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“Remember to look up at the stars and not

down at your feet. Try to make sense of what

you see and wonder about what makes the

universe exist. Be curious. And however dif-

ficult life may seem, there is always some-

thing you can do and succeed at. It matters

that you don’t just give up.”

(Stephen Hawking)
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MITIGANDO VIÉS EM SISTEMAS DE ANÁLISE FACIAL AO

INCORPORAR DIVERSIDADE DE RÓTULO.

RESUMO

Modelos de análise facial são cada vez mais utilizados em aplicações do mundo

real que têm impacto significativo na vida das pessoas. No entanto, como demonstrado

pela literatura, os modelos que classificam automaticamente os atributos faciais podem

apresentar comportamento de discriminação em relação a grupos protegidos, potencial-

mente causando impactos negativos nos indivíduos e na sociedade. Portanto, é funda-

mental desenvolver técnicas que possam mitigar vieses não intencionais em classifica-

dores faciais. Assim, neste trabalho, apresentamos um novo método de aprendizado de

máquina que combina rótulos subjetivos, baseados em humanos, e anotações objetivas,

baseadas em definições matemáticas, de traços faciais. Especificamente, geramos no-

vas anotações objetivas a partir de dois conjuntos de dados anotados por humanos em

grande escala, cada um capturando uma perspectiva diferente do traço facial analisado.

Em seguida, propomos um método de aprendizado em conjunto, que combina modelos

individuais treinados em diferentes tipos de anotações. Fornecemos uma análise apro-

fundada do procedimento de anotação, bem como a distribuição dos conjuntos de dados.

Além disso, demonstramos empiricamente que, ao incorporar a diversidade de rótulos,

nosso método mitiga com sucesso vieses não intencionais, mantendo uma precisão signi-

ficativa nas tarefas.

Palavras-Chave: aprendizado profundo, análise facial, redes neurais, justiça.



MITIGATING BIAS IN FACIAL ANALYSIS SYSTEMS BY

INCORPORATING LABEL DIVERSITY

ABSTRACT

Facial analysis models are increasingly applied in real-world applications that

have significant impact on peoples’ lives. However, as previously shown, models that

automatically classify facial attributes might exhibit algorithmic discrimination behavior

with respect to protected groups, potentially posing negative impacts on individuals and

society. It is therefore critical to develop techniques that can mitigate unintended biases in

facial classifiers. Hence, in this work, we introduce a novel learning method that combines

both subjective human-based labels and objective annotations based on mathematical

definitions of facial traits. Specifically, our proposed method first generates new objective

annotations, each capturing a different mathematical perspective of the analyzed facial

traits. We then use an ensemble learning method, which combines individual models

trained on different types of annotations. We provide an in-depth analysis of the anno-

tation procedure as well as the datasets distribution. Moreover, we empirically demon-

strate that, by incorporating label diversity to the decision-making process, our method

successfully mitigates unintended biases, while maintaining significant accuracy on the

downstream tasks.

Keywords: deep learning, facial analysis, neural networks, fairness.
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1. INTRODUCTION

In recent years, artificial intelligence (AI) has been incorporated into a large num-

ber of real-world applications, such as multimedia concept retrieval (Pouyanfar et al.,

2019), image classification (Loussaief and Abdelkrim, 2016), video and product recom-

mendation (Das et al., 2017), and social network analysis (Ghani et al., 2019). These

data-driven systems increasingly surround and shape humans in their daily life. This is

the case especially for machine learning (ML) algorithms, which learn human behavior by

recognizing patterns within the existing data and applying them to new unseen instances

to make predictions for future outcomes (Goodfellow et al., 2016). There are several ad-

vantages that foster the adoption of such systems (Kleinberg et al., 2018). Firstly, al-

gorithms may process much more data, and thus take into account much more factors

and context, than human beings may hold. Secondly, algorithms perform mathematically

complex computations much faster than humans, and might even reduce the factor of

human error. Finally, human decisions are subjective, and they often include biases.

Therefore, by integrating automated algorithm-based decision-making systems

one might expect that the decisions will be more objective and fair, especially for high-

stake applications, including employment, criminal justice, and personalized medicine.

Unfortunately, as several approaches have shown (Buolamwini and Gebru, 2018; Boluk-

basi et al., 2016; Caliskan et al., 2017), this is not always the case. Given that AI algorithms

are trained with historical data, these prediction engines may inherently learn, preserve

and even amplify these biases (Kleinberg et al., 2016; Zhao et al., 2017). As defined

by Mehrabi et al. (2021), in the context of algorithmic decision-making, “fairness is the

absence of any prejudice or favoritism towards an individual or group based on their in-

herent or acquired characteristics”. In other words, an algorithm that has skewed decision

towards a particular group of people is considered unfair (Mehrabi et al., 2021).

Special attention has been devoted to facial analysis applications since in the bio-

metric modality performance differentials mostly fall across points of sensitivity (e.g., race

and gender) (Drozdowski et al., 2021). Particularly, the human face is a very important

research topic as it transmits plenty of information to other humans, and thus possibly to

computer systems (Mehrabian, 2017), such as identity, intentions, emotional state, attrac-

tiveness, age, gender, attention and personality traits. Additionally, the human face has

also been of considerable interest to researchers due to the inherent and extraordinarily

well-developed ability of humans to process, recognize, identify, and extract information

from others’ faces (Little, 2014). Faces dominate our daily situations since we are born,

and our sensitivity to faces is strengthened every time we see a face under different con-

ditions (Little, 2014). For instance, previous work show that the responsiveness of human

infants only minutes old is greater to face-like stimuli compared with equally complicated

non-face stimuli (Goren et al., 1975; Johnson et al., 1991).
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With the vast adoption of automated systems in high-impact domains, it is im-

portant to take fairness issues into consideration and ensure sensitive attributes will not

be used for discriminatory purposes. In this work, we focus our attention on two aspects

of facial analysis, attractiveness classification and facial expression recognition, both of

which have a powerful impact on our lives. For instance, the pursuit for beauty has en-

couraged trillion-dollar cosmetics, aesthetics, and fitness industries, each one promising

a more attractive, youthful, and physically fitter version for each individual (Cutler, 2021).

Beauty also seems to be an important aspect of human social interactions and match-

ing behaviors, in which more attractive people appear to benefit from higher long-term

socioeconomic status and are even perceived by peers as “better” people (Cutler, 2021).

Simultaneously, facial expression is one of the most powerful, instinctive and uni-

versal signals for human beings to convey their emotional state and intentions (Darwin,

2014). Often the face express an emotion before people can even understand or verbalize

it. Mehrabian and Russell (1974) show that 55% of messages regarding feelings and atti-

tudes are conveyed through facial expression. Facial expression analysis is a fundamental

scientific topic, and its study dates back to the Aristotelian era (Bettadapura, 2012).

In part because of its importance and potential uses as well as its inherent chal-

lenges, automated attractiveness classification and facial expression recognition have

been of keen interest in the computer vision and machine learning communities. Sev-

eral approaches have proposed methods for automatically assessing face attractiveness

and expressions through computer analysis (Ma et al., 2021; Fasel, 2002). However, as

already shown in previous work (Sattigeri et al., 2019; Ramaswamy et al., 2021; Chen

and Joo, 2021), models that are trained to automatically analyze facial traits might exhibit

algorithmic discrimination behavior with respect to protected groups (e.g., gender, race,

age), potentially posing negative impacts on individuals and society.

1.1 Goals

Despite several advances towards understanding and mitigating the effect of bias

in facial analysis prediction, as far as we are aware, none of the previous work focused on

debiasing the system by augmenting the label diversity of the annotations. Thus, in this

work, our goal is to propose and validate an approach that combines different types of

annotations, such as the original and subjective human-based labels and the ones we

objectively generate based on mathematical definitions of both attractiveness and facial

expression. We hypothesize that introducing diversity into the decision-making model by

adding mathematical and possibly unbiased notions in the label dimension should reduce

the biases present in the final model.
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The specific goals of this work involve: (1) review previous literature on debiasing

approaches, especially the ones for facial analysis; (2) inspired by previous work, propose

a novel method that mitigates fairness issues, while maintaining competitive accuracy;

(3) run experiments to test our hypothesis on the proposed method; and (4) analyze re-

sults and compare with state-of-the-art approaches. To the best of our knowledge, this

is the first time a pre-processing debiasing method combines objective (mathematical)

labels and subjective (human-based) annotations.

1.2 Research Questions

In this work we propose to answer the following questions:

(1) By generating mathematically-based labels (Schmid et al., 2008; Ekman, 1993) and

training ML models on these objective annotations, is it possible to obtain a model

whose behavior is less discriminatory (measured by a fairness evaluation metric)

than one trained on human-based, i.e., subjective, labels?

(2) Is it possible to reduce unfair behavior of facial analysis systems, while maintaining a

competitive accuracy, by combining models trained on both subjective and objective

notions of attractiveness/facial expressions?

(3) Do the models trained on human-based and mathematically-based labels use the

same information to make its final prediction, i.e., do these models attend to the

same regions of an image to make its final decision?

1.3 Structure of this Work

The work is organized as follows: Chapter 2 introduces previous works in learning

fair models as well as computationally analyzing facial attractiveness and expressions. We

also review some works that propose explainability methods for deep learning. We con-

clude the section by situation our work on the existent liteturature. Chapter 3 describes

preliminary notation, datasets, and fairness metrics used throughout this work. We also

introduce in detail our proposed method, which is composed of three main parts: (1) gen-

erating objective labels for all training datasets; (2) individually training models on both

subjective as well as objective annotations; (3) combining individual models into an en-

semble. Chapter 4 presents our findings as well as the answers to our research questions.

Chapter 5 concludes this work by presenting both ethical as well as our final considera-

tions. We also present future work.
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2. RELATED WORK

This chapter aims to cover the main related work concerning fairness, especially

in the context of deep learning models, for the tasks explored in this work: facial attrac-

tiveness classification and expression recognition. In the following section, we review

some of the primary work in fairness regarding deep learning in general (Section 2.1), and

also approaches that use ensembles as their main motivation for mitigating fairness is-

sues (Section 2.1.1). We end the first part of this chapter by discussing some of the major

evaluation metrics used to mathematically measure and represent bias, fairness, and/or

discrimination of machine learning models (Section 2.1.2).

Then, we focus on describing approaches that automatically assess the attrac-

tiveness of the face (Section 2.2), including golden ratio (Section 2.2.1), neoclassical

canons (Section 2.2.2) and facial symmetry (Section 2.2.3), also covering methods that

studied and reduced fairness issues in this task. We next explore previous work on facial

expression recognition (Section 2.3), especially in the context of reducing the discrimina-

tory behavior of such systems. Furthermore, we describe the explainability methods used

in this work (Section 2.4) to better understand the models that compose our ensemble.

We conclude this chapter by situating our work in the literature (Section 2.5).

2.1 Fairness in Deep learning

While fairness is a fairly new topic in machine learning research, it has been ex-

tensively studied in the legal and sociological fields (Crenshaw, 1989; Balkin and Siegel,

2003; Small and Pager, 2020). The term discrimination can have two main definitions:

(i) disparate treatment (Jagielski et al., 2019): treating individuals differently by making

use of the protected attribute in the decision-making process (direct discrimination); (ii)

disparate impact (Barocas and Selbst, 2016; Lipton et al., 2018): outcomes across pro-

tected groups differ, thus affecting members of a protected class more than others (indi-

rect discrimination). Most approaches to mitigate discrimination are based on the notion

of protected/sensitive variables (Caton and Haas, 2020). The protected attributes of an

individual include records or visual characteristics that should not impact the model’s de-

cision. Common examples are gender, ethnicity, disability, and age. However, the notion

of protected variable can encompass any feature of the data that involves people (Barocas

et al., 2017).

Recently, there is a great concern in assessing and mitigating biases in order to

improve the ethics of the predictions made by automated system, which are increasingly

being adopted in our every-day life and can significantly impact human’s lives. One of the

most well-known example is in the field of judicial system, where recent research have
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Pre-processing
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Fairness Metrics

Figure 2.1: Traditional machine learning (ML) pipeline, based on the work of Caton and
Haas (2020). This framework has three major steps: training data collection, ML model
training, and future outcome prediction. It also includes a stratified view of some fairness
initiatives: pre, in, and post-processing, all considering a specific fairness metric.

shown that a tool used by courts in the United States had bias against African-Americans:

the tool falsely predicted future criminality twice the rate for African-Americans as it pre-

dicted for white people (Angwin et al., 2016; Chouldechova, 2017). Similar findings have

been made in other areas, such as hiring applications. For instance, it was recently dis-

covered that Amazon’s AI hiring system was discriminating against female candidates, es-

pecially for technical positions (Dastin, 2018). In advertising, it was shown that Google’s

ad-targeting algorithm had proposed more higher-paying executive jobs to men than to

women (Datta et al., 2015).

Machine learning algorithms can learn bias from a variety of different sources.

Everything from the data used to train it, to the people who are using this tool, and even

seemingly unrelated factors can contribute to AI bias (Mehrabi et al., 2021). However,

the literature classify all those factors into two potential main causes of unfairness in

ML (Mehrabi et al., 2021): those emerging from biases in the data and those emerg-

ing from the algorithm. Biases in the data may arise from the dataset itself, based on

device measurements, historically biased human decisions, erroneous reports and inter-

pretation, missing data or other reasons. Biases in the algorithm may be related to its

objective, which aims at minimizing overall aggregated prediction errors and therefore

may benefit majority groups over minorities (Pessach and Shmueli, 2022). Thus, in this

last case, minimizing the average loss may result in representation disparity – minority

groups contribute less to the training objective and therefore tend to suffer higher loss (or

penalty) (Hashimoto et al., 2018).

Much of the related literature that focuses on mitigating ML discrimination al-

gorithms address this either at a technical aspects of bias, or theoretically at a social,

legal, and ethical view (Caton and Haas, 2020). A stratified view of some fairness initia-

tives, as well as a traditional ML pipeline, can be visualized in Figure 2.1. The pipeline is
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generally composed of three major parts: (1) collecting the training data; (2) optimiz-

ing the model with the training data; and (3) predicting future outcomes on a test data.

Whilst not all approaches for fair ML fit into this framework, it provides an accepted visual

reference (Caton and Haas, 2020; Mehrabi et al., 2021; Dunkelau and Leuschel, 2019).

Technical approaches may be applied to the (1) training data, prior to modelling, known

as pre-processing; at the point of (2) modelling, named as in-processing; or at (3) test

time, after modelling, called post-processing.

Pre-processing approaches argue that the issue is in the data itself, as the dis-

tributions of specific sensitive variables may be biased and/or imbalanced. Thus, pre-

processing approaches tend to alter the distribution of sensitive variables in the dataset

itself. More generally, these approaches perform specific transformations on the data with

the aim of removing discriminatory attributes from the training data (Celis and Keswani,

2019). The main idea of this approach is to train a model on this modified version of the

dataset. Pre-processing is argued as the most flexible part of the data science pipeline

(Caton and Haas, 2020), as it makes no assumptions with respect to the choice of the

applied model architecture and training procedure choices.

In the work of Caton and Haas (2020), pre-processing approaches are split into

several categories, including adversarial learning, causal methods, relabelling and pertur-

bation, (re)sampling, re-weighting, transformation and variable blinding. Our work fits into

the pre-processing approach since we add new labels for which different models are then

optimized. As far as we know, this is the first time new annotations, specially the ones

based on more objective notions (i.e., geometric facial traits) of the attribute are gen-

erated to mitigate discriminatory algorithmic behavior. Some approaches (Kamiran and

Calders, 2012; Kamishima et al., 2012) have, however, proposed relabelling strategies,

which flip or modify the sensitive attribute, or even change the distribution of one or more

variables in the training data directly. Usually, relabelling involves the modification of the

labels of training or testing data instances so that the proportion of instances are equal

across all protected groups. In other words, these approaches often balance the dataset

with respect to the target and sensitive attributes, which is not our aim in this work.

Other common approaches in the pre-processing front include balancing the orig-

inal dataset by augmenting the input images (Ramaswamy et al., 2021; Sattigeri et al.,

2019), usually expanding to a great extent the total number of original images contained

in the dataset. For instance, in Sattigeri et al. (2019), the authors use a generative model

to create data that is similar to a given dataset, but results in a model that is more fair

with respect to protected attributes. Another example is the work of Ramaswamy et al.

(2021), which modifies the generative model to create new instances by independently

altering specific attributes (e.g., by removing glasses) that were found to correlate with a

specific sensitive group. They then increase the original dataset size with two times more

images.
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In contrast with the pre-processing approaches, the in-processing ones argue that

the fairness issue may be in the modelling technique (Caton and Haas, 2020). Additionally,

as pointed out by Wang et al. (2019), mitigating biases in the dataset itself might be

time-consuming and insufficient, since models can still make spurious correlation using

other indirect factors. Therefore, this line of research argues that the model can become

biased by using dominant and possibly hidden features, or applying a specific objective

loss (Mehrabi et al., 2021). Usually, these approaches tackle fairness issues by adding one

or more fairness constraints into the model optimization functions towards maximizing

performance and fairness. Thus, bias mitigation is usually done via model regularization,

which can be implicitly or explicitly applied based on a fairness metric. In the work of Caton

and Haas (2020), they propose some sub-categories which are aligned with this view,

including adversarial learning, bandits, constraint optimization, regularization and loss re-

weighting.

Finally, the post-processing approaches claim that the actual output of a model

may be unfair to one or more protected variables (Caton and Haas, 2020). Thus, post-

processing approaches tend to apply transformations to the model output to improve

fairness metrics. This is a flexible approach as it does not need access to the actual

algorithms that were used to build the ML model. Moreover, it is applicable for several

“black-box” scenarios, where not the entire ML process is known. Some categories for

post-processing approaches include calibration, constraint optimization, thresholding and

transformation (Caton and Haas, 2020).

2.1.1 Ensembles

Ensemble methods is a machine learning technique that combines several base

models in order to produce an optimal predictor. Based on the intuition that diversity of de-

cisions is an essential element to achieving fair outcomes, recent work have been focused

on studying the impact of ensemble models as a method for reducing unfair behavior. The

work of Grgić-Hlača et al. (2017) was one of the pioneers in this field. They studied the

fairness properties of ensembles when a classifier is randomly selected to make the pre-

diction. They presented settings in which an ensemble of unfair classifiers can be fair, and

settings where an ensemble of classifiers can provide better fairness-accuracy trade-offs

than individual predictors.

While Grgić-Hlača et al. (2017) points out the potential of using ensemble to im-

prove model fairness, their work lack empirical evidence. Thus, Bhaskaruni et al. (2019)

proposed a new ensemble learning strategy for fair learning that adopts the AdaBoost

framework. However, unlike the original AdaBoost that upweights mispredicted instances,

their method upweights unfairly predicted instances which are identified by an adaptation
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of the k-Nearest Neighbors (kNN) method presented in Luong et al. (2011). They consid-

ered the case where the generated classifiers are dependent, i.e., one is built on top of the

other. Their technique empirically demonstrated how ensembles have useful propertied

for a specific fairness metric named statistical parity.

One drawback of their approach is that the method showed a significant accuracy

drop. Kenfack et al. (2021) then proposed another weighting technique, in which the

weights are assigned proportionally to the predictors’ performance in terms of accuracy

and fairness. Their work focuses on the fairness performances of ensemble models built

using independent classifiers and without any fairness constraints. They demonstrated

that their proposed technique allows to reduce biases of the ensemble while maintaining

certain accuracy compared to uniformly weighted classifiers and individual classifiers.

More recently, the work of Feffer et al. (2022) studies whether combining bias

mitigation techniques and ensembles can help with fairness in several different scenarios.

They conduct an extensive set of experiments, combining 10 bias mitigators, 4 ensem-

bles and 13 datasets, and demonstrated that ensembles can often improve stability of

accuracy as well as group fairness metrics. However, they focused on tabular data, and

their results showed that the best configuration of bias mitigation strategy and ensem-

ble depends on several factors, including dataset characteristics, learning objectives, and

worldviews (Feffer et al., 2022).

Thus, our work is inspired by the existing literature on ensembles for reducing

unfair outcomes. However, differently from previous approaches that mainly present new

weighting techniques, we propose combining image classification models using a simple

weighted average. Our novelty is the fact that each of the base models that compose the

final ensemble is trained on a different perspective of the task at hand. These perspec-

tives are treated in the label level, and split into subjective and objective notions of the

attribute, as we describe in more detail in Section 3.2.

2.1.2 Evaluation Metrics

Many different metrics (Barocas and Selbst, 2016; Berk et al., 2018; Choulde-

chova, 2017; Hardt et al., 2016; Kleinberg et al., 2016) have been proposed to mathe-

matically measure and represent bias, fairness and/or discrimination of machine learning

models, especially for binary classification. Although the literature has defined a myriad

of notions to quantify fairness notions, each one has different aspects of what is be con-

sidered “fair”. This is mainly a consequence of having various different interpretations of

what means for an algorithm to be considered “fair”. The fairness notions may be sub-

divided into two different views: individual fairness, which argues that similar individuals

(inputs) should yield similar predictions (outputs); and group fairness, which defends that
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instances should be grouped according to a specific sensitive attribute and that the algo-

rithm should behave similarly across all groups.

Most quantitative definitions and measures of fairness are centered around three

fundamental aspects of a (binary) classifier (Caton and Haas, 2020): First, the sensitive

variable S that defines the groups (for group fairness) or individual attributes (for individ-

ual fairness) for which we want to measure fairness. Second, the target variable Y , which

has, in binary classification scenario, two possible values (Y = 0 or Y = 1). Third, the clas-

sification score P, which represents the predicted score (usually defined as probabilities,

limited within the interval [0, 1]) that a classifier outputs for each instance.

Regarding individual fairness metrics, the definition of the similarity might de-

pend on a specific task (Dwork et al., 2012), and it may be generally described as follows:

|P[Ŷi = y |Xi , Si ] − P[Ŷj = y |Xj , Sj ]| ≤ ϵ; if d(i , j) ≈ 0, (2.1)

where Ŷi is the model’s output prediction for individual i , Si refers to the sensitive at-

tributes of individual i , and Xi refers to his/her associated features (inputs). ϵ is the min-

imum amount of unfairness accepted by the system. The distance metric d(i , j) between

individuals i and j can be defined depending on the domain, e.g., KL Divergence or L1-

norm (Biega et al., 2018), and as noted by Pessach and Shmueli (2022) choosing this

distance metric is not a trivial task.

For group fairness, different kinds of measurements have been proposed. For ex-

ample, demographic parity, also known as statistical parity and Calders-Verwer discrimi-

nation score (∆Disc), requires that the average of positive predictions be similar across

different groups (Calders and Verwer, 2010). Formally, it is computed as:

|P[Ŷ = 1|S = 1] − P[Ŷ = 1|S = 0]| ≤ ϵ, (2.2)

where P is the output probabilities, Ŷ are the model predictions, where Ŷ = 1 represents

positive predictions (e.g., acceptance of a specific condition, such as for a job), and S
represents the protected attributes (e.g., race and gender), where, usually, S = 1 are the

instances of the privileged group and S = 0 are the ones of the unprivileged group. A lower

value indicates more similar acceptance rates and thus more fairness. Intuitively, this

metric tries to ensure that the positive prediction is assigned to the two sensitive groups

at a similar rate. It is also independent of the ground-truth labels (Du et al., 2020), which

has the advantage of avoiding the mislabeling problem, i.e., incorrectly labeling a set of

instances, and it circumvents the cost of gathering high-quality annotations. However, one

limitation with this view is that different groups could have very different label distribution

for Y (Beutel et al., 2019).



30

Hardt et al. (2016) addresses this by proposing equalized odds, which computes

the difference between the false positive rates (FPR), and the difference between the true

positive rates (TPR) of the two groups. It can be formalized as follows:

|P[Ŷ = 1|S = 1, Y = 0] − P[Ŷ = 1|S = 0, Y = 0]| ≤ ϵ, (2.3)

|P[Ŷ = 1|S = 1, Y = 1] − P[Ŷ = 1|S = 0, Y = 1]| ≤ ϵ, (2.4)

where Equation 2.3 requires the absolute difference in the FPR of two groups to be bounded

by ϵ, and Equation 2.4 represents the absolute difference in the TPR of two groups bounded

by ϵ. Smaller difference between groups indicates better fairness. Intuitively, this metric

proposes that the probability of a person in the positive class being correctly assigned

a positive outcome and the probability of a person in a negative class being incorrectly

assigned a positive outcome should both be the same for the protected and unprotected

group members (Verma and Rubin, 2018).

A more specific metric based on equalized odds is equality of opportunity (∆EoO)

(Hardt et al., 2016), which some works (Garg et al., 2020; Zhang et al., 2018a) define as

the absolute difference between true positive rates (TPR) across sensitive groups, while

other works (Castelnovo et al., 2022; Sattigeri et al., 2019) define as the absolute differ-

ence between false negative rates (FNR) across the groups. We follow the latter definition

since previous related literature on the task we are tackling in this work uses the latter

definition. It can be formalized as:

∆EoO = |P[Ŷ = 0|S = 1, Y = 1] − P[Ŷ = 0|S = 0, Y = 1]|. (2.5)

Even though many metrics have been proposed to mitigate discriminatory be-

havior, some work (Corbett-Davies et al., 2017; Berk et al., 2018; Chouldechova, 2017;

Friedler et al., 2021; Corbett-Davies and Goel, 2018) have shown that it is not possible

to simultaneously satisfy several metrics (notions) of fairness. Moreover, the literature

discusses an existent trade-off between accuracy and fairness – as one increase fairness,

it is possible to compromise accuracy (Corbett-Davies et al., 2017; Kleinberg et al., 2016).

Overall, the goal of mitigating unfairness in algorithms is to achieve a model that allows

for higher fairness without significantly compromising the accuracy or other alternative

notions of utility.

To measure the discriminatory behavior of the models, we use different metrics

according to the related work of the two facial analysis tasks explored in this work. For the

attractiveness classification (Sattigeri et al., 2019; Ramaswamy et al., 2021), we use the

metric of Equality of Opportunity (∆EoO), defined in Equation 2.5. For the FER (Chen and
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Joo, 2021), we use the Calders-Verwer discrimination score (Calders and Verwer, 2010)

(∆Disc), defined in Equation 2.2.

2.2 Attractiveness

Attractiveness has a wide variety of impacts on peoples’ lives. The pursuit for

beauty has encouraged trillion-dollar cosmetics, aesthetics, and fitness industries, each

one promising a more attractive, youthful, and physically fitter version for each individ-

ual (Cutler, 2021). Beauty also seems to be an important aspect of human social inter-

actions and matching behaviors, in which more attractive people appear to benefit from

higher long-term socioeconomic status and are even perceived by peers as “better” peo-

ple (Cutler, 2021). In fact, attractive individuals are perceived to own a variety of positive

personality attributes (Little, 2014). They are considered to be friendlier, more intelligent,

more interesting, and more socially competent (Hönn and Göz, 2007).

There have been a large number of studies examining attractiveness stereo-

types. In the work of Cash and Kilcullen (1985), hiring preferences were shown for attrac-

tive over unattractive applicants. Attractiveness may also influence judgements about

the gravity of committed crimes (Sigall and Ostrove, 1975). Moreover, magazines, so-

cial media, and television are filled with attractive faces, which may in fact reinforce the

hypothesis that the media exploits universal beauty standards. This is especially true

in online social media platforms (Cutler, 2021), which have influenced beauty standards

through instantaneous editing features, filtering, and cropping, allowing people to become

the ideal version of themselves. As some studies demonstrate (Sherlock and Wagstaff,

2019; Verrastro et al., 2020) such tools have a great impact on individuals and society in

general.

Even though attractiveness has a considerable influence over our lives, which

characteristics make a particular face attractive is imperfectly defined. It has been shown,

however, that there is a very high agreement between groups of raters belonging to the

same culture and even across cultures (Cunningham et al., 1995; Langlois et al., 2000).

Thus, if different people can agree on which faces are attractive and which faces are not

attractive when judging faces of different ethnic backgrounds, then this indicates that peo-

ple all around the globe use similar features or criteria when making up their judgments.

Further evidence shows that infants prefer to look at faces that are rated by

adults more highly for attractiveness than at those faces rated lower (Samuels et al., 1994;

Langlois et al., 1987). This supports the theory that there exists something innate about

attractiveness, which is not influenced by culture nor background. Thus, both early de-

velopmental and cross-cultural agreement on attractiveness are initial evidence against

the notion that attractiveness ideals are slowly absorbed by growing up within a particular
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culture, and this suggests that there is indeed a global consensus on which features are

considered attractive, and which features are not.

Based on the evidence that the notion of attractiveness is universal, some au-

tomated systems for rating facial attractiveness were proposed. The earliest classifiers

for this task are based on traditional machine learning methods. As well as for other

computer vision tasks, deep learning brought great performance improvements for facial

beauty assessment (Gan et al., 2014; Gray et al., 2010). However, as recently demon-

strated (Ramaswamy et al., 2021; Sattigeri et al., 2019), these approaches were shown to

discriminate against certain groups.

Some pre-processing approaches were proposed to mitigate such behavior. For

instance, in the work of Sattigeri et al. (2019), the authors modify the training loss of

a generative model to create a synthetic dataset that is similar to a given dataset, but

results in a model that is more fair with respect to protected attributes for either demo-

graphic parity or equality of opportunity. Another example is the work of Ramaswamy

et al. (2021), which balanced the training data with respect to the protected attributes

using a generative model. They modified this model to create new instances by indepen-

dently altering specific attributes (e.g., removing glasses) to de-correlate the target label

and the sensitive attribute. Both works expand the training dataset from two to three

times its original size.

In addition to facial features, shape, and form, people judge human faces using

several other attributes such as expressions, average (composite of) faces, thirds and

fifths theory (Gunes, 2011; Kagian et al., 2007). The multiple fitness model (Cunningham

et al., 1995) suggests that there is no single feature or dimension that determines attrac-

tiveness. Rather, attractiveness is determined by a combination of several features, which

individually represent different aspects of a persons’ face. This theory still supports that

some facial qualities are perceived as universally (physically) attractive.

In this work, we build upon this idea by proposing a method that combines differ-

ent learners, each trained on a different perspective of the notion of attractiveness. We

hypothesize that each model possibly captures different features to compose its final pre-

diction. To extract the so-called objective annotations of the attractiveness based on facial

traits, we follow the work of Schmid et al. (2008) and use three predictors that have been

proposed in literature: Golden Ratios (Section 2.2.1), Neoclassical Canons (Section 2.2.2),

and Facial Symmetry (Section 2.2.3). All of them were empirically shown to correlate with

human attractiveness ratings (Schmid et al., 2008). We describe these notions in the

following sections.
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(a) Mona Lisa, by Leonardo da Vinci. (b) Human figure, by Leonardo da Vinci.

Figure 2.2: Popular examples of the use of the Golden Ratio theory (Zhang et al., 2016).

2.2.1 Golden Ratio

The Golden Ratio theory, also known as the divine proportion, can be seen in

several different fields, such as arts, architecture, and flowers (Zhang et al., 2016). One

famous example is the painting of Mona Lisa, which embodies the golden ratio, as can be

visualized in the left side of Figure 2.2. Another well-known example that uses this pro-

portion is Leonardo Da Vinci’s drawing of the human body, which can be seen in the right

side of Figure 2.2. This theory defines that faces that have features with ratios close to the

golden ratio proportion are perceived as more attractive (Gunes, 2011). The golden ratio

is approximately the ratio of 1.618 to 1 (Gunes, 2011). Schmid et al. (2008) demonstrated

that six facial ratios are predictors of attractiveness. These ratios are defined in Table 2.1,

where x and y refers to the x-coordinate or y -coordinate of the points, and the numbers

indicate which points of Figure 2.3 were used in their study to calculate the ratio.

Figure 2.3: Feature points of a facial image from Schmid et al. (2008).
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Description Numerator Points Denominator Points

Mouth width to interocular distance x_25 − x_27 x_12 − x_13
Lips–chin distance to interocular distance y_23 − y_29 x_12 − x_13
Lips–chin distance to nose width y_23 − y_29 x_18 − x_20
Length of face to width of face y_1 − y_29 x_17 − x_21
Mouth width to nose width x_25 − x_27 x_18 − x_20

Table 2.1: Golden ratio definitions shown to correlate with attractiveness ratings by hu-
mans (Schmid et al., 2008).

2.2.2 Neoclassical Canons

Neoclassical canons were proposed by artists in the renaissance period as guides

for drawing beautiful faces (Farkas et al., 1985). The basic idea behind this definition is

that the proportion of an attractive face should follow some predefined ratios. Farkas et al.

(1985) summarize these principles into nine neoclassical canons and their variations. Four

of the canons use vertical measurements, four use horizontal measurements, and one

uses angles of inclination. Only six of them can be tested from the frontal views of the

facial images. However, Schmid et al. (2008) show that only five of the six frontal ratios

have a significant correlation with attractiveness. We use all of the human-correlated

ratios, except one which uses ear points, since we only extract facial landmarks. All of

them are defined in Table 2.2 and illustrated in Figure 2.4.

Description Equation Number

Forehead height = Nose Length = Lower Face Height 2
Interocular Distance = Nose Width 5
Interocular Distance = Right of Left Eye Fissure Width 6
Face Width = 4× Nose Width 8

Table 2.2: Neoclassical canons definitions shown to correlate with attractiveness Schmid
et al. (2008). Equation numbers are from Farkas et al. (1985).

Additionally, we follow the procedure defined in Schmid et al. (2008) and compute

the coefficient of variation instead of the individual distances, since some measures use

more than two features (e.g., Equation Number 2 in Table 2.2). The coefficient of variation

(cv) computes the ratio of the standard deviation (σ) of the distances to the mean (µ) of

the distances (cv = σ
µ
). For instance, to compute the final distance in Equation Number

2, from Table 2.2, would require pair-wise comparisons of three distances. The use of the

coefficient of variation allows us to incorporate all three distances into one value while

adjusting for the size of the face (dividing by the mean). The larger the coefficient of
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(a) Equation 2. (b) Equation 5.

(c) Equation 6. (d) Equation 8.

Figure 2.4: Neoclassical canon equations from Farkas et al. (1985), shown by Schmid et al.
(2008) to correlate with human attractiveness ratings.

variation, the more the face differs from the canon. A value of zero indicates there is no

variation in the distance, i.e., they are equal.

2.2.3 Symmetry

Facial symmetry is considered an important factor for attractiveness (Rhodes,

2006). Symmetry has many different definitions (Schmid et al., 2008; Rhodes, 2006;

Kowner, 1996; Perrett et al., 1999), but it generally refers to the extent that one half of an

image (e.g., face) is the same as the other half. In our work, we follow the definition pre-

sented in Schmid et al. (2008), which define the axis of symmetry to be located vertically

at the middle of the face. To characterize this line they fit the least squares regression line

through the seven points measured along the middle face (Points 1, 3, 19, 23, 26, 28, 29
depicted in Figure 2.3). In this work, the following facial attribute pairs (left and right) are

used (Schmid et al., 2008):

• Eyebrows (Points 2 and 4; Points 7 and 8)

• Eyes (Points 11 and 14; Points 12 and 13; Points 15 and 16)

• Nose (Points 18 and 20)

• Lips (Points 22 and 24; Points 25 and 27)
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• Face (Points 6 and 9)

We used all the symmetry ratios shown to correlate with human attractiveness

ratings in Schmid et al. (2008), except the one which uses ear points since we only ex-

tract facial landmarks. To compute the symmetry of a face, the authors propose firstly

computing the symmetry of the individual features, i.e., the distance between the points

described above, and then averaging them all to obtain a single value for each face. To

compute the distance metric, we use the function dpL,pR , where d is defined as the eu-

clidean distance between two coordinates for the left (pL) and the right (pR) sides. The

euclidean distance is further defined as:

dp,m =
√

(px − pmx )
2 + (py − pmy )2, (2.6)

where p represents a point in the face, and pm represents a point in the middle of the

face, both in terms of x , y axis. A value of zero in the distance implies ideal symmetry; the

greater the absolute value the less symmetric the face is.

2.3 Facial Expression Recognition

Facial expression is one of the most powerful and instinctive means of communi-

cation for human beings. A facial expression can be considered as a visible manifestation

of an inner state of mind and hence gives idea about intention, interest, and psychology

of a person. The study of facial expression analysis dates back to the Aristotelian era (Bet-

tadapura, 2012). One of the important works on facial expression analysis, that had and

still has a huge impact on modern days is the work of Darwin (2014). He established the

means of expressions in humans and animals, and categorized them into different groups.

Another important milestone in the study of facial expressions is the work done

by Ekman and Friesen (1978), who developed the Facial Action Coding System (FACS).

FACS is a muscle-based approach that identifies the facial muscles that individually, or in

groups, cause changes in facial behaviors. These changes in the face and the underlying

muscle(s) that caused these changes are called Action Units (AUs). FACS is composed of

a total of 44 AUs, and each one can be described in two ways: (1) presence: if the AU is

visible (i.e., active) in the face. (2) intensity: how intense is the AU (minimal to maximal)

on, usually, a 5-point ordinal scale. Some AUs can be visualized in Figure 2.5. The work

of Ekman and Friesen (1978) is of significant importance and still has a large influence on

the development of facial expression recognition (FER) systems.

With some exceptions (e.g., Tian et al. (2001)), most modern automated FER sys-

tems are treated as a classification problem, and they attempt to recognize a small set of

emotional expressions (classes) as shown in Figure 2.6 (i.e., disgust, fear, happiness, sur-
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Figure 2.5: Facial Action Units (AUs). The AUs with “∗” indicate that the criteria have
changed for this AU, that is, AU 25, 26, and 27 are now coded according to criteria of
intensity (25A-E), and AU 41, 42, and 43 are now coded according to criteria of inten-
sity (Tian et al., 2011).

prise, sadness, anger), besides the neutral expression (no emotion, thus no active AU). As

in other related fields, deep learning has improved the performance of FER systems, and

some works (Xu et al., 2020; Chen and Joo, 2021) have recently focused on understanding

and mitigating biases in such systems. For instance, Li and Deng (2020) observed that

disgust, anger, fear, and surprise are usually underrepresented classes in datasets, thus

being harder to learn compared to the classes that have the majority of samples in the

dataset.

Another study conducted by Rhue (2018) provides evidence that some real-world

applications of facial recognition interpret emotions differently based on the person’s race.

For instance, Face++ consistently interprets black players as angrier than white players,

even controlling for their degree of smiling. Another example is the Microsoft’s system,

which registers contempt instead of anger, and it interprets black players as more con-

temptuous when their facial expression is ambiguous.
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Figure 2.6: Posed facial expression (images from database Kanade et al. (2000)). 1: dis-
gust; 2: fear; 3: happiness; 4: surprise; 5: sadness; 6: anger.

Moreover, some works have shown slight differences in perception regarding

some expressions in female and male faces. For instance, women were shown to be gener-

ally seen as happier than men (Steephen et al., 2018). Becker et al. (2007) demonstrated

that people are faster and more accurate at detecting angry expressions on male faces

and happy expressions on female faces. Denton et al. (2019) found that a smiling classi-

fier trained on the CelebA dataset (Liu et al., 2015) is more likely to predict ‘smiling’ when

eliminating a person’s beard or applying makeup or lipstick to the image while keeping

everything else unmodified.

Among the common approaches that try to reduce unfair behaviors are the ones

that are generic to a set of facial classification tasks. For instance, the work of Alvi et al.

(2018) proposes a debiasing approach based on domain adaptation. Specifically, they

create a network with several output branches, where the primary branch has a single

classification loss, which assesses the ability of the network to accurately distinguish

between classes of the primary task, and several secondary branches which have two

losses: a classification loss and a confusion loss. These losses are used to, in turn, as-

sess the amount of spurious information in the feature representation and then remove

it. Another work among this line is the one from Wang et al. (2020), which studied the

mitigation strategies of data balancing, fairness through blindness, and fairness through

awareness, and demonstrated that fairness through awareness provided the best results

for smiling/not-smiling classification on the CelebA dataset (Liu et al., 2015).

Nonetheless, other approaches have been designed specifically to mitigate bi-

ases in the FER systems. In the work of Xu et al. (2020), for instance, they studied the

effect of methods that use confusion loss for mitigating biases in the RAF-DB dataset (Li

et al., 2017). Specifically, they analyzed an ‘attribute-aware’ network, where the classifi-

cation layer of the network receives a representation of the attributes and can explicitly

use this information to model the effect of biases, and a ‘disentangled approach’, where

the network has several parallel classification branches, one for the main task and others

for each sensitive attribute, and a confusion loss is used on top of them so that the sen-

sitive attributes is not predictable from the main classification head. In other words, the

confusion loss aims at de-correlating the target and sensitive attributes.
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Recently, in the FER field, the idea of using the relationship among multiple labels

has been explored (Chen and Joo, 2021). In the context of objective labels to mitigate

fairness issues, Chen and Joo (2021) leads the initiative by proposing an in-processing

approach that incorporates the triplet loss to embed the dependency between Action Units

(AUs) and expression categories. The main idea behind the method is to encourage the

model to treat two samples in a similar way if the AUs that compose the facial expression

are similar, even if their gender expressions and annotated labels are different. Differently

than their work, we propose to use AUs in the pre-processing step, as a novel and more

objective labeling strategy.

2.4 Explainability

Advances in machine learning and deep learning have had a profound impact on

many domains. Recently, researchers have begun to explore how these approaches can

be used in high-stake domains such as healthcare, criminal justice system, finance, and

military decision making (Chakraborty et al., 2017; Goodfellow et al., 2016). As the im-

portance of the decisions aided using ML increases, it becomes increasingly important for

users to be able to suitably weight the assistance provided by such systems. A fundamen-

tal property is explainability – ML models should provide the relevant parts of the machine

representations in an understandable format for humans. In other words, explainability

refers to the type and completeness of the output given when a model is queried for the

reasoning behind its decision (Chakraborty et al., 2017).

Since the approval of the European Union’s new General Data Protection Regula-

tion (GDPR) (Hoofnagle et al., 2019), the use of automated individual decision-making has

been restricted, and the new directives focused on the protection of sensitive data of per-

sons, such as their age, gender, ancestry, name, or place of residence, for instance. The

GDPR also imposed a data quality requirement in the AI area since the quality of the train-

ing datasets has a great impact on the outcome (Jain et al., 2020). The GDPR gives any

citizen the “right to explanation” of an algorithmic decision made about them (Buhrmester

et al., 2021). The explanation has to be transmitted in a precise, transparent, understand-

able, and easily accessible form and in a clear and simple language.

Some ML models are inherently interpretable since its conception, e.g., linear

models or decision trees (Rudin, 2019). However, most ML models, especially in the deep

learning (DL) domain, are referred to as black box, and usually require additional math-

ematical frameworks to explain their behavior. Based on the scope and the purpose of

the explanation (Nielsen et al., 2022), a user can employ a local or a global explainabil-

ity method. Global explainability methods attempt to explain the overall decision-making

process of the model, i.e., how the inputs are transformed into the output decisions at the
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model level. In contrast, local explainability methods attempt to explain individual deci-

sions, i.e., what features of a specific input (e.g., pixels of an image) may have influenced

the model’s decision.

Two broad categories of local explainability exist, namely, methods based on fea-

ture perturbation and others based on gradient information (Nielsen et al., 2022). The

former class of methods records the effect of masking or altering the input features onto

the network’s performance. This requires multiple passes through the network to de-

termine the importance of each input pixel, making perturbation-based attribution com-

putationally intensive. In the latter case, the gradients of the output (logits or softmax

probabilities) with respect to the extracted features or the input are calculated via back-

propagation and are used to estimate attribution scores. The magnitudes of gradients

show the importance of input to output scores.

In our work, to understand which features contributes mostly to the models’ fi-

nal decisions, we use the saliency method (Simonyan et al., 2014), a local gradient-based

method that generates heatmaps to point at where an AI model is attending to as it makes

a specific decision or prediction. The heatmaps have been treated as explanations, and

they recently became a popular alternative for explaining deep neural network behav-

ior (Tomsett et al., 2020). Specifically, we use the technique developed by Simonyan et al.

(2014). It uses Taylor series, based on partial derivatives to display input sensitivities in

images. Their saliency maps were shown to represent the first-order approximation of the

attributions.

2.5 Context of this work in the Literature

Our work aims to propose a new method for mitigating unfair behavior of ML

systems by incorporating more diverse and objective labels to the training procedure of

the models that compose the final ensemble. For combining the models, we take inspi-

ration from previous work (Grgić-Hlača et al., 2017), described in Section 3.2.3, which

showed that ensembles can be a useful technique for reducing biases in ML systems.

However, previous work (Bhaskaruni et al., 2019; Kenfack et al., 2021; Feffer et al., 2022)

that exhibited empirical evidence of such fact focused mainly on proposing new weighting

mechanisms that deal with the accuracy and/or fairness performance of the models that

compose the final ensemble. We do not design a new weighting mechanism, instead, we

make use of a simple weighted average, and center our attention to the diversity of labels

used to train the individual models.

In our work, we focus our effort on two main tasks: (1) attractiveness classifica-

tion, and (2) facial emotion recognition. For the first task, some works (Sattigeri et al.,

2019; Ramaswamy et al., 2021), which we describe in Section 2.2, have recently ad-
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dressed the fairness problem by proposing pre-processing approaches that generate syn-

thetically modified images to balance the training instances with respect to the sensitive

attributes. Most of these approaches use Generative Adversarial Networks (GANs) (Good-

fellow et al., 2014). In some sense, this is similar to our approach, in which it tries to in-

corporate more diversity to the data. However, both approaches significantly increase the

computational cost for (1) creating synthetic images, and (2) training the model with the

augmented dataset. Moreover, the generative models may create non-realistic images,

and even include their own biases into the dataset. Instead of creating new instances for

the dataset, we propose annotating the original instances with new labels, i.e., we add

new perspectives on the notions of each task.

The second task of facial expression recognition has not yet received wide atten-

tion (Xu et al., 2020; Chen and Joo, 2021; Rhue, 2018). All of the past approaches that

we are aware of, which we describe in Section 2.3, have proposed in-processing meth-

ods for mitigating biases in this task. Specifically, Xu et al. (2020) conducted a study on

confusion loss for two datasets, named RAF-DB (Li et al., 2017; Li and Deng, 2019) and

CelebA (attribute smiling/not smiling) (Liu et al., 2015). Chen and Joo (2021) conducted a

study on annotation bias, and found that systematic biases exist in many facial expression

datasets, especially the ones collected in-the-wild. They propose to incorporate the triplet

loss into the objective function to embed the dependency between AUs and expression

categories. This is the first work that proposes using some form of objective annotation

procedure, however, they use it in the in-processing step. In contrast, we propose gener-

ating objective labels to boost diversity in the decision-making process.

Thus, to the best of our knowledge, our work is a first step towards proposing

a labeling strategy, which incorporates both objective and subjective labels, as a pre-

processing method for augmenting the variety of individual models in the final ML system.
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3. DATA AND PROPOSED METHOD

In this chapter, we initially present preliminary information regarding this study

(Section 3.1). Specifically, we start by clarifying the notation (Section 3.1.1) used through-

out this work, as well as evaluation metrics (Section 3.1.2) and datasets (Section 3.1.3)

for each task (i.e., attractiveness classification and facial expression recognition). We then

provide a detailed description of our proposed method, which consists of three main steps:

(1) data annotation based on different mathematical notions of attractiveness and facial

expression; (2) next, we train one machine learning model for each of the mathematical

concepts, and one model with the original human-based annotations; and (3) finally, we

aggregate all the models into an ensemble framework. We weight the combination of indi-

vidual models, each trained on specific attractiveness/facial expression notion. Our main

hypothesis is that by combining the objective (geometrically-based), and the biased and

subjective (human-based) notions we can effectively reduce the effect of discrimination

on the system. Our goal is to create a diverse set of decision-making algorithms that when

combined can produce a fairer system.

3.1 Preliminary

In this section, we describe preliminary information that is useful for the deep

understanding of our work. We start by formalizing the notation applied in this work. We

then introduce the evaluation metrics used to assess our models. Finally, we describe the

datasets used to train and evaluate our models.

3.1.1 Notation

We define a dataset D consisting of D = (S, X , Y ), where S represents sensitive

attributes such as gender, age, and skin color, X represents input features, and Y repre-

sents the annotated labels. We suppose there are N samples in total and we use Si , Xi , Yi

to represent the features of the i-th sample. To simplify, we suppose the sensitive attribute

S and the outcome Y are binary, which means Y , S = {0, 1}. In order to train a machine

learning model on dataset D, one must optimize parameters θ of function fθ : X → R|Y |

to produce accurate predictions. In this work, we minimize the standard cross-entropy

(CE) loss (L) over dataset D to provide the correct prediction Ŷ . A fair machine learning

problem is to design a fair predictor Ŷ with parameters θ : X × S → Y , which maximizes

the likelihood P(Y , X , S|θ) while satisfying some specific fair constraints that we introduce

in the next section.
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3.1.2 Evaluation Metrics

In this section, we describe the evaluation metrics we used in this work. Evalua-

tion metrics are a part of every machine learning pipeline, and their goal is to monitor and

measure the performance of a given model. In this work, following previous work (Sat-

tigeri et al., 2019; Ramaswamy et al., 2021; Chen and Joo, 2021) we measure the model’s

usefulness by its overall accuracy, which is is defined as the number of correct predictions

divided by the total number of predictions. In some analysis we also provide the accuracy

stratified by the sensitive group, i.e. accuracy regarding the groups S = 0 or S = 1. This is

calculated by gathering the number of correct predictions by the total number of predic-

tions for instances pertaining to that particular sensitive group according to the annotated

labels.

To measure the discriminatory behavior, we use different metrics according to

the related work of the two tasks explored in this work. For the attractiveness classifi-

cation (Sattigeri et al., 2019; Ramaswamy et al., 2021), we use the metric of Equality of

Opportunity (∆EoO), which is defined (Sattigeri et al., 2019) as the difference of condi-

tional false negative rates across groups. Formally, it is defined as in Equation 2.5. For the

facial expression recognition (Chen and Joo, 2021), we use the Calders-Verwer discrimina-

tion score (Calders and Verwer, 2010) (∆Disc), which is defined as the difference between

conditional probabilities of advantageous decisions for non-protected and protected mem-

bers. Formally, it is defined as in Equation 2.2. For more information on the metrics, we

refer to Section 3.1.2.

3.1.3 Dataset

In this section, we describe the datasets used for each of the tasks explored in

this work. We highlight the fact that we chose the datasets, and used the training and test

splits, according to previous research on the fairness field. We start by introducing the

dataset used for the attractiveness task (Section 3.1.3), and then describe the datasets

used for the facial expression recognition (Section 3.1.3).

Attractiveness

In this work, we use the CelebA dataset (Liu et al., 2015), which is a well-known

benchmark in the ML community (Shen and Liu, 2017; Heusel et al., 2017; Choi et al.,

2018). We purposefully selected a dataset containing celebrities since previous work al-

ready claimed that some aspects of famous people might influence the way people rate at-

tractiveness (Thwaites et al., 2012). For instance, it is suggested by Thwaites et al. (2012)
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that the humor and personality associated with a specific character make the celebrity

attractive. Additionally, previous work (Sattigeri et al., 2019; Quadrianto et al., 2019; Ra-

maswamy et al., 2021) already studied and demonstrated fairness issues regarding the

attractive feature in this dataset.

This dataset contains celebrity faces with 40 binary face attributes, correspond-

ing to the presence (1) or absence (−1, which in this work we treat as 0) of each facial

trait. Each attribute was annotated by a “professional labeling company”, further de-

scribed by Böhlen et al. (2017) as “a group of 50 paid male and female participants, aged

20 and 30, and recruited from mainland China during a 3 month development phase” (Sat-

tigeri et al., 2019). It contains a total of 202, 599 images downloaded from the internet,

cropped and resized to 128× 128 pixels (Denton et al., 2019). For the attractiveness clas-

sification task, we consider three different sets of protected attributes: gender expression

and age, which are given in the dataset, and a binary skin tone label that we annotate

using the Fitzpatrick skin type scale (Sattigeri et al., 2019). The procedure we followed for

annotating the skin color is describe in Section 3.2.1.

Facial Expression

Collecting a large amount of labeled training data that include as many variations

of the populations and environments as possible is important for the design of a deep ex-

pression recognition systems (Li and Deng, 2020). However, as in other fields of deep

learning, this is rarely the case. In our experiments, we follow the procedures and splits

used in Chen and Joo (2021). In their work, one dataset was used for training on the happi-

ness attribute, and another one was used for training on the anger attribute. The one used

for the former attribute is named Expression in-the-Wild Database (ExpW) (Zhang et al.,

2015, 2018b), and the one for the latter is called AffectNet (Mollahosseini et al., 2017).

Since we analyse two main facial expressions (i.e., anger and happiness), for the this clas-

sification task, we consider only one protected attribute, which is gender expression. We

leave other sensitive attributes for future work.

The ExpW dataset (Zhang et al., 2015, 2018b) contains 91,793 faces downloaded

using Google image search. Each of the facial images were manually annotated as one of

the seven basic expression categories. Nonface images were removed in the annotation

process. Since the ExpW dataset does not contain labels regarding sensitive attributes,

in the work of Chen and Joo (2021) they annotate all instances with their corresponding

gender expressions according to a ResNet-34 (He et al., 2016) gender classifier trained

on FairFace dataset (Karkkainen and Joo, 2021). We contacted the authors, who provided

access to all the code and data necessary for the experiments.

The AffectNet dataset (Mollahosseini et al., 2017), used in this work for training

the models on the anger attribute, is considered one of the largest FER dataset (Li and
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Deng, 2020). It contains more than one million images, of which ≈ 420,000 of them have

manually annotated labels of the presence of seven discrete facial expressions (categori-

cal model) and the intensity of valence and arousal (dimensional model). The remaining (≈
550,000) were automatically annotated using ResNext Neural Network trained on all man-

ually annotated training set samples with an average accuracy of 65%. All the images

were obtained by querying three different search engines using 1,250 emotion related

keywords in six different languages.

A third dataset was used for the evaluation part, which is named Chicago Faces

Database (CFD) (Ma et al., 2015). The main CFD set consists of images of 597 unique

individuals, and it includes self-identified Asian, Black, Latino, and White female and male

faces, recruited in the United States. In the work of Chen and Joo (2021), they construct

a balanced subset of the test dataset for each expression. First, they train a “naive classi-

fier” (Chen and Joo, 2021) for the attribute at hand, using either the original ExpW dataset

(for the happiness attribute) or the original Automatic AffectNet (for the anger attribute).

Then, they remove instances from CFD whose predicted scores from the naive classifier

are ≥0.99999 or ≤0.00001 for the happiness attribute, and ≤0.05 for the anger attribute.

Finally, they balance the proportions of happiness/anger instances between males and

females by removing some images labeled as the majority class (i.e., happy female im-

ages for the happiness attribute). We denominate the evaluation subset for the happiness

attribute as CFD (Happiness), and for the anger attribute CFD (Anger).

3.2 Proposed Method

Previous work (Cunningham et al., 1995) suggests that there is no single fea-

ture or dimension that determines attractiveness, and that attractiveness is the result of

combining several features, which individually represent different aspects of a persons’

face. Moreover, this theory indicates that some facial qualities are perceived as univer-

sally (physically) attractive. Similarly, facial expressions can be seen as a multi-signal

system (Revina and Emmanuel, 2021), and have been shown to posses universal mean-

ing, regardless of culture and gender (Ekman, 1993, 1976). Based on these premises,

we propose a method that combines several models trained on two main concepts: one

based on different geometrical traits (objective annotations) and another based on human

judgment (subjective annotations).

In this chapter, we detail our proposed method. First, we describe the annota-

tion methodology (Section 3.2.1) for both the attractiveness classification as well as facial

expression recognition tasks. Then, we describe the training procedure (Section 3.2.2),

which includes the model architectures, optimizer and hyperparameter choices. Finally,
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Figure 3.1: Feature points of a facial image from Openface detector (Baltrušaitis et al.,
2016).

we introduce the ensemble framework (Section 3.2.3) we use to combine the individual

models, each trained in a different definition.

3.2.1 Annotation Methodology

In this section, we describe the annotation methodology we implemented for

each task. Since we are proposing the use of objective annotations, which are designed

individually for each task, each annotation procedure has its peculiarities. Thus, we split

the explanation into two parts: first, we detail the annotation procedures of both objective

labels as well as the skin color labels for the attractiveness attribute; then, we explain the

annotation method for the objective labels of facial expression attribute.

Attractiveness

For annotating the objective labels in the attractiveness classification task, we ini-

tially extract the facial landmarks using the Openface sofrware (Baltrušaitis et al., 2016),

which captures 68 (x , y ) coordinates as shown in Figure 3.1. We then map the indexes

of the 68 landmarks extracted by Openface to the 29 used in the work of Schmid et al.

(2008). During this process, some lateral facial poses (i.e., images in which one side of

the face is mostly hidden) are not detected by the face detector. Thus, these images are

automatically removed from the training dataset.

Given that the attractiveness measures we are using in this step are based on

geometric traits of the face, and to avoid miscalculation, we additionally discard other

detected lateral facial poses. Specifically, we consider lateral images, and thus remove

them, the ones in which the difference between the distance of the eyes (points 11 and 14

in Figure 2.3) is less than a given threshold. Formally, we test if d(p11, pm)−d(p14, pm) < β,
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where pm is the point located in the middle of the face and d is the euclidean distance

between the points, as described in Equation 2.6. The ideal value for β is zero as this

represents a perfect symmetric face, i.e., the distance from the middle to both sides of

the face is equal, thus, the image is not lateral. However, requiring that β be zero is a

very hard constraint. We empirically tested several thresholds on thousand images and

found that the best one was β = 10. In other words, for β = 10 we were able to maintain

most of the images of the dataset, while obtaining mostly frontal images. At the end of

this process, we kept 137, 048 of the 162, 770 training images (84.19%), and 16, 896 of the

19, 867 validation images (85.04%).

Once we are able to detect all the facial landmarks in frontal images, we calcu-

late the mathematical notion of attractiveness for all dataset images. The mathematical

notion may be calculated by the golden ratio, symmetry, or neoclassical canons. It is

important to highlight that we do not generate annotations for the sensitive attributes of

gender expression and age. In such cases, we simply use the ones provided by the CelebA

dataset, i.e., gender was taken from the “Male” property, while age was used from the

“Young” property. Thus, age is not a continuous observation, rather, it is defined as a

binary attribute. Gender is the gender expression that humans infer when observing the

images. Furthermore, the presumed subjective annotations are the ones we obtain when

using the original attractiveness labels from the CelebA. We solely generate annotations

for the objective definition of attractiveness based on geometrical traits of the human

face, and for the skin color annotations, which we describe later in this section.

Figure 3.2 shows the dataset distribution for female and male for each calculated

metric. Even though the distributions for the same metric seem similar across gender, the

high peaks for male and female are slightly different for all of them. Additionally, each

metric has its own ideal (target) value. For instance, golden ratio defines the best ratio as

1.618, while symmetry and neoclassical canons define it as 0. We note that neoclassical

canons is the curve which possesses the most distant peak from the target value. We

hypothesize that this attractiveness metric may be too restrictive, thus not perfectly re-

flecting the real distribution of the data. This might be related to the fact that neoclassical

canons is based on artistic concepts, as mentioned by Farkas et al. (1985).

We depicted the distribution for the age attribute in Figure 3.3. We can visualize

that the gap between young (Y = 1) and not young (Y = 0), for both symmetry and golden

ratio, is greater than the one found for the gender attributes. Moreover, we can visualize

that in general there exists more images associated with the young sensitive attribute

(shown in red) than with the not young (shown in blue). Thus, the distribution across

young and not young is less balanced than the distribution of male and female. However,

the distribution curves of all objective annotations are still similar across both youth and

gender sensitive attributes.
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(a) Golden ratio. (b) Symmetry. (c) Neoclassical canons.

Figure 3.2: Histograms showing the data distributions for the attractive attribute stratified
by the gender attribute.

(a) Golden ratio. (b) Symmetry. (c) Neoclassical canons.

Figure 3.3: Histograms showing the data distributions for the attractive attribute stratified
by the age attribute.

(a) Golden ratio. (b) Symmetry. (c) Neoclassical canons.

Figure 3.4: Histograms showing the data distributions for the attractive attribute stratified
by the skin color attribute.

We annotate a third and last sensitive attribute based on skin color. We followed

a similar procedure to the work of Sattigeri et al. (2019). CelebA contains multiple images

of the same celebrity. Thus, we automatically annotated the average skin color of all the

images of each of the celebrities, and propagated the annotation to all of their correspond-

ing images. To reduce the annotation error due to colors not related to skin, e.g., beard or

makeup, we selected the pixels from the facial region of the cheeks. Thus, for the left and

right sides of the face, we selected the pixels located inside the points 1, 2, 31 and 49,

and points 14, 15, 35, 53 from Figure 3.1, respectively. We also added the region inside

the points 7, 8, 9, 57, which are close to the chin. We removed points which were con-

sidered outliers, i.e., whose colors were had a z-score, defined as p−µ
σ

, above 3 (standard

deviation).
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Finally, we calculate the Individual Topology Angle (ITA) on the average value of

the selected skin pixels to assign each image a skin tone from the Fitzpatrick skin type

scale (Fitzpatrick, 1975). ITA is assessed by colorimetry (Chardon et al., 1991), and it is

calculated using the following equation:

ITA =
arctan(Lum∗ − 50)

b∗ · 180
π

, (3.1)

where Lum∗ represents luminance ranging from black (0) to white (100) and b∗ ranging

from yellow to blue. The higher the ITA, the lighter the skin (Osto et al., 2022). ITA skin

color types are classified into six groups, from very light to dark skin: very light (> 55◦),

light (41◦ to ≤ 55◦), intermediate (28◦ to ≤ 41◦), tan (10◦ to ≤ 28◦), brown (−30◦ to ≤ 10◦,

and dark (≤ −30◦). Since we are working with binary attribute, we categorized the types

I (very light), II (light), and III (intermediate) as S = 0 and the types IV (tan), V (brown),

and VI (dark) were categorized as S = 1. Figure 3.4 depicts the data distribution for

this sensitive attribute. We can visually inspect that for this attribute, the curves of both

golden ratio and symmetry distributions are similar to the one obtained for the gender

expression attribute. However, we see a predominance of lighter (blue) than darker (red)

skin for these two mathematical concepts of beauty. For the neoclassical canons, dark

and light skin colors obtain similar distributions, where the peak of lighter skin instances

is slightly shifted towards higher values.

Since all of the attractiveness definitions generate a unique continuous value

describing the attractiveness of each person, and the CelebA dataset has binary attribute

annotations, to obtain consistency we define five different ranges for each mathematical

attractiveness measure. These ranges correspond to the amount of variation each metric

tolerates. For golden ratio, since its ideal value is 1.618, we define a delta (δ) value that

defines the range for which one is considered attractive, e.g., for a hypothetical δ = 0.1, we

consider all images that possess golden ratio from 1.518 (1.618− δ) to 1.718 (1.618 + δ) as

attractive. In contrast, since symmetry and neoclassical canons establish the ideal value

as 0, and negative values for both metrics are infeasible, we use a threshold t that defines

the range of attractive people from 0 to t . For instance, for a symmetry/neoclassical canon

of t = 4 the person is considered attractive if it contains a proportion between 0 and 4.

Therefore, the higher the δ or the t , the more people will fit into the attractive

category (Y = 1). Our goal when choosing δ and t is to study the effects of different data

distributions in the model’s behavior. Thus, at the end, we tested, for each metric (golden

ratio, neoclassical canons, and symmetry), five different label distributions, one for each

threshold t and δ. Some choices of t and δ are close to the dataset distribution generated

by humans, as shown in Tables 4.1, 4.2 and 4.3.
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Expression Action Units

Happiness 6, 12
Sadness 1, 4, 15
Surprise 1, 2, 5, 26
Fear 1, 2, 4, 5, 7, 20, 26
Anger 4, 5, 7, 23
Disgust 9, 15, 17
Neutral -

Table 3.1: Action Units (AUs) that compose each of the six basic expressions (Ekman,
1993), and the neutral expression which implies no AU is active.

Facial Expression

For the FER system, we use all the pre-processing procedures and datasets pro-

vided in the work of Chen and Joo (2021). We highlight the fact that, in their work, the

training datasets and the test splits differ. ExpW dataset (Zhang et al., 2015, 2018b)

was used for training the classifier for happiness detection, while AffectNet (Mollahosseini

et al., 2017) was used for training the classifier for anger detection. Two modified versions

with a balanced subset of the CFD dataset (Ma et al., 2015) were used as evaluation sets,

each one designed for a specific attribute (happiness/anger). Moreover, in their work,

all models are treated as a binary classification, i.e., happy(Y = 1)/unhappy(Y = 0) and

angry(Y = 1)/non-angry (Y = 0). The negative classes (Y = 0) for both happiness and

anger classifiers are defined as all the instances that are not annotated as happy or an-

gry, respectively, in the original human-based labels.

We follow a similar annotation procedure for both tasks. For generating the ob-

jective annotations, our first step is composed of extracting the AUs for all images in the

training dataset. We extract both the presence (as a binary feature) as well as the in-

tensity (as a float feature) of each AU. A complete table of which AUs compose each of

the basic expressions is shown in Table 3.1. Next, we create two algorithms, one which

we named ObjBase, based mainly on the detection of AUs, and a second named ObjLCS,

which is also based on intensities. For the first one, we simply test whether the combina-

tion of AUs for a specific facial expression exists, i.e., whether all the AUs that compose an

expression (Ekman and Friesen, 1978) are active for a particular image. For instance, the

sadness emotion is composed of the AUs 1, 4 and 15. Therefore, in order for an image to

be annotated as ‘sad’, using the ObjBase algorithm, all three AUs need to be active. Thus,

we only annotate the image as containing a particular facial expression if all the AUs that

compose that expression are active. In case two facial expressions are detected, which

happens in 12% of images for the happy attribute and 7% for the anger attribute, we av-

erage the intensity of the AUs that compose the facial expressions that were detected.

Finally, we annotate the one which contains the highest average since this indicates the

AUs that compose this expressions are the predominant ones.
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(a) DObjBase. (b) DObjLCS0.3 .

(c) DObjLCS0.4 . (d) DObjLCS0.5 .

Figure 3.5: Histograms showing the data distributions per gender for the happiness at-
tribute of the ExpW dataset (Zhang et al., 2015, 2018b). Green dots represent the fre-
quency of each facial expression for the human-based annotations.

However, this algorithm was designed to only annotate an expression if all the

AUs that compose that expression are active in the face. Thus, this algorithm creates the

requirement that all AUs be active in order to annotate such an expression. This becomes

a very hard constraint as the number of AUs that compose an expression grows, which is

the case for some expressions, such as ‘fear’ which is composed of a combination of seven

AUs. This can be easily observed in both Figure 3.5a for the happiness attribute, as well

as in Figure 3.6a for anger attribute, since almost no instance (or no instance at all, which

is the case for the anger attribute) is labeled as containing the ‘fear’ expression. Hence,

next, we propose a second algorithm for annotating the expressions in an objective way.

We use the Longest Common Subsequence (LCS) (Velusamy et al., 2011) method, which

is a function whose purpose is to count the number of operations required to transform

one string (i.e., detected AUs in an image) into another (i.e., AUs that compose a facial

expression). Our goal is to find the expression which possesses the AUs closer to the AUs

detected in each image, not necessarily requiring that all AUs pertaining to that expression

be active. For the ‘sadness’ expression, this would not require that all three AUs be active

simultaneously for the ‘sad’ expression to be considered as a possible label. Thus, this
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(a) DObjBase. (b) DObjLCS0.3 .

(c) DObjLCS0.4 . (d) DObjLCS0.5 .

Figure 3.6: Histograms showing the data distributions per gender for the anger attribute
of the AffectNet dataset (Mollahosseini et al., 2017). Green dots represent the frequency
of each facial expression for the human-based annotations.

method aims to produce a less strict annotation procedure, and a more diverse set of

labels.

Using the LCS method, we compare the AUs detected in the image with the AUs

that represent each of the six basic emotions as found by previous literature (Mavadati

et al., 2013). However, using this method might also select more than one expression

for each image. In this case, we follow the work of Peres and Musse (2021) which cal-

culates the euclidean distance between the intensity of the AUs detected by each facial

expression selected and the “ideal” ones defined in the literature by Ekman and Friesen

(1978). The expression that results in the lowest Euclidean distance is the annotated one.

Nevertheless, extracting the neutral expression individually using the LCS algorithm is not

possible since we try to approximate the expression which possesses the AUs closer to the

active AUs, while the neutral expression implies absolutely no AU is active. To solve this,

we use a threshold t that determines a neutral expression if the average intensity of the

AUs of the detected facial expression is less than a minimum t . We define three possible

thresholds t (0.3, 0.4 and 0.5).

Figures 3.5b, 3.5c and 3.5d show the distribution of using the ObjLCSt algorithm

for annotating the dataset for the happy attribute. The higher the t , the more concen-

trated the distribution is to the neutral expression (i.e., less evenly distributed among the

six facial expressions). The green dots represent the distribution of the expressions for the

human-based annotations (H). We note that all thresholds t provide a more distributed
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labels per facial expression than the one annotated by humans, i.e., for the human-based

labels 70.9% of the instances are considered as happy or neutral. Figures 3.6b, 3.6c and

3.6d show the distribution of using the ObjLCSt algorithm for annotating the dataset for the

anger attribute. Again we see that the distribution that has the most spread distribution

(across all seven classes) is the one from the dataset with t = 0.3 (DObjLCS0.3). Moreover,

we also note that all thresholds t provide a more distributed labels per facial expression

than the one annotated by humans. Thus, all expressions are more well-represented and

balanced in the objective annotations. The main difference we note between the anger

and happiness distributions is that the AffectNet dataset possesses a more balanced pro-

portion among both female and male genders for all expressions, while ExpW has more

male annotations.

3.2.2 Model Training

Following previous work in both attractiveness classification (Ramaswamy et al.,

2021; Sattigeri et al., 2019) and facial expression recognition (Chen and Joo, 2021), we

consider only binary classification. In other words, all models are treated as a binary

classification, i.e., attractive (Y = 1)/non-attractive(Y = 0), happy(Y = 1)/unhappy(Y = 0),

and angry(Y = 1)/non-angry(Y = 0). In our experiments for the attractive attribute, we use

ResNet-18 (He et al., 2016) as the base architecture, while for the FER, following previous

work (Chen and Joo, 2021), we use ResNet-50 pre-trained on ImageNet (Russakovsky et al.,

2015). Both architectures are very popular and well-established algorithms for any visual

classification task in the ML field (Khan et al., 2020). The inputs of the ResNet-18 model

are 128 × 128 colored images, and 224 × 224 for the ResNet-50. All models were trained

with the cross entropy loss and Adam (Kingma and Ba, 2015) optimizer.

The learning rate (LR) was set to 1e − 3 for the attractiveness classification, and

1e−4 for the FER. We use LR scheduler for the former one, which reduces the initial value

by 0.1 when the validation loss does not improve for 10 concurrent epochs. For the latter

one, we reduce the LR by 0.1 every 6 epochs for the initial LR, and every 4 epochs for

the rest. In the work of Chen and Joo (2021), they use two different methodologies for

sampling instances: for the happiness attribute, they randomly sample 20,000 instances,

while for the anger attribute, they sample the instances so that they are balanced for

each gender and AU combination. Since happiness is part of the main paper (and anger

is part of the supplementary material), we decided to only follow the methodology used

for the happiness attributes in facial expressions, i.e., randomly sample the instances.

After the training process, we end up with four categories of models for the attractive

attribute, each trained on different ground-truth labels: human-based (1) CelebA anno-

tations, geometrically-based (2) golden ratio, (3) symmetry, and (4) neoclassical canons.
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For the FER, we end up with three categories of models: (1) human annotations, (2) AUs

base, and (3) AUs with LCS. Thus, models in different categories learn different objective

functions.

3.2.3 Ensemble

The last main step in our proposed method is combining models trained on dif-

ferent perspectives. This step has two main motivations: (1) most recent approaches

replace several human decision-makers with a single algorithm, such as COMPAS for re-

cidivism risk estimation in the U.S. (Angwin et al., 2016). However, in high-stake real-world

applications, the decision is taken from multiple human beings. Thus, we argue that one

could introduce diversity into machine decision making by instead training a collection of

algorithms, each capturing a different perspective about the problem solution, and then

combining their decisions in some ensemble manner (e.g., simple or weighted majority

voting); our other motivation is (2) the rich literature on ensemble learning, where a

combination of a diverse ensemble of predictors have been shown to outperform single

predictors on a variety of tasks (Brown et al., 2005). Moreover, some studies argued and

demonstrated that one can obtain a fair model by individually combining them into an en-

semble (Grgić-Hlača et al., 2017; Bhaskaruni et al., 2019). Specifically, Grgić-Hlača et al.

(2017) theoretically showed that, compared to a single decision-making model, a diverse

ensemble can both achieve better fairness in terms of uniformilly distributing resources

among users, as well as achieve a better accuracy-fairness trade-off.

In this work, we implement bagging, which often considers (a) homogeneous

models, i.e., trained using the same architecture; (b) learns each model independently

from each other in parallel; (c) combines them following some kind of deterministic av-

eraging process. Our goal when choosing this type of weighting procedure is to analyze

different possible combinations of the individual models, each obtaining a different influ-

ence (i.e., weight) on the final ensemble. Thus, after individually training each model, we

combine them using the following weighted process for each instance Xi of the test set:

f (Xi) =
M∑

m=1

αm · om(Xi), (3.2)

where f (Xi) is the ensemble prediction for the instance i of the input features X , M is the

number of individual models we combine, om is the output of the mth model for instance

Xi , and αm represents the weight that the mth model has in the final ensemble output of

f (Xi). Hence, each model will have a different influence in the final decision.
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4. RESULTS

In this section we describe our main results for both attractiveness (Section 4.1)

and FER (Section 4.2) tasks. Each follow the same structure of sections: (1) we first report

the distribution of the generated datasets, i.e., the database we objectively annotate using

the instances provided by CelebA (Liu et al., 2015), ExpW (Zhang et al., 2015, 2018b) and

AffectNet (Mollahosseini et al., 2017); (2) we then show the result of the individual models

on the test sets; (3) next, we show the results when combining individual models, trained

on different subjective and objective notions, into an ensemble; (4) subsequently, we

compare our ensemble results with previous literature; (5) finally, we use an explainability

method 1 to understand which factors contributed the most for the predictions made by

each of the models that compose the final ensemble.

4.1 Attractiveness

In this section we describe the results for the attractiveness classification task.

4.1.1 Dataset Distribution

Our goal when generating different δ and t choices was to study the impact that

different data distributions have in the model’s behavior. In other words, in this section,

we aim to analyze whether slightly altering the dataset distribution heavily affects the

models’ behavior. We highlight the fact that the higher the δ and t are the more images are

considered as attractive. In Table 4.1 we show the distribution of the dataset regarding the

new attractiveness measures for each attractiveness range δ or threshold t , also scattered

across the sensitive attribute of gender expression, i.e. male (S = 1) and female (S =
0). We also added the new distribution of the CelebA dataset (human-based, DH) when

removing lateral facial poses from the training set.

We first observe in Table 4.1 that the target attribute has a distribution close to

to the one obtained from the human-labels (53% for Y = 1, 47% for Y = 0) in at least

one option of δ and t for all attractiveness metrics. For instance, the range δ = 0.20
for golden ratio has 54% attractive people, the thresholds t = 4.6, for symmetry, t =
0.29 for neoclassical canons, have 54% and 52% attractive people, respectively. We also

note that the distribution for the gender attribute varies according to the target attribute

and threshold, i.e., when the target attribute is close to the distribution from DH , the

1We used the implementation of saliency method from https://captum.ai

https://captum.ai
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D δ or t Y = 1 S = 1 S = 0 Y = 0 S = 1 S = 0

DGR

0.17 46% 32.5% 67.5% 54% 48.9% 51.1%
0.18 48% 32.9% 67.1% 52% 49.3% 50.7%
0.19 51% 33.4% 66.6% 49% 49.7% 50.3%
0.20 54% 33.8% 66.2% 46% 50.2% 49.8%
0.21 56% 34.2% 65.8% 44% 50.6% 49.4%

DSym

4.0 47% 41.9% 58.1% 53% 40.9% 59.1%
4.2 50% 42.0% 58.0% 50% 40.8% 59.2%
4.4 52% 42.1% 57.9% 48% 40.6% 59.4%
4.6 54% 42.2% 57.8% 46% 40.4% 59.6%
4.8 56% 42.3% 57.8% 44% 40.3% 59.7%

DNC

0.26 29% 56.5% 43.5% 71% 35.2% 64.8%
0.27 36% 54.8% 45.2% 64% 33.7% 66.3%
0.28 44% 53.2% 46.8% 56% 32.1% 67.9%
0.29 52% 51.7% 48.3% 48% 30.1% 69.9%
0.30 60% 49.8% 50.2% 40% 28.2% 71.8%

DH - 53% 23.3% 76.7% 47% 61.7% 38.3%

Table 4.1: Dataset distribution for the sensitive attribute of gender, i.e., male (S = 1)
and female (S = 0). We display each attractiveness notion per range δ or threshold t for
both attractive (Y = 1) and not attractive (Y = 0). DGR, DSym, DNC and DH correspond
to datasets that capture different attractiveness definitions: golden ratio (GR), symmetry
(Sym), neoclassical canons (NC), and human (H) perception, respectively. We highlight
that the distribution is similar across train, validation and test sets.

distribution of male/female is also close to 50%. The only exception are the human-based

(DH) labels, which have a distribution of ≈ 20 (S = 1) to 50% (S = 0) for Y = 1 and ≈ 60
(S = 1) to 40% (S = 0) for Y = 0.

In Table 4.2 we present the same dataset distribution, but with respect to the

sensitive attribute of age, i.e. young (S = 1) and not young (S = 0). We first note that

young/not young have more skewed distributions for both attractive and not attractive

options, even for the original CelebA annotations (DH), than the one we obtained for the

gender expression. In other words, we can visualize that the proportion of young (S = 1)

and not young (S = 0) for both attractive (Y = 1) and not attractive (Y = 0) for all the

objective annotations, regardless of δ or t , is around 75 − 80% to 20 − 25%, respectively.

However, the discrepancy can be even higher for the human-based (DH) annotation, which

has 92.9% of the attractive people labeled as young. We can also conclude that the gap

in distribution of young and not young for the different δ and t definitions of the same

objective definition is smaller, e.g., for DGR from δ = 0.17 to δ = 0.21 the percentage of

attractive young people only varies from 79.2% yo 78.7%.

Finally, in Table 4.3 we show the dataset distribution with respect to the different

skin color annotations we generate, i.e., dark (S = 1) and light (S = 0) skin. For the

attractive labels (Y = 1), all the objective annotations for light/dark skin color are more

evenly distributed than the ones obtained from the human-based (DH) labels. This does
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D δ or t Y = 1 S = 1 S = 0 Y = 0 S = 1 S = 0

DGR

0.17 46% 79.2% 20.8% 54% 75.0% 25.0%
0.18 48% 79.1% 20.9% 52% 74.9% 25.1%
0.19 51% 78.9% 21.1% 49% 74.8% 25.2%
0.20 54% 78.9% 21.1% 46% 74.7% 25.3%
0.21 56% 78.7% 21.3% 44% 74.6% 25.4%

DSym

4.0 47% 77.4% 22.6% 53% 76.5% 23.5%
4.2 50% 77.3% 22.7% 50% 76.5% 25.5%
4.4 52% 77.3% 22.7% 48% 76.6% 23.4%
4.6 54% 77.2% 22.8% 46% 76.5% 23.5%
4.8 56% 77.2% 22.7% 44% 76.6% 23.4%

DNC

0.26 29% 72.8% 27.2% 71% 78.6% 21.4%
0.27 36% 73.1% 26.9% 64% 79.1% 20.9%
0.28 44% 73.6% 26.4% 56% 79.6% 20.4%
0.29 52% 74.8% 26.2% 48% 80.3% 19.7%
0.30 60% 74.1% 25.9% 40% 81.1% 41.1%

DH - 53% 92.9% 7.1% 47% 58.9% 41.1%

Table 4.2: Dataset distribution for the sensitive attribute of age, i.e., young (S = 1) and
not young (S = 0). We display each attractiveness notion per range δ or threshold t for
both attractive (Y = 1) and not attractive (Y = 0). DGR, DSym, DNC and DH correspond
to datasets that capture different attractiveness definitions: golden ratio (GR), symmetry
(Sym), neoclassical canons (NC), and human (H) perception, respectively. We highlight
that the distribution is similar across train, validation and test sets.

not happen in the same proportion for the non-attractive (Y = 0) annotations, where the

original labels have a better distribution across this sensitive attribute. Overall, from all

the sensitive attributes we consider in this part of the work (gender expression, age, and

skin color), we obtained a more balanced arrangement of attractive and non-attractive

labels for the objective annotations than the human-based annotations.

4.1.2 Individual Models

In this section, we describe the results when individually training the models.

Specifically, we train one model for each δ and t of each attractiveness definition. Thus,

in total, we obtained 15 models trained on objective definitions of attractiveness. Our

goal is to verify whether testing models trained on objective perspectives on the CelebA

test set actually reduces the fairness metric compared to the model originally trained on

subjective annotations. We show the results when evaluating all models on the human-

based attractiveness concept, using CelebA original test set annotations. We also show

the baseline result, which is trained on the original CelebA training labels (DH). Each table

shows an average result across three different runs, each with a different and randomly

picked seed (3, 18, and 54). We highlight the fact that all the models were trained only
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D δ or t Y = 1 S = 1 S = 0 Y = 0 S = 1 S = 0

DGR

0.17 46% 26.7% 73.3% 54% 33.7% 66.3%
0.18 48% 26.9% 73.1% 52% 33.8% 66.2%
0.19 51% 27.1% 72.9% 49% 34.0% 66.0%
0.20 54% 27.2% 72.8% 46% 34.2% 65.8%
0.21 56% 27.4% 72.6% 44% 34.4% 65.6%

DSym

4.0 47% 29.4% 70.6% 53% 31.4% 68.6%
4.2 50% 29.5% 70.5% 50% 31.4% 68.6%
4.4 52% 29.6% 70.4% 48% 31.4% 68.6%
4.6 54% 29.6% 70.4% 46% 31.5% 68.5%
4.8 56% 29.6% 70.4% 44% 31.5% 68.5%

DNC

0.26 29% 43.9% 56.1% 71% 25.0% 75.0%
0.27 36% 41.9% 58.1% 64% 24.0% 76.0%
0.28 44% 40.0% 60.0% 56% 23.0% 77.0%
0.29 52% 38.3% 61.7% 48% 22.0% 78.0%
0.30 60% 36.8% 63.2% 40% 21.0% 79.0%

DH - 53% 18.0% 82.0% 47% 44.6% 55.4%

Table 4.3: Dataset distribution for the sensitive attribute of skin color, i.e., dark (S = 1)
and light (S = 0). We display each attractiveness notion per range δ or threshold t for
both attractive (Y = 1) and not attractive (Y = 0). DGR, DSym, DNC and DH correspond
to datasets that capture different attractiveness definitions: golden ratio (GR), symmetry
(Sym), neoclassical canons (NC), and human (H) perception, respectively. We highlight
that the distribution is similar across train, validation and test sets.

using the frontal images, i.e., all models were trained on the same set of images, however,

each one used a different annotation procedure.

Table 4.4 shows the results for models trained on golden ratio, symmetry, and

neocanons, respectively, evaluated on CelebA test set for the sensitive attribute male. We

first note a trade-off between accuracy (‘Overall’ Accuracy column) and fairness (∆EoO
column), as previously discussed in the literature (Haas, 2019). This is especially the case

for models trained on objective annotations (i.e., DGR, DSym and DNC), compared to the

one trained on CelebA (DH), which obtained a better fairness result (lower ∆EoO) but

close to random overall accuracy (50% in a binary classification problem). However, the

low accuracy is expected since they were not trained to capture subjective human-like

patterns, instead, they were trained to detect mathematical definitions of attractiveness.

Furthermore, we notice that the ∆EoO is much lower on the models based on geomet-

rical traits than the one trained on human-based labels. In other words, all the models

trained on geometrical concepts of attractiveness, for the gender expression, are much

less discriminatory in the chosen fairness metric than the one trained on subjective no-

tions, regardless of the choice of δ or t . Lastly, we note that for the same attractiveness

definition all models obtain similar accuracy and fairness values, i.e., the choice of δ or t
does not heavily impact the individual results.
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Accuracy
D δ or t Overall S = 1 S = 0 ∆TPR ∆FPR ∆EoO

DGR

0.17 0.555 0.517 0.614 0.162 0.221 0.162
0.18 0.559 0.533 0.601 0.144 0.218 0.144
0.19 0.557 0.533 0.595 0.160 0.231 0.160
0.20 0.558 0.543 0.582 0.148 0.219 0.148
0.21 0.553 0.551 0.555 0.156 0.216 0.156

DSym

4.0 0.518 0.482 0.574 0.083 0.008 0.083
4.2 0.518 0.488 0.565 0.085 0.013 0.085
4.4 0.516 0.491 0.557 0.091 0.017 0.091
4.6 0.514 0.495 0.545 0.090 0.019 0.090
4.8 0.515 0.502 0.536 0.093 0.015 0.093

DNC

0.26 0.443 0.390 0.529 0.132 0.150 0.132
0.27 0.436 0.420 0.462 0.143 0.164 0.143
0.28 0.428 0.429 0.427 0.168 0.190 0.168
0.29 0.432 0.465 0.381 0.158 0.179 0.158
0.30 0.439 0.505 0.333 0.165 0.190 0.165

DH - 0.807 0.796 0.825 0.193 0.275 0.193

Table 4.4: Results of individual models for the sensitive attribute gender, i.e., S = 1 rep-
resents male, while S = 0 represents female. Each model was trained on different attrac-
tiveness notions and evaluated on CelebA original test set. We show the average results
across three different seeds. DGR, DSym, DNC and DH correspond to the different datasets
that the models were trained on, each based on a different attractiveness notion: golden
ratio, symmetry, neoclassical canons, and human perception, respectively. We highlighted
the best and underlined the worst average ∆EoO results.

Likewise, Table 4.5 depicts the results for the sensitive attribute young. As it is

observed in the gender expression, there is a trade-off between the overall accuracy and

the fairness metric for all models regarding the age attribute. Moreover, for the fairness

metric we visualize an even bigger gap between the model trained on human-based la-

bels, which obtained ∆EoO = 0.189, and the models trained on objective definitions of

attractiveness, which obtained a maximum ∆EoO of 0.099 for the model trained on GR
with δ = 0.17. Thus, again we observe that all the models trained with objective defi-

nitions of attractiveness obtain lower discriminatory behavior, measured by ∆EoO, than

the model trained on subjective notions. Finally, Table 4.6 shows the results for the skin

color attribute. The results follow a similar pattern, where we also observe the trade-off

between utility (overall accuracy) and discrimination (fairness metric). However, we note

that the results for the neoclassical canon annotations provided a ∆EoO slightly higher

than the baseline, i.e., model trained with human annotations.

Therefore, from the results shown above, we can conclude that slightly altering

δ and t does not have a huge impact on the models’ outcome, for both accuracy and

∆EoO. Moreover, in general, individually training models on the geometric notions of

attractiveness improve the fairness metrics when tested on subjective annotations, i.e.,

CelebA test set. This supports our claim that models trained to perceive mathematical no-
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Accuracy
D δ or t Overall S = 1 S = 0 ∆TPR ∆FPR ∆EoO

DGR

0.17 0.555 0.627 0.532 0.099 0.056 0.099
0.18 0.559 0.604 0.545 0.092 0.059 0.092
0.19 0.557 0.597 0.544 0.096 0.061 0.096
0.20 0.558 0.577 0.552 0.089 0.055 0.089
0.21 0.553 0.542 0.556 0.086 0.046 0.086

DSym

4.0 0.518 0.572 0.500 0.049 0.018 0.049
4.2 0.518 0.563 0.503 0.045 0.017 0.045
4.4 0.516 0.551 0.505 0.041 0.018 0.041
4.6 0.514 0.534 0.508 0.043 0.025 0.043
4.8 0.515 0.520 0.514 0.048 0.024 0.048

DNC

0.26 0.443 0.600 0.393 0.015 0.021 0.015
0.27 0.436 0.516 0.411 0.030 0.019 0.030
0.28 0.428 0.468 0.415 0.030 0.002 0.030
0.29 0.432 0.394 0.444 0.047 0.019 0.047
0.30 0.439 0.322 0.476 0.054 0.039 0.054

DH - 0.807 0.863 0.789 0.189 0.254 0.189

Table 4.5: Results of individual models for the sensitive attribute age, i.e., S = 1 repre-
sents young, while S = 0 represents people of age. Each model was trained on different
attractiveness notions and evaluated on CelebA original test set. We show the average
results across three different seeds. DGR, DSym, DNC and DH correspond to the different
datasets that the models were trained on, each based on a different attractiveness no-
tion: golden ratio, symmetry, neoclassical canons, and human perception, respectively.
We highlighted the best and underlined the worst average ∆EoO results.

tions of attractiveness in fact obtain a lower discriminatory behavior than the ones trained

on subjective notions. We showed this for a variety of three different sensitive attributes.

However, even though our goal is to add the fairness constraint to the unfair decision-

making process, we do not wish to reduce the accuracy to a random-choice level since

this results in a useless model that would be misclassifying half the instances. Thus, we

next combine all models into an ensemble. Our intuition is that these models, once com-

bined, will produce a final ensemble with high accuracy and low fairness measure.

4.1.3 Ensemble Model

In this section we analyze the impact of combining simple learners into a single

complex and diverse model. The ensemble in this section combines four models, each

previously trained on a different notion of attractiveness, i.e., (1) Golden Ratio (GR),

(2) Symmetry (Sym), (3) Neoclassical Canons (NC), and (4) CelebA (human-based labels,

H). Since we have several t and δ choices per model, we chose the ones which performed

best and worst with respect to the fairness metric (∆EoO) on CelebA test set (Tables 4.1,

4.2 and 4.3). For the sensitive attribute male, the best and worst performing models were
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Accuracy
D δ or t Overall S = 1 S = 0 ∆TPR ∆FPR ∆EoO

DGR

0.17 0.555 0.534 0.597 0.042 0.081 0.042
0.18 0.559 0.548 0.584 0.038 0.083 0.038
0.19 0.557 0.548 0.576 0.047 0.085 0.047
0.20 0.558 0.554 0.566 0.044 0.085 0.044
0.21 0.553 0.556 0.546 0.040 0.089 0.040

DSym

4.0 0.518 0.494 0.567 0.008 0.031 0.007
4.2 0.518 0.497 0.561 0.005 0.029 0.006
4.4 0.516 0.499 0.552 0.008 0.028 0.008
4.6 0.514 0.501 0.543 0.006 0.031 0.006
4.8 0.515 0.507 0.533 0.005 0.030 0.005

DNC

0.26 0.443 0.417 0.499 0.173 0.213 0.173
0.27 0.436 0.436 0.438 0.183 0.218 0.183
0.28 0.428 0.437 0.409 0.201 0.224 0.201
0.29 0.432 0.463 0.368 0.191 0.209 0.191
0.30 0.439 0.490 0.333 0.160 0.173 0.160

DH - 0.807 0.804 0.813 0.154 0.179 0.154

Table 4.6: Results of individual models for the sensitive attribute skin color, i.e., S = 1
represents dark skin, while S = 0 represents people of light skin. Each model was trained
on different attractiveness notions and evaluated on CelebA original test set. We show the
average results across three different seeds. DGR, DSym, DNC and DH correspond to the dif-
ferent datasets that the models were trained on, each based on a different attractiveness
notion: golden ratio, symmetry, neoclassical canons, and human perception, respectively.
We highlighted the best and underlined the worst average ∆EoO results.

GRδ=0.18, Symt=4, NCt=0.26, and GRδ=0.17, Symt=4.8, NCt=0.28, respectively. In contrast, for the

attribute young, the best and worst performing models were GRδ=0.21, Symt=4.4, NCt=0.26,

and GRδ=0.17, Symt=4, NCt=0.3, respectively. Lastly, for the skin color attribute, the best

and worst performing models were GRδ=0.18, Symt=4.8, NCt=0.3, and GRδ=0.19, St=4.4, NCt=0.28,

respectively.

As previously described in Section 3.2.3, we used a weighted combination of the

models, i.e., each individual model possesses a different influence over the final predic-

tion. Moreover, the previous results showed an average result across three different runs,

each with a different seed (3, 18, and 54). However, when combining the models to form

the ensemble we randomly chose one seed (18) for all trained models. Figure 4.1 shows

the result of several weighting values per model for all the sensitive attribute. We show

the result of each ensemble with respect to accuracy (x axis) and ∆EoO (y axis). Each

blue dot illustrates the result of one ensemble model (one weighted combination) of the

four models. We varied the weight of each individual (base) model from 0 to 1 with steps

0.1. Thus, at the end, we obtain more than 10, 000 possible combinations. We removed

the combination of all the weights 0, i.e., all the models having 0 influence, as this implies

having no model at all.
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(a) Best performing models for gender. (b) Worst performing models for gender.

(c) Best performing models for age. (d) Worst performing models for age.

(e) Best performing models for skin color. (f) Worst performing models for skin color.

Figure 4.1: Results of different weighting values to compose the final ensemble for the
attractive attribute. Plots on the first and second column correspond to the best and worst
individual models with respect to ∆EoO, respectively. We show the result of each ensem-
ble with respect to accuracy (x axis) and ∆EoO (y axis) for the sensitive attributes gender,
age, and skin color. Light blue dots represent the ensemble models, i.e., combining differ-
ent definitions of attractiveness; red, green, pink and orange crosses indicate the model
trained with only CelebA (H), golden ratio (GR), symmetry (Sym) and neoclassical canons
(NC) annotations, respectively; finally, the gray dots represent the Pareto analysis.

To best understand the results over the baseline, we also plotted the result of

models trained with a single attractiveness definition. Thus, the model trained only on
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human-based CelebA annotations (H) is shown in red, and the ones trained only with

mathematical concepts of attractiveness, such as golden ratio (GR), symmetry (Sym)

and neoclassical canons (NC), are shown in green, pink, and orange, respectively. The

gray dots represent the Pareto analysis, which is based on Pareto efficiency (Iancu and

Trichakis, 2014). Pareto-optimal solution in multi-objective optimization delivers optimized

performance across different objectives (Iancu and Trichakis, 2014). In this work, we wish

to optimize for both accuracy and fairness. Thus, the optimal solutions when maximizing

accuracy and minimizing ∆EoO are the ones shown in gray. In the case of the sensitive at-

tribute male (Figure 4.1a), we also added the result of the previous state-of-the-art model

in gray dotted vertical and horizontal lines. It obtains ∆EoO = 0.2 and overall accuracy

of ≈ 0.73. Since we do not have a baseline result for the other sensitive attributes, we

remove these lines for Figures 4.1c, 4.1d, 4.1e and 4.1f.

We first observe that, with the exception of the sensitive attribute skin color, all

plots have the model trained on human-based annotations (red cross) as the worst indi-

vidual result (of all crosses) regarding ∆EoO. Nevertheless, for the skin color, the model

trained only with neoclassical canons has a similar result as the human-based labels. For

all sensitive attribute, both the curves for the best and the worst performing models show

comparable results. This suggests that individually combining the best and worst mod-

els into an ensemble have approximately the same result regarding overall accuracy and

∆EoO. Moreover, it reinforces our previous finding, in which the choice of δ and t does not

have a huge impact on the final result. We can also visualize, through the Pareto analysis

of all plots (gray dots in Figure 4.1) that there seems to be a linear relationship between

accuracy and ∆EoO. This is specially the case for the range where the overall accuracy is

≈ 0.65 until the maximum accuracy reached by the models (≈ 0.8). More specifically, all

plots seem to imply that the higher the accuracy, the higher the fairness metric (higher

the ∆EoO), which aligns with previous findings in the literature (Corbett-Davies et al.,

2017; Kleinberg et al., 2016).

Moreover, from Figure 4.1, we can conclude that the final result is heavily de-

pendent on the weights each base model has in the final ensemble. This can be directly

inferred from how scattered the ensemble models are (light blue dots). For instance, from

the horizontal gray line, fixed at ∆EoO = 0.2 (Ramaswamy et al., 2021) in Figure 4.1a and

Figure 4.1b, it is possible to obtain an overall accuracy from ≈ 0.60 to more than ≈ 0.8.

Simultaneously, it is also possible to obtain an ensemble whose accuracy is 0.73 (Sattigeri

et al., 2019), represented by the vertical gray line in both plots, whose ∆EoO varies from

≈ 0.1 to less than ≈ 0.2. Nonetheless, for all sensitive attributes, we are able to obtain

a fairly high accuracy with a lower ∆EoO. The decision upon which ensemble to choose

from will depend deeply on the downstream application.
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4.1.4 Comparison with Prior Work

Finally, in this section, we compare our method with previous approaches. The

goal of this section is to analyze whether our method obtains a better trade-off between

accuracy and fairness compared to previous related work. We are unable to provide a

comparative study with any other method for the sensitive attributes of age and skin

color since previous work lack public results on age, and skin color was annotated by us.

Moreover, previous approaches (Sattigeri et al., 2019; Ramaswamy et al., 2021) focused

on creating new instances using generative models, and the cost for reproducing their

results, in some cases even without the original source code (Sattigeri et al., 2019), is

prohibitive. Thus, we focus on comparing our approach for the gender expression.

In order to choose some ensembles over all possible combinations, we opted for

considering only the subset of the models at both Pareto boundaries for the curves pre-

sented in Figures 4.1a and 4.1b, i.e., we selected models that were present in the Pareto

boundaries for both plots (best and worse performing models on the gender expression

attribute). We selected and sorted the ensemble models according to the fairness score

∆EoO, i.e., the lower the better. In Table 4.7 we show the results and compare our method

with previous debiasing approaches for the attractive attribute (Sattigeri et al., 2019; Ra-

maswamy et al., 2021). We selected four models (Ours1, Ours2, Ours9, Ours10), two of

them performed the best regarding ∆EoO (Ours1, Ours2), and two of them which achieved

the best overall accuracy in the top-10 best ensemble models (Ours9, Ours10). For com-

pleteness, we show all the 10 best performing ensemble models with respect to ∆EoO in

Table 4.8.

We first note that the top-2 performing models regarding ∆EoO obtained a metric

that is four times lower than the previous state-of-the-art (∆EoO = 0.05 against ∆EoO =
0.20 from Ramaswamy et al. (2021)), while holding a competitive overall accuracy. Still,

the models that obtained the best overall accuracy in the top-10 performing ensembles

also have a lower ∆EoO than previous work. Moreover, we observe that the models that

have the greater impact on the final ensemble (i.e., higher weights) are the one trained

on human-based labels (H) and the one trained on neoclassical canons concept (NC).

We also notice from Table 4.8 that the model trained on GR labels, in general,

has the lowest impact on the final ensembles. This could be due to the fact that the model

trained on GR annotations results in the second highest fairness metric, just slightly below

the one that uses human annotations, while achieving close-to-random accuracy. Since

we are evaluating our models on subjective labels (i.e., generated by humans), the models

on the Pareto boundaries possibly have a greater weight on the model trained on human

labels, which positively contributes to accuracy, than one that does not have this behavior,

i.e., does not contribute to accuracy and does not substantially improve fairness.
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Accuracy
∆EoO

S = 0 S = 1 Overall

Fairness GAN (Sattigeri et al., 2019) 0.71 0.76 0.73 0.23
LSD (Ramaswamy et al., 2021) 0.79 0.82 - 0.20

Ours1 (H = 1.0; GR = 0.0; Sym = 0.4; NC = 0.7) 0.70 0.73 0.71 0.05
Ours2 (H = 0.8; GR = 0.1; Sym = 0.4; NC = 0.5) 0.70 0.75 0.72 0.07
Ours9 (H = 0.5; GR = 0.0; Sym = 0.1; NC = 0.3) 0.77 0.78 0.78 0.14
Ours10 (H = 0.9; GR = 0.0; Sym = 0.0; NC = 0.1) 0.80 0.80 0.80 0.17

Table 4.7: Comparison of our method with previous debiasing methods for the attractive-
ness attribute with respect to the sensitive attribute gender, i.e., S = 1 represents male,
and S = 0 represents female. We show the results for the Fairness GAN (Sattigeri et al.,
2019), Latent Space De-biasing (LSD) (Ramaswamy et al., 2021), and a set of the en-
semble models we obtained from combining individual models trained on different attrac-
tiveness definitions, as shown in Figures 4.1a and 4.1b. We also added the weights that
each model has on the final ensemble, e.g., model trained on subjective human-based (H)
labels, and models trained on objective (GR, Sym, NC) labels. We highlighted the best
average results.

Weights Accuracy
∆EoO

H GR Sym NC S = 0 S = 1 Overall

1 1.0 0.0 0.4 0.7 0.70 0.73 0.71 0.05
2 0.8 0.1 0.4 0.5 0.70 0.75 0.72 0.07
3 1.0 0.1 0.5 0.6 0.71 0.75 0.72 0.07
4 1.0 0.1 0.4 0.7 0.71 0.75 0.73 0.08
5 0.9 0.2 0.5 0.5 0.71 0.76 0.73 0.09
6 1.0 0.2 0.5 0.6 0.71 0.76 0.73 0.09
7 0.7 0.0 0.3 0.4 0.74 0.77 0.75 0.11
8 0.5 0.0 0.2 0.3 0.75 0.77 0.75 0.11
9 0.5 0.0 0.1 0.3 0.77 0.78 0.78 0.14
10 0.9 0.0 0.0 0.1 0.80 0.80 0.80 0.17

Table 4.8: Weights for the models that compose the top-10 performing ensembles for
the gender attribute (model trained on subjective human-based (H) labels, and models
trained on objective (GR, Sym, NC) labels), as well as their associated metrics, sorted
by ∆EoO. We show overall error rate and ∆EoO, as well as the accuracy rate across
both male (S = 1) and female (S = 0). The individual models that compose these final
ensembles are the ones that appear in the Pareto boundaries of both Figures 4.1a and
4.1b.

All of our approaches have the lowest ∆EoO, while maintaining significant ac-

curacy compared to previous work. Moreover, we show that all of our metrics are com-

parable or better than Sattigeri et al. (2019) and Ramaswamy et al. (2021) approaches,

both of which incorporate two to three times more synthetic images to the original train-

ing dataset. Thus, we obtained a better trade-off between a given fairness metric (∆EoO)

and accuracy compared to other pre-processing approaches for the attractive attribute.
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4.1.5 Model Interpretation

In this section, we describe the results when applying an explainability method

to all four models that compose the final ensemble. For this analysis, we use the saliency

method described in Section 4.1.5, which generates heatmaps that indicate the regions

of the image that the model attended to the most to make a specific prediction. In other

words, the darker the region, the more the model relied on that region for making a deci-

sion. We first begin by computing the average region that each model attended for all the

instances in the dataset. We randomly sampled one image from the test set to plot the

average saliency.

Results can be visualized in Figure 4.2. We note the difference in the average

region attended by each model: while the model trained on subjective human-based an-

notations uses a bigger and more spread region across the face, which even contains the

forehead and cheeks, the ones trained on objective annotations contain a smaller and

more concentrated region. Specifically, models trained on objective annotations concen-

trate their attention mostly in the nose region, which supports the claim that these models

are trained to perceive and classify images according to mathematical ratios.

Figure 4.2: Average saliency for the best individual models for the gender sensitive at-
tribute. From left to right: model trained on (1) subjective human-based (H) labels, and
models trained on objective (2) golden ratio (GR), (3) symmetry (Sym) and (4) neoclassi-
cal canons (NC), respectively.

The model trained on golden ratio annotations attends to the nose, and edges

of the mouth and eyes. In contrast, the model trained on facial symmetry almost entirely

focuses on the nose. Finally, the model trained on neoclassical canons annotations attends

to the edges of the eyes, nostrils and slightly the border of the mouth. However, none of

these models focused on non-informative parts of the face, such as the one dominated
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(a) Male (S = 1).

(b) Female (S = 0).

Figure 4.3: Average saliency for the best individual models for the gender sensitive at-
tribute. From left to right: model trained on (1) subjective human-based (H) labels, and
models trained on objective (2) golden ratio (GR), (3) symmetry (Sym) and (4) neoclassi-
cal canons (NC), respectively.

by skin, e.g., cheeks and forehead, as is the case for the model trained on subjective

annotations.

Next, we compute the average region per sensitive attribute. Our goal was to

analyze whether the models attended to different regions according to the gender. In Fig-

ure 4.3, we can visualize the average saliency regions per gender. We can see that the

regions used for each of the models trained on objective annotations, i.e., golden ratio

(GR), neoclassical canon (NC) and facial symmetry (Sym), are similar across both gen-

ders. In other words, the gender does not seem to play a huge role on which region these

models will attend to the most. However, the model trained on subjective annotations

(H) have an overall different salient region for male and for female. Specifically, for male,
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the model seems to use the facial region between the eyes, and the region where usually

male people grow their beards. This is not the case for female faces, where the model

focuses mostly on the forehead and upper cheeks and nose.

Thus, in summary, in this section, we observed that each model uses a differ-

ent region. This consolidates previous quantitative results that pointed out that each

model has a different behavior regarding accuracy and fairness metric. Moreover, we ob-

served that, in general, models trained on objective annotations attends more to regions

supported by previous work that used the mathematical notions for classifying attractive-

ness (Schmid et al., 2008), while the one trained on subjective labels usually uses a more

spread region.

4.2 Facial Expression

In this section we describe the results for the facial expression recognition task.

4.2.1 Dataset Distribution

As it is the case for the attractiveness trait, our goal when generating different t
choices for the ObjLCSt algorithm was to study the effects of different data distributions

in the model’s behavior. Thus, in other words, in this section, we aim to analyze whether

slightly altering the dataset distribution heavily affects the models’ behavior. We highlight

the fact that the lower the t , the more spread instances are according to all seven facial

expressions. In Table 4.9 we show the distribution of the dataset for each t for both the

happiness and anger attributes, as well as the distribution of the dataset when annotating

it using ObjBase (DObjBase). The information is scattered across the sensitive attribute of

gender expression, i.e. male (S = 1) and female (S = 0). We also added the original

distribution of both training datasets, DH in ExpW (Happiness) and AffectNet (Anger), and

the CFD test splits.

We first note that, due to the the fact that we are dealing with a binary classifica-

tion (Chen and Joo, 2021), all five expressions that are not considered as happy in the hap-

piness classification, or anger in the anger classification, are annotated as unhappy/non-

angry. Thus, as it has been observed by previous work in the FER field (Li and Deng,

2018), we obtain an imbalanced training dataset for subjective and objective annotations.

We can visualize that, for the happiness attribute, the base algorithm (ObjBase) for gen-

erating the objective labels is the closest one to the distribution of the the labels provided

by humans. This was also observed in Section 3.2.1, before we binarized the labels into
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Dataset D Y = 1 S = 1 S = 0 Y = 0 S = 1 S = 0

ExpW
(Happiness)

DObjBase 25.4% 64.8% 35.2% 74.6% 70.5% 29.5%
DObjLCS0.3 15.0% 62.0% 38.0% 85.0% 70.3% 29.7%
DObjLCS0.4 14.5% 61.9% 38.1% 85.5% 70.2% 29.8%
DObjLCS0.5 13.5% 62.1% 37.9% 86.5% 70.1% 29.9%

DH 33.1% 63.2% 36.8% 66.9% 71.9% 28.1%

CFD (Happiness) DH 36.3% 50.0% 50.0% 63.7% 50.0% 50.0%

AffectNet
(Anger)

DObjBase 0.3% 63.4% 36.6% 99.7% 52.1% 47.9%
DObjLCS0.3 7.9% 65.2% 34.8% 92.1% 51.1% 48.9%
DObjLCS0.4 6.8% 66.0% 34.0% 93.2% 51.2% 48.8%
DObjLCS0.5 5.6% 66.7% 33.3% 94.4% 51.3% 48.7%

DH 5.8% 82.9% 17.1% 94.2% 50.3% 49.7%

CFD (Anger) DH 17.5% 50.0% 50.0% 82.5% 50.0% 50.0%

Table 4.9: Dataset distribution for both happy and angry facial expressions. For the happy
attribute, we used the ExpW Zhang et al. (2015, 2018b) as training dataset, while for
the angry attribute we used the AffectNet Mollahosseini et al. (2017) dataset. However,
following Chen and Joo (2021), during training, we sample 20k instances and average the
results over 5 runs. For both happy/angry (Y = 1) and unhappy/not angry (Y = 0), we also
add their distribution with respect to gender, i.e., male (S = 1) and female (S = 0). DObjBase

and DObjLCSt correspond to the different dataset distributions of both objective definitions
for annotating the facial expressions using AUs, and DH represent the distribution of the
labels provided by humans. CFD (Happiness) and CFD (Anger) correspond to the test set
used to evaluate models trained on happy and angry attributes, respectively Chen and Joo
(2021).

happy/unhappy, and it happens for both the main attribute (happiness), as well as for the

sensitive attribute (gender).

However, this is not the case when it comes to the anger attribute, which obtains

0.3% of the annotations as containing instances labelled as angry. This might happen due

to the fact that ObjBase is very strict when it comes to labeling the facial expressions, i.e.,

it annotates the facial expression only if all the AUs that represent that expression (Ekman,

1993) are detected. According to previous wok on the literature (Ekman, 1993), happiness

requires that only two AUs to be active (6 and 12), while anger requires that four AUs

be active (4, 5, 7 and 23) to be labeled as an happy/angry instance, respectively. Thus,

ObjBase algorithm results in fewer instances annotated as containing an angry expression.

This hurts the diversity of annotations, as it was described in Section 3.2.1.

For the ObjLCSt , since it generates labels that are more spread across all the

facial expressions, it provides a more imbalanced dataset with respect to the binary hap-

piness attribute. On the other hand, since an angry face is composed of multiple AUs, this

algorithm provides a more balanced distribution for the anger dataset. In other words,

the dataset distributions that ObjLCSt produces for all t values are more balanced for the

anger attribute, while for the happiness attribute it is slightly less balanced, both com-

pared to their corresponding distribution based on ObjBase. This happens due to the fact
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that ObjLCSt considers more the intensity of each AU, even the ones that were not neces-

sarily detected.

Regarding the distribution of female and male with respect to both happy and

unhappy instances, for all the annotation procedures, the proportion is similar. For the

anger attribute, the distribution of gender expressions is more balanced for non-angry

(Y = 0) instances. We highlight the fact that the distribution of the test set was purposely

modified by Chen and Joo (2021) such as the allocation of happy/angry and unhappy/non-

angry images between male and female is the same, i.e., the distribution of female/male

is 50%. Nonetheless, the distribution of happy and unhappy, and angry and non-angry

instances in the test datasets of CFD (Happiness) and CFD (Anger), respectively, is also

imbalanced, i.e., 36.3% happy ×63.7% unhappy and 17.5% angry ×82.5% non-angry.

Since the CFD splits were used solely for evaluation purposes, we do not modify them.

4.2.2 Individual Models

Similarly to the atttactive attribute, our goal in this sections is to verify whether

training models on objective labels of the ExpW and AffectNet datasets actually produce

improvements in the fairness metric for the CFD dataset (Chen and Joo, 2021), compared

to the ones trained on subjective labels. Table 4.10 depicts the average results across

five different runs of individually training the models on different definitions of facial ex-

pression for the happiness and anger attributes. We trained models using the algorithms

described in Section 3.2.1, named ObjBase and ObjLCSt . We tested all thresholds t shown

in Figure 3.5. We also added a row named H, which depicts the average result of the

models trained on human-based ExpW and AffectNet annotations.

As is the case for the attractive attribute, in general, we notice a trade-off be-

tween accuracy and fairness (∆Disc). For the happiness attribute, this is mainly the case

for the models trained using the ObjLCSt algorithm since they obtain a lower ∆Disc value

than the models trained with the ObjBase labels and human-based labels. Even though

all the ObjLCSt obtained similar ∆Disc values, the one which in the best (lowest) ∆Disc
metric is the t = 0.3. This might be related to the fact that the annotations produced by

this threshold are more more spread across all expressions. Moreover, for the happiness

attribute, the algorithm ObjBase obtains competitive accuracy results with the models

trained on human labels (H), with the expense of having a relatively similar and high fair-

ness measure. This is expected since in the previous section (Section 4.2.1) we observed

that the ObjBase algorithm produced a distribution similar to the one of the human-based

labels.

For the anger attribute, we can infer an opposite behavior, in which the model

that obtained the lowest ∆Disc is trained with annotations from the ObjBase algorithm.
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Attribute Annotation Algorithm Accuracy ∆Disc

Happiness

ObjBase 0.926 ± 0.007 0.052 ± 0.019
ObjLCS0.3 0.826 ± 0.027 0.009 ± 0.021
ObjLCS0.4 0.829 ± 0.013 0.013 ± 0.022
ObjLCS0.5 0.816 ± 0.017 0.013 ± 0.027

H 0.935 ± 0.009 0.046 ± 0.025

Anger

ObjBase 0.825 ± 0.000 0.028 ± 0.018
ObjLCS0.3 0.825 ± 0.002 0.043 ± 0.039
ObjLCS0.4 0.824 ± 0.001 0.077 ± 0.081
ObjLCS0.5 0.825 ± 0.001 0.064 ± 0.048

H 0.855 ± 0.046 0.055 ± 0.045

Table 4.10: Results of models trained on different happiness and anger notions. Each
model was evaluated according to its attribute (anger and happiness) on CFD test set.
We show the average results across five different seeds for the sensitive attribute gen-
der (Chen and Joo, 2021). ObjBase and ObjLCSt correspond to the different annotation
algorithms (Annotation Algorithm) using AUs, and H represent the original labels, based
on human perception. We highlighted the best and underlined the worst average ∆Dist
results for the models trained on objective annotations.

However, we note that the standard deviation is higher in ∆Disc for this attribute. We

suspect that this behavior is more dependent upon the seed since the anger attribute

possesses a more imbalanced data distribution than the happiness attribute. The model

trained on ObjLCS0.5 obtains similar results to the one obtained with human labels (H),

again following the trend that the model which has the closer data distribution to the

original labels obtain similar ∆Disc.

In the case of facial expression recognition, we observe that the drop in accuracy

was not as severe as the one observed for the attractiveness classification. Nonetheless,

from the results shown above, we can conclude that individually training models on the

objective notions of facial expression tends to improve the fairness metrics.

4.2.3 Ensemble Model

The ensembles in this section are produced by a weighted combination of three

models, i.e., H, ObjBase and ObjLCSt , each trained on a different definition of facial ex-

pression. We followed the same procedure as in the attractive attribute, and randomly

chose one seed for all models. Figure 4.4 shows the result of several weighting values

per model. The plots on the left (Figure 4.4a and Figure 4.4c) correspond to the ensemble

results for the selected best individual models, i.e., models which obtained best results

with respect to ∆Dist (H, ObjBase and ObjLCS0.3, for both attributes), while the one on

the right (Figure 4.4b and Figure 4.4d) depicts the result for the worst models (H, ObjBase

and ObjLCS0.5 for the happiness attribute, and H, ObjBase and ObjLCS0.4 for the anger

attribute).



72

We show the result of each ensemble with respect to accuracy and ∆Disc in

Figure 4.4. Each blue dot illustrates the result of one ensemble model, and the individ-

ual models, i.e., models that use a single happiness/anger definition to compose its final

decision, are shown as crosses: the model trained on human-based annotations (H) is

shown in red, and the ones trained only with mathematical concepts, such as ObjBase

and ObjLCSt , are shown in green and orange, respectively. We varied the weight of each

individual (base) model from 0 to 1 with steps 0.05. Finally, the gray dots represent the

Pareto analysis.

We observe that the plots for the happiness attribute (Figure 4.4a and Figure 4.4b)

show comparable curve results, suggesting again that individually combining the best and

worst models into an ensemble have approximately the same result regarding overall ac-

curacy and ∆Disc. We even visualize that the ensembles that combine the worst perform-

ing models have more models with ∆Disc = 0. This is possible due to the fact that this is

a less strict metric, relying exclusively in keeping the proportion between predictions of

both sensitive groups balanced, i.e., it does not use any information from the annotated

labels. Moreover, this reinforces the idea that the choice of t does not have a huge impact

on the final result.

As is the case for the attractive attribute, the final result is heavily dependent

on the weights each base model has in the final ensemble. This can be directly inferred

from how scattered the ensemble models are. Thus, from Figure 4.4a and Figure 4.4c we

can see that there is a wide range of possible models. For instance, from the horizontal

gray line, fixed at ∆Disc = 0.006 (Chen and Joo, 2021), it is possible to obtain an overall

accuracy of more than 0.9.

The results for the anger attribute, shown in Figure 4.4c and Figure 4.4d, show a

slightly different pattern. The best and worst performing models express different curves.

This happens specially due to the ObjLCSt model. This is complementary to what we have

observed in the previous section for the individual models, where the individual models

obtained a higher standard deviation. In other words, the individual results vary a lot

depending on the seed. We hypothesize this is due to the fact that the dataset is much

more imbalanced for the anger attribute than for the happiness attribute.

Nonetheless, as it is the case for the happiness classification, we obtain models

that reach low levels of ∆Disc. Some even achieve ∆Disc = 0. Moreover, the range of

accuracy values is lower for the anger (which varies from ≈ 0.73 to ≈ 0.79) than for the

happiness attribute (which varies from ≈ 0.84 to ≈ 0.94). The opposite happens for the

fairness metric.

Thus, in summary, we observed in this section that it is possible to obtain a wide

range of possible results when combining the individual models through a weighted aver-

age. More importantly, we showed that it is possible to select models that achieve high

accuracy and low unfairness. As is the case for the attractiveness classification task, the
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(a) Best performing models for happiness. (b) Worst performing models for happiness.

(c) Best performing models for anger. (d) Worst performing models for anger.

Figure 4.4: Results of different weighting values to compose the final ensemble for the
facial expression attributes happiness and anger. Plots on the first and second column
correspond to the best and worst individual models with respect to ∆Disc in Table 4.10,
respectively. We show the result of each ensemble with respect to accuracy (x axis) and
∆Disc (y axis) for the sensitive attribute gender. Light blue dots represent the ensemble
models, i.e., combining different annotations; red, green, and orange crosses indicate the
model trained with only human-based annotations (H), base (ObjBase) and LCS (ObjLCSt)
objective annotations, respectively; finally, the gray dots represent the Pareto analysis.

decision upon which ensemble to choose from will depend deeply on the downstream

application.

4.2.4 Comparison with Prior Work

In this section, we compare our method with previous debiasing approaches for

the FER system. The goal of this section is to analyze whether our method obtains a better

trade-off between accuracy and fairness compared to previous related work. In order to

choose some ensembles over all possible combinations, we follow previous work (Chen

and Joo, 2021) and calculate the average and standard deviation (±) over some of the

runs. Since the combination of all three models for each of the five seeds would require

computing 53 = 3125 results, we randomly selected 2 of the 5 seeds (23 = 8 combinations).

Previous work do not provide the overall accuracy (Chen and Joo, 2021), thus we decided

to run all the debiasing methods and report them according to the code provided by Chen

and Joo (2021).
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Method Accuracy ∆Disc

Baseline (Chen and Joo, 2021) - 0.059 ± 0.035
Baseline (our H) 0.935 ± 0.009∗ 0.046 ± 0.025∗

Uniform Confusion (Alvi et al., 2018) 0.934 ± 0.008∗ 0.046 ± 0.008
Gradient Projection (Zhang et al., 2018a) 0.842 ± 0.107∗ 0.036 ± 0.014
Domain Discriminative (Wang et al., 2020) 0.931 ± 0.013∗ 0.076 ± 0.024
Domain Independent (Wang et al., 2020) 0.920 ± 0.021∗ 0.029 ± 0.015
AUC-FER (Chen and Joo, 2021) 0.900 ± 0.009∗ 0.006 ± 0.020

Ours1 (H = 0.25; ObjBase = 0.05; ObjLCS0.3 = 0.35) 0.894 ± 0.008 0.005 ± 0.005
Ours2 (H = 0.50; ObjBase = 0.05; ObjLCS0.3 = 0.65) 0.895 ± 0.009 0.005 ± 0.007
Ours9 (H = 0.10; ObjBase = 0.55; ObjLCS0.3 = 0.55) 0.907 ± 0.010 0.009 ± 0.006
Ours10 (H = 0.05; ObjBase = 0.50; ObjLCS0.3 = 0.40) 0.915 ± 0.006 0.010 ± 0.005

Table 4.11: Accuracy and fairness scores (∆Disc) for previous debiasing approaches on
the happiness attribute. Following previous work (Chen and Joo, 2021), for our models,
we report the average and standard deviation (±) across two seeds for each model. The
symbol ∗ represents the values we obtained when reproducing previous work, according
to the code provided by Chen and Joo (2021). We highlighted the best and underlined
similar average ∆Dist results.

In order to choose some of all the possible ensembles, and considering that none

of the best performing models occur in all eight combinations at the same time, we first

run the Pareto analysis on each combination, and select the models contained on each one

of them individually. Then we calculate the average and standard deviation for all models

in the eight Pareto boundaries, and sort them regarding ∆Disc (the lower the fairer the

model is). We additionally remove ensemble models that obtain the same accuracy and

fairness metric, i.e., ensembles with duplicated results.

Table 4.11 depicts the results for the happiness attribute. We selected four mod-

els (Ours1, Ours2, Ours9, Ours10), two of them performed the best regarding ∆Disc (Ours1,

Ours2), and two of them which achieved the best overall accuracy in the top-10 best en-

semble models (Ours9, Ours10). We compare our method with previous debiasing ap-

proaches for the attractive attribute (Alvi et al., 2018; Zhang et al., 2018a; Wang et al.,

2020; Chen and Joo, 2021) using the sensitive attribute gender. For completeness, we

show all the 10 best performing ensemble models with respect to ∆Disc in Table 4.12.

We first note that the top-2 performing models regarding ∆Disc obtained a met-

ric that is lower than the previous state-of-the-art, while holding a competitive overall

accuracy (≈ 0.9). Nonetheless, the models that obtained the best overall accuracy in the

top-10 performing ensembles also have a lower ∆Disc than most of previous work, except

for the work of Chen and Joo (2021). Differently from the best performing models on the

attractiveness attribute, in Table 4.12 we observe a diverse set of weights for each indi-

vidual model that composes the final ensembles, i.e., no single model obtains the lowest
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Weights Evaluation Metrics
H ObjBase ObjLCS0.3 Accuracy ∆Disc

1 0.25 0.05 0.35 0.894 ± 0.008 0.005 ± 0.005
2 0.50 0.05 0.65 0.895 ± 0.009 0.005 ± 0.007
3 0.00 0.35 0.30 0.905 ± 0.009 0.006 ± 0.007
4 0.00 1.00 0.85 0.905 ± 0.009 0.006 ± 0.008
5 0.30 0.00 0.35 0.898 ± 0.008 0.007 ± 0.010
6 0.35 0.00 0.40 0.899 ± 0.009 0.007 ± 0.008
7 0.10 0.50 0.55 0.901 ± 0.009 0.007 ± 0.006
8 0.60 0.00 0.65 0.903 ± 0.010 0.008 ± 0.008
9 0.10 0.55 0.55 0.907 ± 0.010 0.009 ± 0.006
10 0.05 0.50 0.40 0.915 ± 0.006 0.010 ± 0.005

Table 4.12: Weights and metrics of the top-10 performing ensembles sorted by ∆Disc (the
lower the fairer the model is) for the happiness attribute. We show overall error rate and
∆Disc. Following previous work (Chen and Joo, 2021), we report the average and stan-
dard deviation (±) across some seeds for each model. Specifically, we randomly chose 2
random seeds for each model that compose the final ensemble, resulting in 23 = 8 com-
binations. For selecting the top performing models, we then ran the Pareto analysis over
each combination. Since none of the top performing models appear in all eight combina-
tions (i.e., no model appear in the intersection of the best performing models for all eight
combinations), we selected the models that appear in each of the eight Pareto boundaries
individually. We then calculate the average and standard deviation across the chosen
seeds for the selected top performing models, sorting them by ∆Disc.

influence over the final ensemble. Nonetheless, we observe that the model trained on

ObjLCS0.3 always obtains a weight close to either H or ObjBase.

However, the models trained on H and ObjBase labels never obtain a similar

weight across all the ensembles. We hypothesize that this is due to the fact that these

models obtain similar results for both metrics (and behaviors, as it will be visually clearer

in Section 4.2.5), i.e. both obtained high accuracy and high ∆Disc. Thus, increasing the

weight of either of them, combined with the model that had the best (i.e., lowest) individ-

ual result regarding the fairness metric (ObjLCS0.3), optimizes for both overall accuracy

and fairness. We note that two of the four selected results have the lowest ∆Disc (Ours1

and Ours2) of all the previous methods. Both the ensembles that obtains a similar but

slightly higher ∆Disc, as the work of Chen and Joo (2021) (Ours9 and Ours10) also have a

slightly higher accuracy than this previous work.

In Table 4.13 we report the results for the anger attribute. Previous work (Chen

and Joo, 2021) used an additional balancing procedure for this attribute. Thus, we repro-

duce their results, but we maintain the same procedure as for the happiness attribute,

i.e., without any data balancing. We also followed the same methodology for selecting the

best performing models, i.e., we ran the Pareto analysis on the eight possible combina-

tions (2 seeds for each of the 3 models), calculated the average and standard deviation of

all metrics and sorted them according to ∆Disc. In Table 4.13, we show the four best per-



76

Method Accuracy ∆Disc

Baseline (our H) 0.902 ± 0.028∗ 0.055 ± 0.045∗

Domain Discriminative (Wang et al., 2020) 0.903 ± 0.023∗ 0.059 ± 0.045∗

Domain Independent (Wang et al., 2020) 0.877 ± 0.039∗ 0.092 ± 0.109∗

AUC-FER (Chen and Joo, 2021) 0.840 ± 0.019∗ 0.060 ± 0.032∗

Ours1 (H = 0.00; ObjBase = 0.65; ObjLCS0.3 = 0.05) 0.782 ± 0.004 0.010 ± 0.007
Ours2 (H = 0.00; ObjBase = 0.80; ObjLCS0.3 = 0.05) 0.780 ± 0.004 0.011 ± 0.010
Ours9 (H = 0.00; ObjBase = 0.25; ObjLCS0.3 = 0.40) 0.789 ± 0.011 0.023 ± 0.011
Ours9 (H = 0.00; ObjBase = 0.15; ObjLCS0.3 = 0.25) 0.789 ± 0.001 0.024 ± 0.010

Table 4.13: Accuracy and fairness scores (∆Disc) for previous debiasing approaches on the
anger attribute. Following previous work (Chen and Joo, 2021), for our models, we report
the average and standard deviation (±) across two seeds for each model. The symbol
∗ represents the values we obtained when reproducing previous work, according to the
code provided by Chen and Joo (2021). Since previous work use an additional balancing
algorithm for this attribute, we only report the the results we obtained when reproducing
them. We highlighted the best average results.

Weights Evaluation Metrics
H ObjBase ObjLCS0.3 Accuracy ∆Disc

1 0.00 0.65 0.05 0.782 ± 0.004 0.010 ± 0.007
2 0.00 0.80 0.05 0.780 ± 0.004 0.011 ± 0.010
3 0.05 0.45 0.30 0.771 ± 0.009 0.013 ± 0.012
4 0.05 0.40 0.60 0.778 ± 0.008 0.014 ± 0.010
5 0.05 0.75 0.55 0.777 ± 0.008 0.014 ± 0.012
6 0.05 0.00 0.50 0.778 ± 0.009 0.018 ± 0.006
7 0.05 0.05 0.30 0.773 ± 0.008 0.018 ± 0.015
8 0.00 0.25 0.05 0.784 ± 0.008 0.022 ± 0.008
9 0.00 0.25 0.40 0.789 ± 0.011 0.023 ± 0.011
10 0.00 0.15 0.25 0.789 ± 0.001 0.024 ± 0.010

Table 4.14: Weights and metrics of the top-10 performing ensembles sorted by ∆Disc
(the lower the fairer the model is) for the anger attribute. We show overall error rate and
∆Disc. Following previous work (Chen and Joo, 2021), we report the average and stan-
dard deviation (±) across some seeds for each model. Specifically, we randomly chose 2
random seeds for each model that compose the final ensemble, resulting in 23 = 8 com-
binations. For selecting the top performing models, we then ran the Pareto analysis over
each combination. Since none of the top performing models appear in all eight combina-
tions (i.e., no model appear in the intersection of the best performing models for all eight
combinations), we selected the models that appear in each of the eight Pareto boundaries
individually. We then calculate the average and standard deviation across the chosen
seeds for the selected top performing models, sorting them by ∆Disc.

forming models (Ours1, Ours2, Ours9, Ours10), two of them performed the best regarding

∆Disc (Ours1, Ours2), and two of them which achieved the best overall accuracy in the

top-10 best ensemble models (Ours9, Ours10). We show the complete list of all the 10 best

performing ensemble models with respect to ∆Disc for the anger attribute in Table 4.14.
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Figure 4.5: Average saliency for the best individual models for the happiness attribute.
From left to right: model trained on subjective human-based (H) labels, and models
trained on objective labels generated by the ObjBase and ObjLCS0.3 algorithms, respec-
tively.

We first note from the table that all of our models obtained a lower fairness met-

ric, i.e., had a less discriminatory behavior according to ∆Disc. Specifically, we decrease

six times compared to the best state-of-the-art approach (i.e., AUC-FER (Chen and Joo,

2021)) which resulted in ∆Disc = 0.060. However, for the anger attribute, this came

with a higher cost regarding accuracy. While the baseline obtains near 0.90 accuracy, our

approach obtains ≈ 0.79.

We can also observe that, for both anger and happiness classification, our ensem-

bles obtained a lower standard deviation compared to previous methods. This indicates

that our models behave in a more stable manner. Thus, in summary, in this section, as is

the case for the attractive attribute, we obtained a satisfactory trade-off between a given

fairness metric (∆Disc) and accuracy for both FER systems. We demonstrated that our

method is simultaneously useful (i.e., obtains a high accuracy) and effective at mitigating

biases.

4.2.5 Model Interpretation

In this section, we describe the results when applying an explainability method

to the individual models that compose the final ensemble. For this analysis, we follow the

same procedure as in the attractive attribute and use the saliency method. Thus, once

again, we begin by computing the average region that each model attended for all the

instances in the dataset. We randomly sampled one image from the test set to plot the

average saliency.
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The results for the happiness attribute can be visualized in Figure 4.5. We first

note that all the models heavily attend the mouth region to make its final decision. This

could be attributed to the fact that our models are trained on a binary classification task

for detecting happy/unhappy instances, and smiling has always been viewed as an easily

identifiable indicator of an individual’s happiness (Moore et al., 2017).

Additionally, we note that both the model trained on subjective human-based

annotations and the one trained with the annotations generated by the ObjBase algo-

rithm attended a bigger and more spread region across the face. Both models use mainly

the forehead, mouth and cheeks region to classify expressions in images. However, the

model trained on annotations generated by the ObjLCS0.3 contains a smaller and more con-

centrated region. Specifically, this model concentrates its attention mostly in the mouth

region. This might be one of the reasons why this model obtained a lower ∆Disc in Sec-

tion 4.10.

Next, we compute the average region per sensitive attribute. Our goal is to ver-

ify whether, on average, the models pay attention to different regions according to the

gender. In Figure 4.6, we can visualize the average saliency regions per gender. We can

see that across male and female regions, the models trained on subjective and objective

annotations use, in general, similar regions to make the final decision. In other words, the

blue regions are similar across genders for the same model.

We also applied the saliency method to the individual models that compose the

ensemble for the anger attribute. In Figure 4.7 we show the average region that each

model attended for all the instances in the dataset. Again we sampled one image of the

whole dataset just to make the visualization easier. For this attribute, we notice that the

baseline attends to the forehead and some regions near the mouth. This corresponds to

the regions described by the AUs that compose the anger expression, i.e., AU04 (Brow

Lowerer), AU05 (Upper Lid Raiser), AU07 (Lid Tightener) and AU23 (Lip Tightener). Simi-

larly, the model trained on ObjLCS algorithm also attends to forehead, though it pays less

attention to the mouth region. Finally, the model trained on ObjBase attends to some

regions of the eyes, but it contains a more spread area than the other models.

Next, as it was done for the happiness attribute, we compute the average region

per sensitive attribute (S = 0 and S = 1). In Figure 4.8, we can visualize the average

saliency regions per gender. Again we notice that, for the same model, the regions across

both male and female is similar. However, for some models, e.g., ObjBase, the intensity

slightly alters across male and female instances. Nonetheless, we can infer that the mod-

els use the same regions to make its final decision, regardless of the gender expression.

Thus, in summary, in this section, we observed that each model uses a different

region. This consolidates previous quantitative results that pointed out that each model

has a different behavior regarding accuracy and fairness metric. Moreover, we observed

that, in general, models trained on objective annotations attends more to regions sup-
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(a) Male (S = 1).

(b) Female (S = 0).

Figure 4.6: Average saliency for the best individual models for the happiness attribute,
scattered along gender expressions. From left to right: model trained on subjective
human-based (H) labels, and models trained on objective labels generated by the Ob-
jBase and ObjLCS0.3 algorithms, respectively.

ported by previous work that developed FACS (Ekman, 1993), while the ones trained on

subjective labels usually use a more spread region.
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Figure 4.7: Average saliency for the best individual models for the anger attribute. From
left to right: model trained on subjective human-based (H) labels, and models trained on
objective labels generated by the ObjBase and ObjLCS0.3 algorithms, respectively.
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(a) Male (S = 1).

(b) Female (S = 0).

Figure 4.8: Average saliency for the best individual models for the anger attribute, scat-
tered along gender expressions. From left to right: model trained on subjective human-
based (H) labels, and models trained on objective labels generated by the ObjBase and
ObjLCS0.3 algorithms, respectively.
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5. FINAL REMARKS

In this section, we first introduce the ethical considerations of our work. Next, we

make the final considerations.

5.1 Ethical Considerations

The technique proposed in this paper can be applied to mitigate unintended and

undesirable biases in some facial analysis systems. While the idea behind our proposed

method is important and can be broadly applied to many other domains, it is not suffi-

cient. Rather, as described in Denton et al. (2019) it must be part of a larger, socially

contextualized project to critically assess ethical concerns relating to facial analysis tech-

nology. This project must include addressing questions of whether and when to deploy

technologies, frameworks for democratic control and accountability, and design practices

which emphasize autonomy, inclusion, and privacy.

Regarding dataset choice, in this work we use CelebA dataset (Liu et al., 2015)

for the attractive attribute, and Expw (Zhang et al., 2015, 2018b), AffectNet (Mollahosseini

et al., 2017) and CFD (Ma et al., 2015) for the facial expression attribute. As all of these

datasets contain public domain images, it avoids the issues of some other public domain

datasets of face images (e.g., Klare et al. (2012)). Moreover, as mentioned before, all

datasets used in this work are well-known benchmarks in the ML community, with pre-

vious proposed methods on mitigating fairness-related issues (Ramaswamy et al., 2021;

Sattigeri et al., 2019; Quadrianto et al., 2019; Chen and Joo, 2021). The attributes within

the CelebA dataset are reported as binary categories, and for the ExpW, AffectNet and

CFD datasets we followed the procedure described on the work of Chen and Joo (2021)

to binarize the facial expressions into happy/unhappy and angry/non-angry. We note that

in many cases this binary categorization does not reflect the real human diversity of at-

tributes. This is perhaps most notable when the attributes are related to continuous fac-

tors.

The intent of this work is to demonstrate the utility of reasoning about demo-

graphics – specifically in the context of attractiveness and facial expression recognition

– in order to do better handle cases where these demographics are used for discrimina-

tory purposes. We highlight the fact that both tasks here were used as a means instead

of an end. We do not wish to reinforce any type of prejudice or discrimination based on

this measurements, nor motivate inferring these measures for individuals without their

consent. Instead, we use these attributes mainly as applications of our proposed method.

Additionally, gender is not necessarily the one the person identifies with, rather we con-

sidered gender expression, which can be often directly inferred by humans.
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Finally, we also note that our method may have other limitations. For instance,

we considered datasets collected from in-the-wild images. These images do not have

any background, facial orientation or facial emotion pattern. Rather, it contains different

background colors, frontal and lateral faces, and several facial expressions. This may

present a limitation, since our method, which is based on landmarks and AUs extraction,

does not fully work on lateral facial poses. For instance, for the attractive attribute, we

tried to mitigate this limitation by removing lateral facial poses from the training and

validation set.

5.2 Conclusion

In this work, we studied the fairness issues associated with facial analysis sys-

tems. Specifically, we focused our research on two main aspects of facial analysis: attrac-

tiveness classification and facial expression recognition, both of which have huge impact

on our daily lives. We propose a method that combines different types of annotations,

such as the original and subjective human-based labels and the ones we objectively gen-

erate based on mathematical definitions of both tasks. Our approach is not only simple,

but also intuitive and model-agnostic.

We first demonstrated that the individual models trained solely with objective la-

bels improve the fairness metric, i.e., are less discriminatory, compared to the one trained

on subjective labels. We showed that this result is not dependent upon the data distribu-

tion of the novel annotations. In other words, our results were not sensitive to the choice

of t or δ. We demonstrated that for the attractiveness classification task comes with a cost

of reducing the overall accuracy to random choice, i.e., ≈50% in a binary classification

setting. However, we also showed that this is not always the case, since for the facial

expression recognition the drop in accuracy was not as severe as the one we observed for

the attractive attribute. Nonetheless, both reduced the unfair behavior according to their

fairness metrics.

We then combined the individual models, each trained on different perspectives

of the task at hand, into an ensemble model. Specifically, we use a weighted average

combination of all the models. We again showed that our method is robust to the choice

of combination between best and worse models, i.e., both curves have a similar shape.

From this process we obtained a huge set of possible ensemble models, each one with

its own set of weights. We subsequently ran the Pareto efficiency analysis, which aims to

optimize for both accuracy and fairness, and selected the models positioned in the Pareto

curve as the ones which obtained the best weight combination. We then compare our

method to previous work on the field, for both facial analysis tasks, and showed that it
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is possible to simultaneously maintain a competitive accuracy and reduce the fairness

metric.

Finally, we used an explainability technique to understand which region each

model attends to the most. We showed that, in general, the models which are trained on

objective annotations use a more narrow and specific region, usually around the area of

interest for the classification. For instance, in the attractiveness task all models trained

on objective labels (golden ratio, symmetry and neoclassical canons) use the nose, eyes

and a part of the mouth region to make its prediction. The same applies for the models

trained on facial expression recognition, especially the ones trained on the annotations

generated by the ObjLCSt algorithm, which, for instance, focuses on the mouth region for

happiness classification. However, the models trained on the subjective labels use a more

spread area, accounting for regions that do not provide meaningful information for making

the final prediction, e.g., forehead, chin and cheeks. This analysis supports our previous

result, in which models trained on objective labels have a different behavior regarding the

fairness metric.

Thus, in summary, in this work we demonstrated that by training models on a

diverse set of labels we are able to obtain an ensemble that improves the fairness met-

rics over the baselines, while maintaining competitive accuracy. We also showed that

each model that composes the ensemble make its final predictions based on different fa-

cial regions and possibly features. To the best of our knowledge, this is the first time a

pre-processing debiasing method combines objective (mathematical) labels and subjec-

tive (human-based) annotations aiming at reducing fairness issues in ML models. This

approach can be extended beyond the tasks explored in this work, and, in general, one

can use any objective measures for tasks requiring subjective human labeling within the

proposed framework. Although such objective measures may not always be accurate in

practice, the belief is that because these measures are often geometrical attributes and

are possibly less affected by other attributes of the subjects, they are fairer than the sub-

jective labels in the training data and can thus be used to mitigate fairness issues.

5.3 Future Work

For future work, we plan first on extending our method to more facial analysis

systems. We would also like to test our approach under a multi-class setting, in which we

relax the constraint of presence (Y = 1) or absence (Y = 0) of a specific attribute.

Additionally, we would like to study how other types of weighting techniques for

ensembles would influence the results we obtained. Thus, instead of a simple weighted

average procedure, we could introduce a more sophisticated mechanism for combining

the individual models trained on different perspectives. Specifically, we would like to start
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by testing other debiasing weighted techniques (Bhaskaruni et al., 2019; Kenfack et al.,

2021), that was already proposed in the literature, with our annotation methodology.

Finally, another interesting future direction would be to explore which individual

models have the strongest influence on debiasing the final ensemble, and why this is the

case. For instance, when selecting the best performing ensembles for the attractiveness

classification, we observed that some models trained with objective annotations (e.g.,

golden ratio) did not provide a substantial reduction in the fairness metric, compared to

the fairness metric obtained from the model trained with human annotations. This was

especially the case when combining this model with the remaining ones in the ensemble,

i.e., the weights (influence) that this model had on the best ensembles was considerably

close to zero.

5.4 Publications

During the development of the Master’s dissertation, some papers have been

published:

(1) How Does Computer Animation Affect Our Perception of Emotions in Video Sum-

marization? at the International Symposium on Visual Computing, 2020: Camila

Kolling, Victor Araujo, Rodrigo C. Barros, Soraia Raupp Musse.

(2) Efficient Counterfactual Debiasing for Visual Question Answering at the Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022:

Camila Kolling, Martin More, Nathan Gavenski, Eduardo Pooch, Otávio Parraga,

Rodrigo C. Barros.

(3) Measuring Representational Robustness of Neural Networks Through Shared Invari-

ances at the International Conference on Machine Learning (ICML), 2022: Vedant

Nanda, Till Speicher, Camila Kolling, John P. Dickerson, Krishna P. Gummadi, Adrian

Weller.

The first one was developed during the Computer Animation course offered by

PUCRS. The second was developed during the first year of Master’s, as a side project.

The last one resulted from one of the internships conducted during the second year of

Master’s at the Max-Planck Institute for Software System (MPI-SWS) under the supervision

of Prof. Dr. Krishna P. Gummadi. Moreover, the theme of the work presented here has

been submitted to and it is currently under review at the IEEE Transactions on Image

Processing 1.

1Available at https://arxiv.org/abs/2204.06364.

https://arxiv.org/abs/2204.06364
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