a value for minimum parallelism. The maximum number of

replicas is defined by the self-adaptive strategy by detecting the machine configuration.

The maximum number of replicas is set to at most one application thread per hardware

thread, also counting threads from other sequential stages (e.g., Read, write).

The new seamless strategy is characterized and compared to an existing one [126]

that requires a manual definition of a target performance, which was defined to a through-

put of 50. The applications and machines used were the same of previous experiments.

Moreover, in order to avoid additional variations, the emitter and collector stages were

placed on dedicated physical cores.

The seamless strategy behavior is characterized in Figure 5.15 using the Lane

Detection application and the input workload was a file of 260 MB [126]. The experiment

demonstrates the throughput and the number of replicas used by each strategy in paral-

lel executions. Moreover, the self-adaptive strategies are compared to static executions

running with a fixed number of replicas. For the sake of visual clarity, we only show repre-

sentative results of static executions with 10 and 20 replicas.

In Figure 5.15, we can observe throughput fluctuations caused by the input work-

load [126]. The executions with a static number of replicas also presented throughput fluc-

98

 20

 40

 60

 80

 100

T
h
ro

u
g
h
p

u
t
(F

ra
m

e
s
 p

e
r

S
e
c
o
n

d
)

Static 10 Replicas
Static 20 Replicas

Throughput Strategy
Seamless Strategy

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 20 40 60 80

N
u
m

b
e
r

o
f

R
e
p
lic

a
s

Time (s)

Static 10 Replicas
Static 20 Replicas

Throughput Strategy
Seamless Strategy

Figure 5.15: Characterization - Parallel Executions.

Source: [126].

tuations, which emphasizes that the oscillations were caused by input workload instead

of the self-adaptive strategies. Regarding the proposed seamless performance strategy,

it is important to note that after the first iterations, the throughput increased because of

the workload fluctuation. As a consequence, the parallelism actuator changed the num-

ber of replicas from 12 to 11. Noteworthy, considering the workload fluctuations around

the middle of the execution, the actuator responded to this fluctuation by increasing the

number of replicas between seconds 21 and 36. Another event that highlights the correct

sensitivity of this strategy is that the number of replicas was reduced when the execution

entered a new phase that increased the throughput (near the second 70).

Comparing the strategies, it is possible to note a similar performance trend caused

by the input workload. The strategy based on a manual target performance presented a

short settling time, which is notable in the adaptation of the number of replicas after

the second 20. The seamless performance strategy required more time to respond to

workload fluctuations, which can impact negatively on those applications that demand

very fast adaptations. Moreover, it is possible to note in Figure 5.15 that the seamless

performance strategy had a slightly lower execution time, which occurred because this

execution had a higher throughput in the first seconds by using more parallel replicas.

Moreover, in [125] we have seen aspects related to the complexities of abstract-

ing parallelism and autonomously managing parallelism configurations at run-time. The

new proposed strategy that abstracts the need to set the parallelism and performance

configuration shown to be effective. The alternative that required the definition of a target

99

performance increases the flexibility at the price of additional complexities. On the other

hand, running an application transparently increases the abstraction level, but tends to

provide less flexibility and lower performance. Some users/programmers may have per-

formance expertise, in which case they may customize their execution by setting system

parameters and target performance. However, the provided strategy for seamless ex-

ecution is designed for users/programmers with no performance and system expertise.

Additionally, in [125] the performance of the proposed strategy was validated compared

to static executions where the self-adaptive Seamless strategy achieved a competitive

performance. Consequently, an implication from the experimental results from [125] is

that self-adaptivity is suitable for seamlessly managing parallelism configurations.

5.3 Discussion

5.3.1 Applying the proposed strategies

In [129], a case study demonstrated how one could use the previously described

and evaluated self-adaptive strategies for providing efficient parallelism abstractions. A

notable part is the self-adaptive code generation in SPar, where a compiler is used to gen-

erate additional code blocks so that the productivity of users/programmers is not impacted

when using self-adaptation.

In [129], a trivial application that calculates the prime numbers as a code exam-

ple was used to illustrate how the adaptive code generation works with SPar’s source-to-

source transformations7. In Figure 5.16, we show six steps of the code generated by the

SPar compiler, where at the top it showed the code with SPar’s annotation scheme. SPar’s

code generation follows some specific steps [47]. First, the compiler detects input and

output dependencies for generating the step block 1 . Then, the stages are built within

blocks 2 and 3 we must properly manage data, taking care of the associated input

and output dependencies. The next step is 4 that creates the emitter (task scheduler)

for the stream region. Finally, an example of a creation of a Farm pattern is shown in block

5 and in 6 the variable values are updated as well as the Farm starts running.

In this example, SPar generates a parallel code supported by the FastFlow run-

time8. Importantly for supporting the generation of self-adaptive code, the code parts

highlighted in the color red in Figure 5.16 are changes or additional parts for enabling

self-adaptive executions using the proposed strategies. The self-adaptive code is gener-

ated using the already described Rule 2. Firstly, it is necessary to include the header files,

7Here we provide only a high-level description, the reader interested in more details can refer to refer-
ence [129].

8Additional details concerning the SPar’s default code generation can be found in the reference [47].

100

Figure 5.16: Example of SPar’s self-adaptive code generation.

Source: [129].

which is where the monitor and regulator components are actually implemented. Second,

in the code generated corresponding to the emitter (A), the first step is to declare the

ff_loadbalancer that is the runtime mechanism that controls the status of replicas. Third,

it is necessary to call the regulator’s function that prepares the system for starting the ex-

ecution of the applications. Then, the regulator’s run() function returns an ID of the replica

to send the task and periodically verifies if the number of replicas has to be changed or

not. In case a change is needed, the run() function transparently interacts with the run-

time library and updates the configuration. Finally, when there are no more tasks to be

processed, the regulator’s finalize() function is called for cleaning up step that suspends

the replicas to enable the runtime library to end the execution.

Moreover, in the stage represented in step 3 of Figure 5.16 that corresponds

to C, a single extra code line is necessary for calling the monitor component, which col-

lects relevant statistics and feeds the regulator. Although here we are describing how

the solution for a self-adaptive number of replicas is integrated into SPar and its runtime

library, these additional lines can be also manually instrumented/added to the other par-

allel codes. Consequently, we expect that similar programming frameworks/DSLs that

have mechanisms for controlling the status of the threads could also use this self-adaptive

library and its decision-making strategies.

101

5.3.2 Closing remarks

The proposed strategies extended previous work [124, 129]. Here, it was pos-

sible to design and validate new strategies assisted by the conceptual framework (de-

scribed in Chapter 4) to provide additional SLO to users/programmers, increase the ab-

straction level, and minimize the self-adaptation overheads. However, a potential limi-

tation of these strategies is that they support adaptation in applications with only one

parallel stage, where supporting adaptation in the representative scenario of applications

with more complex compositions is an open research challenge.

Therefore, we argue that more mechanisms and new strategies are needed to

increase the adaptation space and existing abstractions. We understand that it is neces-

sary to expand the area beyond optimization problems such as execution parameters and

support efficient, flexible adaptations (reconfigurations) at run-time. Therefore, the subse-

quent chapters provide new conceived mechanisms and efficient self-adaptive strategies.

102

6. A MECHANISM FOR SELF-ADAPTATION OF STREAM

PARALLEL PATTERNS AT RUN-TIME

In structured parallel programming, application programmers can easily create

different application structures by instantiating high-level pattern constructors and com-

bining them in compositions structures (AKA pattern compositions, stream graph, graph

topology). However, it can be complex to find a pattern composition that provides QoS

under dynamic executions (e.g., stream processing). Supporting dynamic changes in the

pattern compositions used is expected to be a potential solution for abstracting complexi-

ties from users/application programmers and at the same time providing QoS or efficiency.

For instance, alternative pattern compositions could be automatically discovered and in-

stantiated, then the best one can be found and activated transparently.

Dynamically reshaping the pattern compositions can be relevant for several do-

mains. In this work, we focus on stream processing applications where it tends to be more

challenging. First, effective and safe mechanisms for applying changes are complex. Sec-

ond, there is a need for more generic strategies for self-adaptive decision-making. Third,

applying changes can have detrimental effects on the QoS like application downtime1. In

this chapter, we tackle these main challenges

This chapter is a slightly modified version of the paper [131]2 and has been repro-

duced here in accordance with the signed copyright agreement and the copyright holder.

In reference [131] the interested reader can access the content in an article format. This

chapter adopts the following structure. Section 6.1 shows a motivational scenario. Then,

Section 6.2 presents the proposed solution and Section 6.3 provides an experimental eval-

uation. Finally, in Section 6.4 we highlight the conclusions and discuss the perspectives of

the chapter in the context of this dissertation.

6.1 Context

Attempting to simplify the parallelism exploitation, parallel patterns are usually

composed and combined by users/programmers creating composition structures. There-

fore, pattern-based parallel programming provides composable recurrent structures in-

stantiated by programmers, combining the patterns creating different configurations. Stream

processing applications running in multi-core machines can use high-level parallel pro-

gramming frameworks, where Intel TBB [134] is an example from the industry and Fast-

Flow [3], and SPar [47] are academic frameworks.

1A time period where a given application does not produce output
2Towards On-the-fly Self-Adaptation of Stream Parallel Patterns, 2021 Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing (PDP) - © 20XX IEEE

103

In TBB, the application programmers can create a parallel Pipeline by declaring

each function as a filter and defining if a stage is parallel or sequential. In FastFlow, the

user can also create Pipelines and replicate (run in parallel) specific stages using the Farm

pattern.

TBB creates tasks that are scheduled to a pool of threads in a runtime system’s

perspective, where dynamic scheduling controls thread oversubscription by avoiding con-

text switching and time-sliced execution. However, TBB can incur scheduling overheads

with fine-grained tasks and I/O blocking operations. FastFlow, on the other hand, avoids

these issues with a runtime where nodes are fixedly mapped onto threads, and the run-

time can statically merge the nodes without changing the user functions. Nevertheless,

FastFlow has a rigid execution model that may not suit stream processing with more ir-

regular and dynamic applications. This model may increase the demand for resources

without guaranteeing performance gains. Hence, we argue that there is a need to support

adaptation in existing programming frameworks.

In Figure 6.1 we show pattern compositions3, where a number of functions (f1,

f2, f3) are decomposed in stages. A representative for stream processing applications,

there is a data source and at least a Sink stage that will collect the results for producing

an output. In the middle part, different compositions can be used according to specific

application characteristics and user goals.

Configuration 1 represents a sequential stage (1S.) running the three functions.

Configuration 2 separates the functions into two stages (Pipe-2S.), whereas Configura-

tion 3 runs with one more stage(Pipe-3S.). Considering that some applications or perfor-

mance goals are not suitable for sequential stages, Configuration 4 shows an example

of a Pipeline with a Parallel Stage (PS) running all functions. Considering that functions

can be decomposed into multiple parallel stages, Configuration 5 provides a variation of

Configuration 4 where 2 parallel stages (PS2) are employed, which can be useful for appli-

cations that are not embarrassingly parallel. For instance, there can be an internal state

that prevents the easy replication of independent computations, i.e., first performing (in

parallel) a filtering step, then computing the filtered data.

A stage can be represented as a node in the programming framework, where an

important characteristic is the mapping of nodes to threads. In some cases, the nodes are

mapped and executed by software threads. There is also the concept of tasks that are

logical entities executed as independent operations, where software threads compute the

tasks, i.e., a given computation in a stage can be processed as a task. Importantly, the

mapping of nodes to threads and the pattern compositions shape the application struc-

ture, which can have a high impact on the application’s performance and resource con-

sumption. For instance, in a mapping of each node to a thread (one to one), there is only

3Here the terms composition and configuration are used interchangeably.

104

Figure 6.1: Example of compositions for stream processing.

Source: [131] © 20XX IEEE.

one software thread in the middle part of Configuration 1, such a configuration is suitable

only for applications with a low-performance demand.

Figure 6.2 shows the performance of a stream processing application (setup de-

scribed in Section 6.3) with the configurations from Figure 6.1 using two programming

frameworks: Intel TBB [134] and FastFlow [3]. The data arrives at a fixed Input Rate (IR)

of 2 FPS, where 2 is a suitable throughput for sustaining the IR. Latency is another rele-

vant metric that corresponds to the time taken to compute a given item, low latency is a

constraint for many applications.

Figure 6.2(a) evinces that in FastFlow Configuration 2 was the best one by sus-

taining the input rate, providing lower latency, and using fewer nodes that consume fewer

resources. In case other entities were being adapted this best Pipeline configuration with

a given number of stages would not be achievable. For instance, adapting the number

of workers (parallelism degree) would only be suitable for configurations using parallel

stages. In TBB only the configuration with one parallel stage achieved a competitive la-

105

tency. Under a higher input rate, Figure 6.2(b) shows that only the configurations with one

parallel stage sustained the input rate with low latency.

 1

 2

 3

 4

1S. Pipe−2S.

Pipe−3S.

P.S.1
P.S.2

 100

 300

 500

 700

 900

 1100

 1300

5743

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(F
/s

)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

(a) Input Rate 2 FPS.

 1

 2

 3

 4

1S. Pipe−2S.

Pipe−3S.

P.S.1
P.S.2

 500

 1000

 2000

 4000

 8000

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t
(F

/s
)

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

(b) Input Rate 4 FPS.

Figure 6.2: Example on a Video Processing App.

Source: [131] © 20XX IEEE.

The results from Figure 6.2 emphasize that different configurations can be neces-

sary to be used at run-time because the input rate can change due to network fluctuations

or variations in the number of devices producing data [126]. Resource availability can also

fluctuate in shared/dynamic environments like Clouds. Consequently, stream process-

ing applications are expected to support dynamic adaptations at run-time. Considering

that there are several aspects that correlate in a nonlinear manner, the user/programmer

should not be expected to hand-tune the configurations at run-time. A solution is to sup-

port users/programmers to set only high-level goals like throughput or latency and rely

on expert strategies that enforce a suitable QoS by finding and enforcing optimal parallel

pattern configurations at run-time.

6.2 Proposed solution

6.2.1 Design goals and requirements

An effective approach of dynamic compositions for stream processing have dif-

ferent goals and requirements. 1) control loop with periodic monitoring applying changes

only when necessary. 2) the adaptation should not cause application downtime. 3) smooth

transition between configurations. 4) a suitable approach is lightweight without demand-

ing a significant extra amount of resources and optimizes resource consumption while

achieving the user goals.

106

6.2.2 Decision-making strategy

Proposing a flexible and generalizable decision-making strategy demands sev-

eral assumptions to abstract specific implementation technicalities. Runtime mechanisms

should be available for applying changes in programming frameworks. Moreover, the

strategy receives a number of configurations to be tested i.e., by a user or system. Fi-

nally, external entities fed the strategy with information and alerts for making decisions.

The designed self-adaptive decision-making for the pattern compositions is de-

scribed at a high-level abstracting the formalism. Such a description is expected to be

sufficient for the reproducibility of the proposed solution that has three steps:

1. Training step: it activates each configuration for a time interval (e.g., 1 second) and

collects execution statistics.

2. Optimal configuration: is the one that sustains QoS and needs fewer nodes. If the

user goal is not achievable, enforces the configuration with the closest value.

3. Steady-state: returns to step one if the monitoring detects changes or if the user-

defined goal is violated.

The proposed strategy is expected to enable non-functional requirements for

stream processing. The users/programmers set an objective to be pursued by the self-

adaptive strategy. Detecting fluctuations is an important part where values are consid-

ered significantly different when they have a contrast equal to or higher than a threshold

of 20%, the suitability of such a value was ascertained in [128]. Moreover, pursuing sta-

bility and avoiding response to minor fluctuations, adaptation is triggered when three

successive values indicate a change.

6.2.3 Implementation

Frameworks and libraries available were considered for implementing the pro-

posed solution. There are available industry and academic solutions such as Intel TBB [134],

FastFlow [3], and SPar [47]. Considering the support for performing adaptations at run-

time, TBB supports only dynamic task distribution and load balancing for stream process-

ing applications, where other adaptations have to be implemented at the lower level.

Considering that we are interested in higher-level abstractions, FastFlow is more flexible

by supporting dynamic adaptation on several aspects like the parallelism degree and com-

munication queues’ concurrency modes [119]. Thus, FastFlow was used for implementing

the proposed solution.

107

Figure 6.3: Proposed solution implemented in FastFlow.

Source: [131] © 20XX IEEE.

Abstracting specific implementation technicalities, the proposed self-adaptive

strategy was implemented in FastFlow in the form of a ready-to-use C++ header-only

library. The solution works by default in FastFlow’s blocking mode. Figure 6.3 provides a

representation of the implementation, where one entity is the Manager is embedded in

the data source and uses runtime mechanisms for applying changes in an autonomous

mode. Another entity is Monitor implemented as another embedded entity within the Sink

stage that periodically collects data and feds the Manager . Figure 6.3 shows some possi-

ble configurations from Figure 6.1, where a Pipeline with 3 stages is active and the other

is inactive. Moreover, the lower part of Figure 6.3 demonstrates the achievable flexibility

because several other configurations can be composed by the user/programmer.

6.2.4 Solution’s usability

Considering the usability of our solution from the programming perspective, it

is not necessary to propose a new programming API. In fact, we intend to use the ex-

isting/known languages and enhance them in terms of execution abstractions with self-

adaptation at run-time. Therefore, integrating our self-adaptive strategy within the Fast-

Flow programming interface allows the business logic code inside the applications’ func-

tions to be reused instead of duplicated. One can provide parallel executions with FastFlow

by declaring and instating parallel patterns using its skeleton library. For instance, an ex-

pert system programmer can declare and add with two C++ code lines the three-staged

Pipeline used in Figure 6.3, other compositions/configurations can be expressed and in-

cluded with similar coding productivity.

108

In addition to including headers and patterns instantiation, the self-adaptive strat-

egy only requires two extra code lines in the applications’ functions (stages) for calling the

Manager and Monitor . We expect that (non-expert) application programmers can be as-

sisted with tools for designing additional configurations and coding, such as RPL [62] and

SPar’s compiler [47]. Future research could make it even easier by exploiting potential

ways to automatically derive and generate alternative configurations in a completely ab-

stract way.

In the long term, we expect that no additional coding should be required from the

application programmers to use our solution. They should have ready-to-use abstractions

that are automatically integrated within the programming frameworks. From a usabil-

ity perspective, a more relevant facet is the usage of our solution from the applications’

executions angle. The application programmers should be (ideally) only concerned with

defining high-level goals, such as the SLOs defined in the code in Section 5.2.4. Another

way to enable the application programmers to configure their high-level goal is through

declarative files, e.g., XMLs used in [36]. Our solution is currently implemented to en-

able the application programmers to set their goals as execution parameters when they

run the applications. For instance, to define the self-adaptive strategy to enforce a goal

throughput with a value of 10 (items/second):

-application-binary throughput 10

By executing the application binary compiled with the programming concerns

above explained, the goal and value are enough for the self-adaptive to parse such infor-

mation and use to make decisions at run-time in a fully transparent way. Hence, this is

another abstraction intended for application programmers: execution abstractions. Such

an abstraction is expected to be very relevant for long-running applications, where we

expect to avoid the need for human operators to apply adaptation actions under the usual

changes at run-time manually. Importantly, considering that our primary focus is on pro-

viding flexible and feasible self-adaptive strategies, Section 6.3 evaluates the mechanism

and the decision-making strategy proposed here.

6.3 Evaluation

6.3.1 Experimental setup

A multi-core machine equipped with an Intel Xeon processor 2.40 GHz (12 cores-

24 threads) and 32 GB of memory was used for running experiments. The operating

system is Ubuntu Server 16.04 and G++ compiler (7.5.0) with -O3 flag. The runtime buffer

109

sizes were set to 1. The configurations illustrated in Figure 6.1 were used for evaluating if

the proposed strategy is able to find the best configuration. Testing five configurations in

different applications can be considered a pessimistic scenario that increases the training

step. However, each application can have specific configurations and our solution provides

flexibility for programmers to instantiate the configurations to be tested.

The strategy is characterized in a scenario simulating unexpected input rate

changes. The performance is also evaluated with static executions using the same con-

figurations as a baseline, where parallel stages configurations used a parallelism degree

equal to the number of cores. Moreover, the Adaptive (abbrev. Adapt .) executions are

the ones relative to the proposed strategy and Adaptive − A.T . (abbrev. Adapt . − A.T .)
refers to the performance collected after the training step. Executions correctness was

ascertained by hashing the outputs.

6.3.2 Experimental results

The first application is a synthetic where 10,000 stream items are processed and

each one has a service time of 24 milliseconds (ms). Figure 6.4(a) shows results from the

execution of the self-adaptive pattern composition configurations, where the user-defined

goal is throughput in items per second (I/s) equal to the input rate. The execution starts

with a training step of the self-adaptive strategy that tests each configuration. After the

training, the decision-making enters a stable phase with configuration 3, which is a 3

staged Pipeline configuration that sustained the input rate demanding the fewest amount

of resources. Then, around the second 30, another training step was necessary because

the input rate changed, where the strategy stabilizes with configuration 4. Another train-

ing step was performed when the input rate changed again to 75 I/s, where the execution

stabilized with configuration 2. From a QoS perspective, it is possible to note that the

self-adaptive strategy was able to effectively change and find the best configuration for

achieving a suitable throughput. This simulated a pessimistic scenario where the user

defines suboptimal configurations (i.e., a single stage under a high input rate).

Results from real-world applications are also provided with a customized version

of the Person Recognition application [49], which has multiple functions to recognize peo-

ple in video streams. Firstly, it receives video input and applies a denoising step for im-

proving quality. Then, it detects and marks the faces with a red circle. These faces are

then compared with the training set of faces. The face is marked when the comparison

matches.

The input used was a 30 seconds long video with frames resolution of 260 pixels.

Figure 6.4(b) shows the results where the goal of the self-adaptive strategy was to achieve

an application throughput that would sustain the input rate. Importantly, the input rate

110

 20
 40
 60
 80

 100
 120
 140

T
h

ro
u

g
h

p
u

t
(I

/s
)

Input Rate
Throughput

 1

 2

 3

 4

 5

 20 40 60 80 100

C
o

m
p

o
s
it
io

n

Time (s)

Composition used

(a) Synthetic Application.

 2

 4

 6

 8

 10

 12

T
h

ro
u

g
h

p
u

t
(F

/s
) Input Rate

Throughput

 1

 2

 3

 4

 5

 50 100 150 200

C
o

m
p

o
s
it
io

n

Time (s)

Composition used

(b) Person Recognition.

Figure 6.4: Self-adaptation characterization.

Source: [131] © 20XX IEEE.

varies from 2 to 12 tasks per second, wherein in this application, each task is a video

frame. Although the throughput fluctuated when testing suboptimal configurations, the

proposed solution effectively reconfigured to find the best configuration.

 20

 40

 60

 80

 100

 120

 140

 160

1S.
Pipe−2S.

Pipe−3S.

P.S.1
P.S.2

Adap.
Adap.−A.T.

 10

 20

 30

 40

 50

 60

 70

 80

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(I
/s

)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

M
S

)

Throughput Latency

(a) Synthetic Application.

 2

 4

 6

 8

 10

 12

 14

1S. Pipe−2S.

Pipe−3S.

P.S.1
P.S.2

Adap.
Adap.−A.T.

 500

 1000

 1500

 2000

 2500

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(F
/s

)

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

M
S

)

Throughput Latency

(b) Person Recognition.

Figure 6.5: Performance evaluation.

Source: [131] © 20XX IEEE.

Figures 6.5(a) and 6.5(b) provides performance results with the metrics of through-

put and latency. The collected metrics are an average of all processed tasks in a given

execution. Moreover, each execution was repeated ten times (except in Adaptive − A.T .).
Adaptive − A.T . is a relevant outcome of the performance without the overhead of the

111

training step. Figure 6.5(a) shows a representative execution of the synthetic applica-

tion with an input rate of 150 I/s, where the best static configuration was with a parallel

stage. Noteworthy, this was the configuration used by the self-adaptive strategy showing

its effectiveness.

Figure 6.5(b) shows a representative result of the Person Recognition application

with an IR of 12 FPS. The self-adaptive strategy was effective by choosing a parallel stage

after the training step, which is the best static configuration under the high input rate

of 12. However, the average throughput is lower than the static one, because the input

used was not large with a short execution time of around 75 seconds. Consequently, the

adaptive execution spent a significant amount of time in training (around 15 seconds) that

reduced the throughput average. In long-running executions, the training impact could be

lower with a performance similar to the Adaptive − A.T ..

6.4 Summary

In this chapter, we presented a solution for supporting self-adaptive pattern com-

positions, which was validated in stream processing applications. There are implications

of the achieved results as well as some limitations that are relevant to emphasize. The

results show that the proposed solution is technically feasible for adapting pattern compo-

sitions at run-time. Importantly, the adaptation is possible with a reasonable performance.

A relevant implication of these results is that new abstractions can be provided for user-

s/programmers. The dynamic adaptations and self-adaptive executions can provide addi-

tional flexibility for improving QoS (throughput, latency) and/or system efficiency.

This solution is limited in some aspects, i.e., mechanisms are necessary for the

programming framework for achieving self-adaptive pattern compositions on each sce-

nario. Moreover, the adaptation space can be limited by the alternative configurations

provided, but this potential limitation can be mitigated. One way is to increase the adap-

tation space by combining the dynamic compositions with other less flexible optimizations

such as batching and dynamic number of replicas.

Having mechanisms for changing the applications’ graphs topologies is very rele-

vant to achieve the flexibility needed for optimizing the performance and efficiency. More-

over, the dynamic adaptation using the mechanism is a step towards additional paral-

lelism abstractions by enabling executions to be self-managed. In the next chapter we

advance in this topic by extending the decision-making and the overall solution’s valida-

tion.

112

7. AN OPTIMIZED DECISION-MAKING STRATEGY FOR

SELF-ADAPTATION OF STREAM PARALLEL PATTERNS

In paper [131], we contributed with mechanisms for online self-adaptiveness of

parallel patterns. The solution was integrated with a C++ programming framework (Fast-

Flow [3]) and experimentally evaluated. In this chapter, we present the extended ver-

sion [132], where online self-adaptation is achieved with a profiler that characterizes the

applications. The profiler is combined with a new self-adaptive strategy and a model for

smooth transitions on reconfigurations. Hence, we contribute with additional efficiency

and flexibility for self-adaptation at run-time.

This chapter is a slightly modified version of the paper published in reference [132],

in reference [132] the interested reader can access the version in an article format.

7.1 Motivation

In previous work [131], we evinced that streaming applications computing data

in real-time require the programmers to create a configuration of sequential or parallel

replicated stages. However, maintaining such a configuration for the entire execution can

be limited due to the dynamic nature of applications. For instance, it was demonstrated

with a video stream processing application executing under fluctuations in the IR that the

best configuration combining parallel replicated, sequential, and merged stages varies

with different scenarios that occur at run-time and from one programming framework to

another.

A more challenging scenario is applications with complex composition structures

composed of several sequential or parallel replicated stages. For instance, Figure 7.1

shows the structure of the Ferret [79] application from the PARSEC suite, where the four

middle stages are thread pools that can run in parallel. However, the profitability of run-

ning them in parallel can vary from how balanced the stages are and according to the

expected performance and QoS. Ferret has a complex structure modeled with different

shapes by composing and nesting parallel patterns [37]. Figures 7.2 and 7.3 provide

performance results with different Ferret’s configurations, where the setup is described in

Sections 7.3.1 and 7.3.2. This new streaming version of Ferret computes data at a given

IR and provides stream processing performance metrics like throughput and latency. In

Figure 7.2 the IR is 10 items per second, and 10 is a suitable throughput (items/s) for sus-

taining the IR. Latency is another relevant metric that corresponds to the time taken to

compute a given item, where low latency is a constraint for many applications [31].

113

Figure 7.1: PARSEC’s Ferret Pipeline structure.

Source: Extracted from [37].

Here we show the performance from 15 configurations described in Section 7.3.2.

There are no results from configurations 13, 14, and 15 with TBB because merging func-

tions would require refactoring the business logic code. Configuration 12 corresponds to

the native implementation using Pthreads where all stages are parallel1, demanding more

resources and not performing so well in terms of latency. In Figures 7.2 and 7.3 it is

possible to note that the performance varies according to the configurations, which have

a significant impact on the throughput and latency. The throughput increases, and the

latency decreases in configurations with a suitable level of parallelism in computationally

intensive stages. The best performance is achieved when the last stage (the most inten-

sive one) is parallel. Although declaring such a configuration is trivial, it is not intuitive for

application programmers and significantly impacts QoS.

Moreover, the previous solution [131] described in Chapter 6 was still limited in

some aspects such as settling times and accuracy. It needed to test all configurations

available to find the best one. Hence, here we provide the following contributions that

extend previous work:

• An autonomous self-adaptive strategy that avoids suboptimal configurations, which

encompasses a lightweight online profiler of the application stages and an optimized

decision-making for accuracy. The new strategy also supports latency as a new SLO.

• A model for smooth transitions between the parallel pattern configurations. A smooth

transition is important because changing the configurations can have a critical im-

pact on the QoS of applications (see Section 7.2.1).

• Extended validation of the proposed solution, including new scenarios and applica-

tions. Noteworthy, we provide a custom version of the Ferret application to regu-

late the IR and support user-defined SLOs (throughput, latency). Ferret (see Sec-

tion 7.3.2) is a realistic application from the Princeton Application Repository for

Shared-Memory Computers (PARSEC) benchmark suite.
1The Pthreads version is not structured pattern-based, such results are not shown here for the sake of

visual clarity. The performance of FastFlow and TBB is comparable with the native implementation. The
reader interested in such a comparison can refer to reference [37].

114

 5

 10

 15

 20

1.S(a),S(b),S(c),S(d)

2.P(a),S(b),S(c),S(d)

3.S(a),P(b),S(c),S(d)

4.S(a),S(b),P(c),S(d)

5.S(a),S(b),S(c),P(d)

6.P(a),P(b),S(c),S(d)

7.P(a),S(b),P(c),S(d)

8.P(a),S(b),S(c),P(d)

9.S(a),P(b),P(c),S(d)

10.S(a),S(b),P(c),P(d)

11.S(a),P(b),S(c),P(d)

12.P(a),P(b),P(c),P(d)

13.S(a,b),P(c),P(d)

14.P(a),S(b,c),P(d)

15.P(a),P(b),S(c,d)

 10

 100

 1000

 10000

 100000

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

Figure 7.2: Input Rate 10 items/s.Latency is on logarithmic scale

Source: [132].

 5

 10

 15

 20

1.S(a),S(b),S(c),S(d)

2.P(a),S(b),S(c),S(d)

3.S(a),P(b),S(c),S(d)

4.S(a),S(b),P(c),S(d)

5.S(a),S(b),S(c),P(d)

6.P(a),P(b),S(c),S(d)

7.P(a),S(b),P(c),S(d)

8.P(a),S(b),S(c),P(d)

9.S(a),P(b),P(c),S(d)

10.S(a),S(b),P(c),P(d)

11.S(a),P(b),S(c),P(d)

12.P(a),P(b),P(c),P(d)

13.S(a,b),P(c),P(d)

14.P(a),S(b,c),P(d)

15.P(a),P(b),S(c,d)

 10

 100

 1000

 10000

 100000

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

Figure 7.3: Input Rate 20 items/s.Latency is on logarithmic scale

Source: [132].

115

7.2 An optimized strategy

A decision-making strategy is the core of a self-adaptive strategy responsible

for deciding the best actions to be enforced. However, assumptions are necessary for

designing a flexible and generalizable decision-making strategy. The rationale for such

assumptions is to abstract technicalities that have to be implemented for each specific

scenario. In Section 6.2.3 we show an example of implementation in a C++ programming

framework. The main necessary assumptions are:

• Runtime system’s mechanisms are available supporting dynamic changes to config-

urations from one configuration to another.

• The strategy receives alternative configurations to be considered at run-time. Such

configurations could be defined by a user or by an expert system.

• The strategy receives information for making decisions, which can be provided by

external monitoring entities.

• The data to be processed comes at a given IR and the strategy is alerted in case the

IR changes.

Considering that self-adaptation is expected to encompass relevant properties,

SASO properties, described in Section 5.2.5. The designed decision-making for the pat-

tern composition configurations is described in a manner that abstracts lower implementa-

tion details. However, the description provided is expected to be sufficient for replicating

the proposed solution. The decision-making is built out of the following steps:

1. Online profiling step: Lightweight instrumentation gathers execution statistics

from each stage, which helps in characterizing how computationally heavy and bal-

anced they are. The profiling step measures the actual processing capacity of each

stage and ranks them by their computational weight. Moreover, a given stage is

tagged if its average service time (time spent computing the tasks) is at least 20%

higher than all other service time of stages. This step is executed at the beginning of

the execution with the first configuration provided. It can be repeated at any time,

such as when a given application enters a new processing phase. For increasing the

profiling accuracy, it is recommended that the first configuration executes all stages

sequentially.

2. Evaluation: Assesses if the defined SLO is satisfied. If positive, goes to step 6

with the current configuration. If not, goes to step 3. The decision-making strategy

infers that two values are significantly different when they contrast higher than 20%

116

(a threshold), which is a configurable parameter that the used value of 20% was

ascertained in previous work [129].

3. Shortlisting configurations: Previous work [131] applied experimental runs with

all configurations. In practice, this can affect QoS because bad configurations could

be used. Considering that the new proposed strategy aims to reduce the settling

time without limiting the configuration space, the profiling step’s information is used

to shortlist the potentially optimal configurations. If more than one configuration

can be optimal, the strategy goes to step 4, or if only one is suitable, sets this one

as active and go to step 6. Also, a configuration with the most parallel replicated

stages is set if the SLO is not being achieved and there are no bottlenecks or optimal

configurations.

4. Trial phase: Activates each suitable configuration candidate for a given time in-

terval and gathers execution statistics. The rationale for executing each shortlisted

configuration is to increase the accuracy by finding the configurations that perform

better for the specific application, workloads, and environments. Considering that

the time interval in which each configuration is tested is a relevant parameter that

expert users can customize, 5 seconds is the default value ascertained from empir-

ical results. The previous implementation from [131] tested all configurations for

only 1 second because it did not profile and shortlisted the best ones. In practice, we

have seen that one second as time interval is too low and subject to unpredictable

variations during the training step. In the current optimized version, 5 seconds is the

proper time interval because a suboptimal configuration will not be tested as these

do not pass the shortlisting step.

5. Selects the best configuration: This phase evaluates which configurations from

step 5 achieved the desired SLO. If no configuration achieved the goal, enforces the

one with the best value. On the other hand, if more than one is optimal, select the

one with light stages merged and fewer parallel replicated stages. This decision is

to enforce the most optimal configuration that maintains QoS and at the same time

consumes fewer resources for avoiding overshooting.

6. Steady state: Stabilizes in a configuration and periodically evaluates if the SLO

is being satisfied. In practice, every 10 seconds, the current status is verified to

maintain responsiveness to potential fluctuations/changes. This comparison uses

the same threshold from step 2 to avoid the instability caused by fluctuations. Steps

3 to 5 are repeated if the data gathered indicates changes or if the SLO is violated.

In this case, it is searched for additional bottlenecks and potentially optimal configu-

rations.

117

It is important to note that the decision-making strategy is not employing an

exhaustive search. In fact, up to 20 alternative configurations are supported. However,

only the suitable ones are to be activated and tested at run-time. Moreover, Section 7.2.1

addresses the relevant aspect of how to achieve safety and stability when transitioning

from one configuration to another.

7.2.1 Transitioning between configurations

Reconfigurations at run-time should be smooth such that they do not compromise

the QoS. One possible solution is to employ a draining phase that flushes all the tasks

from the configuration to be stopped before activating the new one. From a theoretical

standpoint, a flush is relevant for avoiding that two configurations run simultaneously,

which would cause unpredictable performance variability or losses (throughput spikes and

latency glitches [101]).

One may think that the draining phase is a trivial problem solved by simply wait-

ing for a random time. However, we have seen that choosing for how long to wait for

the draining to complete is a non-trivial value in practice. On the one hand, not wait-

ing for enough causes performance and resource fluctuation, influencing the training step

and QoS. On the other hand, waiting for too long on reconfigurations can also hurt QoS

and the designed goal of avoiding application downtime. Consequently, we tackled this

challenge by developing an autonomous model that automatically estimates how long to

wait. Such a model is mainly expected to find a balance value being accurate, generic,

and lightweight. The draining time estimation is inspired by adaptive self-clocking from

Jacobson/Karels scheme [61] for estimating the TCP retransmission timeouts, our sam-

ples/entities subject to variance on parallel applications are:

Number of items buffered: This aspect refers to buffer sizes used in the run-

time system and the number of computing elements (e.g., nodes) that use buffers for

communicating in a given composition. For a generalization purpose, we assume that the

runtime system provides mechanisms for collecting this value or provides parameters for

limiting the buffer’s sizes.

Computations’ service time: Considering that applications have significant

contrasts in terms of grain and tasks computational weight, the service time is expected

to be a broad metric and flexible for different applications. A monitor can gather data

and feed the model with the information of the average service time of the tasks being

processed at a given moment, which corresponds to a given active configuration.

Processing Capacity: Refers to the computation capacity of the active configu-

ration to process the tasks buffered and finalize the draining phase. We have discussed in

Section 7.1 that each configuration and programming framework has specific processing

118

capacities in terms of the number of nodes and the mapping to threads. Consequently,

only considering the service time and the number of buffered tasks would be suboptimal

because the actual computational capacity of each configuration varies. Generally, the

processing capacity considers the number of computing elements that compute a given

application’s business logic code. Additional nodes/elements that do not process busi-

ness logic code necessary in the programming framework should not be included in the

processing capacity.

From the provided description, it is possible to note that the model is not sim-

ple and must consider the variability of service time, runtime system’s parameters, and

processing capacity. Moreover, the model must continuously measure and accurately es-

timate the time to drain. Considering the potential overhead of the machinery to collect

and process data at run-time, in Section 7.3.3, we characterize the transitioning between

configurations using this model.

7.2.2 Solution’s usability

The new optimized decision-making proposed does not differ from the aspects

discussed w.r.t. the mechanism (see Section 6.2.4) from the programming usability per-

spective. The self-adaptive strategy proposed here is also easily integrated within the

FastFlow programming framework.

From the applications’ executions usability perspective, the application program-

mers can set their goals as execution parameters. The current decision-making strategy

also supports a throughput goal (likewise previously demonstrated in Section 6.2.4):

-application-binary throughput 10

Moreover, the new decision-making strategy supports application programmers

to define also latency constraints, where we discussed latency’s relevance and peculiari-

ties in Section 5.2.3. Importantly, from the applications programmers’ usability perspec-

tive, it is just a matter of defining the latency as the goal and the constraint value (in

milliseconds or seconds), e.g., a latency constraint of 500 milliseconds:

-application-binary latency 500

Hence, the self-adaptive strategy parses the arguments/parameters for the decision-

making to pursue the user goals at run-time fully transparently. Therefore, in Section 7.3

we evaluate quantitatively the decision-making of the strategy proposed here.

119

7.3 Evaluation

7.3.1 Experimental setup

We used a multi-core machine equipped with two Intel Xeon E5-2620 processors

(a total of 12 cores-24 threads), 32 GB of memory for running experiments, Ubuntu Server

16.04 as operating system, and G++ compiler (7.5.0) with -O3 compilation flag. The

FastFlow runtime system’s buffer sizes were set to 1.

The strategy is characterized in a scenario simulating IR changes. The perfor-

mance is evaluated with static configuration executions using the same configurations

as a baseline. We call static configuration the executions where a given configuration is

compiled and maintained during the entire execution. The execution’s correctness was

checked by hashing the outputs. In Section 7.3.2 we describe the applications and con-

figurations tested. Then, in Section 7.3.3 the decision-making is characterized with the

different SLOs supported and application characteristics, Section 7.3.4 evaluates the per-

formance of self-adaptive executions compared to baseline static executions.

7.3.2 Applications and configurations

The evaluation of the proposed solution covers different applications and config-

urations. Considering that each application has a specific number of stages, workload pat-

tern, and balance between stages, for each application we created a scenario of relevant

configurations to be available for the self-adaptive strategy to use (or not) at run-time.

In this evaluation, configurations using parallel stages use the default value of 2 replicas

(parallelism degree) per stage.

Synthetic application

“Synthetic” is an application where 10,000 tasks with a total service time of 24

milliseconds (ms) are computed. This application has three functions where different con-

figurations can be composed with a sequential or parallel stage. Configuration 1 has the

three sequential stages representing scenarios where the performance demand is not

high, and the stages are balanced. Configuration 2 has the first stage computing in par-

allel and stages 2 and 3 are sequential. Such a configuration can be suitable when the

stages are not balanced, and the parallel stage is the bottleneck. Configuration 3 has the

second stage computing in parallel and the stages 1 and 3 sequential and Configuration 4

has the third stage computing in parallel and the stages 1 and 2 sequential.

120

In Configuration 5 stages 1 and 2 execute in parallel and the third stage is se-

quential, such a configuration is relevant when the performance demand is higher and the

sequential stage is lighter than the others. Configuration 6 has stages 2 and 3 execute in

parallel and the first stage is sequential and in Configuration 7 all stages execute in par-

allel, which can be relevant when the performance demand is higher and the stages are

balanced. It is important to note that Configuration 7 tends to consume more resources.

The configurations that are suitable vary from application characteristics and the

performance demand. In this synthetic application, many other configurations could have

been declared and made available for the self-adaptive strategy. However, these 7 are

representative enough for evaluating the accuracy and performance of the proposed so-

lution. Additionally, this synthetic application allows flexible customizations of load bal-

ancing between the stages. Two application versions were created for evaluating the self-

adaptive strategy: one where the stages are balanced and the other that has unbalanced

stages. In the balanced version, if we attribute a total computing weight of 6 each stage

would have a weight of 2, meaning they are perfectly balanced. With the balanced stages,

the optimal configurations are 1 and 7. On the other hand, the unbalanced version has

also a total stages’ weight of 6. However, the first stage has a weight of 1, the second

weight of 3, and the third stage has a weight of 2. In this case, the major bottleneck is

the second stage and if the performance demand is high the third stage can become the

second bottleneck.

Ferret

Ferret is a stream-parallel benchmark that searches for similarities on data items

like audio, images, and video [79, 37]. For the evaluation, we modified the original ferret

version to a streaming version. This streaming version computes data items at a fixed

speed instead of reading the data as fast as possible from the disks, simulating a scenario

where the data comes in real-time from the network at a given speed to be computed. The

streaming version also covers the instrumentation to collect stream processing metrics

like throughput and latency, instead of the execution time. We used the PARSEC native as

the input set, which is a representative workload.

Ferret can be modeled with several configurations. In this evaluation, we cre-

ated 15 alternative configurations for challenging the self-adaptive strategy to find the

best ones at run-time considering different scenarios. The four parallel stages from Fig-

ure 7.1 are represented as user functions a,b,c,d. Moreover, the configurations from 1 to

12 explore possible combinations of sequential (S) and parallel (P) stages, whereas config-

urations 13, 14 and 15 cover the merging of sequential stages. Merging can be relevant

when the stages are unbalanced and the lighter ones can be merged. Importantly, the

121

self-adaptive strategy has a profiling step for characterizing the stages and their work-

load.

Person Recognition

The Person Recognition is a stream processing application [49] where we used a

customized version that has three functions to detect and verify people in video streams.

It receives a video input and applies a denoising step for improving the quality. Then, it

detects and marks the faces with a red circle. These faces are compared with the training

set of faces. The experiments were run using as input a 30 seconds video with a resolution

of 260 pixels.

In the Person Recognition, we used 5 alternative configurations from reference [131]

that cover sequential, parallel, and merged stages. In Configuration 1 all application func-

tions are merged in a sequential stage (1S.). Configuration 2 separates the functions

into two stages (Pipe-2S.), whereas Configuration 3 runs with one more stage(Pipe-3S.).

Considering that some applications or performance goals are not suitable for sequential

stages, Configuration 4 shows an example of a Pipeline with a parallel stage (P.S.1) run-

ning all functions, which in FastFlow is a Farm parallel pattern. Considering that functions

can be decomposed into multiple parallel stages, Configuration 5 provides a variation of

Configuration 4 where two parallel stages (P.S.2) are employed, which can be useful for

applications that are not embarrassingly parallel.

7.3.3 Self-adaptive strategy characterization

This section characterizes the decision-making process of the self-adaptive strat-

egy. The first results to characterize the solution are from the synthetic application. The

proposed solution is compared to the previous one called PDP21 [131]. Figure 7.4(a) shows

the results of balanced application stages where the defined SLO is to have a throughput

(items/s) outcome equal to the IR, where there are two changes in the IR representing

fluctuations that can occur at run-time in stream processing.

The PDP21 strategy started trying all configurations. Considering that the SLO

was being achieved, the new strategy avoided the unnecessary training in step 2 of the

decision strategy (see Section 7.2). By Reacting to the IR change around the second 30,

the new strategy accurately went on one step to configuration 7 that executes all stages

in parallel, inferred by the profiling step that detected balanced stages. By contrast, the

PDP21 strategy tested all configurations again, resulting in lower throughput and higher

latency for several seconds due to testing suboptimal configurations. Then, after the sec-

122

ond 50, the IR dropped, and the executions went back to configuration 1 that sustained

the SLO without demanding additional resources.

 20

 40

 60

 80

 100

 120

 140

 160

T
h
ro

u
g

h
p
u

t

Input Rate
PDP21−Throughput
Throughput

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

It
e

m
s
 l
a
te

n
c
y
 (

m
s
) PDP21−Latency

Latency

 1
 2
 3
 4
 5
 6
 7

 10 20 30 40 50 60 70 80 90 100

C
o

n
fi
g
u

ra
ti
o
n

Time (s)

PDP21−Configuration used
Configuration used

(a) Balanced stages.

 20

 40

 60

 80

 100

 120

 140

 160

T
h
ro

u
g

h
p
u

t

Input Rate
PDP21−Throughput
Throughput

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

It
e
m

s
 l
a
te

n
c
y
 (

m
s
) PDP21−Latency

Latency

 1
 2
 3
 4
 5
 6
 7

 0 10 20 30 40 50 60 70

C
o

n
fi
g
u

ra
ti
o
n

Time (s)

PDP21−Configuration used
Configuration used

(b) Unbalanced stages.

Figure 7.4: Characterization with the synthetic application.

Source: [132].

Figure 7.4(b) shows a distinct outcome in a scenario with unbalanced stages. The

execution starts with a throughput lower than the IR. Therefore, the new strategy searches

for better configurations, which results in shortlisting and entering the trial phases with

configurations 3, 5, 6, and 7. The rationale behind such as decision is that the profiling

correctly detected the second stage as the bottleneck (Section 7.3.2) and shortlisted the

configurations where the second stage is parallel as an attempt to overcome the bottle-

neck. Even during the trial phase, it is noticeable that the performance improved in terms

of throughput and latency. Then, the strategy stabilized with configuration 6 that provides

QoS and demands fewer threads than configuration 7.

The PDP21 strategy had to apply all configurations to find the best one. By con-

trast, the new strategy inferred the best configuration with fewer steps, which is very

relevant for real-world applications [64]. The strategies used different time intervals for

testing each configuration, the new strategy uses the default value of five seconds, and

PDP21 tests configurations for one second. Although the time interval can be customized

for specific application’s characteristics, five seconds is expected to be a suitable value for

a wide range of applications. Another relevant aspect evinced Figures 7.4(a) and 7.4(b)

123

concerns the transitioning model. Notably, the transitions between configurations are

smooth without throughput drops or latency glitches.

 2
 4
 6
 8

 10
 12
 14
 16
 18

T
h
ro

u
g
h

p
u

t

Input Rate
Throughput

 200

 400

 600

 800

It
e
m

s
 l
a
te

n
c
y
 (

m
s
) Latency

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 50 100 150 200 250 300 350

C
o

n
fi
g

u
ra

ti
o
n

Time (s)

Configuration used

(a) Ferret with IR 10.

 1

 2

 3

 4

T
h
ro

u
g

h
p
u

t

Input Rate
Throughput

 500

 1000

 1500

 2000

 2500

 3000

It
e
m

s
 l
a
te

n
c
y
 (

m
s
) Latency

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300 350 400 450

C
o

n
fi
g
u

ra
ti
o
n

Time (s)

Configuration used

(b) Person Recognition with a changing IR.

Figure 7.5: Throughput (items/s) Characterization.

Source: [132].

The new strategy is also characterized with more realistic applications, where we

only show results from the new strategy for the sake of visual clarity. Figure 7.5(a) shows

Ferret where is notable that the metrics collected in real-time present fluctuations due to

the application’s processing characteristics. Importantly, the self-adaptive strategy’s pro-

filing step detected the Rank stage as the bottleneck and shortlisted configurations where

this stage executes in parallel. Then, after the trial phases, it stabilized with configuration

13 that presented a suitable performance, and that consumes fewer resources with the

first stages merged.

The results from the Person Recognition application emphasize the accuracy of

the decision-making, which chooses the best configuration according to IR changes. In a

scenario with SLO violations, configurations 4 and 5 were shortlisted and tried to achieve

higher performance. Hence, the strategy applied configuration 4. Under a lower IR, the

self-adaptive strategy returned to configuration 1 to increase efficiency by demanding

fewer resources. Although the throughput was reduced during some reconfigurations, the

transitioning model showed accuracy because there was no application downtime.

Figure 7.6(a) evinces Ferret with an SLO of 200 ms with fluctuations due to Fer-

ret’s characteristics. The strategy stabilizes with configuration 13, overcoming the bottle-

124

 2
 4
 6
 8

 10
 12
 14
 16
 18

T
h

ro
u
g

h
p

u
t

Input Rate
Throughput

 100

 200

 300

 400

 500

 600

 700

It
e

m
s
 l
a

te
n

c
y
 (

m
s
) Latency Constraint

Latency

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 50 100 150 200 250 300 350

C
o

n
fi
g

u
ra

ti
o

n

Time (s)

Configuration used

(a) Ferret SLO 200 ms.

 1

 2

 3

 4

T
h

ro
u
g

h
p

u
t

Input Rate
Throughput

 500

 1000

 1500

 2000

 2500

 3000

It
e

m
s
 l
a

te
n

c
y
 (

m
s
) Latency Constraint

Latency

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300 350 400 450
C

o
n

fi
g

u
ra

ti
o

n
Time (s)

Configuration used

(b) Person Recognition SLO 600 ms.

Figure 7.6: Latency Characterization.

Source: [132].

neck on stage Rank. Near 100 seconds time, a significant application fluctuation increased

the latency. Hence, the strategy detected an SLO violation and searched for a better con-

figuration because some change could have occurred. The third pool stage (Vec) was

detected as an additional bottleneck, where the strategy shortlisted and tried configura-

tions 10, 12, and 13, where the two bottlenecks are executed in parallel. However, the

strategy returned to configuration 13 that remained the most suitable configuration.

Figure 7.6(b) evinces a latency constraint of 600 ms, where a fluctuating IR varies

from 1.5 to 3 FPS. A reconfiguration may be needed when the IR changes because not

sustaining the IR increases the buffering and latency. This occurred after the second 50

when the IR increased. The active configuration did not sustain the IR, which increased

the number of items buffered and the latency. Hence, the strategy detected the latency

violation and self-adapted to configuration 4. After the second 300, there is a fluctuation

(also seen in Figure 7.5(b)) that caused the throughput to decrease and the latency to

increase. This fluctuation was not long enough for a reconfiguration because the latency

SLO was being achieved when the self-adaptive entered the training step. Notably, the

transition between configurations occurs without application downtime, which shows that

the model’s estimation is accurate.

125

7.3.4 Performance evaluation

In this section, we compare the final performance of the self-adaptive executions

to static ones using real-world applications. The results represent an average of 10 runs

and we also show the standard deviation, which is difficult to visualize in the figures be-

cause it is very low.

 5

 10

 15

 20

1.S(a),S(b),S(c),S(d)

2.P(a),S(b),S(c),S(d)

3.S(a),P(b),S(c),S(d)

4.S(a),S(b),P(c),S(d)

5.S(a),S(b),S(c),P(d)

6.P(a),P(b),S(c),S(d)

7.P(a),S(b),P(c),S(d)

8.P(a),S(b),S(c),P(d)

9.S(a),P(b),P(c),S(d)

10.S(a),S(b),P(c),P(d)

11.S(a),P(b),S(c),P(d)

12.P(a),P(b),P(c),P(d)

13.S(a,b),P(c),P(d)

14.P(a),S(b,c),P(d)

15.P(a),P(b),S(c,d)

Self−adaptive

 10

 100

 1000

 10000

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

M
S

)
TBB−Throughput

FastFlow−Throughput
TBB−Latency

FastFlow−Latency

Figure 7.7: Ferret with IR 10. Latency on logarithmic scale.

Source: [132].

Figures 7.7 and 7.8 show results from Ferret, where the self-adaptive strategy

was able to effectively adapt and find the best configuration (13) for achieving a perfor-

mance competitive with the best static configurations. The best throughput in FastFlow,

the runtime system of the self-adaptive solution, was with configuration 12 where the self-

adaptive throughput was 6.3% lower. However, in the latency metric, the self-adaptive

was 39.7% better than static FastFlow with configuration 12.

Figure 7.9(a) and 7.9(b) provides results from Person Recognition, where a no-

table outcome is that the self-adaptive executions have a good performance competitive

with the best static scenarios. This is due to the accuracy of the self-adaptive strategy,

especially the profiling, trial, and transitioning steps.

126

 5

 10

 15

 20

1.S(a),S(b),S(c),S(d)

2.P(a),S(b),S(c),S(d)

3.S(a),P(b),S(c),S(d)

4.S(a),S(b),P(c),S(d)

5.S(a),S(b),S(c),P(d)

6.P(a),P(b),S(c),S(d)

7.P(a),S(b),P(c),S(d)

8.P(a),S(b),S(c),P(d)

9.S(a),P(b),P(c),S(d)

10.S(a),S(b),P(c),P(d)

11.S(a),P(b),S(c),P(d)

12.P(a),P(b),P(c),P(d)

13.S(a,b),P(c),P(d)

14.P(a),S(b,c),P(d)

15.P(a),P(b),S(c,d)

Self−adaptive

 10

 100

 1000

 10000

 100000

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

Figure 7.8: Ferret with IR 20. Latency on logarithmic scale.

Source: [132].

 1

 2

1S.
Pipe−2S.

Pipe−3S.

P.S.1
P.S.2

Self−Adap.

 200

 400

 600

 800

 1000

 1200

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

(a) Throughput with IR 2.

 1

 2

 3

 4

1S.
Pipe−2S.

Pipe−3S.

P.S.1
P.S.2

Self−Adap.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

(b) Throughput with IR 4.

Figure 7.9: Performance comparison with the Person Recognition Application.

Source: [132].

7.4 Remarks

The evaluation provided here shows that our solution for online self-adapting the

parallel patterns:

• has effective mechanisms for reconfiguring and maintaining program’s executions

correctness;

127

• accurately characterizes the applications for finding bottleneck stages;

• can transparently react to unpredictable fluctuations (e.g., IR, workload) that occur

at run-time;

• locates in a few steps, the best configuration according to different SLOs (throughput,

latency) and that demands fewer resources.

• provides a transitioning model that is sufficiently accurate as no application down-

time neither latency glitches occurred due to reconfigurations (Section 7.3.3);

• has a negligible overhead of instrumentation by the fact of achieving a competitive

performance (Section 7.3.4).

A relevant implication emphasized is the importance of having well-defined build-

ing blocks components as composable and nestable objects. The building blocks en-

able the creation of complex, well-defined structures (e.g., patterns) that we have shown

to be possible to self-adapt at run-time. Moreover, the results demonstrated that self-

adaptiveness could provide new efficient abstractions and autonomous responsiveness

for applications that compute data in real-time.

The components of our solution can be generalized to be used in other scenar-

ios. For instance, the online profiler has the potential to be used for other application

classes and workloads. Moreover, the self-adaptive strategy can be generic enough to be

customized with other programming frameworks and execution environments. We expect

that one could apply the strategy to provide self-adaptations and abstractions for regular

parallel applications.

The solution described in this chapter was designed supported by the decision-

making framework from chapter 4. Hence, in addition to the parallel abstraction provided,

we envision that a certain level of generalizability is achievable. The decision-making is

decoupled from the mechanisms necessary to apply the changes in the specific program-

ming framework utilized. In the next chapter we provide a novel solution for self-adapting

the number of replicas in compositions with many parallel stages (e.g., Ferret), where

some modules of the solution proposed here were reused in the decision-making of a dif-

ferent entity.

128

8. SUPPORTING SELF-ADAPTIVE DEGREE OF PARALLELISM IN

COMPLEX COMPOSITION STRUCTURES

Previously, in Chapter 5, we presented the efforts aimed at self-adapting the

number of replicas (one facet of the parallelism degree) in application with one parallel

stage (AKA Farm). Moreover, in Chapter 6, we viewed that it is possible to adapt the

entire application topology by online self-adapting the parallel patterns used. The previ-

ous Chapter 7 also evidenced that online self-adapting the parallel patterns is a powerful

adaptation action that enables high flexibility for reconfiguring the executions to a suitable

configuration.

In practice, we have seen that many real-world applications have a complex (AKA

robust) composition structure (see Section 3.2.2) with multiple parallel stages (PS). In ad-

dition, Section 3.4.1 of Chapter 3 evinced that it is still a challenging scenario to prove

self-adaptiveness for complex structured applications. A powerful entity that can be self-

adapted is the parallel patterns. Such an entity creates an adaptation space that can be

leveraged to tackle the challenge of finding the most efficient configurations, i.e., iden-

tifying user functions/stages to be merged or separated and executed sequentially or in

parallel.

However, in many cases, when utilizing parallel stages, they still demand a dy-

namic tuning of the number of replicas. Hence, we argue that it is relevant to support the

inner part of the powerful adaptation of the parallel patterns to self-adapt the number of

replicas utilized within each parallel stage. In Section 8.1, we discuss the context and the

related literature. Then, in Section 8.2 we describe our proposed solution that contributes

with a new mechanism and decision-making strategy to support advanced self-adaptation

in parallel applications. Section 8.3 discusses a comprehensive evaluation methodology.

Then, in Sections 8.4, 8.5, 8.6, and 8.7 we show and discuss the experimental results.

Finally, Section 8.8 provides closing remarks of this chapter.

8.1 Context

The literature revision (Chapter 3) found many solutions that seemingly adapt

the number of replicas in application with complex structures. Such solutions tackled dif-

ferent execution environments such as multi-cores and distributed systems. A prominent

solution is DS2 [64] which was proposed as a general controller for making scaling deci-

sions in distributed stream processing. Noteworthy, DS2 was compared and significantly

outperformed Dhalion [40] in the distributed stream processing context.

129

8.1.1 DS2’s Decision-making

Abstracting the mechanism implemented within DS2, a relevant part is its decision-

making system that collects performance traces and estimates in at most three steps

which configuration should be employed on each parallel stage.

The estimation of the optimal number of replicas on each parallel stage considers

a performance model built by monitoring the processing capacity of each stage. Then, DS2

builds a relationship between each stage’s processing speed and the target performance.

DS2 estimates how many replicas to add if the actual processing capacity of a given stage

is below the target performance.

A complementary view of DS2’s decision-making in distributed environments can

be seen in Figure 8.1, showing that the stage O1 is the bottleneck by computing only ten

tasks/items per second where the target performance of to process 40 Items per second

(I/s). Consequently, DS2 detects this bottleneck and increases four times the number of

replicas of stage O1.

Figure 8.1: DS2 representation.

Source: Extracted from [64].

8.1.2 Potential limitations of DS2’s decision-making

Although DS2 is an approach that works well on distributed environments, several

concerning aspects emerge when looking from a conceptual perspective of generalizing

and widely applying DS2’s decision-making:

• it focuses only on distributed scaling, the useful time metrics considered like serial-

ization and deserialization are not generalizable nor representative for other envi-

ronments like multi-cores and manycores.

130

• the decision about new configurations performed on each operator without coordi-

nation is arguably limited. When considering the context of adapting distinct parts

(e.g., stages, entities) of a given software system, our understanding is that a com-

promise between an inflexible centralized decision-making systems and the fully in-

dependent decision-making concerning correlated parts. For instance, in multi-cores

where the availability of the resources is a constraint, there could be need to imple-

ment coordination between decentralized decision-making entities. We believe that

further improvements are possible with certain level of coordination when deciding

configurations for different parallel stages.

• although the DS2 is described as running under a low instrumentation overhead

ranging from 13% to 20% in distributed environments, it is arguable too high for

achieving efficiency and high-performance on multi-cores. In practice, optimizing

the decision-making can help in reducing even instrumentation overheads.

Section 8.2 describes a new solution to contribute with a self-adaptive number of

replicas in complex structured applications running in multi-cores. The proposed solution

comprises a new decision-making strategy and a mechanism for applying adaptation in a

shared-memory programming framework. In Section 8.3, we introduce an evaluation plan

of our proposed solution using this mechanism compared to a version of DS2’s decision-

making replicated to our context.

8.2 Proposed Solution

The decision-making strategy is one of the main parts of the proposed solution

and also encompasses the SASO properties [56]. Here we describe the solution abstract-

ing lower implementation details. However, this description is intended to be sufficient

for replicating the proposed solution. Moreover, considering that we focus on the gener-

alizability of our solutions, modules that were proposed and validated in other contexts

were reused and applied to solve the specific challenges tackled here. Noteworthy, the

decision-making utilizes the following existing modules:

1. Online profiling step: was proposed in Section 7.2 and published in reference [132].

By reusing such a generalizable module, our solution applies a profiling step for char-

acterizing the computational weight of the applications’ stages.

2. Monitor: It is a module utilized in all solutions proposed and described in Chapters

5, 6, and 7. The monitor module was used here for the same purpose of collecting

performance traces of the applications.

131

Moreover, the decision-making executes within a manager entity, similar to the

previous solutions. However, here the decision-making strategy utilizes a different deci-

sion algorithm. Considering the data gathered by the profiling step and monitoring mod-

ules, decision-making builds a relation between the heavy stages and the actual perfor-

mance goal (ex: SLO). By applying this relation, the decision-making estimates if and how

many replicas are ideal for each parallel stage. However, before applying it, an additional

monitoring and analysis step enforces coordination between all theoretically independent

parallel stages. It is a training step that compares the total number of replicas to the

actual computing capacity of the running machine. The decision-making reduces in a bal-

anced way (w.r.t. the optimal value for each parallel stage) the number of replicas to avoid

resources contention [7, 99, 128].

The overall training step runs for a given period (e.g., one second) and, in one

step, determines the optimal number of replicas for each parallel stage. Then, the strat-

egy enters a steady-state (similar to the one proposed in Section 7.2 and published in

reference [132]) where adaptation actions are only performed in case of changes.

Considering that the instrumentation overhead is a potential limitation of DS2,

our solution encompasses all knowledge and good practices made when applying self-

adaptation to one parallel stage and parallel patterns. Using this existing knowledge of

C++ solutions targeting multi-cores, we achieved a negligible monitoring overhead by col-

lecting and filtering data in hundreds of nanoseconds [125] and optimizing the decision-

making strategies in such a way that final performance in comparison to the best static

cases [126]. The final result is lightweight instrumentation for efficient execution in multi-

core machines [132, 129].

In addition to a potentially highly optimized decision-making strategy, there is

also a relevant need for mechanisms for applying the adaptation actions and for commu-

nication and synchronizing all the entities’ execution concurrently in complex structured

parallel applications. We utilized once more the flexibility of the FastFlow framework for

implementing and validating our solution. The mechanisms were integrated into the run-

time system, and communication channels were implemented to enable the manager to

send the adaptation commands to the parallel stages.

A representative example of such a solution is provided in Figure 8.2, where the

decision-making manager is one additional runtime node: the “Manager" node. Figure 8.2

illustrates a regular parallel application with several parallel stages and with a source

and sink stage. The number of parallel stages varies from one application to another,

according to the number of functions and their computational weight. Importantly, it is

expected to work as long as the manager node is able to send adaptation commands to

the parallel stages. The manager sends commands to the parallel stages to adapt (i.e.,

increase or decrease) their number of replicas.

132

Figure 8.2: Integrated of the proposed solution within the FastFlow framework.

When focusing on the proposed solution from a broader perspective, the compo-

sition represented in Figure 8.2 can be viewed as a Pipeline with multiple parallel stages

(Farms). Although the representation evinced in Figure 8.2 supports several parallel stages,

it can be seen as one of those configurations described in Chapters 6 and 7. In fact, the

composition shown in Figure 8.2 is represented in Figure 6.1 from Chapter 6 by the Config-

uration 5, which can be created at compiling time and used at run-time. It is important to

note that the solution proposed here is intended to improve the configurations with mul-

tiple parallel stages by supporting a self-adaptive number of replicas within each parallel

stage, which paves the way to increase the system’s efficiency and applications QoS.

The solution proposed here was designed to this work’s specific scenario. How-

ever, the design of the proposed solution was inspired in previous works and related ap-

proaches, such as [128, 126, 132, 7, 89, 36]. The following section provides a compre-

hensive evaluation of the proposed solution described here.

8.3 Experimental Plan

The solution proposed in Section 8.2 is evaluated here. This proposed solution is

compared to a relevant solution from the state-of-the-art called DS2 that was described in

Section 8.1.1.

Although there are aspects of DS2 that do not apply to the multi-core scenario,

e.g., serialization and deserialization times, we reproduced the DS2’s decision-making

strategy following its description from reference [64]. Considering that DS2 decision-

making relies on the actual processing capacity of each stage, we implemented moni-

tor modules similar to the ones of our solution on each parallel stage. Importantly, we

also incorporated our solution’s good practices and low overhead mechanisms into the

reproduced DS2 version. Thus, the main differences in the DS2 version are: I) the need

for additional monitor modules, II) the decision-making strategy that runs in a manager

133

node as our proposed solution, but we will see in practice how the DS2’s decision-making

principles work in our context.

Another relevant aspect is that reproducing existing solutions comes with several

inherent limitations. In addition to the elements mentioned above that are generics and do

not apply to our context, every description and possible interpretation of a given solution

is not always complete and precise. For instance, although DS2 promises to converge to

an optimal solution in one step (as desired for limiting the settling times), in reference [64]

it is stated that DS2 may need more steps to find an optimal configuration. However, here,

we are unable to reproduce such additional steps because in reference [64] the decision-

making descriptions of these steps is omitted. Thus, the reproduced version of DS2 follows

the available, but there are aspects about DS2’s reproduced version that can be further

considered in the future.

It is important to note that both decision-making strategies have a training step

where monitoring and profiling data is collected. Then, each decision-making strategy

infers the optimal number of replicas for each parallel stage. We present results with

different training step times in the strategies to evaluate if such value impacts QoS.

8.3.1 Experimental Setup

We executed the experiments firstly in the same multi-core machine utilized in

previous chapters and sections called here M1, equipped with two Intel Xeon E5-2620 pro-

cessors (a total of 12 cores - 24 threads), 32 GB of memory for running experiments. M1

runs with Ubuntu Server 16.04 and G++ compiler (7.5.0). We also provide some com-

plementary results from another machine, called M2, equipped with two Intel Xeon Silver

4210 (a total of 20 cores - 40 threads) and 64 of memory. M2 runs with Ubuntu Server

20.04 and G++ compiler version 9.3.0.

Moreover, we executed the experiments in the machines in a dedicated mode.

Thus, no other workloads were running simultaneously. Evaluating scenarios with multiple

applications running simultaneously is left for the future.

Regarding the FastFlow runtime system parameters, the threads/nodes were con-

figured without any custom pinning policy1 so that the OS’s scheduler can allocate the

threads in the cores. The rationale behind this choice is that we focus on evaluating the

impact of adaptations at the system/application level. Hence, less flexible and loosely

generalizable low-level optimizations are not customized in our experiments. The main

concern is to assure similar conditions for fairness in quantitative comparisons.

1Generally, custom low-level policies can be designed to optimize the mapping of processes or threads to
physical cores. Such optimization can offer performance gains in some scenarios by improving local memory
accesses and cores affinity.

134

Yet regarding the runtime system, FastFlow provides two runtime communication

behaviors: non-blocking and Blocking. The non-blocking is the default one of the FastFlow

framework, and it works in such a way that nodes/threads continuously perform push or

pop operations in the communication queues. This communication behavior can improve

performance but usually increases resources utilization. On the other hand, the Blocking

mode is promising customization that tends to consume fewer resources, where the ex-

ecuting nodes/threads remain blocked while they have no items/tasks to compute. Both

communication behaviors are covered in our experiments. The rationale for considering

these two communications is to extend the evaluation of the programming framework uti-

lized and further assess the impact of the decision-making strategies in the performance

metrics and resource consumption.

It is important to note that the experiments provided in this section intend to eval-

uate the impact of the decision-making strategies in QoS and system efficiency. Through-

put is considered the most relevant metric. In these experiments (as were previously seen

in Chapters 6 and 7), the data items to be processed arrive at a given speed supported by

a data generator module. Consequently, the target throughput is defined as an SLO with

the same value as the input rate (IR). Notably, several input rates are tested, and such

values were set to be representative of the applications and machines used.

8.3.2 Applications

The first characterization and performance results concern executing a simple

synthetic application where 50,000 tasks are processed. The Synthetic application im-

plements the same application used previously in Sections 6.3 and 7.3.2. However, the

version used here relates to Configuration 7 described in Section 7.3.2 that has all com-

puting stages running in parallel. However, in contrast to the previous one, the applica-

tion version utilized here was modified to support self-adaptation in the number of replicas

within each parallel stage accordingly to the decision-making strategy and the mechanism

proposed in Section 8.2.

This synthetic application allows several customizations relevant to simulate rep-

resentative behaviors. For instance, a parametric version of this application allowed us to

set a different number of stages, customize the computing weight to each parallel stage,

different data input rates, and target performance in terms of throughput. Importantly,

this flexible parameterization space makes it possible to evaluate the decision-making

strategies under representative real-world scenarios. The training step set for this ap-

plication was one second. Moreover, in the synthetic application the buffer sizes of the

runtime system used a maximum length of 20, which is a value for balancing between

throughput and latency. Noteworthy, having queue space available does not mean that

135

more items/tasks will be enqueued and buffered. In practice, the items only remain in the

queues when the application output processing (measured throughput) is lower than the

input rate.

In addition to the comprehensive characterization provided with the synthetic ap-

plication, we also considered Ferret (described in Section 7.3.2) that is a more realistic ap-

plication. Ferret’s original version has four threads pools that run in parallel, meaning that

Ferret has four parallel stages. Ferret’s unstable workload was notable in Section 7.3.3,

even without using parallel stages, so we increased the training step to 5 seconds to at-

tempt a more reliable training step [64]. Moreover, the buffer sizes of the runtime system

were set to a maximum length of 10, trying to limit buffering and instability. Moreover,

Ferret used as input the PARSEC native that is a representative workload.

8.3.3 Experiments roadmap

In this chapter, we present the most relevant and insightful results. Figure 8.3

illustrates the organization of the experimental results displayed here. The majority of

results are from the characterization executed in M1.

In Section 8.4 we present the first results from customization of the synthetic

application to simulate an application’s two parallel stages. Experimental scenario (ES) 1

shows the results of a case where the two parallel stages are balanced. Considering that

most real-world applications have unbalanced stages, the ES 2 and 3 present scenarios

that will test the self-adaptation strategies under applications that have stages unbalance

between their stages. The rationale for such scenarios is to evaluate if the strategy can

detect the unbalance and optimally estimate the resources needed on each stage.

Additionally, Section 8.5 presents a representative scenario where the applica-

tion has four parallel stages, which is expected to be a more challenging scenario for

the self-adaptive strategies. Because of the higher number of stages and the potential

unbalance and higher resources consumption that in theory requires a better resources

management achievable with optimal decision-making w.r.t. the configurations to be ap-

plied. ES 4 and 5 cover scenarios where the first and last stages are the bottlenecks,

and the middle ones are lighter. Then, ES 6 assesses a more challenging scenario where

two stages are the bottleneck, and there is still unbalance between the two bottlenecks

compared to the lighter ones.

Many other customizations could be implemented with the flexible Synthetic ap-

plication. However, we believe that these six scenarios are enough for a starting point to

evaluate the self-adaptive strategies’ decision-making. Moreover, we extend the evalua-

tion with a real-world application presented in Section 8.6 that corresponds to the ES 7.

136

Figure 8.3: Experiments’ roadmap. ES means experimental scenario.

To assess if the decision-making strategies work consistently in different ma-

chines architectures, we also include in Section 8.7 results from execution in the M2. For

the sake of conciseness, we present and discuss some insightful results from scenarios

replicated in M2, which are expected to be enough to extend the analysis and demon-

strate the consistency of the decision-making strategies under different architectures.

8.4 Evaluation with two parallel stages

8.4.1 ES 1 - Balanced stages

Figure 8.4 shows the first experimental results in a synthetic application scenario

with two parallel stages. Each stage has a weight of four milliseconds (ms), meaning that

it is a scenario where the stages are perfectly balanced.

It is important to note that the IR and the target throughput were not high for the

machine used. An indicator of this is the CPUs utilization below 60% in the blocking mode

137

 100

 200

 300

 400

 500

 600
T

h
ro

u
g

h
p

u
t

PS1(4) PS2(4)

DS2−throughput
Our solution−throughput

 50

 100

 150

 200

 250

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2

 4

 6

 8

 10

 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50 70 90 110 130

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2
Our solution (%)

(a) Non-blocking Mode.

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t

PS1(4) PS2(4)

DS2−throughput
Our solution−throughput

 50

 100

 150

 200

 250

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2

 4

 6

 8

 10

 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50 70 90 110 130

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2
Our solution (%)

(b) Blocking Mode.

Figure 8.4: Synthetic App With IR and Target Throughput of 400 I/s.

(lower part of Figure 8.4(b)). The two strategies after the training step inferred that seven

replicas were suitable for achieving QoS regarding the decision-making strategies. Hence,

both strategies achieved similar performance. This outcome is representative of scenar-

ios where the parallel stages are perfectly balanced, where the decision-making strategies

also performed similarly under other scenarios of balanced stages. However, having per-

fectly balanced stages in the real world is not usual because each stage performs specific

computations that cause contrasting computational weights.

8.4.2 ES 2 and 3 - Unbalanced stages

Figure 8.5 presents a scenario where the first parallel stage has a weight of 6

ms and the second a weight of 2 ms. On the one hand, DS2 configured each parallel

stage to execute with eleven replicas. On the other hand, our solution detected that

138

the first parallel stage was heavier and set it to run with eleven replicas. Our solution

set the second (lighter) stage execute with four replicas. The main implication of our

solution using fewer threads is in terms of resources consumption and efficiency, where

it is possible to note in the lower part of Figure 8.5(a) that our solution is more efficient,

having a CPU utilization more than 20% lower.

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t

PS1(6) PS2(2)

DS2−throughput
Our solution−throughput

 50
 100
 150
 200
 250
 300
 350
 400

L
a

te
n

c
y
 (

m
s
) DS2

Our solution

 34
 37
 40
 43

 5 15 25 35 45 55L
a
te

n
c
y
 (

m
s
)

Time (s)

 1
 3
 5
 7
 9

 11

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50 70 90 110 130

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t

PS1(6) PS2(2)

DS2−throughput
Our solution−throughput

 50
 100
 150
 200
 250
 300
 350
 400

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 3
 5
 7
 9

 11

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50 70 90 110 130

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.5: Synthetic App With IR and Target Throughput of 400 I/s.

Our solution achieved a throughput that is even stabler than DS2’s throughput

in some cases. Moreover, the DS2 decision to utilize more replicas causes instability and

performance losses. For instance, when zooming the latency of the 55 seconds after the

training step, our solution achieved a lower latency ranging from 7.66% to 23.27% better

results. In the blocking mode, it is not possible to note the impact of DS2 utilizing more

replicas, which corroborates the known efficiency of the blocking mode [119].

We conducted a further analysis w.r.t. the results from Figure 8.5 to understand

the reasons behind the DS2’s lack of capacity to detect that the first stage was the bottle-

neck. Our understanding is that this event is because DS2 collects the output rates of each

139

stage. Hence, as the first stage is the bottleneck (computes and outputs fewer tasks), the

subsequent stage seems to the decision-making to be a bottleneck too because it can

only output as many items as it receives from the bottleneck stage. In short, if the first

stage is the bottleneck, the subsequent one will have a similar output capacity because

they can not process tasks before they pass the bottleneck. Finally, our solution using

profiling showed to be better to detect this complex scenario by making a decision based

on measurements of the actual service times of each stage.

Figure 8.6 introduces another representative scenario where a high throughput

(1000 I/s) is a required throughput SLO with lighter stages2. However, contrasting with

the results from Figure 8.5, in Figure 8.6 the last stage is the bottleneck one. In Figure 8.6,

DS2 detected that the las stage was the bottleneck and determines that thirteen replicas

were a suitable value. DS2 sets the first stage to run with nine replicas, while our solution

based on profiling estimates five replicas as appropriate value for the first stage.

Figure 8.6(b) evinces that both solutions coped with the IR in the Blocking mode

and achieved similar performance. This outcome implies that our decision-making strat-

egy correctly inferred that five replicas were enough for the first stage as this value did

not make the first stage a bottleneck.

Figure 8.6(a) relates to the non-blocking mode showing a distinct performance

trend compared to Figure 8.6(b). In this scenario, the additional (seemingly unnecessary)

replicas added by DS2 in the first stage consumed more resources due to the nature of

the non-blocking mode. First, using this extra resource reduced the efficiency by demand-

ing 100% of the machine resources. Second, this additional consumption of resources in

the first lighter stage seems to “steal” resources necessary to the actual bottleneck stage

(the last one). Consequently, the DS2’s suboptimal decision-making made the application

execution unstable and reduced the application throughput. Then, a throughput lower

than the IR increased the latency due to the buffering of tasks in the bottleneck stage. In

conclusion, our solution outperformed DS2 with an optimal estimation of the number of

replicas for the parallel stages. Figure 8.6(a) shows a relevant scenario of potential per-

formance and efficiency gains that such optimal decision-making can provide, achieving

low latency and high throughput that reaches a plateau compatible with the input rate.

Figure 8.7 shows a scenario that shares some similarities to the one seen in Fig-

ure 8.5. Still, here it is being simulated an application scenario where higher throughput is

aimed, and the stages are lighter. Figure 8.7(a) shows that our solution outperforms DS2

by detecting the optimal stages’ computational weight supported by the profiling step.

This accurate information was again employed to estimate a suitable number of repli-

cas that avoid resource contention by activating the actual necessary number of replicas.

Moreover, the position of the bottleneck and the lighter stage is inverse in Figure 8.7

2The main focus is to compare the strategies’ decision-making. In some figures, the scale is different
between the non-blocking and blocking modes, which was necessary to improve the visual clarity.

140

 0

 200

 400

 600

 800

 1000

 1200
T

h
ro

u
g
h
p
u
t

PS1(1) PS2(3)

DS2−throughput
Our solution−throughput

 100
 200
 300
 400
 500
 600

L
a
te

n
c
y
 (

m
s
)

DS2−latency
Our solution−latency

 2
 4
 6
 8

 10
 12

N
u
m

b
e
r

o
f
re

p
lic

a
s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50

 A
v
g
.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 0

 200

 400

 600

 800

 1000

 1200

T
h
ro

u
g
h
p
u
t

PS1(1) PS2(3)

DS2−throughput
Our solution−throughput

 50
 100
 150
 200
 250
 300
 350

L
a
te

n
c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u
m

b
e
r

o
f
re

p
lic

a
s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50

 A
v
g
.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.6: Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s.

compared to Figure 8.6. Still, our proposed solution was able to estimate the number of

replicas for each parallel stage optimally.

In Figures 8.8 and 8.9 an even higher throughput is aimed to generate a high load

and extend the strategies’ evaluation. Figure 8.8 shows the scenario where the last stage

is the bottleneck. The non-blocking mode (Figure 8.8(a)) shows a similar trend seen in

previous experiments and corroborates that our solution’s decision-making outperforms

DS2. A notable new aspect is a higher throughput instability caused by the full utilization

of physical cores and Hyperthreads that results in fluctuations [128]. Although consuming

100% of resources, our solution stills outperform DS2 in terms of throughput and latency.

Concerning the blocking mode, Figure 8.8(b) shows a higher throughput and sta-

bler executions than the non-blocking mode. Both decision-making strategies achieved a

similar throughput plateauing when reaching the input rate speed. Still, our solution can

achieve some minor latency gains exemplified in the zoomed part of the latency.

141

 0

 200

 400

 600

 800

 1000

 1200
T

h
ro

u
g
h
p
u
t

PS1(3) PS2(1)

DS2−throughput
Our solution−throughput

 30
 60
 90

 120
 150
 180
 210
 240
 270

L
a
te

n
c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u
m

b
e
r

o
f
re

p
lic

a
s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50

 A
v
g
.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 0

 200

 400

 600

 800

 1000

 1200

T
h
ro

u
g
h
p
u
t

PS1(3) PS2(1)

DS2−throughput
Our solution−throughput

 10
 20
 30
 40
 50
 60
 70
 80

L
a
te

n
c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u
m

b
e
r

o
f
re

p
lic

a
s

DS2−P.S.1
DS2−P.S.2
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50

 A
v
g
.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.7: Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s.

Figure 8.9 presents a case where the target throughput is high (at least for the

running machine), and the first stage is the bottleneck. The non-blocking mode from

Figure 8.9(a) evinced an overall fluctuating throughput and latency due to fully utilizing

the machine’s processing capacity. Regarding the self-adaptive strategies, our solution

enforces the utilization of fewer replicas, eighteen in the first stage (bottleneck) and six in

the second stage, resulting in twenty-four replicas that is the exact value of the total cores

count of the machine. This decision was enforced by the training step (see Section 8.2)

that attempts to avoid resources contention by fairly reducing the number of replicas

when they exceed the machine’s resource availability.

A practical implication of this optimized decision-making of our solution is the per-

formance gains notable in Figure 8.9. In the non-blocking mode, although our solution also

utilized 100% of the CPUs, it achieved an overall higher throughput and a lower latency.

Moreover, in the blocking mode, our solution achieved a higher throughput. In terms of

latency, it is notable that the results present fluctuations. The results indicate that our

142

 200

 400

 600

 800

 1000

 1200
T

h
ro

u
g
h
p
u
t

PS1(1) PS2(3)

DS2−throughput
Our solution−throughput

 100

 300

 500

 700

L
a
te

n
c
y
 (

m
s
)

DS2−latency
Our solution−latency

 1
 4
 7

 10
 13
 16
 19

N
u
m

b
e
r

o
f
re

p
lic

a
s

DS2−P.S.1 replicas
DS2−P.S.2 replicas
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 10 30 50

 A
v
g
.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 200
 400
 600
 800

 1000
 1200
 1400
 1600

T
h
ro

u
g
h
p
u
t

PS1(1) PS2(3)

DS2−throughput
Our solution−throughput

 100

 200

 300

 400

 500

L
a
te

n
c
y
 (

m
s
)

DS2
Our solution

 10

 20

 30

 40

 50

 5 15 25 35

L
a

te
n

c
y
 (

m
s
)

Time (s)

 1
 4
 7

 10
 13
 16
 19

N
u
m

b
e
r

o
f
re

p
lic

a
s

DS2−P.S.1 replicas
DS2−P.S.2 replicas
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

 A
v
g
.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.8: Synthetic: Unbalanced Stages. IR and Target Throughput of 1500 I/s.

solution had a higher buffering of items in the first part of the execution, which increased

the latency to achieve high throughput. Then, our solution’s execution could cope with the

IR and reduce the latency to achieve the lowest values.

It is also notable that Figure 8.9(b) shows our solution consuming more CPU re-

sources than DS2. One may argue that this is not intuitive as our solution utilized fewer

replicas. However, a given replica running in the blocking mode tends only to consume

resources when there are items/tasks to be processed. Consequently, the fact that DS2’s

execution did not consume the total resources available indicates that it is due to the

imbalance of stages. Our understanding is that in DS2, the second (lighter) stage was

mostly idle while the excessive number of replicas spawned competed for the processing

resources needed in the bottleneck stage.

143

 300

 600

 900

 1200

T
h
ro

u
g
h
p
u
t

PS1(3) PS2(1)

DS2−throughput
Our solution−throughput

 50
 100
 150
 200
 250
 300
 350
 400
 450

L
a
te

n
c
y
 (

m
s
) DS2−latency

Our solution−latency

 3
 6
 9

 12
 15
 18

N
u
m

b
e
r

o
f
re

p
lic

a
s

DS2−P.S.1 replicas
DS2−P.S.2 replicas
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

 A
v
g
.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 200
 400
 600
 800

 1000
 1200
 1400

T
h

ro
u

g
h

p
u

t

PS1(3) PS2(1)

DS2−throughput
Our solution−throughput

 10
 20
 30
 40
 50
 60
 70
 80
 90

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 3
 6
 9

 12
 15
 18

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2−P.S.1 replicas
DS2−P.S.2 replicas
Our solution−P.S.1
Our solution−P.S.2

 20

 40

 60

 80

 100

 0 10 20 30 40

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.9: Synthetic: Unbalanced Stages. IR and Target Throughput of 1500 I/s.

8.5 Evaluation with four parallel stages

The previous Section 8.4 provided insightful outcomes from the synthetic appli-

cation with two parallel stages. This section presents a representative scenario where the

application has four parallel stages.

8.5.1 ES 4 and 5 - One bottleneck stage

Figure 8.10 shows the first results with an IR of 500 I/s and where the first stage

is the bottleneck. In general, Figure 8.10 shows results aligned with the ones seen in Sec-

tion 8.4, DS2’s decision-making cannot fully detect each stage’s computational weight and

enforces suboptimal configurations. Hence, in the non-blocking mode, DS2’s execution

144

achieved a limited throughput and a high latency. Consequently, the optimized decision-

making of our solution results in a parallel execution that significantly outperforms the

DS2’s one in terms of performance and efficiency.

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t

PS1(3) PS2(1) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 50

 150

 250

 350

 450

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 2
 3
 4
 5
 6
 7

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90 110 130

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t

PS1(3) PS2(1) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 20

 40

 60

 80

 100

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 2
 3
 4
 5
 6
 7

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.10: Synthetic: Unbalanced Stages. IR and Target Throughput of 500 I/s.

The outcome provided in Figure 8.10(b) is also aligned with the previous results,

where the DS2’s additional replicas do not compromise the performance due to the effi-

ciency of the runtime Blocking mode. Figure 8.11 evinces a rather complex scenario with

an IR of 1000 I/s. Although we reduced to two the weight of the bottleneck stage in this

experiment, the high IR seemingly was still too high for the running machine, i.e., even

the efficient runtime’s blocking mode achieved only a throughput close to the IR.

Figure 8.11(a) shows the outcome of the execution in the non-blocking mode. In

terms of throughput, although under fluctuations, our solution outperformed DS2 achiev-

ing a performance closer to the IR target. On the other hand, although DS2 enforced more

145

 200

 400

 600

 800

 1000

 1200

T
h

ro
u

g
h

p
u

t
PS1(2) PS2(1) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 200

 400

 600

 800

 1000

T
h

ro
u

g
h

p
u

t

PS1(2) PS2(1) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 10

 20

 30

 40

 50

 60

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s
DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.11: Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s.

replicas, it reached a lower latency. A rationale for such an outcome is the combination of

high throughput and high CPUs utilization (causing contention) tends to increase the la-

tency [128], which increased the buffering in our solution towards the end of the Pipeline.

In the DS2’s execution, the bottleneck stage limited the throughput and consequently

the buffering in subsequent stages. Hence, less buffering prevented the latency from in-

creasing significantly. Moreover, it is essential to note that one can extend in the future

the decision-making strategies to improve latency in complex scenarios like this one with

resource contention.

Figure 8.11(b) provides results in the Blocking mode, showing that both solutions

achieved a higher throughput compared to the non-blocking mode. Moreover, this in-

teresting outcome showed significant latency contrasts in the blocking mode, where our

solution achieved a lower latency. This result corroborates that the resources contention

146

in the non-blocking mode from Figure 8.11(a) was more detrimental to the latency in our

solution.

 200

 400

 600

 800

 1000

 1200

T
h

ro
u

g
h

p
u

t

PS1(1) PS2(1) PS3(1) PS4(2)

DS2−throughput
Our solution−throughput

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 200

 400

 600

 800

 1000

 1200

T
h

ro
u

g
h

p
u

t

PS1(1) PS2(1) PS3(1) PS4(2)

DS2−throughput
Our solution−throughput

 50
 100
 150
 200
 250
 300
 350

L
a

te
n

c
y
 (

m
s
)

DS2
Our solution

 20
 22
 24
 26
 28
 30

 4 16 28 40 52

L
a
te

n
c
y
 (

m
s
)

Time (s)

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 0 10 20 30 40 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.12: Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s.

Figure 8.12 provides an additional scenario of four parallel stages and a high input

rate. However, contrasting with Figure 8.11, in Figure 8.12 the last stage is the bottleneck.

In short, in Figure 8.12 it is difficult to note significant differences from a QoS perspec-

tive, where both solutions consumed a similar amount of resources and achieved similar

fluctuating performance. A notable insight from Figures 8.11 and 8.12 is that a future

optimization for the strategies could encompass (in a training step) the actual resource

consumption. Under high utilization, a potential alternative could be to self-configure to

more efficient modes like the blocking one in the FastFlow programming framework.

147

8.5.2 ES 6 - Two unbalanced bottleneck stages

Figures 8.13 and 8.14 show an even more complex scenario where two stages

are heavier and yet have different computational weight. Figure 8.13(a) shows a repre-

sentative scenario of simulating an application with four parallel stages where there are

three different levels of computational weight. In this scenario, the first parallel stage is

heaviest one, followed by the second one that is lighter compared to the first stage but is

still two times more intensive than the light stages (third and fourth).

 100
 200
 300
 400
 500
 600
 700

T
h

ro
u

g
h

p
u

t

PS1(3) PS2(2) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 50

 250

 450

 650

 850

L
a

te
n

c
y
 (

m
s
)

DS2−latency
Our solution−latency

 1
 2
 3
 4
 5
 6
 7

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90 110

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t

PS1(3) PS2(2) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 20

 40

 60

 80

 100

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 2
 3
 4
 5
 6
 7

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.13: Synthetic: Unbalanced Stages. IR and Target Throughput of 500 I/s.

Figure 8.13(a) shows how our solution was able to correctly estimate the com-

putational weight of the stages to set an appropriate number of replicas on each stage.

148

Hence, compared to DS2, our solution achieved a higher throughput, evidenced by the

lower execution time and significantly lower latency.

Figure 8.14 shows a similar performance trend w.r.t. Figure 8.13. However, in

Figure 8.14 the heavier stage is the last one instead of the first one. Moreover, in this sce-

nario, the first stage is lighter than the major bottleneck stage but heavier than the lighter

middle stages. Although using more replicas, DS2 achieved a competitive performance

with the blocking mode (Figure 8.14(b)). However, these additional replicas degraded

DS2’s performance in the non-blocking mode (Figure 8.14(a)).

 100
 200
 300
 400
 500
 600
 700

T
h

ro
u

g
h

p
u

t

PS1(2) PS2(1) PS3(1) PS4(3)

DS2−throughput
Our solution−throughput

 50
 250
 450
 650
 850

 1050
 1250

L
a

te
n

c
y
 (

m
s
)

DS2−latency
Our solution−latency

 1
 2
 3
 4
 5
 6
 7

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90 110 130

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 100

 200

 300

 400

 500

 600

T
h

ro
u

g
h

p
u

t

PS1(2) PS2(1) PS3(1) PS4(3)

DS2−throughput
Our solution−throughput

 20

 40

 60

 80

 100

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 2
 3
 4
 5
 6
 7

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.14: Synthetic: Unbalanced Stages. IR and Target Throughput of 500 I/s.

149

8.6 ES 7 - Ferret

In Section 7.3.4, Ferret was tested with IR of 10 and 20 I/s. Considering that there

the executions were without optimizations in the number of replicas, here we first tried

Ferret with an IR of 30 I/s, as shown in Figure 8.15.

 10

 20

 30

 40

 50

T
h

ro
u

g
h

p
u

t

Ferret App NonBlocking IR 30

DS2−throughput
Our solution−throughput

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 2
 3
 4
 5

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90 110

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 10

 20

 30

 40

 50

T
h

ro
u

g
h

p
u

t

Ferret App IR 30

DS2−throughput
Our solution−throughput

 1000

 2000

 3000

 4000

L
a

te
n

c
y
 (

m
s
)

DS2
Our solution

 100
 200
 300
 400
 500

 30 40 50 60 70 80

L
a
te

n
c
y
 (

m
s
)

Time (s)

 1
 2
 3
 4
 5

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90 110

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.15: Ferret with IR and Target Throughput 30 I/s.

In the non-blocking mode shown in Figure 8.15(a), it is notable that both strate-

gies enforced more replicas to the last stage Rank stage, which is the heavier one. More-

over, compared to our solution, DS2’s decision-making enforced more replicas in other

lighter stages. Considering a QoS perspective, both solutions present a fluctuating through-

put due to Ferret’s unstable behavior. Our solution achieved a more consistent and mostly

lower latency and consumed fewer resources.

150

In the Blocking mode from Figure 8.15(b), both strategies achieved a similar per-

formance and resources consumption. Noteworthy, there are instants where DS2 has

lower latency and others where our solution has a lower one. Still, it seems inconclusive

where the contrasts are potentially due to specific workload peaks.

 10

 20

 30

 40

 50

 60

T
h

ro
u

g
h

p
u

t

Ferret App NonBlocking IR 60

DS2−throughput
Our solution−throughput

 1000

 3000

 5000

 7000

L
a

te
n

c
y
 (

m
s
)

DS2−latency
Our solution−latency

 2

 4

 6

 8

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 10
 20
 30
 40
 50
 60
 70
 80

T
h

ro
u

g
h

p
u

t

Ferret App IR 60

DS2−throughput
Our solution−throughput

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2

 4

 6

 8

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.16: Ferret with IR and Target Throughput 60 I/s.

In Figure 8.16, the input rate is doubled to simulate a scenario that demands

a higher throughput and utilizes more resources. Considering the number of replicas en-

forced by the strategies, the outcome is similar to the one seen with IR 30 in Figure 8.15(b),

where DS2 estimates to use more replicas mainly in lighter stages. However, under a

higher workload like IR 60, unnecessary resource consumption caused more contention,

reducing DS2’s throughput and increased latency. Hence, in Ferret, it is also notable that

our solution is more accurate in determining the appropriate number of replicas for the

parallel stages and can significantly outperform DS2’s performance in representative sce-

narios.

151

8.7 Complementary results with Machine 2

This section presents insightful results from running the evaluation scenarios in

another machine, called M2. As explained in Section 8.3.3, for the sake of conciseness,

here we present only the most relevant results to assess if the decision-making strategies

work consistently in different machines architectures. M2 is a more recent and powerful

machine compared to M1. Hence, we expect some contention seen in previous sections

to be avoided in a better machine. Moreover, in M2, all the experiments utilized a training

step time of five seconds. Here, we increased (from one to five seconds) in the synthetic

application for testing if the DS2’s (poor) decision-making accuracy was being impacted

by the training step time.

 200

 400

 600

 800

 1000

 1200

T
h

ro
u

g
h

p
u

t

PS1(2) PS2(1) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 100

 200

 300

 400

 500

 600

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 200

 400

 600

 800

 1000

T
h

ro
u

g
h

p
u

t
PS1(2) PS2(1) PS3(1) PS4(1)

DS2−throughput
Our solution−throughput

 0

 100

 200

 300

 400

 500

 600

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.17: M2 - Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s.

152

Section 8.5.1 evinced the ES 4 where our solution did a seemingly optimal decision-

making. However, in Figure 8.11(a) the latency outcome was not very intuitive because

DS2 enforced more replicas and still achieved a lower latency. Hence, we repeated this ex-

periment in M2 to assess the strategies’ consistency and verify if the higher latency in our

solution occurs again. Figure 8.17(a) evinces the better decision-making of our solution

compared to DS2, which resulted in our solution achieving a higher throughput compatible

with the IR. This results in a lower latency and a more efficient resources usage. Hence,

the higher latency of our solution seen in Figure 8.11(a) occurred because the IR was too

high for M1, which caused more instability and buffering that increased the latency of

items. Moreover, another relevant outcome from Figure 8.17 is that a higher training step

time did not improve DS2’s limited decision-making accuracy, which indicates that the

low DS2’s accuracy is due to its limited generalizability to multi-core machines instead of

being due to instabilities during the training step.

 200

 400

 600

 800

 1000

T
h

ro
u

g
h

p
u

t

PS1(1) PS2(1) PS3(1) PS4(2)

DS2−throughput
Our solution−throughput

 200
 400
 600
 800

 1000
 1200
 1400
 1600

L
a

te
n

c
y
 (

m
s
) DS2

Our solution

 20

 40

 60

 80

 4 16 28 40 52

L
a
te

n
c
y
 (

m
s
)

Time (s)

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 200

 400

 600

 800

 1000

 1200

T
h

ro
u

g
h

p
u

t

PS1(1) PS2(1) PS3(1) PS4(2)

DS2−throughput
Our solution−throughput

 200
 400
 600
 800

 1000
 1200
 1400
 1600

L
a

te
n

c
y
 (

m
s
) DS2

Our solution

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 0 10 20 30 40 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.18: M2 - Synthetic: Unbalanced Stages. IR and Target Throughput of 1000 I/s.

153

Figure 8.18 complements the results from the ES 5 shown in Figure 8.12. Although

a different machine is used, the overall performance trend is similar. Our solution achieved

slight gains in throughput and lower latency than DS2. Once again, the gains are due to

the optimal decision-making that consumes fewer resources, which avoids contention that

degrades the QoS in DS2. On the other hand, Figure 8.18(b) shows the results regarding

the efficient FastFlow’s Blocking mode, where the additional replicas employed in DS2 did

not significantly degrade the QoS.

Considering that in Figures 8.17 and 8.18 we addressed the only non-intuitive

outcome from M1, in the rest of this section, we focus on additional results from the real-

world Ferret application executed in M2.

 10

 20

 30

 40

 50

T
h

ro
u

g
h

p
u

t

Ferret App NonBlocking IR 30

DS2−throughput
Our solution−throughput

 1000

 2000

 3000

 4000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 2
 3
 4
 5

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90 110

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 10

 20

 30

 40

 50

T
h

ro
u

g
h

p
u

t

Ferret App IR 30

DS2−throughput
Our solution−throughput

 1000

 2000

 3000

 4000

L
a

te
n

c
y
 (

m
s
) DS2

Our solution

 1
 2
 3
 4
 5

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70 90 110

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.19: M2 - Ferret with IR and Target Throughput 30 I/s.

The results provided in Figure 8.19 extend the evaluation from Figure 8.15 with

experiments from M2. In general, the results from both machines are very consistent.

In both cases, our solution optimally detected the stages’ characteristics and enforced

154

an appropriate number of replicas on each one. Consequently, in Figure 8.19(a) it is no-

table that our solution consumed significantly fewer resources and yet achieved stabler

throughput and lower latency.

Figure 8.20 highlights Ferret with IR 60 I/s executed in M2, which complements

the same experiment shown in Figure 8.16 executed in M1. Here, the optimal decision-

making of our solution again outperformed DS2 in terms of resources efficiency and QoS.

Contrasting with the outcome shown in Figure 8.16(a), in M2, the non-blocking mode

shown in Figure 8.20(a) did not consume 100% of the machine’s resources in DS2. How-

ever, the higher (and unnecessary) resources consumption due to DS2’s suboptimal decision-

making still caused contention and performance degradation, e.g., the high latency no-

table in Figure 8.20(a).

 10
 20
 30
 40
 50
 60
 70
 80
 90

T
h

ro
u

g
h

p
u

t

Ferret App NonBlocking IR 60

DS2−throughput
Our solution−throughput

 1000

 3000

 5000

 7000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 3
 5
 7
 9

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50 70

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 10
 20
 30
 40
 50
 60
 70
 80
 90

T
h

ro
u

g
h

p
u

t

Ferret App IR 60

DS2−throughput
Our solution−throughput

 1000

 2000

 3000

 4000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 1
 3
 5
 7
 9

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.20: M2 - Ferret with IR and Target Throughput 60 I/s.

Considering the Blocking mode evaluation demonstrated in Figure 8.20(b), it is

notable a similar resource consumption, but our solution enforced fewer replicas. Hence,

155

it is possible to note that our solution’s throughput and latency are stablers. Moreover,

the latency achieved in our solution is slightly lower than DS2’s latency.

Considering that in Figure 8.20 where an IR 60 I/s running in M2 did not demand all

the machine’s processing capacity, in Figure 8.21 we provide an additional result scenario

with a higher IR of 90 I/s. It is important to note that this experiment can be executed

and potentially achieve relevance only in M2 due to its additional processing capacity

compared to M1. With empirical characterization tests, M1 did not cope with the high IR

on 90, which compromised the stability of the decision-making strategies.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

T
h

ro
u

g
h

p
u

t

Ferret App NonBlocking IR 90

DS2−throughput
Our solution−throughput

 1000

 3000

 5000

 7000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(a) Non-blocking Mode.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

T
h

ro
u

g
h

p
u

t

Ferret App IR 90

DS2−throughput
Our solution−throughput

 1000

 2000

 3000

 4000

L
a

te
n

c
y
 (

m
s
) DS2−latency

Our solution−latency

 2
 4
 6
 8

 10
 12

N
u

m
b

e
r

o
f

re
p

lic
a

s

DS2 P.S.1
DS2 P.S.2
DS2 P.S.3
DS2 P.S.4

Our solution P.S.1
Our solution P.S.2
Our solution P.S.3
Our solution P.S.4

 20

 40

 60

 80

 100

 10 30 50

 A
v
g

.
C

P
U

s
 U

ti
l.

Time (s)

DS2 (%)
Our solution (%)

(b) Blocking Mode.

Figure 8.21: M2 - Ferret with IR and Target Throughput 90 I/s.

Figure 8.21 provides the results from the executions with IR 90 I/s, which com-

pared to Figure 8.20 (IR 60 I/s) we can note a similar performance and resources effi-

ciency trend. Such an outcome again indicates the consistency of the decision-making of

our strategy outperforming DS2. Importantly, although the final throughputs are similar

156

while our solution is stabler, it is notable significant latency gains of our solution both in

Blocking and the non-blocking executions.

Moreover, with the IR 90 (I/s), the DS2 execution in the non-blocking mode (Fig-

ure 8.21(a)) fully utilized the machine’s resources, which further increased the latency. In

short, the additional results from Ferret running in M2 further confirmed that our solution

significantly outperforms DS2 in multi-core machines.

8.8 Closing remarks

The following are the key insights of self-adapting the number of replicas in com-

plex compositions:

• The mechanism integrated within FastFlow show to be effective.

• The decision-making strategies were able to very fast (in a order of milliseconds)

decide and find configurations. However, in this work, we are more interested in

evaluating how accurate are the configurations found in the decision-making step.

• The solution proposed here goes beyond reactive solutions. It enables to react but

at the same time it is proactive by estimating the number of replicas needed to meet

the SLOs in the future. This allows a given proactive model to be extended in the

future to cope with even more dynamic scenarios than the ones considered here.

For instance, implementing additional training steps with configurations shortlisting

and trials (see Section 7.2) could handle additional uncertainties.

• The usage of an optimal number of replicas on multi-core machines is still essential

for efficiency and QoS.

• Our solution is stabler and more efficient compared to DS2. Our solution’s decision-

making outperforms DS2 by better estimating the optimal number of replicas for

each parallel stage. Moreover, our solution considers the amount of resources avail-

able, which reduces contention and improves the performance in several scenarios.

• A notable rationale for DS2’s poor decision-making is the lack of coordination; there

is a need for coordinated decision-making in applications with many parallel stages

(or other complex characteristics). One example of such a need is when the avail-

ability of resources is a constraint. Coordination combined with optimal profiling is a

potential solution to find a proper configuration.

• The usage of an optimal number of replicas has several other implications that are

intuitive but were not explored here. For instance, highly efficient executions achiev-

157

able with improved decision-making consume less energy [119, 36], which has posi-

tive implications on sustainability and cost savings.

• The FastFlow blocking mode is nowadays a very efficient solution. However, other

runtime libraries/programming frameworks (e.g., C++ threads, OpenMP) and dis-

tributed frameworks do not support such a dynamic execution mode. Consequently,

use an optimal number of threads/replicas is also very relevant when looking from a

more generic perspective.

• Although the impact of the decision-making in the QoS achieved in different scenar-

ios is not trivial to predict, the experimental results demonstrated that the decision-

making strategies are consistent across different applications, different number of

parallel stages, different location and numbers of bottleneck stages, and most im-

portantly, running in different configurations of shared memory multi-core machines.

This is one more step towards addressing the research challenges (see Section 3.4.4)

to better evaluate the self-adaptive solutions applied to parallel computing.

• The conceptual decision-making framework (Chapter 4) was effectively applied here.

This facilitated generalization and flexibility, enabling to easy use of different decision-

making strategies by only changing the implementation of monitoring modules and

decisions (e.g., in practice, simply changing C++ header files).

• Yet regarding generalization, we expect the decision-making is applicable to other

execution environments, such as clusters with distributed memory. On the one hand,

the decision-making in cluster environments could be even simpler without consider-

ing the availability of the resources because it is less constrained in clusters. On the

other hand, applying the decision-making to clusters could require additional steps,

e.g., to detect and handle resources heterogeneity. Moreover, considering that the

decision-making using an online profiler accurately estimates the number of replicas,

we expect that the decision-making could also be integrated with other programming

frameworks that have mechanisms to apply (at run-time) the adaptations actions.

• The encouraging results achieved here demonstrated that our solution for self-adaptive

replicas is ready to be integrated with larger adaptation spaces. For instance, in

Chapters 6 and 7 the entire applications’ compositions structures was self-adapted.

Adapting the entire structure is a more powerful but more intrusive adaptation that

currently requires creating several configurations at compile time. Notably, the solu-

tion proposed here is complementary and can self-adapt only the number of replicas

in the case of parallel stages. Still, it is empowered with more flexible mechanisms

that do not require compiling additional configurations. In short, this paves the way

to combine both the self-adaptable entities.

158

9. CONCLUSION

This work discusses opportunities, concepts, and techniques for applying self-

adaptation in parallel computing. Hence, we provided efforts for additional parallelism

abstractions and for making the abstractions more efficient.

Our understanding is that self-adaptation applied to parallel systems is a rele-

vant evolving area due to the enormous demand to make the systems more flexible and

dynamic. This demand is combined with self-adaptation being a promising area that is

already being successfully applied (e.g., see below in Section 9.1 some implications of

applying self-adaptation). However, self-adaptation is complex due to the challenges in

designing, implementing, and validating it. On the one hand, the great potential of self-

adaptation and its complexities motivates the area to expand and evolve. On the other

hand, we acknowledge existing complexities that are opportunities for future research and

practical solutions. Therefore, in Section 9.2 we discuss relevant existing limitations and

put them into perspective for future works.

9.1 Implications

9.1.1 Advances in self-adaptation applied to parallel computing

This research started with an empirical exploratory work to evaluate the potential

of making parallel parameters transparent (abstracted). We have seen that there are

many theoretical concepts applicable and a vast inconsistent terminology in the field,

e.g., in reference [127] and Chapter 3 we attempt to catalog and unify the terms of the

area. Moreover, we noted that many entities could be adapted to provide abstractions, but

not all entities are being self-adapted at run-time without the need to recompile or rerun

the entire application. Over the years, we noticed that the impact on QoS and potential

self-adaptation overheads were mainly not measured and discussed.

Although acknowledging the limitations that were making difficult the acceptance

and use of self-adaptation by practitioners, our perspective on applying self-adaptation to

parallel computing has been positive due to the great potential of self-adaptation. There-

fore, first, we contributed in more simplistic (but representative) scenarios with appli-

cations with one parallel stage (Farm in structured parallel programming). Noteworthy,

we proposed and contributed with mechanisms and optimized decision-making strategies

(shown in Chapter 5). In [125] we investigated the limits of self-adaptation applied to par-

allel computing, where it was manifested that a fully transparent execution benefits from

159

users and programmers defining their SLO to indicate to the self-adaptive strategies which

QoS is relevant declaratively.

Moreover, considering the parallelism configurations complexities and the need

to increase the adaptation space for the sake of flexibility and abstractions, in Chapter 6

we provided a mechanism to adapt the entire application’s structure dynamically. Then, in

Chapter 7, we improved the decision-making of the self-adaptive strategy to avoid the try-

all mode that tested suboptimal configurations. Moreover, the decision-making proposed

in Chapter 8 was compared to the state-of-the-art solution called DS2, where our solution

significantly outperforms DS2 in terms of accuracy, performance, and efficiency.

Beyond the technicalities involved, one can extract relevant scientific and tech-

nical implications. A significant implication is that in concrete implementations and use-

cases, self-adaptation is demonstrated to be effective in making the applications’ exe-

cutions more dynamic, flexible, and responsive. Dynamic and flexible in adapting larger

adaptation spaces and supporting multiple user’s goals. Moreover, bringing responsive-

ness relates to autonomously responding to changes without user intervention, which is

a facet of abstractions. These characteristics are essential to cope with modern environ-

ments, e.g., providing flexibility for more dynamic executions that can assist in bridging

cloud and High Performance Computing (HPC).

Another implication relates to the relevant concerns about the overhead caused

by self-adaptation. We have demonstrated that the instrumentation and decision-making

overheads can be managed (minimized) throughout this work. For instance, a recurrent

noticed concern was the overhead that monitoring could cause, where in [125] (high-

lighted in Section 5.2.6) the monitoring costs were measured and shown to be very low

(hundreds of nanoseconds). Additionally, in reference [126] (highlighted in Section 5.2.5),

we showed that the decision-making overhead could be minimized, implying insightful

good practices that were incorporated in recent advancements.

Comparing this work to the state-of-the-art solutions, the framework introduced

in Chapter 4 diverges from related solutions like NORNIR [36] in the sense that our frame-

work is intended to be conceptual, focusing on more generic and flexible decision-making.

Moreover, the strategies for self-adaptive replicas discussed in 5 extend the state-of-the-

art by providing additional SLO and abstraction that achieve performance gains even when

compared to OS level tools like CPUlimit. The new mechanism that self-adapts the Parallel

Patterns to dynamically change the applications’ graphs topologies from Chapter 6 and the

optimized decision-making strategy from Chapter 7 are novel contributions to the research

area. Hence, there are no solutions available to provide a fair comparison to the best of

our knowledge. Moreover, comparing the solution for self-adaptation in complex compo-

sition structures evinced in Chapter 8 to the state-of-the-art solution called DS2 [64], our

solution achieved significant gains in terms of performance and systems efficiency.

160

9.1.2 Self-adaptation generalizability

In addition to the practical and scientific implications of our contributions ex-

plained above, we argue that there is a important demand to make self-adaptation more

generic. To be a crucial part of providing solutions for future computational challenges, the

self-adaptive approaches are expected to be better designed and implemented, focusing

on decoupling and generalization.

Therefore, we proposed a new way to design and implement self-adaptation that

encapsulates and decouples the decision-making from the specific mechanisms to apply

adaptation actions. By doing this, the decision-making of the self-adaptation can become

more generic. For instance, we demonstrated that modules like the data generator (see

Chapter 4) were successfully applied in Chapters 6 and 7. Moreover, it was possible to

employ the profiler module for making adaptation actions w.r.t. different entities adapted,

which was shown in Chapters 7 and 8.

The solutions for self-adaptive parallelism provided in this work have been in-

tegrated into two programming frameworks. In Chapter 5 we demonstrated how it was

possible to generate self-adaptive code with the DSL SPar [47]. Moreover, the other en-

tities’ adaptations are currently applied directly to the FastFlow framework [2]. These

integrations indicate that our solution can be flexible enough to be integrated with other

programming frameworks and scenarios. From an abstraction perspective, SPar is more

suitable for domain experts (application programmers), and FastFlow tends to be more

appropriate for system expert programmers. Importantly, SPar’s compiler can easily gen-

erate the self-adaptive code manually included in the strategies implemented in FastFlow,

as already done with the strategies from Chapter 5. Such a code generation would allow

users/programmers to utilize additional programming abstractions and even provide new

use cases. Moreover, considering that FastFlow is the runtime library of WindFlow [90],

our practical contributions can potentially be used there.

Another relevant real-world implication is that the solutions proposed here were

designed to be ready-to-use in the sense of working without the need to install external

systems or libraries. We expect that this capacity facilitates new use-cases and integra-

tions in a modular way. From a technical perspective, we expect it would not be easy to

implement our self-adaptive solution in runtime libraries based on task processing, i.e.,

Intel TBB. However, our understanding is that one can apply this work’s solutions to other

software systems with the popular threading model based on nodes, for instance, to the

vast majority if distributed SPE where each node or stage is translated into a thread or

process. In this scenario, expert programmers could implement mechanisms that could

be managed by the self-adaptive strategies using the generic decision-making modules.

161

Finally, the implications discussed in this section can enable to transfer of knowl-

edge to industry practitioners. For instance, we envision that the conceptual framework

can help in the design and implementation of self-adaptive solutions that can be a part of

real-world Information Technology (IT) systems. Moreover, the technical mechanisms and

systems modules that are part of the scientific contributions can potentially be applied to

real-world applications and runtime systems based on the C++ programming language.

9.2 Limitations and future work

The demand for mechanisms to apply adaptation action in a given software sys-

tem is a known challenge in the field. Hence, considering that generalization is a relevant

aspect in this work, the availability of mechanisms can be viewed as a partial limitation

to our self-adaptive solutions’ broad usage/applicability. However, considering that the

computing applications and software systems are becoming (or need to become) more

dynamic and modular, we believe that providing mechanisms for enabling self-adaptation

in a given software system is a step in the right direction. Consequently, the concepts,

frameworks, mechanisms, strategies, and use-cases provided in this work can help in in-

spiring future solutions.

For instance, highly efficient executions achievable with improved mechanisms

and decision-making strategies tend to consume less energy [36]. However, due to a

considerable amount of work in terms of machinery and experiments, it was not possible

to cover energy consumption aspects in this work. Hence, we believe that, in the future,

one can extend the self-adaptive strategies proposed to support potential abstractions on

performance and energy trade-offs. Moreover, another relevant trade-off to be considered

in future strategies and SLO is the relation between performance and cost in pay-per-use

environments such as cloud computing.

Although we considered and proposed comprehensive evaluation methodologies

to validate our solutions, the experiments can still be limited in some aspects. Addi-

tional statistical properties of the results can be considered in the future. Moreover,

other applications like the stateful ones could even motivate further enhancements for

the decision-making strategies. For instance, additional training steps could be included

in the decision-making for better accuracy in scenarios with nonlinear relations between

resources and QoS (e.g., adding more processing capacity is not a guarantee of perfor-

mance gains or QoS increase).

In practice, we expect that the management of stateful applications’ state ex-

ecuting in shared-memory multi-core machines is easy to manage. However, the appli-

cability of the decision-making strategies in stateful applications executed in distributed

environments would require further steps for managing (saving and migrating) the appli-

162

cations’ state during entities’ adaptation. One could implement such a step within the

transitioning model of the conceptual framework described in Chapter 4.

We are in the process of documenting and open-sourcing the components of the

self-adaptive solutions, which could pave the way towards more significant support and

provisioning of self-adaptation in other software systems, programming frameworks, and

runtime libraries. Our perspectives about the applications and utilized systems showed

that the proposed solutions are practical and efficient, where more applications can pro-

vide new insights and harness the solutions’ applicabilities. Moreover, we intend to make

the usability of the self-adaptive strategies more accessible to non-experts programmers.

Considering that it is not trivial to measure and estimate the impact that abstrac-

tions can provide in real-world applications, another relevant future endeavor is to study

the effect of what we call execution abstractions, which are the ones that abstract com-

plexities and can provide optimizations while the systems are executing. This work pro-

vides many examples of execution abstractions achieved through self-adaptation, such

as enabling the user to define a non-functional goal instead of low-level error-prone sys-

tem configurations. Other abstractions, such as the programming abstractions [5] are

being improved with methodologies like structured parallel programming. However, in

our understanding, execution abstractions can be more impacting because they can ab-

stract and optimize during the entire (potentially long) executions. On the other hand,

programming abstractions are usually one-time used abstractions for facilitating code de-

velopment. Future work could be a software engineering inspired work to contribute with

new modern methodologies for quantifying the impact of execution abstractions provided

and providing new API for designing self-adaptive strategies.

9.3 Publications

The following are the research articles accepted during the doctorate period that

are directly related to this study:

• Title: Autonomic and Latency-Aware Degree of Parallelism Management in

SPar. Reference: [128].

• Title: Seamless Parallelism Management for Video Stream Processing on

Multi-cores. Reference: [125].

• Title: Minimizing Self-Adaptation Overhead in Parallel Stream Processing

for Multi-Cores. Reference: [126].

• Title: Simplifying and Implementing Service Level Objectives for Stream

Parallelism. Reference: [51].

163

• Title: Towards On-the-fly Self-Adaptation of Stream Parallel Patterns. Refer-

ence: [131].

• Title: Online and Transparent Self-adaptation of Stream Parallel Patterns.

Reference: [132].

• Title: Self-adaptation on Parallel Stream Processing: A Systematic Review.

Reference: [127].

164

REFERENCES

[1] Abdelhamid, A.; Mahmood, A.; Daghistani, A.; Aref, W. “Prompt: Dynamic

Data-Partitioning for Distributed Micro-Batch Stream Processing Systems”. In:

Proceedings of the International Conference on Management of Data, 2020, pp.

2455–2469.

[2] Aldinucci, M.; Danelutto, M. “Skeleton-based Parallel Programming: Functional and

Parallel Semantics in a Single Shot”, Computer Languages, Systems & Structures,

vol. 33–3-4, October 2007, pp. 179–192.

[3] Aldinucci, M.; Danelutto, M.; Kilpatrick, P.; Torquati, M. “Fastflow: High-Level and

Efficient Streaming on Multicore”. Wiley, 2017, chap. 13, pp. 261–280.

[4] Amdahl, G. “Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities”. In: Proceedings of the Spring Joint Computer Conference,

1967, pp. 483–485.

[5] Andrade, G.; Griebler, D.; Santos, R.; Danelutto, M.; Fernandes, L. G. “Assessing

Coding Metrics for Parallel Programming of Stream Processing Programs on Multi-

cores”. In: Proceedings of the Euromicro Conference on Software Engineering and

Advanced Applications, 2021, pp. 291–295.

[6] Andrade, H.; Gedik, B.; Turaga, D. “Fundamentals of Stream Processing: Application

Design, Systems, and Analytics”. Cambridge University Press, 2014, 558p.

[7] Bacci, B.; Danelutto, M.; Pelagatti, S. “Resource Optimisation via Structured Parallel

Programming”. In: Programming Environments for Massively Parallel Distributed

Systems, Springer, 1994, pp. 13–25.

[8] Balkesen, C.; Tatbul, N.; Özsu, M. T. “Adaptive Input Admission and Management for

Parallel Stream Processing”. In: Proceedings of the ACM International Conference

on Distributed Event-based Systems, 2013, pp. 15–26.

[9] Bartnik, A.; Monte, B. D.; Rabl, T.; Markl, V. “On-the-fly Reconfiguration of Query

Plans for Stateful Stream Processing Engines”. In: Datenbanksysteme für Business,

Technologie und Web, 2019, pp. 127–146.

[10] Calasanz, R. T.; Montes, J. D.; Rana, O.; Parashar, M. “Feedback-Control &

Queueing Theory-Based Resource Management for Streaming Applications”, IEEE

Transactions on Parallel and Distributed Systems, vol. 28–4, April 2017, pp. 1061–

1075.

165

[11] Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. “Apache

Flink: Stream and Batch Processing in Single Engine”, Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, vol. 36–4, December 2015, pp.

1–11.

[12] Cardellini, V.; Grassi, V.; Presti, F. L.; Nardelli, M. “Optimal Operator Replication

and Placement for Distributed Stream Processing Systems”, ACM SIGMETRICS

Performance Evaluation Review, vol. 44–4, May 2017, pp. 11–22.

[13] Cardellini, V.; Lo Presti, F.; Nardelli, M.; Russo Russo, G. “Optimal Operator

Deployment and Replication for Elastic Distributed Data Stream Processing”,

Concurrency and Computation: Practice and Experience, vol. 30–9, April 2018, pp.

e4334.

[14] Cardellini, V.; Presti, F. L.; Nardelli, M.; Russo, G. R. “Towards Hierarchical

Autonomous Control for Elastic Data Stream Processing in the Fog”. In: Proceedings

of European Conference on Parallel Processing, 2017, pp. 106–117.

[15] Cardellini, V.; Presti, F. L.; Nardelli, M.; Russo, G. R. “Decentralized Self-adaptation

for Elastic Data Stream Processing”, Future Generation Computer Systems, vol. 87,

October 2018, pp. 171–185.

[16] Chakravarthy, S.; Jiang, Q. “Stream Data Processing: A Quality of Service

Perspective: Modeling, Scheduling, Load Shedding, and Complex Event Processing”.

Springer US, 2009, 324p.

[17] Chatzistergiou, A.; Viglas, S. D. “Fast Heuristics for Near-Optimal Task Allocation in

Data Stream Processing over Clusters”. In: Proceedings of International Conference

on Conference on Information and Knowledge Management, 2014, pp. 1579–1588.

[18] Cheng, B.; de Lemos, R.; Giese, H.; Inverardi, P.; Magee, J.; Andersson, J.;

Becker, B.; Bencomo, N.; Brun, Y.; Cukic, B.; et al.. “Software Engineering for Self-

adaptive Systems: A Research Roadmap”. In: Software engineering for self-adaptive

systems, Springer, 2009, pp. 1–26.

[19] Cheng, D.; Chen, Y.; Zhou, X.; Gmach, D.; Milojicic, D. “Adaptive Scheduling of

Parallel Jobs in Spark Streaming”. In: Proceedings of the IEEE INFOCOM Conference

on Computer Communications, 2017, pp. 1–9.

[20] Cheng, D.; Zhou, X.; Wang, Y.; Jiang, C. “Adaptive Scheduling Parallel Jobs

with Dynamic Batching in Spark Streaming”, IEEE Transactions on Parallel and

Distributed Systems, vol. 29–12, December 2018, pp. 2672–2685.

166

[21] Chis, A.; González-Vélez, H. “Design Patterns and Algorithmic Skeletons: A Brief

Concordance”. In: Modeling and Simulation in HPC and Cloud Systems, Springer,

2018, pp. 45–56.

[22] Choi, Y.; Li, C.-H.; Silva, D. D.; Bivens, A.; Schenfeld, E. “Adaptive Task Duplication

Using On-line Bottleneck Detection for Streaming Applications”. In: Proceedings of

the Conference on Computing Frontiers, 2012, pp. 163–172.

[23] Cole, M. “Bringing Skeletons Out Of The Closet: A Pragmatic Manifesto For Skeletal

Parallel Programming”, Parallel Computing, vol. 30–3, March 2004, pp. 389–406.

[24] Costa, V. G.; Hidalgo, N.; Rosas, E.; Marin, M. “A Dynamic Load Balance

Algorithm for the S4 Parallel Stream Processing Engine”. In: Proceedings of

the International Symposium on Computer Architecture and High Performance

Computing Workshops, 2016, pp. 19–24.

[25] CPUlimit. “CPU Usage Limiter for Linux”. Source: http://cpulimit.sourceforge.net/,

Last access march, 2022.

[26] da Rosa Righi, R.; Rodrigues, V. F.; Rostirolla, G.; da Costa, C. A.; Roloff, E.; Navaux,

P. O. A. “A Lightweight Plug-and-play Elasticity Service for Self-organizing Resource

Provisioning on Parallel Applications”, Future Generation Computer Systems,

vol. 78, January 2018, pp. 176–190.

[27] Dagum, L.; Menon, R. “OpenMP: An Industry Standard API for Shared-memory

Programming”, IEEE Computational Science and Engineering, vol. 5–1,

January 1998, pp. 46–55.

[28] Danelutto, M.; Mencagli, G.; Torquati, M.; González Vélez, H.; Kilpatrick, P.

“Algorithmic Skeletons and Parallel Design Patterns in Mainstream Parallel

Programming”, International Journal of Parallel Programming, vol. 49,

November 2020, pp. 177–198.

[29] Das, T.; Zhong, Y.; Stoica, I.; Shenker, S. “Adaptive Stream Processing using

Dynamic Batch Sizing”. In: Proceedings of the ACM Symposium on Cloud

Computing, 2014, pp. 1–13.

[30] de Assuncao, M. D.; da Silva Veith, A.; Buyya, R. “Distributed Data Stream

Processing and Edge Computing: A Survey on Resource Elasticity and Future

Directions”, Journal of Network and Computer Applications, vol. 103, February 2018,

pp. 1–17.

[31] De Matteis, T.; Mencagli, G. “Keep Calm and React with Foresight: Strategies for

Low-latency and Energy-efficient Elastic Data Stream Processing”, ACM SIGPLAN

Notices, vol. 51–8, February 2016, pp. 13:1–13:12.

http://cpulimit.sourceforge.net/

167

[32] De Matteis, T.; Mencagli, G. “Elastic Scaling for Distributed Latency-sensitive Data

Stream Operators”. In: Proceedings of Euromicro International Conference on

Parallel, Distributed and Network-based Processing, 2017, pp. 61–68.

[33] De Matteis, T.; Mencagli, G. “Proactive Elasticity and Energy Awareness in Data

Stream Processing”, Journal of Systems and Software, vol. 127, May 2017, pp. 302–

319.

[34] De Matteis, T.; Mencagli, G.; De Sensi, D.; Torquati, M.; Danelutto, M. “GASSER: An

Auto-Tunable System for General Sliding-Window Streaming Operators on GPUs”,

IEEE Access, vol. 7, April 2019, pp. 48753–48769.

[35] De Sensi, D.; De Matteis, T.; Danelutto, M. “Nornir: A Customisable Framework for

Autonomic and Power-Aware Applications”, Lecture Notes in Computer Science, vol.

10659, December 2018, pp. 42–54.

[36] De Sensi, D.; De Matteis, T.; Danelutto, M. “Simplifying Self-adaptive and Power-

aware Computing with Nornir”, Future Generation Computer Systems, vol. 87,

October 2018, pp. 136–151.

[37] De Sensi, D.; De Matteis, T.; Torquati, M.; Mencagli, G.; Danelutto, M. “Bringing

Parallel Patterns Out of the Corner: The P3ARSEC Benchmark Suite”, ACM

Transactions on Architecture and Code Optimization, vol. 14–4, December 2017,

pp. 1–26.

[38] El Maghraoui, K.; Desell, T. J.; Szymanski, B. K.; Varela, C. A. “Dynamic Malleability

in Iterative MPI Applications”. In: Proceedings of the IEEE International Symposium

on Cluster Computing and the Grid, 2007, pp. 591–598.

[39] Fardbastani, M. A.; Sharifi, M. “Scalable Complex Event Processing Using Adaptive

Load Balancing”, Journal of Systems and Software, vol. 149, March 2019, pp. 305–

317.

[40] Floratou, A.; Agrawal, A.; Graham, B.; Rao, S.; Ramasamy, K. “Dhalion: Self-

Regulating Stream Processing in Heron”, Proceedings of the VLDB Endowment,

vol. 10, August 2017, pp. 1825–1836.

[41] Gad, R.; Kappes, M.; Medina-Bulo, I. “Local Parallelization of Pleasingly Parallel

Stream Processing on Multiple CPU Cores”. In: Proceedings of the IEEE Annual

Information Technology, Electronics and Mobile Communication Conference, 2016,

pp. 1–8.

[42] Garcia, A. M.; Griebler, D.; Schepke, C.; Fernandes, L. G. “SPBench: A Framework

for Creating Benchmarks of Stream Processing Applications”, Computing, In

press 2022, pp. 1–23.

168

[43] Gedik, B.; Andrade, H.; Wu, K.-L.; Yu, P. S.; Doo, M. “SPADE: The System S

Declarative Stream Processing Engine”. In: Proceedings of the ACM SIGMOD

International Conference on Management of Data, 2008, pp. 1123–1134.

[44] Gedik, B.; Schneider, S.; Hirzel, M.; Wu, K.-L. “Elastic Scaling for Data Stream

Processing”, IEEE Transactions on Parallel and Distributed Systems, vol. 25–6,

June 2014, pp. 1447–1463.

[45] Gheibi, O.; Weyns, D.; Quin, F. “Applying Machine Learning in Self-adaptive Systems:

A Systematic Literature Review”, ACM Transactions on Autonomous and Adaptive

Systems, vol. 15–3, August 2021, pp. 1–37.

[46] Griebler, D. “Domain-Specific Language & Support Tool for High-Level Stream

Parallelism”, Ph.D. Thesis, Faculdade de Informática - PPGCC - PUCRS, Porto Alegre,

Brazil, 2016, 243p.

[47] Griebler, D.; Danelutto, M.; Torquati, M.; Fernandes, L. G. “SPar: A DSL for High-

Level and Productive Stream Parallelism”, Parallel Processing Letters, vol. 27–01,

March 2017, pp. 1740005.

[48] Griebler, D.; De Sensi, D.; Vogel, A.; Danelutto, M.; Fernandes, L. G. “Service Level

Objectives via C++11 Attributes”, Lecture Notes in Computer Science, vol. 11339,

August 2019, pp. 745–756.

[49] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “Higher-Level

Parallelism Abstractions for Video Applications with SPar”. In: Proceedings of the

International Conference on Parallel Computing, 2017, pp. 698–707.

[50] Griebler, D.; Hoffmann, R. B.; Danelutto, M.; Fernandes, L. G. “High-Level and

Productive Stream Parallelism for Dedup, Ferret, and Bzip2”, International Journal

of Parallel Programming, vol. 47–1, February 2018, pp. 253–271.

[51] Griebler, D.; Vogel, A.; De Sensi, D.; Danelutto, M.; Fernandes, L. G. “Simplifying

and Implementing Service Level Objectives for Stream Parallelism”, The Journal of

Supercomputing, vol. 76–6, June 2020, pp. 4603–4628.

[52] Gulisano, V.; Peris, R. J.; Martinez, M. P.; Soriente, C.; Valduriez, P. “StreamCloud:

An Elastic and Scalable Data Streaming System”, IEEE Transactions on Parallel and

Distributed Systems, vol. 23–12, January 2012, pp. 2351–2365.

[53] Heinze, T.; Jerzak, Z.; Hackenbroich, G.; Fetzer, C. “Latency-aware Elastic Scaling

for Distributed Data Stream Processing Systems”. In: Proceedings of International

Conference on Distributed Event-Based Systems, 2014, pp. 13–22.

169

[54] Heinze, T.; Pappalardo, V.; Jerzak, Z.; Fetzer, C. “Auto-scaling Techniques for Elastic

Data Stream Processing”. In: Proceedings of International Conference on Data

Engineering Workshops, 2014, pp. 296–302.

[55] Heinze, T.; Roediger, L.; Meister, A.; Ji, Y.; Jerzak, Z.; Fetzer, C. “Online

Parameter Optimization for Elastic Data Stream Processing”. In: Proceedings of ACM

Symposium on Cloud Computing, 2015, pp. 276–287.

[56] Hellerstein, J.; Diao, Y.; Parekh, S.; Tilbury, D. “Feedback Control of Computing

Systems”. Wiley, 2004, 456p.

[57] Hidalgo, N.; Rosas, E.; Vasquez, C.; Wladdimiro, D. “Measuring Stream Processing

Systems Adaptability under Dynamic Workloads”, Future Generation Computer

Systems, vol. 88, November 2018, pp. 413–423.

[58] Hirzel, M.; Soulé, R.; Schneider, S.; Gedik, B.; Grimm, R. “A Catalog of Stream

Processing Optimizations”, ACM Computing Surveys, vol. 46–4, April 2014, pp. 46.

[59] Hoffmann, R. B.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Stream Parallelism

Annotations for Multi-Core Frameworks”. In: Proceedings of the Brazilian

Symposium on Programming Languages, 2020, pp. 48–55.

[60] Hoffmann, R. B.; Löff, J.; Griebler, D.; Fernandes, L. G. “OpenMP as Runtime

for Providing High-level Stream Parallelism on Multi-cores”, The Journal of

Supercomputing, vol. 78, April 2022, pp. 1–22.

[61] Jacobson, V. “Congestion Avoidance and Control”, ACM SIGCOMM computer

communication review, vol. 18–4, August 1988, pp. 314–329.

[62] Janjic, V.; Brown, C.; Mackenzie, K.; et al. “RPL: A Domain-Specific Language

for Designing and Implementing Parallel C++ Applications”. In: Proceedings of

Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing, 2016, pp. 288–295.

[63] Kahveci, B.; Gedik, B. “Joker: Elastic Stream Processing with Organic Adaptation”,

Journal of Parallel and Distributed Computing, vol. 137, March 2020, pp. 205–223.

[64] Kalavri, V.; Liagouris, J.; Hoffmann, M.; Dimitrova, D.; Forshaw, M.; Roscoe, T. “Three

Steps is All You Need: Fast, Accurate, Automatic Scaling Decisions for Distributed

Streaming Dataflows”. In: Proceedings of USENIX Symposium on Operating Systems

Design and Implementation, 2018, pp. 783–798.

[65] Karavadara, N.; Zolda, M.; Nguyen, V. T. N.; Knoop, J.; Kirner, R. “Dynamic

Power Management for Reactive Stream Processing on the SCC Tiled Architecture”,

EURASIP Journal on Embedded Systems, vol. 2016–1, June 2016, pp. 14.

170

[66] Kehrer, S.; Blochinger, W. “Elastic Parallel Systems for High Performance Cloud

Computing: State-of-the-Art and Future Directions”, Parallel Processing Letters,

vol. 29–02, July 2019, pp. 1–20.

[67] Kephart, J.; Chess, D. “The Vision of Autonomic Computing”, Computer, vol. 36–1,

January 2003, pp. 41–50.

[68] Kitchenham, B.; Charters, S. “Guidelines for Performing Systematic Literature

Reviews in Software Engineering”, Technical Report, EBSE, 2007, 65p.

[69] Kombi, R. K.; Lumineau, N.; Lamarre, P. “A Preventive Auto-parallelization Approach

for Elastic Stream Processing”. In: Proceedings of International Conference on

Distributed Computing Systems, 2017, pp. 1532–1542.

[70] Kombi, R. K.; Lumineau, N.; Lamarre, P.; Rivetti, N.; Busnel, Y. “DABS-storm: A Data-

aware Approach for Elastic Stream Processing”, Lecture Notes in Computer Science,

vol. 11360, December 2019, pp. 58–93.

[71] Krupitzer, C.; Roth, F. M.; VanSyckel, S.; Schiele, G.; Becker, C. “A Survey on

Engineering Approaches For Self-adaptive Systems”, The Pervasive and Mobile

Computing Journal, vol. 17, February 2015, pp. 184–206.

[72] Li, J.; Pu, C.; Chen, Y.; Gmach, D.; Milojicic, D. “Enabling Elastic Stream Processing

in Shared Clusters”. In: Proceedings of the IEEE International Conference on Cloud

Computing, 2016, pp. 108–115.

[73] Liu, X.; Dastjerdi, A. V.; Calheiros, R. N.; Qu, C.; Buyya, R. “A Stepwise Auto-Profiling

Method for Performance Optimization of Streaming Applications”, ACM Transactions

on Autonomous and Adaptive Systems, vol. 12–4, December 2018, pp. 24.

[74] Liu, Y.; Shi, X.; Jin, H. “Runtime-aware Adaptive Scheduling in Stream

Processing”, Concurrency and Computation: Practice and Experience, vol. 28–14,

September 2016, pp. 3830–3843.

[75] Loff, J.; B. Hoffman, R.; Griebler, D.; G. Fernandes, L. “High-Level Stream and Data

Parallelism in C++ for Multi-Cores”. In: Proceedings of Brazilian Symposium on

Programming Languages, 2021, pp. 41–48.

[76] Lohrmann, B.; Janacik, P.; Kao, O. “Elastic Stream Processing with Latency

Guarantees”. In: Proceedings of International Conference on Distributed Computing

Systems, 2015, pp. 399–410.

[77] Lombardi, F.; Aniello, L.; Bonomi, S.; Querzoni, L. “Elastic Symbiotic Scaling of

Operators and Resources in Stream Processing Systems”, IEEE Transactions on

Parallel and Distributed Systems, vol. 29–3, March 2018, pp. 572–585.

171

[78] Lombardi, F.; Muti, A.; Aniello, L.; Baldoni, R.; Bonomi, S.; Querzoni, L. “PASCAL: An

Architecture for Proactive Auto-scaling of Distributed Services”, Future Generation

Computer Systems, vol. 98, September 2019, pp. 342–361.

[79] Lv, Q.; Josephson, W.; Wang, Z.; Charikar, M.; Li, K. “Ferret: A Toolkit for

Content-based Similarity Search of Feature-rich Data”. In: Proceedings of the ACM

SIGOPS/EuroSys European Conference on Computer Systems, 2006, pp. 317–330.

[80] Mai, L.; Zeng, K.; Potharaju, R.; et al.. “Chi: A Scalable and Programmable

Control Plane for Distributed Stream Processing Systems”, Proceedings of the VLDB

Endowment, vol. 11–10, June 2018, pp. 1303–1316.

[81] Marangozova-Martin, V.; Palma, N.; Rheddane, A. “Multi-Level Elasticity for Data

Stream Processing”, IEEE Transactions on Parallel and Distributed Systems, vol. 30–

10, October 2019, pp. 2326–2337.

[82] Maron, C. A. F.; Vogel, A.; Griebler, D.; Fernandes, L. G. “Should PARSEC Benchmarks

be More Parametric? A Case Study with Dedup”. In: Proceedings of Euromicro

International Conference on Parallel, Distributed and Network-based Processing,

2019, pp. 217–221.

[83] Martin, A.; Brito, A.; Fetzer, C. “Scalable and Elastic Realtime Click Stream Analysis

Using StreamMine3G”. In: Proceedings of International Conference on Distributed

Event-Based Systems, 2014, pp. 198–205.

[84] Martin, A.; Smaneoto, T.; Dietze, T.; Brito, A.; Fetzer, C. “User-constraint and Self-

adaptive Fault Tolerance for Event Stream Processing Systems”. In: Proceedings of

International Conference on Dependable Systems and Networks, 2015, pp. 462–

473.

[85] Mattson, T. G.; Sanders, B. A.; Massingill, B. L. “Patterns for Parallel Programming”.

Addison-Wesley, 2005, 355p.

[86] Mayer, R.; Koldehofe, B.; Rothermel, K. “Meeting Predictable Buffer Limits in the

Parallel Execution of Event Processing Operators”. In: Proceedings of International

Conference on Big Data, 2014, pp. 402–411.

[87] Mayer, R.; Koldehofe, B.; Rothermel, K. “Predictable Low-Latency Event Detection

With Parallel Complex Event Processing”, IEEE Internet Things J, vol. 2–4,

August 2015, pp. 274–286.

[88] McCool, M.; Reinders, J.; Robison, A. “Structured Parallel Programming: Patterns for

Efficient Computation”. Elsevier Science, 2012, 406p.

172

[89] Mencagli, G. “A Game-Theoretic Approach for Elastic Distributed Data Stream

Processing”, ACM Transactions on Autonomous and Adaptive Systems, vol. 11–2,

July 2016, pp. 13.

[90] Mencagli, G.; Torquati, M.; Cardaci, A.; Fais, A.; Rinaldi, L.; Danelutto, M. “WindFlow:

High-Speed Continuous Stream Processing with Parallel Building Blocks”, IEEE

Transactions on Parallel and Distributed Systems, vol. 32, November 2021, pp. 2748

– 2763.

[91] Mencagli, G.; Torquati, M.; Danelutto, M. “Elastic-PPQ: A Two-level Autonomic

System for Spatial Preference Query Processing Over Dynamic Data Streams”,

Future Generation Computer Systems, vol. 79, February 2018, pp. 862–877.

[92] Metzger, P.; Cole, M.; Fensch, C.; Aldinucci, M.; Bini, E. “Enforcing Deadlines for

Skeleton-based Parallel Programming”. In: Proceedings of the IEEE Symposium on

Real-Time and Embedded Technology and Applications, 2020, pp. 188–199.

[93] Miller, J.; Trümper, L.; Terboven, C.; Müller, M. S. “A theoretical model for global

optimization of parallel algorithms”, Mathematics, vol. 9–14, July 2021, pp. 1685.

[94] Misale, C.; Drocco, M.; Tremblay, G.; Martinelli, A.; Aldinucci, M. “PiCo: High-

performance Data Analytics Pipelines in Modern C++”, Future Generation Computer

Systems, vol. 87, October 2018, pp. 392–403.

[95] Moore, G. “Moore’s Law”, Electronics Magazine, vol. 38–8, April 1965, pp. 114.

[96] Nardelli, M.; Russo, G. R.; Cardellini, V.; Lo Presti, F. “A Multi-level Elasticity

Framework for Distributed Data Stream Processing”. In: Proceedings of the

European Conference on Parallel Processing, 2018, pp. 53–64.

[97] Ni, X.; Schneider, S.; Pavuluri, R.; Kaus, J.; Wu, K.-L. “Automating Multi-level

Performance Elastic Components for IBM Streams”. In: Proceedings of International

Middleware Conference, 2019, pp. 163–175.

[98] Pieper, R. L. “High-level Programming Abstractions for Distributed Stream

Processing”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre,

Brazil, 2020, 170p.

[99] Pusukuri, K. K.; Gupta, R.; Bhuyan, L. N. “Thread reinforcer: Dynamically

determining number of threads via os level monitoring”. In: Proceedings of the IEEE

International Symposium on Workload Characterization, 2011, pp. 116–125.

[100] Qin, C.; Eichelberger, H.; Schmid, K. “Enactment of Adaptation in Data Stream

Processing with Latency Implications—A Systematic Literature Review”, Information

and Software Technology, vol. 111, July 2019, pp. 1–21.

173

[101] Rajadurai, S.; Bosboom, J.; Wong, W.-F.; Amarasinghe, S. “Gloss: Seamless Live

Reconfiguration and Reoptimization of Stream Programs”, ACM SIGPLAN Notices,

vol. 53–2, February 2018, pp. 98–112.

[102] Rockenbach, D. A. “High-Level Programming Abstractions for Stream Parallelism on

GPUs”, Master’s thesis, School of Technology - PPGCC - PUCRS, Porto Alegre, Brazil,

2020, 163p.

[103] Röger, H.; Mayer, R. “A Comprehensive Survey on Parallelization and Elasticity in

Stream Processing”, ACM Computing Surveys, vol. 52–2, March 2019, pp. 36.

[104] Russo, G. R.; Cardellini, V.; Lo Presti, F. “Reinforcement Learning Based Policies

for Elastic Stream Processing on Heterogeneous Resources”. In: Proceedings of

International Conference on Distributed and Event-based Systems, 2019, pp. 31–

42.

[105] Sahin, S.; Gedik, B. “C-Stream: A Co-routine-Based Elastic Stream Processing

Engine”, ACM Transactions on Parallel Computing, vol. 4–3, September 2018,

pp. 15.

[106] Schneider, S.; Andrade, H.; Gedik, B.; Biem, A.; Wu, K.-L. “Elastic Scaling of Data

Parallel Operators in Stream Processing”. In: Proceedings of the IEEE International

Symposium on Parallel & Distributed Processing, 2009, pp. 1–12.

[107] Schneider, S.; Hirzel, M.; Gedik, B.; Wu, K.-L. “Auto-parallelizing Stateful Distributed

Streaming Applications”. In: Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, 2012, pp. 53–64.

[108] Schneider, S.; Wu, K.-L. “Low-Synchronization, Mostly Lock-Free, Elastic Scheduling

for Streaming Runtimes”, ACM SIGPLAN Notices, vol. 52–6, June 2017, pp. 648–661.

[109] Schor, L.; Bacivarov, I.; Yang, H.; Thiele, L. “AdaPNet: Adapting Process Networks in

Response to Resource Variations”. In: Proceedings of the International Conference

on Compilers, Architecture and Synthesis for Embedded Systems, 2014, pp. 22.

[110] Selva, M.; Morel, L.; Marquet, K.; Frenot, S. “A Monitoring System for Runtime

Adaptations of Streaming Applications”. In: Proceedings of Euromicro International

Conference on Parallel, Distributed and Network-Based Processing, 2015, pp. 27–

34.

[111] Shevtsov, S.; Berekmeri, M.; Weyns, D.; Maggio, M. “Control-Theoretical Software

Adaptation: A Systematic Literature Review”, IEEE Transactions on Software

Engineering, vol. 44–8, August 2017, pp. 784–810.

174

[112] Stein, C.; Rockenbach, D.; Griebler, D.; et al.. “Latency-aware Adaptive Micro-

batching Techniques for Streamed Data Compression on Graphics Processing

Units”, Concurrency and Computation: Practice and Experience, vol. 33–11,

June 2020, pp. e5786.

[113] Su, Y.; Shi, F.; Talpur, S.; Wang, Y.; Hu, S.; Wei, J. “Achieving self-aware Parallelism in

Stream Programs”, Cluster Computing, vol. 18–2, December 2015, pp. 949–962.

[114] Talebi, M.; Sharifi, M.; Kalantari, M. “ACEP: An Adaptive Strategy for Proactive and

Elastic Processing of Complex Events”, The Journal of Supercomputing, vol. 77–5,

May 2021, pp. 4718–4753.

[115] Tang, Y.; Gedik, B. “Autopipelining for Data Stream Processing”, IEEE Transactions

on Parallel and Distributed Systems, vol. 24–12, December 2012, pp. 2344–2354.

[116] Theis, T.; Wong, P. “The End Of Moore’s Law: A New Beginning for Information

Technology”, Computing in Science & Engineering, vol. 19–2, March 2017, pp. 41.

[117] Thies, W.; Karczmarek, M.; Amarasinghe, S. “StreamIt: A Language for Streaming

Applications”. In: Proceedings of the International Conference on Compiler

Construction, 2002, pp. 179–196.

[118] Torquati, M. “Harnessing Parallelism in Multi/Many-Cores with Streams and Parallel

Patterns”, Ph.D. Thesis, Computer Science Dept. - University of Pisa, Italy, 2019,

378p.

[119] Torquati, M.; Sensi, D. D.; Mencagli, G.; Aldinucci, M.; Danelutto, M. “Power-aware

Pipelining with Automatic Concurrency Control”, Concurrency and Computation:

Practice and Experience, vol. 31–5, March 2019, pp. e4652.

[120] Toshniwal, A.; Taneja, S.; Shukla, A.; et al.. “Storm Twitter”. In: Proceedings of the

ACM SIGMOD International Conference on Management of Data, 2014, pp. 147–

156.

[121] Tudoran, R.; Nano, O.; Santos, I.; et al.. “Jetstream: Enabling High Performance

Event Streaming Across Cloud Data-centers”. In: Proceedings of International

Conference on Distributed Event-Based Systems, 2014, pp. 23–34.

[122] Venkataraman, S.; Panda, A.; Ousterhout, K.; Armbrust, M.; Ghodsi, A.; Franklin,

M. J.; et al. “Drizzle: Fast and Adaptable Stream Processing at Scale”. In: Proceedings

of the Symposium on Operating Systems Principles, 2017, pp. 374–389.

[123] Vilches, A.; Navarro, A.; Asenjo, R.; Corbera, F.; Gran, R.; Garzaran, M. J. “Mapping

Streaming Applications on Commodity Multi-CPU and GPU On-Chip Processors”,

175

IEEE Transactions on Parallel and Distributed Systems, vol. 27–4, April 2015, pp.

1099–1115.

[124] Vogel, A. “Adaptive Degree of Parallelism for the SPar Runtime”, Master’s Thesis,

School of Technology - PPGCC - PUCRS, Porto Alegre, Brazil, 2018, 100p.

[125] Vogel, A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Seamless Parallelism

Management for Video Stream Processing on Multi-cores”. In: Proceedings of the

International Conference on Parallel Computing, 2019, pp. 533–542.

[126] Vogel, A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Minimizing Self-Adaptation

Overhead in Parallel Stream Processing for Multi-Cores”, Lecture Notes in Computer

Science, vol. 11997, May 2020, pp. 30–41.

[127] Vogel, A.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Self-adaptation on Parallel

Stream Processing: A Systematic Review”, Concurrency and Computation: Practice

and Experience, vol. 34, March 2022, pp. e6759.

[128] Vogel, A.; Griebler, D.; De Sensi, D.; Danelutto, M.; Fernandes, L. G. “Autonomic

and Latency-Aware Degree of Parallelism Management in SPar”, Lecture Notes in

Computer Science, vol. 11339, August 2019, pp. 28–39.

[129] Vogel, A.; Griebler, D.; Fernandes, L. G. “Providing High-level Self-adaptive

Abstractions for Stream Parallelism on Multicores”, Software: Practice and

Experience, vol. 51–6, June 2021, pp. 1194–1217.

[130] Vogel, A.; Griebler, D.; Maron, C. A.; Schepke, C.; Fernandes, L. G. “Private IaaS

Clouds: A Comparative Analysis of OpenNebula, CloudStack and OpenStack”. In:

Proceedings of Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, 2016, pp. 672–679.

[131] Vogel, A.; Mencagli, G.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Towards On-

the-fly Self-Adaptation of Stream Parallel Patterns”. In: Proceedings of Euromicro

International Conference on Parallel, Distributed, and Network-Based Processing,

2021, pp. 89–93.

[132] Vogel, A.; Mencagli, G.; Griebler, D.; Danelutto, M.; Fernandes, L. G. “Online and

Transparent Self-adaptation of Stream Parallel Patterns”, Computing, In press 2022,

pp. 1–19.

[133] Vogel, A.; Rista, C.; Justo, G.; Ewald, E.; Griebler, D.; Mencagli, G.; Fernandes, L. G.

“Parallel Stream Processing with MPI for Video Analytics and Data Visualization”. In:

Proceedings of High Performance Computing Systems, 2020, pp. 102–116.

176

[134] Voss, M.; Asenjo, R.; Reinders, J. “Pro TBB: C++ Parallel Programming with

Threading Building Blocks”. Apress, 2019, 754p.

[135] Wang, L.; Fu, T. Z.; Ma, R. T.; Winslett, M.; Zhang, Z. “Elasticutor: Rapid Elasticity

for Realtime Stateful Stream Processing”. In: Proceedings of the International

Conference on Management of Data, 2019, pp. 573–588.

[136] Weyns, D. “Software Engineering of Self-adaptive Systems: An Organised Tour and

Future Challenges”. In: Chapter in Handbook of Software Engineering, Springer,

2017, pp. 1–26.

[137] Weyns, D. “An Introduction to Self-adaptive Systems: A Contemporary Software

Engineering Perspective”. Wiley, 2020, 288p.

[138] Weyns, D.; Usman Iftikhar, M.; De La Iglesia, D. G.; Ahmad, T. “A Survey of Formal

Methods in Self-adaptive Systems”. In: Proceedings of International Conference on

Computer Science and Software Engineering, 2012, pp. 67–79.

[139] Wu, X.; Liu, Y. “Enabling a Load Adaptive Distributed Stream Processing Platform

on Synchronized Clusters”. In: Proceedings of the IEEE International Conference on

Cloud Engineering, 2014, pp. 627–630.

[140] Yuan, E.; Esfahani, N.; Malek, S. “A Systematic Survey if Self-protecting Software

Systems”, ACM Transactions on Autonomous and Adaptive Systems, vol. 8–4,

January 2014, pp. 1–41.

[141] Zacheilas, N.; Kalogeraki, V.; Zygouras, N.; Panagiotou, N.; Gunopulos, D. “Elastic

Complex Event Processing Exploiting Prediction”. In: Proceedings of International

Conference on Big Data, 2015, pp. 213–222.

[142] Zaharia, M.; Xin, R.; Wendelland, P.; Das, T.; Armbrust, M.; et al.. “Apache Spark: A

Unified Engine for Big Data Processing”, Communications of the ACM, vol. 59–11,

November 2016, pp. 56–65.

[143] Zeuch, S.; Monte, B. D.; Karimov, J.; Lutz, C.; Renz, M.; Traub, J.; Breß, S.; Rabl, T.;

Markl, V. “Analyzing Efficient Stream Processing on Modern Hardware”, Proceedings

of the VLDB Endowment, vol. 12–5, January 2019, pp. 516–530.

[144] Zhang, Q.; Song, Y.; Routray, R. R.; Shi, W. “Adaptive Block and Batch Sizing

for Batched Stream Processing System”. In: Proceedings of the IEEE International

Conference on Autonomic Computing, 2016, pp. 35–44.

	Introduction
	Research problem context
	Research goals
	Contributions
	Document organization

	Background
	Parallel computing
	Parallelism properties
	High-level parallelism
	SPar
	FastFlow

	Stream Processing
	Parallelism in stream processing

	Self-adaptation overview
	Definition
	Applying self-adaptation

	Literature Review
	Research method
	Research questions
	Search strategy
	Study selection criteria

	Self-adaptation: categorization and taxonomy
	Self-adaptation categories
	Categorization of parallelism properties
	Self-adaptiveness validation

	Result analysis and discussion
	Studies overview and their execution environments
	Self-adaptation classification
	Adaptation actions and entities managed
	Monitoring on self-adaptation
	Adaptation decisions
	Self-adaptive parallelism in stream processing
	Validation metrics and variations
	Overhead measurement
	Results summary

	Research challenges
	Self-adaptive parallelism in complex compositions
	Improving resources efficiency and performance
	Improving self-adaptation for dynamic environments
	Self-adaptiveness validation and overhead measurement
	Generalization and reproducibility of self-adaptive solutions

	Threats to validity
	Summary

	 A Decision-making Framework for Self-adaptation in Parallel Applications at Run-time
	Context
	Conceptual framework
	Applying the proposed framework
	Summary

	Self-adaptive and Seamless Degree of Parallelism
	Previous work
	Self-adaptive strategies
	Self-adaptive degree of parallelism in multi-cores
	Self-adaptation for throughput
	Self-adaptive parallelism with latency constraints
	Managing resources utilization through self-adaptation
	Minimizing self-adaptation overhead in stream processing
	Seamless parallelism management for stream processing

	Discussion
	Applying the proposed strategies
	Closing remarks

	A Mechanism for Self-adaptation of Stream Parallel Patterns at Run-time
	Context
	Proposed solution
	Design goals and requirements
	Decision-making strategy
	Implementation
	Solution's usability

	Evaluation
	Experimental setup
	Experimental results

	Summary

	An Optimized Decision-making Strategy for Self-adaptation of Stream Parallel Patterns
	Motivation
	An optimized strategy
	Transitioning between configurations
	Solution's usability

	Evaluation
	Experimental setup
	Applications and configurations
	Self-adaptive strategy characterization
	Performance evaluation

	Remarks

	Supporting Self-adaptive Degree of Parallelism in Complex Composition Structures
	Context
	DS2's Decision-making
	Potential limitations of DS2's decision-making

	Proposed Solution
	Experimental Plan
	Experimental Setup
	Applications
	Experiments roadmap

	Evaluation with two parallel stages
	ES 1 - Balanced stages
	ES 2 and 3 - Unbalanced stages

	Evaluation with four parallel stages
	ES 4 and 5 - One bottleneck stage
	ES 6 - Two unbalanced bottleneck stages

	ES 7 - Ferret
	Complementary results with Machine 2
	Closing remarks

	Conclusion
	Implications
	Advances in self-adaptation applied to parallel computing
	Self-adaptation generalizability

	Limitations and future work
	Publications

	References

