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EXPLORANDO A ABORDAGEM RADIÔMICA PARA A IDENTIFICAÇÃO DE 

COVID-19 EM TOMOGRAFIA COMPUTADORIZADA PULMONAR 

RESUMO 

O surto de pneumonia de COVID-19 causou transtornos globais e foi declarado uma 

pandemia pela Organização Mundial da Saúde em 13 de março de 2020. Os exames 

radiológicos do tórax, como radiografias do tórax ou tomografias computadorizadas, têm um 

papel vital no diagnóstico da COVID-19. Vários estudos propuseram o uso de modelos de 

classificação utilizando características radiômicas extraídas dos pulmões em imagens 

radiológicas, principalmente para o diagnóstico e avaliação da gravidade da COVID-19. 

Entretanto, poucos desses estudos exploram como os parâmetros de extração de 

características, como a discretização, impactam as características extraídas. Portanto, este 

estudo visa implementar modelos para identificar a COVID-19 através da assinatura radiômica 

enquanto investiga diferentes parâmetros de pré-processamento e discretização. O conjunto 

de dados utilizado foi de 180 (128 COVID e 52 não COVID) tomografias de tórax realizadas 

no Hospital São Lucas da PUCRS que foram divididas em conjuntos de treinamento (50\%), 

validação (25\%) e teste (25\%). Realizamos segmentação dos pulmões, aplicamos diversos 

filtros e discretizamos a imagem com 6 tamanhos diferentes de bin: 1, 5, 10, 25, 50, e 75. As 

características foram extraídas de todos os filtros aplicados e tamanhos de bin. Os atributos 

Wavelet e não-wavelet foram fundidos em 36 combinações de tamanhos de bin com 1774 

atributos para cada pulmão. Um modelo de classificação foi treinado com cada combinação 

de características e os três melhores modelos foram escolhidos para a otimização. 

Identificamos algumas de nossas limitações e utilizamos quatro estratégias alternativas para 

tentar superá-las: SMOTE, subamostragem, seleção de atributos e somente utilizar atributos 

da imagem original. O melhor desempenho foi alcançado pelo modelo SMOTE NW25-1 com 

um AUC de 0,800. Os três melhores modelos para cada uma destas estratégias alternativas 

também foram otimizados. Dos 15 modelos otimizados, os seis melhores foram selecionados 

para análise da importância dos atributos. Os filtros laplaciano da gaussiana e wavelet foram 

os que geraram os atributos mais relevantes. Nossos resultados indicam que os tamanhos 

menores de bin, em uma faixa de 1 a 25, podem ser mais investigados para extração de 

características na imagem original e na maior parte dos filtros. Os filtros laplaciano da 

gaussiana e wavelet podem ter melhor desempenho com bins ainda menores, em uma faixa 

de 1 a 10. 

Palavras-chave: Tomografia computadorizada, COVID-19, Radiômica, Discretização, 

Importância de atributos  



 
 

EXPLORING THE RADIOMICS APPROACH FOR COVID-19 IDENTIFICATION IN 

LUNG COMPUTED TOMOGRAPHY 

ABSTRACT 

The COVID-19 pneumonia outbreak has caused global turmoil and was declared a 

pandemic by the World Health Organization on March 13, 2020. Chest radiological 

examinations, such as chest X-rays or CT scans, play a vital role in the diagnosis of COVID-

19. Several studies have proposed the use of classification models using radiomic features 

extracted from the lungs in radiological images, mainly for COVID-19 diagnosis and severity 

assessment. However, few of these studies explore how feature extraction parameters, such 

as discretization, impact the extracted features. Therefore, this study aims to implement 

models for identifying COVID-19 through the radiomic signature while investigating different 

preprocessing and discretization parameters. Our dataset was composed by 180 (128 COVID 

and 52 non-COVID) chest CT scans performed at Hospital São Lucas da PUCRS which were 

divided into training (50\%), validation (25\%), and test (25\%) sets. We performed lung 

segmentation, applied several filters, and discretized the image with 6 different bin sizes: 1, 5, 

10, 25, 50, and 75. Features were extracted from all applied filters and bin sizes. Wavelet and 

non-wavelet features were merged into 36 combinations of bin sizes with 1774 features for 

each lung. A classification model was trained with each combination of features and the best 

three models were chosen for the optimization. We identified some of our limitations and used 

four alternative strategies to try to overcome them: SMOTE, undersampling, feature selection, 

and only using features from the original image. The best performance was achieved by 

SMOTE NW25-1 model with an AUC of 0.800. The best three models for each of these 

alternative strategies were also optimized. Of the 15 optimized models, the six best were 

selected for feature importance analysis. The laplacian of gaussian and wavelet filters were 

the ones that generated the most relevant features. Our results indicate that smaller bin sizes, 

in a range from 1 to 25 may be further investigated for feature extraction in the original image 

and most filters. Laplacian of gaussian and wavelet filters may perform better with even smaller 

bin sizes, with a range from 1 to 10. 

Keywords: Computed tomography, COVID-19, Radiomics, Discretization, Feature 

importance 
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1. INTRODUCTION

In December 2019, a group of patients with atypical pneumonia of unknown cause
was associated with bat meat consumed at an exotic animal meat market in Wuhan, Hubei,
China. A new type of beta coronavirus could be identified through unbiased sequencing
of patient samples. The COVID-19 pneumonia outbreak, caused by the coronavirus strain
SARS-Cov-2 (coronavirus severe acute respiratory syndrome 2), caused global turmoil and
was declared a pandemic by the World Health Organization (WHO) on March 13, 2020. By
December 23, 2021, more than 270 million cases had been confirmed worldwide.

The most used test to diagnose the COVID-19 is reverse transcription followed by
polymerase chain reaction (RT-PCR). The test, however, has low specificity when performed
before the onset of symptoms and in asymptomatic cases, which leads to a large number
of false-negative results [Kucirka et al., 2020]. Therefore, as a way to help make a reliable
diagnosis, several studies use the radiological features of chest X-ray images of the lungs of
suspected COVID-19 individuals [Xie et al., 2020b].

Chest radiological examinations, such as chest X-ray or CT scans, play a vital role
in the diagnosis of COVID-19 [Hu and Wang, 2020]. CT is the standard method for evalu-
ating lung changes, even in the early stage of the disease when the patient has few or no
symptoms [Rubin et al., 2020]. In addition, CT is used to monitor the disease evolution.
From the images generated, it is possible to assess whether the lung lesions are mild or se-
vere [Qiu et al., 2021], which is of great importance for the prognosis, severity analysis, and
treatment of patients infected with COVID-19. Observation of the radiological lung patterns
can reveal different types of pulmonary diseases. These patterns can be described based
on the disease and the affected tissue region. Knowledge of the disease-related patterns is
essential for the differentiation and monitoring of lung diseases. For example, studies have
shown that COVID-19 induces abnormal pneumonia that leads to a bilateral, peripheral,
opaque ground-glass pattern [Shi et al., 2020].

Computational methods to quantitatively analyze medical images have been used
for decades to detect pathological patterns, aid diagnosis, and predict treatment outcomes.
A new field called radiomics emerged in the last years, integrating medical image process-
ing techniques with machine learning methods [Lambin et al., 2012] [Aerts et al., 2014].
Radiomics is a field that aims to extract a large number of quantitative features from medical
images using image processing and data characterization algorithms. It has the potential
to identify disease patterns that are difficult to locate or even invisible to the eye, mining
information from multidimensional data[Kocak et al., 2019] [Idris and Hacking, 2017].

The computerized analysis is used to quantify specific features of an image numer-
ically. Quantitative analysis of morphology, intensity, and texture features is helpful in diag-
nosis, and prognosis [Yoon et al., 2019]. The image features are used to classify between
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malign and benign lesions or to identify pathological patterns and predict the severity of dis-
eases. Several models for classification and prediction of pneumonia based on COVID19
using binary or multi-class classification techniques have been developed to aid diagnosis
using CT and X-ray images [Apostolopoulos et al., 2020] [Cardobi et al., 2021] [Lin et al.,
2021] [Shi et al., 2022]. In addition, other studies have attempted to identify radiomic pat-
terns and features related to COVID-19 [Chen et al., 2021a] [Huang et al., 2021b] [Chao
et al., 2021]. However, there has not been much progress in investigating the impact of
preprocessing methods in extracting features to identify the disease.

Discretization, also named quantization or rebinning, is a standard procedure in
radiomic feature extraction and consists of grouping nearby intensity levels according to
predetermined intervals. The process is necessary to reduce the influence of noise in the
extraction process so that radiomic features can be calculated efficiently and practically.

There is no ideal universal method and/or discretization value for extracting imaging
features. Several studies have already investigated the impact on feature extraction with
different discretization methods and in different imaging modalities (CT, magnetic resonance
imaging, and positron emission tomography) for different tasks, mainly in oncology [de Farias
et al., 2021] [Wang et al., 2019] [Desseroit et al., 2016] [Kolinger et al., 2021] [Molina et al.,
2016]. These studies reinforce the importance of defining the method according to the
imaging modality and medical task. For example, radiomic analysis of cancer is usually
restricted to the tumor region, while the analysis of lung diseases usually considers the
whole organ. Due to differences in the region of interest (ROI) size and types of tissues
present, discretization methods can have positive and negative effects on the analysis.

Many radiomic COVID-19 studies use a single method, and discretization value
[Guiot et al., 2020] [Gülbay et al., 2021] [Huang et al., 2021b] which is essentially the soft-
ware default procedure, or do not even mention this process. Our study investigated the
impact of different discretization procedures on the extraction of radiomic features to identify
COVID-19 patients using lung CT images.
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2. BACKGROUND

2.1 COVID-19

2.1.1 Symptoms, transmission capacity and lethality

Among the main symptoms of COVID-19 are fever, dry cough, fatigue, and dyspnea
followed by less common symptoms such as body aches, sore throat, diarrhea, conjunctivi-
tis, headache, loss of taste and smell, rash on the skin, and discoloration of fingers or toes
[World Health Organization, 2022a] [Tian et al., 2020]. Rarer but severe symptoms include
shortness of breath, chest pain or pressure, and difficulty speaking and moving around.

The first symptoms of the disease take approximately 5 to 6 days to appear after
contact with the virus; however, this period can be extended up to 14 days after infection
[World Health Organization, 2022a]. COVID-19 is most transmissible when people show
symptoms [Chen et al., 2020a]; however, there are several cases where individuals are
asymptomatic.

The transmission capacity of SARS-Cov-2 is high. A study conducted in China
indicated, through epidemiological investigations, that the average number of people infected
per one individual carrying the virus is 1.81, even using some containment strategies [Liu
et al., 2020]. This number can vary according to social isolation measures. In Brazil, a
study showed that transmission rates in Brazilian metropolises were between 1.29 and 2.01
during the first 80 days since the first case in the country [Sousa et al., 2020]. Since the
transmission also occurs among asymptomatic individuals, it is challenging to contain the
virus [Liu et al., 2020].

A study carried out by the Emergency Response Epidemiology Team for Coron-
avirus Pneumonia, from the beginning of the pandemic, involving 72,314 patients infected
with the virus, showed that 80.9% of cases are considered “mild,” not requiring hospitaliza-
tion [Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020]. The
remainder of those infected develop difficulty breathing and need hospital care. The lethality
of the virus depends on epidemiological, social, and economic factors, but this study, with a
significant sample, comes in at 2.3% [Novel Coronavirus Pneumonia Emergency Response
Epidemiology Team, 2020]. As of February 13, 2022, the lethality of COVID-19 in Brazil was
2.3% [Dong et al., 2020] and 1.4% worldwide, and it has dropped considerably in the last
year due to mass vaccination worldwide.

2.1.2 Vacines and variants

Vaccines are essential to prevent and control infectious disease outbreaks. Due
to the number of infected and dead caused by COVID-19, in May of 2020, the 73rd World
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Health Assembly recognized the role of mass immunization as a global-public-health goal
for preventing, containing, and stopping transmission of SARS-CoV-2 [World Health Orga-
nization, 2020]. The immunization process reduces the risks of contracting the disease by
using the body’s natural defenses to create resistance [World Health Organization, 2022c].
Therefore, an effective vaccine helps to protect the individuals in two ways; the first one
is direct protection, where groups are vaccinated with the primary purpose of preventing
the disease’s harsher symptoms on the individuals vaccinated. The second way is indirect
protection, where those in contact with vaccinated individuals, even if unvaccinated, have a
smaller chance of contracting the virus, reducing overall transmission.

Unfortunately, being vaccinated does not entirely protect individuals and does not
mean people can stop taking precaution measures. All viruses can change over time, in-
cluding SARS-CoV-2. Most of those changes have little to no impact on their properties.
Nonetheless, some changes significantly affect the virus, such as how easily it spreads, the
associated disease severity, the performance of vaccines, etc. Today there are five variants
considered of concern by the WHO: Alpha, Beta, Gamma, Delta, and Omicron [World Health
Organization, 2022b]. The Omicron variant is the latest one, discovered in November 2020,
and it spreads more quickly than the original virus and the Delta variant. It is expected that
anyone contaminated with Omicron can spread the virus even when vaccinated or without
presenting symptoms [Centers Disease Control Prevention, 2022].

Regardless of the total of 10,095,615,243 vaccine doses that have been adminis-
tered until February 7, 2022, the COVID-19 pandemic is far from over. A growing anti-vaccine
movement can cause significant losses for the global population. This happens because a
set of unvaccinated subjects provides a receptacle full of opportunities for the virus to mu-
tate and spread [Goldman, 2021]. In the face of this scenario, a variant can emerge that is
resistant to the vaccine. Thus far, the known variants can still be controlled by the existent
vaccines, but this is not an unchangeable reality. In fact, the Delta variant is exhibiting an
increased frequency of infections among the vaccinated [Farinholt et al., 2021]. Therefore,
studies regarding the diagnosis and prognosis of COVID-19 must continue to be explored
and improved.

2.2 Computed Tomography

Computed Tomography (CT) is an imaging exam that uses ionizing radiation to
produce internal images of the human body. The X-ray tube emits the radiation, which
performs a rotational movement around the patient. The radiation beam is transformed as
a function of its interaction with the patient’s tissues. All projections are measured by a
set of detectors diametrically opposite to the X-ray tube. Data from all detectors generate
sinograms, which are used to reconstruct internal slices of the body [Goldman, 2007].

The resulting tomographic images are cross-sections that allow visualization of the
internal structures of the patient’s body, reducing the anatomical overlap compared to a
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conventional X-ray image projection. Denser regions attenuate the incident X-ray beams to
a greater extent and, as in other radiological techniques, are represented in the image as a
lighter region. In contrast, darker regions represent low density tissues. Several parameters
(slice thickness, field of view, voltage, current-time, etc.) are adjusted in the acquisition,
influencing the X-ray beam and, consequently, the CT image [Mahesh, 2013].

The grayscale used on CT reconstructed images is the Hounsfield scale, where
each pixel has a value in Hounsfield Units (HU) associated with the X-ray attenuation co-
efficients of the tissues. The HU scale varies from -1024 to 3071 (12 bits), and its primary
reference is the attenuation coefficient of water, as shown in equation 2.1.

HU Value = 1000 × µ− µH2O

µH2O − µair
(2.1)

Therefore, gray values in CT images have physical meaning, and specific values
may be associated with specific tissues and organs [Little, 2015]. For example, -1000 HU
is the value associated with air, while 0 is associated with water in all CT scanners. Other
examples from tissues on the body include healthy lungs with HU values between -900 to
-700, muscle with 50 HU, fat with -100, intravenous contrast with 300, and bone with HU
values over 1000.

2.3 Radiological characteristics of COVID-19 on CT

CT images can show indications of lung diseases, such as COVID-19, even be-
fore the onset of symptoms [Li and Xia, 2020]. The main chest CT findings of patients
with COVID-19 are ground-glass opacities, crazy-paving patterns, consolidations, and linear
opacities [Fu et al., 2020a] [Ding et al., 2020] [Chung et al., 2020]. In most cases, the dis-
ease affects more than one lung lobe and evolves into bilateral pneumonia [Chung et al.,
2020] [Fatima et al., 2020]. Lower lung lobes have shown to be the most affected [Fu et al.,
2020a] [Ding et al., 2020].

[Fatima et al., 2020] study presents the radiological findings according to the stages
of the disease 2.1:

• Ultra-early stage: Before the onset of symptoms, with negative laboratory tests. CT
images show multiple bilateral and subpleural scattered ground-glass opacities.

• Early stage: 1-3 days after symptom onset. CT images show multiple bilateral
ground-glass opacities. Irregular interlobular septa begin to develop.

• Rapidly progressing stage: 3-7 days after onset of symptoms. CT findings include
subpleural posterior consolidations, scattered air bronchograms, and overlapping
irregular septa.

• Consolidation stage: Second week after symptom onset. CT images show a de-
crease in the size and density of consolidations.
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Figure 2.1: COVID-19 radiological characteristics in chest CT for each disease stage.
Adapted from Fatima et al. [2020].

• Dissipation stage: Usually occurs between 2 and 3 weeks after symptom onset.
CT images show irregular consolidation, reticular (strip-like) opacities, bronchial
and interlobular septal thickening.

2.4 Radiomics

Due to medicine digitalization, medical imaging data is now more available than
ever. Together with the increased availability of artificial intelligence (AI) methods, the field
of medical imaging is evolving exponentially. The new field of radiomics is one of the results
of these developments [Tang, 2020].

Radiomics is a relatively new word, meaning the extraction of large numbers of
quantitative features from medical images [Kocak et al., 2019]. This process effectively
converts images into mineable data and rises in contrast to the traditional practice of only
looking at medical images as pictures intended only for visual interpretation [Gillies et al.,
2016]. Radiomic features can be related to intensity, shape, size, texture, among other
information present in the images [Gillies et al., 2016]. Furthermore, radiomic features can
be selected in advance (handcrafted features) or determined by the algorithm itself (deep
learning features). Models have been proposed in recent years by analyzing these radiomic
features to aid in diagnostic, prognostic, and predictive decision-making.

Radiomics is mostly used with CT, PET and MR, but can also be applied for other
imaging modalities, including radiographs and ultrasound [Wilson and Devaraj, 2017] [Mu
et al., 2020] [Zhang et al., 2017] [Chang et al., 2021] [Pang et al., 2021]. Due to the benefits
of different modalities, it is possible to make an integrated cross-modality approach. This
kind of approach enables the use of additional imaging information, resulting in more rel-
evant features and, consequently, a powerful characterization [van Timmeren et al., 2020].
Radiomic features carry information regarding the pathology of interest, complementary to
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other patient data, such as clinical and genomic ones. Consequently, when combined with
pertinent data, radiomics can extract accurate and robust information, potentially offering
and improving a clinical decision system [Lambin et al., 2017].

Although it is possible to use radiomics for several conditions, it is mostly used and
developed in the field of oncology [Bera et al., 2021] [Liu et al., 2019] [Amini et al., 2021]
[Pang et al., 2021]. It has quickly advanced toward clinical application enabling more precise
diagnostics and treatment of patients. This rapid advance can be associated with the support
offered from the National Cancer Institute, Quantitative Image Network, and other initiatives
from the National Cancer Institute Cancer Imaging Program [Gillies et al., 2016].

The radiomics field combines multiple computational technologies, and the ap-
proaches used are usually focused on clinical tasks since radiomic data carry information
regarding tumor biology. Recent technological advances have benefited clinical tasks such
as cancer treatment and diagnosis. The application of radiomic studies in oncology is com-
monly diagnosis, which involves dividing samples according to disease or disease types, or
predicting outcomes, which consists in separating the patients into risk groups [Shur et al.,
2021]. Therefore, radiomics can even be used as a virtual biopsy without the need for in-
vasive methods. Also, it can be helpful in disease monitoring since it offers information
regarding disease progression.

2.5 Discretization

Discretization groups nearby pixel intensity values in the images according to pre-
determined intervals (bins). There is no ideal and universal discretization method for ex-
tracting imaging features [van Timmeren et al., 2020] [van Griethuysen et al., 2017a]. This
process is mostly performed in two ways.

The first is to define a fixed number of bins (Fixed Bin Number - FBN), where
the width of the interval is defined as the range of image gray or intensity values divided
by the number of defined intervals. The range is defined by each image’s minimum and
maximum intensity values or gray levels. For example, in our study, the range is defined as
the difference between the minimum and maximum HU values of the lung in CT images.
However, not all CT scans have the same maximum and minimum gray levels, especially
after segmentation. In addition, different scans would have different bin widths, and the
discretized values would not be directly related between scans. Thus, the FBN method
would imply giving up the biological information carried with HU values for CT scans since
each one would be discretized according to its value range.

The second most common form of image discretization is to determine a specific
bin width value (Fixed bin size - FBS). With this method, the number of intervals is deter-
mined by the range of gray levels divided by the width of each bin. FBS gives direct control
over the range of values represented in each bin [van Timmeren et al., 2020]. It is also guar-
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anteed that the same image contrast will be used to extract all features. In CT images, where
gray levels are defined in HU, and the values are absolute and directly correlate to organ and
tissue’s physical characteristics, the FBS method may achieve better performance.

Each imaging modality has its physical formation principle, and therefore, the im-
age gray levels are specifically determined. In this sense, radiomics has particularities for
each modality. Processing methods that perform well in one specific image modality will
not necessarily perform well in others. Therefore, besides the discretization procedure, it is
necessary to define the parameters of each method – the number of bins for the FBN and
the bin width for the FBS - which also have different influences according to the imaging
modality.

Radiomic algorithms and libraries recommend that the discretization method should
be determined according to the imaging modality, body part examined, and task. Still, many
radiomic studies use the default values defined by libraries (like FBS with bin width 25 -
Pyradiomics library default).

2.5.1 Discretization methods in radiomics review

A review study was conducted to identify the discretization methods with the best
performance for different imaging modalities and medical tasks in radiomic studies. Cur-
rently, there is not enough information to define optimal values for all modalities and tasks.
Thus, the best-performing methods and values identified in the review could be used as a
basis for choosing and investigating discretization methods in future works.

The manuscript was submitted to the IEEE Journal of Biomedical and Health Infor-
matics on February 03, 2022. The journal has a JCR impact factor of 5.772 (2020). The
manuscript can be found at the end of this dissertation, in Annex C.

2.6 State of the art on COVID-19 radiomics

The applications of radiomics in the diagnosis and prognosis of pulmonary dis-
eases have been investigated in recent years. Motivated by the pandemic, studies have
investigated the feasibility of using radiomic models for different COVID-related tasks. A
literature review was conducted using the Pubmed and Scopus databases seeking to es-
tablish the state of the art in the use of CT-based radiomics in the study of COVID-19. The
terms used in the search are described below.

Pubmed: (COVID-19) or (coronavirus)) AND ((computed tomography) or (CT))
AND (coronavirus) OR (COVID-19)) AND (radiomics OR radiomic AND features)

Scopus: TITLE-ABS-KEY ((covid-19) OR (coronavirus)) AND TITLE-ABS-KEY ((com-
puted AND tomography) OR (ct)) AND TITLE-ABS-KEY (radiomics OR radiomic AND fea-
tures)
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We found 76 publications in Pubmed and 86 in Scopus (studies included in the
databases until 07/21/2020 ). After disregarding duplicates, 98 studies were considered for
this review. Of these, 32 papers were disregarded (18 through abstract and 14 through full-
text review) because they did not meet the requirement of using chest CT radiomic features
for COVID-19 diagnosis or prognosis related to medical tasks. Two papers were also dis-
regarded because they were not available for access. Thus, 64 studies were reviewed to
determine the state of the art in using radiomics applied to COVID-19 on chest CT.

Table 2.1 presents a summary of all the studies evaluated in this state of the art,
with data regarding the purpose of the study, datasets, discretization methods, filters, fea-
tures, and segmentation method used as well as the evaluation metrics and results for each
of the studies.
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Table 2.1: State of the art on chest CT radiomics for COVID-related tasks

Ref. Aim Sample Disc.
Method

Filters Extracted Features Extraction
Software

Segmentation Metrics Uses
CD?

Cardobi
et al.
[2021]

Diag. 115 FBS: 25 Original, Wavelet,
LoG, Exponential,
Logarithm, Gradient,
LBP3D.

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Whole Lung AUC: 0.83 No

Caruso
et al.
[2021]

Diag. 120 - Original, LoG 1st order TexRAD - Sensitivity: 60%; speci-
ficity: 80%

Yes

Chen et al.
[2021b]

Diag. 134 FBS: 25 Original, Wavelet,
LoG

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM

Pyradiomics Lesion AUC: 0.925; sensitivity:
0.816; specificity: 0.816

Yes

Chen et al.
[2021c]

Diag. 185 - Original Shape, 1 st order, GLCM,
GLRLM,

IBEX Lesion AUC: 0.915 Yes

Pizzi et al.
[2021]

Diag. 58 - Original, Wavelet,
LoG, Square,
Squareroot, Loga-
rithm, Exponential,
Gradient, LBP2D,
LBP3D

Shape, 1 st order, GLCM,
GLRLM, NGTDM,
GLDM, GLSZM

Pyradiomics Lesion AUC: 0.868; sensitivity:
93%; specificity: 75%;

No

Di et al.
[2021]

Diag. 3330
imgs

- Original 1st order, GLCM - Lobe and Le-
sion

Accuracy: 0.8979 No

Fang et al.
[2020a]

Diag. 75 - Original Shape, 1st order, GLCM,
GLRLM

MATLAB in-
house devel-
oped

Whole Lung AUC: 0.826 No
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Fang et al.
[2020b]

Diag. 239 - Original Shape, 1st order,
GLCM, GLSZM, GLDM,
NGTDM, GLRLM

uAI-Discover
NCP R001

- AUC: 0.995 Yes

Feng et al.
[2020]

Diag. 350 - Original, Laplacian
sharpening, Gaus-
sian, Shot noise

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Lesion Sensitivity: 0.941; speci-
ficity: 0.981; accuracy:
0.962

Yes

Guiot et al.
[2020]

Diag. 2022 FBS: 25 Original Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM, GLDM

RadiomiX Whole Lung AUC: 0.882; accuracy:
85.18%; sensitivity:
69.52%; specificity:
91.63%

Yes

Gülbay
et al.
[2021]

Diag. 134 FBN: 64 Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

- Lesion AUC: 0.907; accuracy:
83%; sensitivity: 79.5%;
specificity: 85.7%

No

Huang
et al.
[2021b]

Diag. 154 FBS: 25 Original, Wavelet,
LoG, LBP

Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM

Pyradiomics Lesion AUC: 0.959; sensitiv-
ity: 89.9%; specificity:
90.7%; accuracy: 90.3%

Yes

Kang et al.
[2021]

Diag. 170 - Original Shape, 1st order, etc - Whole Lung
and Lesion

Diag-accuracy: 91.2%;
SA-accuracy: 95%

Yes

Lin et al.
[2021]

Diag. 319 - Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM

Pyradiomics Lesion AUC: 0.911 No

Liu et al.
[2021]

Diag. 146 - Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

- Lesion AUC: 0,98; sensitivity:
0,94; specificity: 0,93

Yes
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Li et al.
[2021b]

Diag. 550 FBS: 25 Wavelet, LoG Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM

Pyradiomics Whole Lung F-score - GGO: 93.84%;
cord: 92.37%; solid:
95.47%; subsolid:
84.42%

Yes

Peng et al.
[2022]

Diag. 145 FBS: 25 Original, Wavelet Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Lobe and Le-
sion

AUC: 0.977; sensitivity:
0.944; specificity: 0.870;
accuracy: 0.915

Yes

Rezaeijo
et al.
[2021]

Diag. 278 FBN: 64 Original Shape, 1st order, GLCM,
GLRLM, GLDM

- Whole Lung AUC: 0.997 No

Santone
et al.
[2021]

Diag. 35 - Original 1st order, GLDM,
GLRLM, GLSZM

Pyradiomics Whole Image Accuracy: 0.83 No

Shi et al.
[2021b]

Diag. 2685 FBN:30 Original 1st order, GLCM,
GLRLM, GLSZM,
NGTDM

- Lesion Sensitivity: 90.7%; speci-
ficity: 87.2%; accuracy:
89.4%

No

Soleymani
et al.
[2021]

Diag. 106 FBN:
128

Original GLCM, GLRLM S-IBEX Lesion - No

Stefano
and
Comelli
[2021]

Diag. 199 - Original - - Parenchyma DSC: 74.83 ± 11.18%;
sensitivity: 76.50% ±
16.79%

No
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Sun et al.
[2020]

Diag. 2522 - Original 1st order, GLCM,
GLRLM, GLSZM,
NGTDM

- Lesion AUC: 96.35%; accu-
racy: 91.79%; sensitivity:
93.05%; specificity:
89.95%

No

Tabatabaei
et al.
[2021]

Diag. 66 FBS: 64 Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Lesion AUC: 0.97; sensitivity:
89%; precision: 90%;
F1score: 89%; accuracy:
89%

No

Tan et al.
[2020]

Diag. 219 - Original, Wavelet,
Square, Squareroot,
Logarithm, Expo-
nential, Gradient,
LBP2D, LBP3D

Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM

Pyradiomics Healty Tis-
sue

AUC: moderate&severe:
0.95; moderate&control:
0.98; severe&control:
0.95

Yes

Velichko
et al.
[2022]

Diag. 417 - Original, Wavelet,
Gabor, LBP3D

GLCM, Gabor, Laws tex-
ture, Lapped

- Lesion AUC: 0.994; accuracy:
0.98; sensitivity: 0.98;
specificity: 0.98

No

Wang
et al.
[2020]

Diag. 266 - Original Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM, GLDM

Pyradiomics Whole Lung
and Lesion

AUC: 0.87; sensitivity:
73,5%; specificity: 81,8%

No

Wang
et al.
[2021a]

Diag. 218 - Original Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM, GLDM

Pyradiomics Lesion AUC: 0.81; sensitivity:
72.2%; specificity: 75.1%

Yes

Xie et al.
[2021]

Diag. 301 - Original, Wavelet 1st order, GLCM,
GLRLM, GLSZM,
NGTDM

- Lesion AUC: 0.98 No
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Xin et al.
[2021]

Diag. 103 - Original Shape, 1st order, GLDM,
GLSZM

Python Lesion AUC: 0.990 Yes

Yang et al.
[2021]

Diag. 180 - Original Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM

LIFEx Lesion AUC: 0.940; accuracy:
89.83%; sensitivity:
94.22%; specificity:
85.44%

No

Zeng et al.
[2020]

Diag. 78 - Original Shape, 1st order, GLCM,
GLZLM, GLDM, GLRLM

LIFEx Lesion AUC: 0.87 Yes

Zhang
et al.
[2021c]

Diag. 386 - Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Whole Lung COVID - AUC: 0.922;
sensitivity: 0.879; speci-
ficity: 0.900

No

Zhao et al.
[2021]

Diag. 112 - Original 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

- Whole Lung AUC: 0.9470; sensitiv-
ity: 0.9670; specificity:
0.9270

No

Zhu et al.
[2021]

Diag. 2522 - Original 1st order, GLCM,
GLRLM, GLSZM,
NGTDM

- Lesion AUC: 91.32; accuracy:
91.31; sensitivity: 91.62;
specificity: 91.01

No

Cai et al.
[2022]

SA 520 - Original Shape, 1st order, - Lesion AUC of each stage:
0.965; 0.958; 0.998;
0.975

Yes

Huang
et al.
[2021a]

Other 162 - Original, Wavelet,
LoG

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Lung Kit Whole Lung
and Lesion

AUC: 0.875 - 0.837; sen-
sitivity: 0.920 - 0.680;
specificity: 0.826 - 0.913

No
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Wang
et al.
[2021c]

Other 50 FBN: 8,
16, 32,
64, 128,
256

Original 1st order, GLCM,
GLRLM, GLSZM,
NGTDM

- Lesion AUC: 0.773; accuracy:
0.726

Yes

Zhang
et al.
[2021a]

Other 107 - Originial, Wavelet,
LoG, Square,
SquareRoot, Ex-
ponential; Logarithm

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Lesion AUC: 0.857; sensitivity:
87.5%; specificity: 70.7%

No

Arru et al.
[2021]

OP 221 - Original Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM, GLDM

- Whole Lung
and Lesion

SA-AUC: 0.88; ICU ad-
mission - AUC: 0.82;

No

Bartolucci
et al.
[2021]

OP 115 - Original 1st order, GLDM,
GLSZM, GLCM, GLRLM,
NGTDM

3DSlicer Lesion AUC: 0.82 Yes

Cai et al.
[2020]

OP 203 - Original Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM, GLDM

Lung intelli-
gence Kit

Lobe and Le-
sion

AUC: 0.812; sensitivity:
0,625; specificity: 0,600

Yes

Chao et al.
[2021]

OP 295 - Original, Wavelet;
LoG, Square,
Squareroot, Loga-
rithm, Exponential

Shape, 1st order, GLCM,
GLDM, GLRLM, GLSZM,
NGTDM

Pyradiomics Lung Lobes AUC: 0.884; sensitivity:
96.1%

Yes

Chen et al.
[2021a]

OP 40 - Original, Wavelet,
Logarithm, Square,
Squareroot, Expo-
nential

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM

- Lesion AUC: 0.88; C-index: 0.85 Yes
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Fu et al.
[2020b]

OP 64 - Original Shape, 1st order, GLCM,
GLRLM, GLSZM,

Quantitative
Analysis Kit

Whole Lung AUC: 0.833; sensitiv-
ity: 80.95%; specificity:
74.42%,

Yes

Ke et al.
[2021]

OP 96 - Original, Wavelet Shape, 1st order, "tex-
ture"

Lung Intelli-
gence Kit

Lesion C-index: 0.907 Yes

Shiri et al.
[2021]

OP 152 FBN: 64 Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Whole Lung
and Lesion

AUC: 0.95; accuracy:
0.88; sensitivity: 0.88;
specificity: 0.89

Yes

Wang
et al.
[2021b]

OP 400 - Original, Wavelet,
LoG

1st order Pyradiomics Whole Lung AUC: 0.876 Yes

Wu et al.
[2020]

OP 429 FBS: 25 Original Shape. 1st order, GLCM,
GLRLM, NGTDM

Pyradiomics Whole Lung AUC of early and late
stages: 0.862; 0,976

Yes

Yue et al.
[2020]

OP 31 - Original, Wavelet Shape, 1st order, "tex-
ture"

Pyradiomics Lobe and Le-
sion

AUC: 0.97; sensitivity:
1.0; specificity: 0.89

Yes

Berta et al.
[2021]

SA 60 FBS: 3,
5 e 10

Original 1st order - Lobe and Le-
sion

WAVE.f: 84%; WAVE.th:
75%;

No

Chen et al.
[2020b]

SA 86 - Original Shape, 1st order,
GLRLM, GLDM, GLSZM,
GLCM, NGTDM

Pyradiomics Lesion AUC: 0.91; sensitivity:
0.82; specificity: 0.86

Yes

Li et al.
[2020]

SA 217 - Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM

Pyradiomics Whole Lung AUC: 0.861 Yes

Li et al.
[2021a]

SA 316 - Original, Wavelet Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

- Lesion AUC: 0.696 Yes
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Purkayastha
et al.
[2021]

SA 981 FBN: 8,
16, 32,
64

Original Shape, 1st order, GLCM,
GLRLM, GLSZM

- Lesion AUC: 3days: 0.897;
5days: 0.933; 7days:
0.927

Yes

Qiu et al.
[2021]

SA 1160
le-
sions

- Original 1st Order, GLCM,
GLRLM, LoG, contourlet,
ACM, absolute gradient,
autoregression, GLDM

- Lesion AUC:0.87 No

Shi et al.
[2022]

SA 260 - Original - - Lesion AUC: 0.978 Yes

Tang et al.
[2021]

SA 118 - Original Shape, 1st order,
GLCM, GLRLM, GLSZM,
NGTDM, GLDM

Pyradiomics Whole Lung
and Lesion

AUC: 0,98; acuracy: 0.89;
TPR:0.910; TNR:0.858

Yes

Wei et al.
[2020]

SA 81 - Original 1st order, GLCM,
GLSZM, GLRLM

Pyradiomics Lung Lobes AUC: 0.95; accuracy:
0.91; sensitivity: 0.81;
specificity: 0.95

Yes

Xie et al.
[2020a]

SA 150 FBN:
128

Original Shape, 1st order, GLCM,
GLRLM, GLSZM

Artificial
intelligence
Kit

Lesion AUC: 0.905; accuracy:
89.5 %; sensitivity: 83.3
%; specificity: 90.0 %

Yes

Xiong
et al.
[2021]

SA 219 - Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Whole Lung AUC of each stage:
0.619; 0.519; 0.478;
CTscore: 0.548

No

Xu et al.
[2021a]

SA 3024 - Original, Wavelet,
LoG, Square, Log-
arithm, Gradient;
LBP3D

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Lesion AUC: 0.919 Yes
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Xu et al.
[2021b]

SA 284 - Original, Wavelet,
Logarithm, Expo-
nential, Gradient,
Square, Squareroot,
LBP2D, LBP3D

Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM,
NGTDM

Pyradiomics Lesion AUC of each stage: 0.97;
0.86; 0.83; 0.89

No

Zhang
et al.
[2021b]

SA 509 - Original Shape, 1st order, GLCM,
GLRLM, GLSZM, GLDM

Pyradiomics Lesion AUC: 0.75 Yes

Diag., OP and SA refer to diagnosis, outcome prediction and severity assessment, respectively. LoG refer to Laplacian of Gaussian filter.
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Our review shows the wide variety of dataset sizes in the studies. The studies use
from 31 [Yue et al., 2020] up to 3024 [Xu et al., 2021a] patients’ data. Most of the studies’
datasets are in between 100 and 300 patients (31 studies), 13 studies have less than 100
patients in their dataset, and 20 studies have more than 300 patients. It is acknowledged that
different discretization methods and values can affect the image features extraction. Despite
that, it was observed that from the 64 studies, only 17 discuss the discretization method, and
only 3 of them explore more than one discretization parameter [Purkayastha et al., 2021],
[Berta et al., 2021], [Wang et al., 2021c]. These three studies used only one discretization
method with different parameters. They improved their performance on the classification
models using all the extracted features, regardless of the discretization parameters used.
Therefore, they didn’t recommend specific methods or parameters for discretization.

Regarding the segmentation step in the studies, only one of the studies did not
use it [Santone et al., 2021] and one didn’t even mention this step [Caruso et al., 2021].
Computer-aided methods using non-segmented images may lead to biases [Rizzo et al.,
2018] [Shi et al., 2021a], since the model may associate elements from outside the lungs,
which are not related to the disease. Limiting the region of interest guarantees that the
extracted features come from the radiological information present in the lungs. In Maguolo
study [Maguolo and Nanni, 2021], they put black squares on the middle of chest radiographs
(completely erasing the lungs) from four different datasets, then trained a model to differenti-
ate the original dataset of each sample. Surprisingly, the model could determine the original
dataset with an AUC of over 0.9 with squares of different sizes. This shows that COVID-19
datasets need to be standardized since using multiple of the available datasets may lead
models to differentiate inner characteristics of each one instead of differentiating COVID-19
from other pathologies. The study also reinforces the importance of segmentation, as re-
moving the information from outside the lungs guarantees that the model will not take it into
account.

Different methods of segmentation were used in the studies. Thirty studies seg-
mented only the lesion region, 12 studies segmented the whole lung, and 3 studies used
lobe segmentation. Another 13 studies did lesion segmentation and lobe or lung segmen-
tation as well. Some studies used parenchyma segmentation and one only segmented the
healthy tissue of the lungs [Tan et al., 2020].

Regarding image preprocessing or filtering in radiomics, 40 studies only used the
original image. The most common preprocessing used were wavelets and Laplacian filters.
One or both are used in 20 studies. Regarding the software or libraries used for feature ex-
traction, 16 of the 64 studies did not specify the software or library. Besides, 28 studies used
the python library Pyradiomics, and the other 20 studies used different software, including
in-house developed ones. Furthermore, two studies did not specify what radiomic features
were used. One study used only first-order features, and the other 61 articles also used
GLCM and other descriptors. Regarding the metrics used for model’s performance, all the
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studies presented AUC, specificity, and sensibility higher than 0.60. Most of them achieved
a result between 0.80 and 0.95. The articles found were subdivided into four categories:
those whose purpose was the diagnosis of COVID-19, those that did a severity assessment,
the ones that aimed at making an outcome prediction, and others who did not fit any of
these categories. The vast majority, 55%, is regarding diagnosis. 23% are related to sever-
ity assessment and 17% to study outcome prediction. Of the three studies that did not fit
these categories, one studies the prediction of re-positive cases [Wang et al., 2021c], one is
regarding rapid progression prediction [Zhang et al., 2021a]. The last one studies residual
lung lesion prediction [Huang et al., 2021a].

Regarding the inclusion of clinical data in the radiomics, 59% of the studies use
clinical factors in their analysis. Approximately 90% of the studies in the outcome category,
10 out of the 11, use clinical data. Regarding severity assessment, the results are similar.
Of the 15 studies, only 4 of them do not use clinical characteristics in their evaluation [Berta
et al., 2021], [Qiu et al., 2021], [Xiong et al., 2021] and [Xu et al., 2021b]. The combination
with clinical characteristics was expected, considering that the severity and the outcome can
be reinforced with clinical variables. Of the 35 studies regarding COVID-19 diagnosis, 16
of them used clinical data in their evaluation, and, from the ‘other’ category [Wang et al.,
2021c], and [Cai et al., 2022] included clinical data in their analyses.
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3. OBJECTIVES

3.1 Main objective

Implement models for identifying COVID-19 disease through the radiomic signature
of CT lung images investigating different preprocessing and discretization parameters.

3.2 Specific goals

• Evaluate the performance of COVID identification models on lung CT images and
explore their limitations.

• Evaluate the importance of the radiomic features on the classification models.

• Investigate the impact of preprocessing methods on the performance of the classi-
fication models.

• Investigate the impact of discretization methods on the performance of the classifi-
cation models.
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4. METHOD

4.1 Study design

A retrospective, cross-sectional study was carried out at the Hospital São Lucas
(HSL) of the Pontifical Catholic University of Rio Grande do Sul (PUCRS), located in Porto
Alegre. The study was approved by the PUCRS Research Ethics Committee (CEP) under
protocol CAAE 30791720.5.0000.5336, report number 4.850.213. The consubstantiated
decision of the CEP can be found in Annex A.

4.2 Sample

The data of this study were collected from patients who underwent lung CT scans
at HSL between December 16, 2020, and February 08, 2021. 442 CT scans were col-
lected from the Picture Archiving and Communication System (PACS). The test used to dis-
tinguish between positive and negative COVID-19 patients was the Reverse Transcription-
Polymerase Chain Reaction (RT-PCR) test. The following criteria of inclusion and exclusion
in the groups are described below.

4.2.1 Inclusion and exclusion criteria

Patients were included in the COVID group if there was 1 (one) week or less be-
tween the positive RT-PCR and the CT scan, with no other negative RT-PCR results within
10 (ten) days of the CT scan date. Patients were included in the non-COVID group if there
were 3 days or less between the negative RT-PCR result and the CT scan, with no other
positive RT-PCR results within 60 days of the scan date. From the 442 CT exams collected,
233 were discarded because they had no RT-PCR data in the lab system.

Initially, the COVID group was formed with 151 CT scans. 11 CT scans were ex-
cluded for having more than 7 days between the scan and the RT-PCR, 7 were excluded as
they were from patients with another CT scan already included (only the CT scan closest to
the RT-PCR was considered), one was excluded for being incomplete, and 4 were excluded
for having RT-PCR with a negative result with less than one week of the examination.

Initially, the non-COVID group had 58 CT scans. 3 CT scans were excluded for
having more than 3 days of the negative RT-PCR, one was excluded for having a metallic
artifact, and 2 were excluded as they were from patients with a CT scan already included.
As for the COVID group, only the CT scan closest to the RT-PCR was considered.

Considering both inclusion and exclusion criteria, at the end the COVID group was
composed of 128 CT scans, and the non-COVID group was formed of 52 CT scans. The
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complete criteria for each group are shown in figure 4.1. In addition, the patients’ age and
sex distribution of both groups are shown in 4.1.

Figure 4.1: COVID and non-COVID group formation and criteria

4.2.2 Lung CT Dataset

A total of 180 lung CT scans were used in this study, one from each patient. All
scans were acquired in a Siemens CT, model Emotion 16 from the year 2007. The acqui-
sition protocol was the same for all patients, with 110 kV tube voltage, current modulation
and 2 mm slice thickness. The Hounsfield values are in the range of -1024 to 3071 (12 bits).
In case of multiple CT-scans for the same patient, only the closest to the corresponding RT-
PCR test was used. We divided the dataset randomly and stratified it into training (50%),
validation (25%), and test (25%) sets. No augmented data were used. The classification
model only sees the images from the test set at the last performance evaluation.

Table 4.1: Demographic data of the patients in each group

COVID group non-COVID group

Age (years) 64 ± 16 60 ± 20
Sex (male) 59 22
Sex (female) 69 30
Total 128 52
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4.3 Image Processing

The following subsections describe the image processing pipeline applied to the
lung CT images before the feature extraction.

4.3.1 Segmentation

To extract the radiomic features only from the organ of interest, we performed seg-
mentation of the lungs using the U-net R231CovidWeb model. The model is identical to the
previous U-net R-231 [Hofmanninger et al., 2020], but was trained with additional images
from patients with COVID-19 pneumonia. The segmentation model has already been used
in other COVID-19 studies [Paluru et al., 2021] [Heidarian et al., 2021] [de Moura et al.,
2022]. The left and right lungs were individually segmented to further extract features ac-
cording to the laterality.

4.3.2 Filtering

The Pyradiomics library contains built-in filters that can be applied after the dis-
cretization process. The idea behind using these filters is to highlight possible radiomic
patterns, which can help in the classification differentiating between COVID and non-COVID
groups. Features were extracted from the original images and also using each of the filters
embedded in the Pyradiomics library. The filters applied in this work are listed below, along
with the specific parameters.

• Laplacian of Gaussian (LoG): applies a 3D Laplacian of Gaussian filter to the input
image and yields a derived image for each sigma value specified. A Laplacian of
Gaussian image is obtained by convolving the image with the second derivative
(Laplacian) of a Gaussian kernel. The Gaussian kernel is used to smooth the
image and is defined as [Johnson et al., 2013]:

G(x , y , z,σ) =
1

(σ
√

2π)3
e− x2+y2+z2

2σ2 (4.1)

The Gaussian kernel is convolved by the laplacian kernel ∇2G(x , y , z), which is
sensitive to areas with rapidly changing intensities, enhancing edges. The width of
the filter in the Gaussian kernel is determined by σ and can be used to emphasize
more fine (low σ values) or coarse (high σ values) textures. σ values used were 1,
3 and 5 and, therefore, three different LoG filtered images were generated.

• Square: calculates the square of each of the image gray intensities, and then
rescales them linearly to the initial range [van Griethuysen et al., 2017b]. After ap-
plying the filter, negative values in the original image will be made negative again.
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• Square Root: calculates the square root of each of the image gray intensities, and
then rescales them linearly to the initial range [van Griethuysen et al., 2017b]. After
applying the filter, negative values in the original image will be made negative again.

• Logarithm: calculates the logarithm of each of the image gray intensities, adds 1,
and then rescales them linearly to the initial range [van Griethuysen et al., 2017b].
After applying the filter, negative values in the original image will be made negative
again.

• Exponential: calculates the exponential of each of the image gray intensities, where
the filtered intensity is eoriginal gray intensity, and then rescales them linearly to the initial
range [van Griethuysen et al., 2017b]. After applying the filter, negative values in
the original image will be made negative again.

• Gradient: Computes the gradient of an image using directional derivatives. Con-
volutions with first-order derivative operators are used to compute the directional
derivative at each pixel position. The derivative operators are a 1×3 and 3×1 matrix
with the values -1, 0 and 1. The filtered intensity is equal to the square root of the
sum of the squares of the convolutions, and is computed as [Johnson et al., 2013]:

G(x , y ) =
√

[f (x + 1, y ) − f (x − 1, y )]2 + [f (x , y + 1) − f (x , y − 1)]2 (4.2)

Where f (x − 1, y ), f (x + 1, y ), f (x , y − 1), and f (x , y + 1) refer to the gray intensities
of the pixels right before and after the computed one in the x and y axis.

• LBP3D: Using spherical harmonics, compute and return the Local Binary Pattern
(LBP) in 3D as described by Banerjee et al. [2013].The icosphere radius and subdi-
vision were set to 1, and 2 levels were used, generating two different LBP3D filtered
images.

• Wavelet: Computes the wavelet transforms of the image. We use Coiflets as they
are Pyradiomics default and were already investigated in many radiomic studies,
including COVID-19 ones [Xu et al., 2021a] [Xu et al., 2021b] [Chao et al., 2021].
We only use one level of wavelet; therefore, eight different images are generated
according to the Low (L) and High (H) pass filters in each direction (x, y, z): LLL,
HLL, LHL, LLH, HHL, HLH, LHH, HHH.

4.3.3 Discretization

This study deals with CT images, whose HU values carry biological information re-
garding different tissues of the human body. Therefore, the Fixed Bin Size (FBS) discretiza-
tion method was chosen to not lose the biological information in the discretization process
instead of FBN. Using smaller bin widths leads to less biological information being lost in
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the discretization process and means dealing with more noise. Larger bin widths can be
used to homogenize the image by reducing or removing the influence of noise, but with the
possibility of erasing relevant information from the radiomic signature. For example, in CT
images, the use of bin size equal to 1 HU effectively means not performing any discretization
process.

We investigated 6 different bin widths to find the value that highlights the differences
in the radiomic signature of COVID and no-COVID lung CT images.

The value of 25 is the default bin size in the Pyradiomics library, except for wavelet-
based features, which the default value is 10. We evaluated the classification model per-
formance using bin sizes of 1, 5, 10, 25, 50, and 75 for both wavelets and non-wavelets
features.

4.4 Feature extraction

The Pyradiomics library (version 3.0.1) was used to extract first and second-order
features from each of the lungs of the patients in the COVID and non-COVID groups [van
Griethuysen et al., 2017b]. We extracted features from six different classes listed below:

• First order (18 features): These features describe the intensity distribution of the
voxels using simple and commonly used metrics. First, a pixel value shift of 1024
was applied, adding 1024 to the gray values to calculate the Energy, Total Energy,
and Average Square Root features. This process prevents negative values from
calculating these features and is recommended in the Pyradiomics library docu-
mentation [van Griethuysen et al., 2017b].

• 3D Shape (14 attributes): This group of features describes the size and shape of
the lung by analyzing the mask generated in the segmentation process. These
attributes are independent of the distribution of gray levels and therefore are not
calculated for any discretization methods and applied filters.

• Gray Level Co-occurrence Matrix – GLCM (24 features): This matrix contains infor-
mation regarding the gray-level spatial distribution, considering the relationship be-
tween pixel pairs and the frequency of each intensity within a 26-connected neigh-
borhood (for 3D images).

• Gray Level Run Length Matrix – GLRLM (16 features): This matrix quantifies gray
level runs, which are the length of consecutive pixels that have the same gray level
intensity.

• Gray Level Size Zone Matrix - GLSZM (16 features): This matrix quantifies gray
level zones in the image. These zones are defined as the number of connected
voxels with the same gray level intensity. Voxels are considered connected if they
are within a 26-connected neighborhood.
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• Gray Level Dependence Matrix – GLDM (14 features): This matrix quantifies gray
level dependencies in the image. Gray level dependency is defined as the number
of connected voxels where the difference in pixel intensity is less than α . We used
the default α value of 1.

Considering the original image and all filters, 1070 non-wavelet features and 704
wavelet features were extracted for each bin size in each lung.

4.5 Classification

Prior to classification, min-max normalization was applied to each feature. This
process scales and translates each feature individually such that it is in the given range on
the training set. The minimum value of each feature is set to 0, while the maximum is set
to 1, and intermediate values are proportionally scaled. This step is needed to ensure the
model will not give higher importance to features only because they have higher values or
higher ranges between their minimum and maximum values.

We performed all classifications using the optimized distributed gradient boosting
library XGBoost (Version 0.9) [Chen and Guestrin, 2016] in Google Colaboratory [Bisong,
2019]. We performed the classification using the training and validation sets evenly stratified
into a 5-fold cross-validation. We ran this process 10 times and used the mean F1-score to
select the best models for hyperparameter optimization, as shown in figure 4.2.

Figure 4.2: Workflow of the model selection process.

Feature extraction with the FBS discretization method is commonly performed with
a single bin size and a specific bin size for the wavelet features. Even though using all
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our data (6 bin sizes) for classification could have a better performance, it wouldn’t be a
realistic or reproducible method for differentiating COVID-19. Besides, it would require high
computational power. Instead, we unified the features into 36 combinations of non-wavelet
features (NW) and wavelet features (W) (6 sizes for non-wavelet and wavelet features each).
With both lungs, there were a total of 3548 features included in each combination.

We optimized the hyperparameters using the Hyperopt library (Version 0.1.2) de-
veloped by Bergstra et al. [2015]. This method is based on an objective function, similar to
deep learning models. In our 2 labels (COVID and non-COVID) classification problem, the
selected objective function is binary logistic, and the booster is gbtree. The hyperparameters
are then changed in a guided way, aiming to minimize the loss function. This process is a lot
faster than the traditional grid-search while achieving a lot better results than random search
[Putatunda and Rama, 2018].

The optimization happens as follows: We train the model again in a 5-fold cross-
validation using only the training data. Then, the model’s Area Under the Curve (AUC) of
the receiver operating characteristic (ROC) is evaluated in the validation set, and the hyper-
parameters are altered according to the Hyperopt optimization. After that, the optimization
procedure starts again using the new values for the hyperparameters. This process is re-
peated 3000 times and the model with the highest AUC is saved for further evaluation, as
shown in figure 4.3.

Figure 4.3: Workflow of the hyperparameters optimization process.

Optimization parameters were set as:

• Number of Hyperopt probes (n hyperopt probes) = 3000

• Hyperopt algorithm (hyperopt algo) = tpe.suggest

• Number of boosting rounds (num boost round) = 250
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• Holdout size (holdout size) = 0.10

The optimized hyperparameters were:

• max depth

• alpha

• lambda

• reg lambda

• min child weight

• learning rate

• colsample bytree

• num leaves

• n estimators.

Finally, we evaluate the best models’ performance on the test dataset and identify
the relevant features for classification and their importance using the normalized gain. The
gain implies the relative contribution of each feature to the model and is calculated by taking
each feature’s contribution for each tree in the model [Chen and Guestrin, 2016]. A higher
value implies it is more important for generating a prediction. The normalized gain is the
gain of each feature divided by the sum of the gain of all features. Features that weren’t
used have a gain equal to 0. Therefore, normalized gain shows how much each feature
contributed to the classification relative to the total contributions of all features.

4.6 Model Performance Evaluation

We use the following metrics for model performance evaluation: accuracy, sensi-
tivity(recall), precision, F1-score, and AUC of the ROC. Metrics are calculated as follows
[Powers, 2020]:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.3)

Recall = Sensitivity =
TP

TP + FN
(4.4)

Precision =
TP

TP + FP
(4.5)

F1 Score = 2 × Precision × Sensitivity
Precision + Sensitivity

(4.6)

Where TP, FP, TN, and FN refers to true positive, false positive, true negative, and
false negative, respectively.
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5. RESULTS AND DISCUSSION

5.1 Image Processing

This study used automatic segmentation of the lung CT images, which were inde-
pendently analyzed. The segmentation was performed by the U-net R231CovidWeb model.
Filters were applied to further enhance the differences between the radiomic signature of the
COVID and non-COVID groups. Features were extracted from the original image, and all fil-
ter applied images. Filters used were exponential, gradient, Laplacian of Gaussian (LoG),
logarithm, square, square root, wavelet, and local binary pattern 3D (LBP3D). All images
used in this study were carefully assessed to avoid biases, like the ones shown in Maguolo
and Nanni [2021] study. Figures 5.1 and 5.2 shows the processed images before feature
extraction for all filters used.

Figure 5.1: Segmented original and filtered images prior to feature extraction

The exponential filter shows a darkened image, with some white spots on the bor-
der. These indicate the highest gray values, which are probably tissues from outside the
lungs that weren’t correctly segmented. This filter greatly increases the gray level intensity
through exponential operations, and then rescales them back to the original range. There-
fore, these distinct tissues ended up with a lot higher values than the rest of the image,
de-emphasizing the differences on the lung tissues.
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Figure 5.2: Wavelet filtered images prior to feature extraction

As expected, the gradient filter highlighted the edges, especially the blood vessels
edges on the lungs. However, this filter does not highlight opaque areas, which might be
relevant for the identification of COVID-19. The LoG filter with σ of 1 also highlighted the
blood vessels. Using a σ of 3 and 5 resulted in a proportionally smoother image.

The logarithm filter highlighted the main blood vessels while darkening most of
the smaller ones. The square filter highlighted all blood vessels on the image as well as
the opaque zone, showing a good capability of highlighting visual lung characteristics. The
square root filter resulted in a slightly darker version of the original image.

5.2 Training and Optimization of Classification Models

Table 5.1 shows the performance of the classification models in the training dataset
in 5-fold cross-validation with the average F1-score metric before optimization, using all
combinations of wavelet features, non-wavelet features, and bin sizes (1, 5, 10, 25, 50, 75).

Models will be further referenced as “NW(bin size for non-wavelet features) – W(bin
size for wavelet features)”. e.g., NW5-W25 is the model with a bin size of 5 HU for non-
wavelet features and 25 HU for wavelet features. The three models with the highest mean
F1-scores on both groups (on all data) were selected for optimization using the Hyperopt
library [Bergstra et al., 2015]. The models with the best F1 scores were NW1-W25, NW5-
W5, and NW5-W25.

Table 5.2 shows the performance metrics for the classification models in the val-
idation set after the optimization process using the macro average and weighted average.
The macro average gives a simple average of the performance on both classes, while the
weighted average proportionally scales the metrics from each class according to its number
of samples.
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Table 5.1: Mean F1-score results for classification in 5-fold cross-validation for all 36 combi-
nations of bin sizes

non-wavelet features (NW)
Bin Size 1 5 10 25 50 75

w
av

el
et

fe
at

ur
es

(W
)

1
COVID 0.837 0.838 0.840 0.827 0.838 0.847
non-COVID 0.405 0.409 0.408 0.357 0.350 0.320
All data 0.621 0.624 0.624 0.592 0.594 0.583

5
COVID 0.823 0.831 0.823 0.831 0.829 0.841
non-COVID 0.371 0.378 0.346 0.399 0.367 0.331
All data 0.597 0.604 0.585 0.615 0.598 0.586

10
COVID 0.823 0.837 0.811 0.825 0.837 0.848
non-COVID 0.340 0.382 0.309 0.381 0.341 0.331
All data 0.582 0.609 0.560 0.603 0.589 0.590

25
COVID 0.837 0.830 0.819 0.831 0.825 0.842
non-COVID 0.405 0.386 0.370 0.382 0.350 0.283
All data 0.621 0.608 0.595 0.607 0.588 0.562

50
COVID 0.818 0.822 0.809 0.828 0.824 0.838
non-COVID 0.342 0.337 0.337 0.393 0.361 0.262
All data 0.580 0.579 0.573 0.611 0.593 0.550

75
COVID 0.823 0.827 0.807 0.824 0.815 0.831
non-COVID 0.353 0.349 0.303 0.351 0.333 0.273
All data 0.588 0.588 0.555 0.588 0.574 0.552

Table 5.2: Performance of the optimized models on the validation set

Model Metric COVID Non-COVID Macro avg Weighted avg

1-25

Precision 0.838 0.875 0.856 0.849
Recall 0.969 0.538 0.754 0.844
F1-score 0.899 0.667 0.783 0.832
Accuracy - - 0.844 -
AUC 0.916 - - -

5-1

Precision 0.821 1.000 0.910 0.872
Recall 1.000 0.462 0.731 0.844
F1-score 0.901 0.632 0.766 0.823
Accuracy - - 0.844 -
AUC 0.966 - - -

10-1

Precision 0.762 1.000 0.881 0.831
Recall 1.000 0.231 0.615 0.778
F1-score 0.865 0.375 0.620 0.723
Accuracy - - 0.778 -
AUC 0.813 - - -

N on validation set 32 13

All models had a better performance classifying COVID images rather than non-
COVID. This was expected since the COVID group is more than twice as large as the non-
COVID, which may bias the model, as it learns to classify much more samples as the pre-
dominant class. This is more evident in the optimized NW5-W1 and NW10-W1 models,
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where the precision is 1 (or 100%) for the non-COVID class, while the recall is low (0.46 for
the NW5-W1 model and 0.23 for the NW10-W1 model). This means that all samples classi-
fied as non-COVID are indeed from this class, but only a part of all non-COVID samples are
correctly classified. The recall of 1 with not so high precision (0.82 for the NW5-W1 model
and 0.76 for the NW10-W1 model) for the COVID class on both models corroborates this be-
havior, as it shows that the model correctly classified all ground-truth COVID samples while
also classifying other non-COVID samples as COVID. Despite having the same accuracy
as the NW5-W1, the NW1-W25 model proved to be more robust, with a higher average F1
score. Still, this model also had a low recall for the non-COVID class.

Two hypotheses were built for the low performance of the classification models in
the validation set. The first hypothesis is that the imbalanced dataset is the primary source
of the low performance since the higher number of the input COVID samples in the training
process led the model to classify almost all inputs as from the COVID group. The second
hypothesis is that we used too many features for a small dataset, which led to useless
information that could not be precisely filtered on the training process. Results show up to
this point, regarding our first models, will be further referenced as Raw models.

5.3 Exploring the Limitations

5.3.1 Dealing with Imbalanced Dataset

Regarding the first hypothesis, we tried to address the problem in two different
ways. The first was to use data augmentation directly on the extracted features using Syn-
thetic Minority Over-sampling Technique (SMOTE). The second was to under-sample our
COVID group until it had the same number of samples as the non-COVID group. We didn’t
try to use extra data augmentation on the original images, like flipping and rotation consider-
ing most of the extracted features, like the first order, GLCM, and GLSZM, are independent
of these variations [Parekh and Jacobs, 2016].

SMOTE [Chawla et al., 2002] is an oversampling method that has great applications
in artificial intelligence. It consists of creating synthetic examples to deal with classes with
fewer samples. The synthetic examples are created by operating in the "feature space"
rather than "data space". It calculates the difference between the feature vector of one input
and it’s neighbors multiplied by a random number between 0 and 1. Finally the value is
added to the feature vector under consideration. This process is applied to the extracted
features on the training dataset (in our case, the inputs are the extracted features), creating
new feature values so that both COVID and non-COVID groups had the same number of
samples. However, using SMOTE with non-wavelet features extracted with bin size 75 led
to features with higher values than the acceptable on SMOTE library (64-bit). Due to this
limitation, non-wavelet features extracted with bin size 75 were not used in this analysis.
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Results using the SMOTE technique are shown in table 5.3. Given their perfor-
mance, the selected models for optimization were NW1-W5, NW5-W5, and NW25-W1.

Table 5.3: Mean F1-score results for classification in 5-fold cross-validation for 30 combina-
tions of bin sizes using SMOTE

non-wavelet features (NW)
Bin Size 1 5 10 25 50

w
av

el
et

fe
at

ur
es

(W
)

1
COVID 0.818 0.817 0.821 0.826 0.817
non-COVID 0.414 0.423 0.427 0.430 0.403
All data 0.616 0.620 0.624 0.628 0.610

5
COVID 0.830 0.819 0.795 0.814 0.807
non-COVID 0.445 0.445 0.394 0.441 0.378
All data 0.638 0.632 0.594 0.627 0.593

10
COVID 0.809 0.814 0.796 0.805 0.798
non-COVID 0.381 0.409 0.377 0.396 0.382
All data 0.595 0.611 0.586 0.600 0.590

25
COVID 0.812 0.802 0.810 0.811 0.810
non-COVID 0.405 0.427 0.417 0.433 0.407
All data 0.609 0.615 0.613 0.622 0.609

50
COVID 0.814 0.797 0.798 0.804 0.806
non-COVID 0.401 0.411 0.362 0.400 0.368
All data 0.608 0.604 0.580 0.602 0.587

75
COVID 0.810 0.795 0.788 0.803 0.805
non-COVID 0.390 0.351 0.346 0.368 0.383
All data 0.600 0.573 0.567 0.585 0.594

To undersample our COVID group, we simply removed random samples from it
until both COVID and non-COVID groups had the same number of instances. Results using
this approach are shown in table 5.4. Given their performance, the selected models for
optimization were NW5-W10, NW5-W25, and NW1-W75.

5.3.2 Reducing the Number of Features

Following our second hypothesis, that we used too many features for a small dataset,
we came up with two alternative methods. The first was to perform feature selection before
classification. The second was to use the features extracted from the original segmented
image without any additional filters.

We performed feature selection by checking the correlation of each extracted fea-
ture with all the other ones. Features with a correlation higher than 0.9 were discarded. Of
the original 3548 features used in each model, a minimum of 925 to a maximum of 1064
were dropped (according to the combination of bin sizes), and 2484 to 2623 features were
used to train the models. Results using feature selection are shown in table 5.5. Given
their performance, the selected models for optimization were NW1-W1, NW25-W25, and
NW50-W1.
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Table 5.4: Mean F1-score results for classification in 5-fold cross-validation for all combina-
tions of bin sizes undersampling the COVID class.

non-wavelet features (NW)
Bin Size 1 5 10 25 50 75

w
av

el
et

fe
at

ur
es

(W
)

1
COVID 0.690 0.686 0.680 0.698 0.687 0.668
non-COVID 0.464 0.459 0.444 0.482 0.443 0.456
All data 0.577 0.572 0.562 0.590 0.565 0.562

5
COVID 0.700 0.707 0.680 0.708 0.680 0.678
non-COVID 0.472 0.486 0.467 0.488 0.432 0.460
All data 0.586 0.597 0.573 0.598 0.556 0.569

10
COVID 0.712 0.705 0.677 0.676 0.689 0.669
non-COVID 0.489 0.499 0.472 0.459 0.445 0.453
All data 0.600 0.602 0.575 0.567 0.567 0.561

25
COVID 0.699 0.715 0.684 0.696 0.705 0.675
non-COVID 0.479 0.500 0.473 0.496 0.470 0.474
All data 0.589 0.608 0.579 0.596 0.587 0.575

50
COVID 0.696 0.685 0.684 0.681 0.660 0.663
non-COVID 0.485 0.472 0.461 0.477 0.442 0.436
All data 0.590 0.578 0.573 0.579 0.551 0.549

75
COVID 0.703 0.675 0.674 0.663 0.680 0.663
non-COVID 0.534 0.442 0.452 0.461 0.465 0.424
All data 0.619 0.559 0.563 0.562 0.573 0.543

Table 5.5: Mean F1-score results for classification in 5-fold cross-validation for all combina-
tions of bin sizes excluding highly correlated features

non-wavelet features (NW)
Bin Size 1 5 10 25 50 75

w
av

el
et

fe
at

ur
es

(W
)

1
COVID 0.841 0.837 0.831 0.827 0.841 0.828
non-COVID 0.381 0.370 0.324 0.380 0.382 0.349
All data 0.611 0.604 0.578 0.604 0.611 0.589

5
COVID 0.826 0.834 0.816 0.824 0.826 0.824
non-COVID 0.345 0.379 0.361 0.333 0.365 0.336
All data 0.585 0.606 0.589 0.578 0.595 0.580

10
COVID 0.823 0.826 0.826 0.823 0.836 0.819
non-COVID 0.326 0.365 0.337 0.359 0.354 0.300
All data 0.574 0.595 0.582 0.591 0.595 0.560

25
COVID 0.826 0.831 0.825 0.840 0.830 0.827
non-COVID 0.364 0.369 0.364 0.420 0.366 0.326
All data 0.595 0.600 0.595 0.630 0.598 0.577

50
COVID 0.823 0.829 0.817 0.823 0.834 0.810
non-COVID 0.323 0.345 0.294 0.364 0.372 0.285
All data 0.573 0.587 0.555 0.593 0.603 0.548

75
COVID 0.815 0.824 0.815 0.823 0.828 0.818
non-COVID 0.307 0.313 0.295 0.355 0.350 0.282
All data 0.561 0.569 0.555 0.589 0.589 0.550

Regarding our second strategy to deal with too many features per sample, results
of classification using only the features extracted from the original image (without any applied
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filtetrs) are shown in table 5.6. Given their performance, the selected models for optimization
were NW1-W1, NW5-W25, and NW25-W25. This strategy will be further referenced as
“Original features”.

Table 5.6: Mean F1-score results for classification in 5-fold cross-validation for 6 different bin
sizes using only the features extracted from the original image

Bin Size 1 5 10 25 50 75
COVID 0.831 0.837 0.832 0.829 0.831 0.825
non-COVID 0.403 0.448 0.358 0.406 0.367 0.406
All data 0.617 0.642 0.595 0.617 0.599 0.616

5.3.3 Performance on validation and test sets

The performance of the classification models are shown in table 5.7. The AUC
on the validation set was used to optimize the model, and thus, the performance was higher
than in the test set for all models. The performance on the test set shows the capability of the
model to generalize to new data. Higher metrics on the validation set with lower performance
on the test set indicate overfitting, where the model learned too many intrinsic characteristics
of the training and validation sets and can’t be applied to other datasets. A clear example
of this modeling error happened on the NW5-W1 model, where the AUC was 0.966 on the
validation set but only 0.581 on the test set. Considering 0.5 would be a random selection,
it is a significantly lower performance than on the validation set. Other models indicating
overfitting were NW1-W5 using SMOTE and NW50-W1 using feature selection.

Table 5.7: Performance of all optimized models on the validation and test sets

Validation Test

NW-W F1-score AUC F1-score AUCCOVID N-COVID Avg COVID N-COVID Avg
First 1-25 0.899 0.667 0.783 0.916 0.861 0.444 0.653 0.678

models 5-1 0.901 0.632 0.766 0.966 0.849 0.353 0.601 0.581
(raw) 10-1 0.865 0.375 0.620 0.813 0.849 0.353 0.601 0.731

1-5 0.841 0.476 0.658 0.851 0.789 0.211 0.500 0.538
SMOTE 5-5 0.873 0.526 0.700 0.916 0.857 0.500 0.679 0.745

25-1 0.870 0.571 0.720 0.875 0.849 0.353 0.601 0.800
Under- 1-75 0.714 0.692 0.703 0.794 0.630 0.444 0.537 0.615
sample 5-10 0.696 0.774 0.735 0.846 0.444 0.444 0.444 0.642

5-25 0.500 0.706 0.603 0.912 0.542 0.476 0.509 0.649
Feature 1-1 0.866 0.609 0.737 0.846 0.829 0.400 0.614 0.671
selection 25-25 0.845 0.421 0.633 0.892 0.833 0.333 0.583 0.632

50-1 0.882 0.636 0.759 0.857 0.833 0.333 0.583 0.542
Only 1 0.886 0.600 0.743 0.901 0.812 0.381 0.596 0.660

original 5 0.870 0.571 0.720 0.906 0.824 0.455 0.639 0.692
features 25 0.901 0.632 0.766 0.947 0.833 0.333 0.583 0.637
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The SMOTE strategy to deal with imbalanced data had the most significant impact
on the NW5-W5 model. In the test set, it achieved an F1-score of 0.5 on the non-COVID
samples, which is still low but higher than all other optimized models. Despite their low
performance on non-COVID samples, SMOTE NW25-W1 model had the higher AUC in the
test set (0.8). Under-sampling the COVID class improved the performance of the non-COVID
class when compared to the other models. However, the F1-score for the non-COVID class
was still low (0.444 - 0.476). Also, it significantly lowered the metrics on the COVID class,
leading to a lower average F1-score on all three models, with a maximum of 0.537 on the
NW5-W25 model.

Using feature selection did not have a significant impact on the performance com-
pared to our first models. All three models had an F1-score of 0.4 or lower for the non-COVID
class. The NW1-W1 was the best model using feature selection, achieving an AUC of 0.671.
Only using features extracted from the original image resulted in one more robust model
(NW5-W25), which reached the third-best average F1-score (0.639) and the fourth-best AUC
(0.692).

Of the optimized models, the ones with an AUC higher than 0.65 and F1-score
higher than 0.6 were selected for feature importance analysis. The ROC curve for the six
best models is shown in figure 5.3.

Figure 5.3: Receiver Operator Characteristic curve on the test set

5.4 Preprocessing Impact and Feature Importance

The 10 most important features for each of the 6 best models are shown in fig-
ure 5.4 along with their normalized gain. The feature gain is proportional to how much it



47

improved the models’ performance. Abbreviations for each of the presented features are
shown in Annex B. Features that were mostly used for classification were extracted from the

Raw NW1-W25 Raw NW10-W1

SMOTE NW5-W5 SMOTE NW25-W1

Feature selection NW1-W1 Original features NW5

Figure 5.4: Feature importance for the models with the highest performance on the test set

images generated with wavelet and laplacian filters.

From the classification models that used all feature groups (all five except the Orig-
inal features NW5), four of five have a feature from the right lung using the Laplacian filter as
their most important feature, with a σ value of 3 in three models and 5 in one model (SMOTE
NW25-W1). On Raw NW1-W25 model, the most important feature was Run Length Non-
Uniformity Normalized with 22.6% normalized gain, on SMOTE NW5-W5 it was Run Per-
centage with 18.0%, on the NW1-W1 model using feature selection it was Informational
Measure of Correlation 1 with 19.2%, and on SMOTE NW25-W1 it was Large Area High
Gray Level Emphasis with 19.0%. Even though the most important features were differ-
ent in each model, the Laplacian filter may highlight the differences between COVID and
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non-COVID radiomic signatures. [Chao et al., 2021] study also found that multiple features
derived from the Laplacian filter had high importance on the outcome prediction of COVID-19
patients, as did wavelet features.

Wavelet features were important for classification in all models that used them. The
most important feature on the Raw NW10-W1 model was the Dependence Entropy extracted
using one of the wavelet filters, with a 15.7% normalized gain. [Chen et al., 2021a] study
also found that wavelet features have a high importance for COVID-19 prognosis prediction,
as from their 15 selected features with a higher correlation, 8 were derived from the wavelet
filter. However, they used segmented lesions while we used whole lung segmentation, and
they did not explore Laplacian filters. [Huang et al., 2021b] build a nomogram to discrimi-
nate COVID-19 and influenza pneumonia using seven radiomic features extracted from lung
lesions, where three features are derived from the wavelet filters.

Other filters that had a few important features for classification were logarithm, local
binary pattern 3D, square, square root, exponential, and gradient. However, due to the low
number of features selected, the low performance of our model, and the randomness of the
training and optimization process, we cannot infer those features extracted using these filters
are relevant to differentiate COVID and non-COVID radiomic signatures.

Only one feature extracted from the original image was among the ten most im-
portant ones in three of the five final models (not considering Original features NW5). This
indicates that filtering images may be better for differentiating COVID and non-COVID than
using the original images. Regarding our model that only used features extracted from the
original image without filtering, the most important ones were mainly from GLCM, GLSZM,
and shape feature groups. Therefore, if trying to only use features extracted from the original
images, we recommend a bin size of 5 or similar and further exploration of GLCM, GLSZM,
and shape feature groups. However, it should be noted that shape is highly dependent on
the segmentation method.

5.5 Discretization Impact

To our knowledge, this is the first study that sought to evaluate discretization meth-
ods for radiomic feature extraction on whole lung segmented images for the identification of
COVID-19. Even though the efficiency of our models wasn’t particularly high, we can see
patterns in our chosen models and their performances regarding the discretization.

Models using non-wavelet features extracted with bin size 75 had, generally, lower
performance on all models prior to optimization when compared to other bin sizes with
the same strategies. Consequently, none of the models chosen for optimization used non-
wavelet features extracted with a bin size 75. For non-wavelet features with a bin size 50,
the scenario was similar. Even though one model was selected for optimization (NW50-W1
using feature selection), it showed low performance on the test set, with an AUC of 0.542.



49

Regarding wavelet features , the only optimized model that used a bin size of 50 or 75 was
the NW1-W75 under-sampling the COVID class. However, it also had low performance on
the test set, with an F1-score of 0.537.

These results indicate that larger bin sizes may not be ideal for feature extraction
using the whole lungs, at least when identifying the COVID radiomic signature. This may
happen due to higher bin sizes erasing relevant information that could be used to differentiate
COVID and non-COVID but may also apply to other lung diseases.

The bin size of 25 for non-wavelet features and a bin size of 1 for wavelet features
were used in the model with the highest AUC on the test set (SMOTE NW25-W1). Figure
5.4 shows that the most important features for classification also came from the wavelet
and laplacian filters. Wavelet features with a bin size of 1 were also used in the other
two of the best models (Feature Selection NW1-W1 and Raw NW10-W1) and showed a
high importance in all of them. The only model that used wavelet features extracted with
higher bin sizes (Raw NW1-W25) had lower importance for wavelet features than the other
models. These results indicate that wavelet filters with a small bin size may be relevant in
differentiating COVID and non-COVID radiomic signatures. Therefore, wavelet features may
be less susceptible to noise than other ones. The same may apply to features extracted
from laplacian filtered images using larger σ values (as 3 and 5, which led to more relevant
features), since the filter smooths out the image, and may eliminate noise impact. This
allows smaller bin sizes or a higher number of gray levels to be used.

The model with the highest average F1-score on the test set used non-wavelet
features and wavelet features extracted with a bin size of 5 (SMOTE NW5-W5). The most
important features on this model were extracted using the original image and multiple filters,
including laplacian of gaussian, local binary pattern 3D, wavelet, logarithm, and square.

Our results indicate that bin sizes between 1 and 25 should be further explored
for non-wavelet features. It is possible that specific discretization strategies might perform
better for some filters than others, as is the case for the wavelet filter. The LoG is one of
the filters that may perform better than others with smaller bin sizes, as this filter already
reduces noise. Therefore, features from the laplacian filter might be further investigated with
a bin size between 1 and 10, while other filters may have a better performance using higher
values. For wavelet features, we also recommend further investigation for smaller bin sizes,
between 1 and 10, as features extracted using these parameters had higher importance.
Other wavelet families may also be explored, as we only used Coiflets in this study. A
previous study regarding lung cancer [Desseroit et al., 2016] found that image discretization
has an important role in feature repeatability, and they also found that an ideal smaller bin
size of 10 HU was the best bin for their purpose. However, they do not mention filtering and
use lesion segmentation.
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5.6 Limitations

Despite our efforts, our study has some limitations. First, we did not have access
to clinical information, which could strongly improve our COVID identification model and was
used in several studies analyzed on our state of the art. Also, our datasets were not par-
ticularly large, which led to models with a lower generalization capability to forecast unseen
data. Furthermore, we used imbalanced datasets since we did not have access to more
non-COVID samples using the same acquisition protocol. Further studies should try to use
larger balanced datasets and use clinical data and radiomic features.
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6. CONCLUSION

We implemented several models for COVID-19 identification using features ex-
tracted from multiple filtered lung-segmented images with different discretization parame-
ters. Models were trained with combinations of non-wavelet and wavelet features using six
different bin sizes (1, 5, 10, 25, 50, 75). The models with the highest performance were
selected for hyperparameter optimization. We identified the limitations of our models (imbal-
anced data and too many features per sample) and proposed strategies to overcome them.
Models were trained again using SMOTE, under-sampling, feature selection, and only using
features extracted from the original image. The best models using each of these strategies
also had their hyperparameters optimized. All optimized models were evaluated in the test
set and the best model (SMOTE NW25-W1) reached an AUC of 0.800.

The six best-performing models on the test set were chosen for feature importance
analysis. Their F1-score varied between 0.601 and 0.679 and their AUC between 0.671 and
0.800. The filters that led to the most important features for classification were identified:
wavelet and laplacian of gaussian. We recommend further exploration of these filters for the
identification of COVID-19 in lung images, as they may highlight differences in the radiomic
signature of the lungs.

Regarding discretization methods, our results indicate that features extracted with
bin sizes 50 and 75 aren’t ideal for discriminating the COVID and non-COVID groups. These
larger bin sizes may erase relevant information of the COVID-19 radiomic signature. We rec-
ommend further investigation of smaller bin sizes, between 1 and 25 for feature extraction.
Multi-parameter feature extraction may improve COVID identification performance, using dif-
ferent discretization for different filters. Regarding the wavelet and laplacian of gaussian
filters, we suggest bin sizes between 1 and 10, as these filters already partially remove
noise and showed a good performance with smaller bin sizes.

We suggest further research on the COVID-19 radiomic signature of the lungs in-
clude clinical data on their analysis and use larger and balanced datasets so that the models
have a higher generability.
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O pesquisador principal Ana Maria Marques da Silva, responsável pelo projeto com número de CAAE

30791720.5.0000.5336 e Título: Análise da assinatura radiômica em imagens de tomografia

computadorizada na pneumonia por COVID-19 encaminhou ao CEP-PUCRS emenda contendo os

seguintes documentos:

1) ProjetoRadiomicaCOVIDemenda1.docx

2) ProjetoRadiomicaCOVIDemenda1.pdf

3) ProjetoRadiomicaCOVIDemenda1comalteracoes.docx

4) TCUDEmenda1p1de2.pdf
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6) AnuenciaUFU.pdf

7) LattesPesquisadores.docx

8) OrcamentoEmenda1.pdf

9) FolhadeRostoEmenda1.pdf

Todos os termos foram apresentados.

Considerações sobre os Termos de apresentação obrigatória:

Não há pendências.

Conclusões ou Pendências e Lista de Inadequações:

Diante do exposto, o CEP-PUCRS, de acordo com suas atribuições definidas na Resolução CNS n° 466 de

2012 e a Norma Operacional n° 001 de 2013 do CNS, manifesta-se pela aprovação da emenda ao projeto

de pesquisa  Análise da assinatura radiômica em imagens de tomografia computadorizada na pneumonia

por COVID-19 proposto pela pesquisadora Ana Maria Marques da Silva com número de CAAE

30791720.5.0000.5336.
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da Silva
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da Silva
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Justificativa de
Ausência

TCUDEmenda1p1de2.pdf 07/06/2021
20:47:03

Ana Maria Marques
da Silva
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TCLE / Termos de
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Justificativa de

TCUDEmenda1p2de2.pdf 07/06/2021
20:46:48

Ana Maria Marques
da Silva
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Projeto Detalhado /
Brochura
Investigador
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Table B.1: Abbreviations for the most important features on the test set

Abbreviation Lung side - Filter - Feature group - Feature

L-lbp3D-1st-M Left - local binary pattern 3D - first order - Median
L-lbp3D-glrlm-GLNN Left - local binary pattern 3D - GLCM - Inverse Difference Moment Normalized
L-log1-1st-10P Left - LoG(1mm) - first order - 10% percentile
L-log1-gldm-LDLGLEs Left - LoG(1mm) - GLDM - Large Dependency Low Gray Level Emphasis
L-log1-glrlm-HGLRE Left - LoG(1mm) - GLRLM - High Gray Level Run Emphasis
L-log3-gldm-DE Left - LoG(3mm) - GLDM - Dependence Entropy
L-log3-glrlm-LRLGLE Left - LoG(3mm) - GLRLM - Long Run Low Gray Level Emphasis
L-log5-glrlm-RE Left - LoG(5mm) - GLRLM - Run entropy
L-logar-1st-R Left - logarithm - first order - Range
L-logar-glszm-GLNU Left - logarithm - GLSZM - Gray Level Non-Uniformity
L-orig-glcm-DE Left - original - GLCM - Difference Entropy
L-orig-glcm-IDMN Left - original - GLCM - Inverse Difference Moment Normalized
L-orig-glcm-SS Left - original - GLCM - Sum of Squares
L-orig-shape-M2DDR Left - original - shape - Maximum 2D Diameter (Row)
L-orig-shape-MAL Left - original - shape - Minor Axis Length
L-orig-shape-SA Left - original - shape - Surface Area
L-sqroot-glrlm-LRLGLE Left - square root - GLRLM - Long Run Low Gray Level Emphasis
L-squ-1st-MAD Left - square - first order - Mean Absolute Deviation
L-wavHHH-1st-RMS Left - wavelet (HHH) - first order - Root Mean Squared
L-wavHHL-gldm-DNU Left - wavelet (HHL) - GLDM - Dependence Non-Uniformity
L-wavHLH-1st-E Left - wavelet (HLH) - first order - Energy
L-wavHLH-gldm-DE Left - wavelet (HLH) - GLDM - Dependence Entropy
L-wavHLH-glrlm-LGLRE Left - wavelet (HLH) - GLRLM - Low Gray Level Run Emphasis
L-wavHLH-glszm-GLNU Left - wavelet (HLH) - GLSZM - Gray Level Non-Uniformity
L-wavLHH-glszm-GLV Left - wavelet (LHH) - GLSZM - Gray Level Variance
L-wavLHH-glszm-HGLZE Left - wavelet (LHH) - GLSZM - High Gray Level Zone Emphasis
L-wavLHL-1st-S Left - wavelet (LHL) - first order - Skewness
L-wavLHL-glszm-SALGLE Left - wavelet (LHL) - GLSZM - Small Area Low Gray Level Emphasis
L-wavLLL-gldm-LGLE Left - wavelet (LLL) - GLDM - Low Gray Level Emphasis
R-exp-gldm-DNU Right - exponential - GLDM - Dependence Non-Uniformity
R-grad-glrlm-LRHGLE Right - gradient - GLRLM - Long Run High Gray Level Emphasis
R-lbp3D-glcm-C Right - local binary pattern 3D - GLCM - Contrast
R-log1-glrlm-HGLRE Right - laplacian ofgaussian (1mm) -GLRLM - High Gray Level Run Emphasis
R-log3-glcm-IMC1 Right - LoG(3mm) - GLCM - Informational Measure of Correlation 1
R-log3-gldm-LDLGLE Right - LoG(3mm) - GLDM - Large Dependence Low Gray Level Emphasis
R-log3-glrlm-RLNN Right - LoG(3mm) - GLRLM - Run Length Non-Uniformity Normalized
R-log3-glrlm-RP Right - LoG(3mm) - GLRLM - Run Percentage
R-log5-gldm-DV Right - LoG(5mm) - GLDM - Dependence Variance
R-log5-gldm-SDHGLE Right - LoG(5mm) - GLDM - Small Dependence High Gray Level Emphasis
R-log5-glrlm-LREs Right - LoG(5mm) - GLRLM - Long Run Emphasis
R-log5-glszm-LAHGLE Right - LoG(5mm) - GLSZM - Large Area High Gray Level Emphasis
R-logar-1st-MAD Right - logarithm - first order - Mean Absolute Deviation
R-orig-glcm-CS Right - original - GLCM - Cluster Shade
R-orig-glcm-CT Right - original - GLCM - Cluster Tendency
R-orig-glcm-SA Right - original - GLCM - Sum Average
R-orig-glcm-SS Right - original - GLCM - Sum of Squares
R-orig-gldm-LDE Right - original - GLDM - Larga Dependence Emphasis
R-orig-glrlm-HGLRE Right - original - GLRLM - High Gray Level Run Emphasis
R-orig-glszm-SALGLE Right - original - GLSZM - Small Area Low Gray Level Emphasis
R-squ-glcm-JE Right - square - GLCM - Joint Energy
R-squ-glcm-MP Right - square - GLCM - Maximum Probability
R-wavHHH-glcm-IDN Right - wavelet (HHH) - GLCM - Inverse Difference Normalized
R-wavHLL-glcm-C Right - wavelet (HLL) - GLCM - Contrast
R-wavLLH-glcm-CS Right - wavelet (LHH) - GLCM - Cluster Shade
R-wavLLL-glcm-IDMN Right - wavelet (LLL) - GLCM - Inverse Difference Moment Normalized
R-wavLLL-glrlm-GLNU Right -wavelet (LLL) - GLRLM - GrayLevelNonUniformity
R-wavLLL-glrlm-SRHGLE Right -wavelet (LLL) - GLRLM - Short Run High Gray Level Emphasis
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The impact of discretization in radiomics: what we know so far
Christian Mattjie, Giordana Salvi de Souza, Rafaela Cappelari Ravazio, Luis Vinicius de Moura, Ana Maria

Marques da Silva

Abstract— Discretization is a standard pre-processing step in
radiomic features extraction. The most common discretization
methods are resampling the intensity values into a fixed number
of bins or according to fixed bin size. This review aims to sum-
marize our current knowledge on how discretization impacts ra-
diomic features extraction on distinct medical imaging modalities
and medical tasks. A literature survey was conducted following
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines. A total of 42 eligible original articles were
included in this scoping review. The results are presented in
sections regarding discretization methods, feature groups, feature
extraction methods, and a summary for each medical imaging
modality (computed tomography, positron emission tomography,
magnetic resonance imaging, ultrasound, single photon emission
tomography, and electronic portal imaging). There is significant
variability in the best discretization method, even for the same
imaging modality and organ, tissue or disease evaluated. We rec-
ommend the best methods and values for organs and diseases.
Finally, we reinforce there is an agreement among the reviewed
studies that different quantization methods have a high impact on
the radiomic features.

Index Terms— Medical imaging; Quantization; Rebin-
ning; Feature Extraction;

I. BACKGROUND

Due to the use of digital technologies as tools for diagnosis,
and treatment in the last decades, medical data is now widely
available. Digital medical imaging offers real opportunities to
improve medical outcomes and enhance efficiency in healthcare.
Powered by artificial intelligence (AI) methods to facilitate early
detection, allow for improved diagnosis, and lead to treatment
predictions, the field of medical imaging is evolving exponentially.
The emerging field of radiomics, also called imaging analytics, is
one of the results of combining AI e medical imaging data [1].
Radiomics consists of extracting a large number of quantitative
descriptors (features) from medical images using image process-
ing and data characterization algorithms. The process effectively
converts images into high-dimensional mineable data and rises in
contrast to the traditional clinical practice of interpreting medical
images as pictures qualitatively [2].

Radiomics has the potential to identify disease characteristics
that are difficult to locate or even invisible to the human eye
[3][4]. Computer-based texture analyses are used to quantify
numerically specific features of an image. The quantitative analysis
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of morphology, intensity, and texture features is helpful in the di-
agnosis and prognosis of several diseases and pathologies. Texture
analysis can be further categorized into structural, model-based,
transformational, and statistics-based [5].

Discretization, also known as data binning or quantization, is
a standard procedure before medical image features extraction.
It simplifies and compresses data by reducing the number of
possible intensity values or gray levels represented in the data. For
medical images, discretization consists of clustering the original
gray-levels or voxel intensity values to a specific interval, called
bin. Two parameters are required in data binning: the bin number
(or the number of bins) and the bin size (or bin width). An 8-bit
image can be represented with 28 = 256 bins when the bin size
is equal to 1, or it can be discretized to a smaller number of grey
levels, such as 128 bins, when the bin size is 2. This process is
required to compute radiomic features efficiently. For example, a
12-bit medical image with 1024 intensity values will generate a
21024 × 21024 × 21024 gray level co-occurrence matrix (GLCM) for
texture features extraction, which might be time-consuming to
mathematical computing [6]. The most common discretization
methods are to resample intensity values into a fixed bin number
(FBN) or according to a fixed bin size (FBS), also called in the
literature as fixed bin width (FBW). Both methods are dependent
on the range of intensity values of the region of interest (ROI)
[2].The intensity range can be preserved from the original image
or determined according to the limited range inside the ROI.
Fixing the bin number sets a specific number of intensity or gray
levels, where each bin size is determined according to the range of
intensity values divided by the number of bins. Similarly, setting
a fixed bin size determines the number of intensity levels through
the full range of intensities divided by the bin size. Different
discretization methods and values affect feature extraction [7].
For example, a small bin number (larger bin size) homogenizes
the original image and may smooth out important information
related to the radiomic signature [7]. However, using too many
bins (smaller bin size) may include noise, strongly affecting feature
extraction, especially in second-order radiomic features, such as
gray level run length matrix (GLRLM) and gray level size zone
matrix (GLSZM). Few studies explore how different discretization
methods impact radiomic features extraction in medical imaging
analysis.

There is no optimal discretization procedure for all medical
image modalities. The choice depends on the medical task and
the specific imaging modality. There are several studies with
positron emission tomography (PET) investigating the impact of
discretization procedures for lung lesion detection [8], pediatric
cancer [9], and non-small cell lung cancer treatment [10] [11]
[12]. Magnetic resonance (MR) imaging researchers have been
actively studying the discretization procedures before the fea-
ture extraction, related to lachrymal gland tumors and breast
lesions [13], glioblastoma [14] and prostate studies [15]. Other
imaging modalities, like computed tomography (CT), ultrasound
(US), single-photon emission computed tomography (SPECT), and
projection images in electronic portal imaging devices (EPID), face
specific challenges in image discretization. However, most studies
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use the default values defined by the radiomic libraries, even
though their documentation remarks the importance of exploring
bin sizes that make sense for the specific type of data and task.

This review aims to summarize our current knowledge on how
discretization impacts radiomic features extraction on distinct
imaging modalities and medical tasks.

II. METHODS

This scoping review was conducted within the guidelines of the
scoping review methodology framework and recommendations
guidelines of the Preferred Reporting Items for Systematic reviews
and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)
Checklist [16].

A. Search, eligibility criteria
Articles published between January 1, 2012 and January 13,

2022 with any study design were searched through the following
databases: PubMed, Science Direct and Scopus. We used the com-
bination of the following terms: discretization, bin width, bin size,
quantization, binning, radiomics, medical, imaging and clinical.
The complete search strategy for each database is presented in
the Appendix. Reviews, abstracts and non-English articles were
not considered.

Studies were included if they meet the following inclusion crite-
ria: (1) radiomics studies related to medical imaging for diagnosis
or therapy purposes; (2) at least two discretization methods or bin
values used; (3) recommendation of one or more discretization
methods according to the medical imaging modality and task.

B. Study selection
The duplicated studies were removed using the Zotero software

(Rosenzweig Center for History and New Media, USA). First, two
reviewers (C.M. and G.S.S.) independently screened the titles
and abstracts applying the inclusion/exclusion criteria. Then, the
discrepancies were resolved by a third reviewer (A.M.M.S.). The
decision rule for consensus was a simple majority. Then, the re-
viewers retrieved the full-text papers of the selected abstracts and,
subsequently, performed an independent second-step selection
based on the full-text article.

The following relevant data were extracted into an evidence
table from each study to summarize and compare the studies
and findings: reference (first author and publication year), study
designation, population size, type of imaging modality, software
used for radiomic features extraction, number of radiomic features
extracted, radiomic features class extracted, number of radiomics
features selected, prediction category, and key findings the study.
Two authors (C.M. and G.S.S.) analysed and interpreted the data
in agreement. The data gathered in the evidence table were used
to define the main research themes for this scoping review.

C. Risk of bias
No quality scoring for study selection was applied. Articles were

read by the two reviewers in duplicate, using the third reviewer
only in cases of doubt. Data extracted from studies that did not
meet the criteria were excluded.

III. RESULTS AND DISCUSSION

Figure 1 shows the selection process of the studies for this
scoping review, according to the PRISMA-P flow chart. A total of 42
eligible original articles were included in this review to summarize
their characteristics and radiomics approach implementation.

Fig. 1. PRISMA-P flow chart: articles selection process.

Based on the aim of this scoping review, discretization methods,
feature extraction, and feature groups are described. The articles
are divided into the main imaging systems: CT, PET, MR, US,
SPECT, and EPID.

A. Discretization methods

Discretization occurs after segmentation and before applying
filters (if used), followed by feature extraction. All reviewed studies
used lesion segmentation to focus on the tissue under investiga-
tion, mainly tumors or specific regions of phantoms simulating
the human body. The most common discretization methods were
the Fixed Bin Number (FBN) and the Fixed Bin Size (FBS). These
methods consist of grouping the original intensity or gray values
in a set number of range intervals (bins) according to the range
of the original values. FBN, also called number of gray levels (Ng)
or fixed bin count, sets the number of bins. Therefore, each bin
size is automatically computed according to the range of original
intensity values, as shown in equation (1).

Bin Size = Set Number of bins

Range of original gray values
(1)

Similarly, FBS, also called fixed bin width, sets the size of each
bin. Then, the number of bins is then automatically computed, as
shown in equation (2).

Number of Bins = Set Bin Size

Range of original gray values
(2)

FBN and FBS are uniform quantization methods, which means
that for each image, all bins have the same size. A variation
of the FBN discretization, shown in Wang et al [17], sets the
minimum value of the range as -1000 (air HU) while maintaining
the maximum value according to each sample. This method is
here called FBN-0.
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For imaging modalities where intensity or gray values have
physical meanings, setting fixed minimum and maximum values
guarantees that the same contrast will be used for the whole
dataset while removing information not relevant to the specific
medical task. For example, a lung cancer CT study might set a
range of gray values that exclude air and bone since these tissues
might not be present in the tumor.Besides, pre-defined range
methods guarantee the same interval of intensity values included
in each bin. For example, using the FBS method with a bin size
10 on an image with an intensity range of 1 to 300 results in
the first bin having a 1 to 10 intensity value interval. However,
if the original intensity values vary from 5 to 300, the first bin
would group values from 5 to 14. The methods that use restricted
ranges for the whole dataset are called group uniform quantization
methods. We call FBSrange and FBNrange the corresponding FBS
and FBN methods that use range limitation before discretization.
The minimum and maximum values of the intensity interval might
be determined priorly according to the medical task and image
properties or according to the distribution of intensity values in
the dataset [18].

FBN using equal probability (FBNequal) is an alternative FBN
procedure where each bin has a different size set. For example,
if you could choose a random gray value from the image, there
would be an equal probability that it would be on each bin [19]. So
predominant gray-value ranges end up in smaller bins, while less
common ranges end up in bigger bins. So, each bin has roughly
the same number of gray-value samples in the discretized image.
The idea behind FBNequal is to discriminate high-density gray-
value ranges that would end up homogeneous using FBN or FBS.

Another variation of FBN is the Lloyd-Max quantization (FBN-
Lloyd), which tests multiple combinations of transitions and gray
values through an iterative optimization procedure to determine
the optimal quantization bins [17]. The best discretization proce-
dure is determined by minimizing the mean-squared quantization
error - where the error is computed, for each pixel or voxel, as the
difference between the discretized values and the original ones.

B. Feature Extraction Software
There are multiple software and libraries available for fea-

ture extraction. In our review, we found that "In-house"
developed or institutional software were used in 12 stud-
ies (28.6%) [20][21][22][23][24][25][26][27][28][29][30], followed by
Pyradiomics, an open-source python package which was used
by 10 studies (23.8%) [13][15][18][31][32][33][34][35][36][37]. The
package provided MATLAB programming tools package for ra-
diomics analysis were used by 5 studies (11.9%) [17][38][39][40][8],
followed by LIFEx with 4 studies (9.5%) [41][42][43][44]. Imaging
Biomarker Explorer (IBEX) was used in 2 studies (4.8%) [9][45] as
well as Chang-Gung Image Texture Analysis (CGITA) [46][47]. GAN
based extraction was used for one study (2.4%) [48]. Five studies
(11.9%) do not clarify which features extraction procedure were
used [49][50][51][52][53].

C. Feature Groups
Image features can be broadly divided into intensity-based fea-

tures, morphological features, and texture-based features. Notably,
intensity and texture-based features require prior discretization of
intensities into gray level bins. We grouped the features into first-
order, morphological, and texture features. Intensity features or
first-order features describe the distribution of intensities within
the image ROI using basic metrics as mean, variance, energy,
entropy, beyond others [[54]]. Morphological features include

descriptors related to the size and shape of the ROI and its geo-
metric properties; they are independent of the gray-level intensity
distribution in the image. Texture features also called second-
order features, are obtained by calculating the statistical inter-
relationships between neighboring voxels or pixels [55].

All the 42 studies in this review extracted features from Gray
Level Co-occurrence Matrix (GLCM). Other than that, 88.1% of the
studies used texture features from Gray Level Run Length Matrix
(GLRLM) group, 76.2% of the studies used Neighbouring Gray Tone
Difference Matrix (NGTDM) features, also called Neighbouring
Gray Level Difference Matrix (NGLDM), First Order features also
appear in 76.2% of the studies, and 73.8% extracted features from
the Gray Level Size Zone Matrix (GLSZM) group. Other feature
groups that also appear in some of the articles are shape features
in 38.1%. Texture-based features using Neighbouring Gray-Level
Dependence Matrix (NGLDM) appears in 38.1% of the studies
and Neighborhood Gray-Level Difference Statistics (NGLDS) in
4.8% of the studies. On the other hand, Voxel-Alignment Matrix
(VAM), Normalized Gray Level Co-occurrence Matrix (NorGLCM)
and Texture Spectrum were only used in one reviewed study
(2.4%).

As can be seen, Neighbouring Gray Level Difference Matrix
and Neighbouring Gray Level Dependence Matrix have the same
acronym NGLDM. Researchers should be extra clear on which
features group they are extracting. In this review, NGTDM refers to
Neighbouring Gray Tone Difference Matrix, while NGLDM refers to
Neighbouring Gray Level Dependence Matrix, as recommended by
the Image Biomarker Standardisation Initiative (IBSI). All features
are described in the IBSI reference manual [56].

D. Study review

We split the reviewed studies according to the imaging modality.
For each modality, we summarized the image formation, and how
gray or intensity values are computed. Each sub-section includes
a table with all reviewed studies for the specific imaging modality.

1) Computed tomography - CT: In CT scans, the X-ray tube
emits radiation as it revolves around the patient. The amount of x-
rays passing through the body region is detected by multiple rows
of detectors that are opposite the x-ray tube while the tube rotates
around the body. This process generated a sinogram or collection
of projections in all angles, which is used to reconstruct the image
of each body slice [57] mathematically. The intensity value of the
reconstructed images is measured in Hounsfield Units (HU), which
varies from -1024 to 3071 (12 bits), and its primary reference (HU =
0) is the attenuation coefficient (µ) of water, as shown in equation
3.

HU Value = 1000× µt i ssue −µw ater

µw ater −µai r
(3)

Therefore, gray levels or intensity values in CT images have
physical meaning, and specific values may be associated with
specific tissues and organs [58]. In CT, HU = 100 indicates the same
attenuation coefficient, even across different exams, patients, and
scanners. This physical meaning needs to be considered when
choosing a discretization method. Based on each CT scan’s range
of intensity values, relative discretization may not be ideal because
feature extraction would occur with different contrasts for each
sample, losing the physical information carried with HU values.

A total of ten studies that evaluated discretization methods in
CT are included in this review (Table I).

Four studies investigated discretization methods for lung cancer.
Bogowicz et al. [20] evaluated discretization in perfusion maps
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and compared the following methods: FBN with three numbers
of bins and FBS for blood flow, blood volume and mean transit
time with three different bin sizes. It was found that the best
discretization method was FBN with 64 bins. Another lung cancer
study evaluated the impact of different values of FBN would
impact in the resulting features [17]. It found that FBNrange (range
was defined as the lowest and maximum gray values from the
whole dataset) with 128 bins had the best performance. Reference
[48] restricted the HU values to a range of -100 to 400, and then
applied normalization from [0,1]. Then, low resolution and high
resolution images were generated using a Generative Adversarial
Network from which features were then extracted. FBNrange with
different bin numbers ranging from 8 to 256 were investigated,
and 64 bins showed the best performance. However, the value of
10 was the only evaluated size for FBS. The lung cancer study
from Desseroit et al. [53] evaluated both FBS and FBN methods
and found the best performance was FBS using a bin size of 10.
However, the value of 10 was the only size evaluated for FBS.

Three CT oncological studies evaluated different types of carci-
nomas. The hepatocellular carcinoma study [50] study compared
different FBN and FBNequal methods with four different bin
numbers. The best performance was achieved with FBNequal with
8 bins. For renal cell carcinoma [33] three different FBN values
were evaluated, and the best performance was achieved with 128
bins. Finally, the head-and-neck squamous-cell-carcinoma study
[21] made a comparison between different FBN and FBS methods.
The best performance was found with the FBNequal method, but
they did not recommend a specific number of bins.

The remaining studies were related to vascular imaging on CT
angiography (CTA), pancreatic neuroendocrine neoplasms (Pan-
NENs), and a phantom study. The CTA study [32] compared FBN
and FBS methods with different bin values, and the best result was
found with a bin width of 25. The research regarding PanNENs
study [49] used different numbers of bins in their analysis, and
reached FBN with 64 bins as the best discretization method.
Finally, in a phantom study [46] bin sizes (FBS) and HU ranges
were compared. They recommended a bin size range between
15 and 25, and an HU range of 2000 or 1400 for higher feature
reproducibility. Since the HU range needs to be applied according
to the task, it may not be applicable to all organs.

Future CT radiomics studies from the organs already evaluated
by this review should use our results as starting points for their
discretization investigation. FBN with 64 and 128 bins and FBS
with a bin size around 25 HU might be good starting values
for other body parts. We also recommend that FBNrange be
further investigated for CT radiomics studies, as IBSI also endorses
range re-segmentation. This procedure might preserve the physi-
cal meaning information present in HU values.

2) Positron Emission Tomography - PET: PET is a molecular
imaging technique that uses a combination of positron-emitting
radioisotopes labeled with a molecule tracer [59]. The radioiso-
tope emits positive beta particles emitted by radioactive nuclei,
called positrons. A process called annihilation happens when the
positron emitted by the radioisotope and the electron from the
environment interact, and their masses turn into energy producing
two 511 keV gamma photons emitted collinearly in opposite direc-
tions, with an angle of 180°. The PET scanner is designed to detect
the paired photons generated in the annihilation event. A special
advantage of PET is that the tissue radioactivity can be measured
in absolute units (Bq/mL). Usually, the images are quantified using
the standardized uptake values (SUV), a semiquantitative measure
of the tracer uptake in a region of interest normalized by the tissue
activity to the injected activity and the volume of distribution

(usually total body weight).
The SUV metrics can be used for tumor staging or treatment

response assessment. However, SUV describes the overall tracer
uptake in a tumor but does not contain information about its
distribution within the tumor [60]. Therefore, it is possible to
define radiomic features that describe tumor shape and first-order
statistics and capture heterogeneity within the tumor.

In this review, a total of 18 PET studies were evaluated for the
discretization methods in PET, which are presented in the Table
II.

In total, seven studies used phantom images; four studies
evaluated lung cancer, two studies were about cervical tumors,
and one study was found for each of the following diseases:
hepatocellular carcinoma, neuroendocrine tumor; brain tumor;
solid cancer, and nasopharyngeal carcinoma.

The PET studies about hepatocellular carcinoma [53] and na-
sopharyngeal carcinoma [8] evaluated different number of bins.
Reference [53] achieved 256 as the best bin number, for the
purpose of the study while [8] found FBN equal to 64 as the
best method. The study of neuroendocrine tumors [42] used two
methods - FBSrange with bin size of 0.95 and FBN with 64 bin -
and the best result occurred for the FBS method. The brain tumor
study [36] used FBS with values between 0.05 and 0.2 SUV. The
best method was the FBS with 0.1 - 0.15 SUV. Finally, the pediatric
solid cancer study [9] compared FBN methods with 16 to 64 bins
and FBS with 0.1 to 0.25 SUV. The best result was achieved with
FBS with a bin size of 0.1 SUV.

For lung cancer, all four PET studies compared FBN and FBS
discretization methods. Three of them found the FBS was the
best method [41] [28] [26], but each one sets a different bin
width. Reference [41] found the bin with of 0.25 using SUV values
from 0-60 as the best method. Reference [28] found the bin size
of 0.1, and [26] did not present a specific best bin size. The
study [53] concluded FBN with 64 bins as the best method for
discretization. We recommend further investigations of both FBS
and FBN methods for PET lung cancer features extraction using
similar bin sizes and number of bins, like the ones presented here.

The two PET studies about cervical tumors evaluated different
FBN values. The first one [27] resulted in a combination between
gray-level pairs 64-32 and 64-128, while the second one [43]
found a bin number of 64 as the best value. Both extracted
the same group of features: 1st Order; Shape; GLCM; GLSZM;
GLRLM; NGTDM. These results show that, for cervical tumors, 64
bins had a high feature reproducibility, so we recommend further
investigations with a similar number of bins.

In phantoms studies, three of them compared different FBN
values [52] [24] [47], resulting in 64 as the best number of bins.
However, it should be noted that [52] and [24] only evaluated
GLCM features. The authors from [29] compared different FBS
values tumor-to-background ratio (TTBR), resulting in FBS with a
bin size of 0.01 TTBR as the best value for discretization. Reference
[25] compared the two methodologies: FBN with 64 bins and FBS
with 0.25 bin size, with the latter having the best performance.
However, only one value (bin size and number of bins) was used
for each method. Similarly, reference [45] compared FBN with 64
bins and FBS with 0.5 bin size. The best method of discretization
was the FBS with 0.5 bin size. Opposed to the previous results,
a study [47] compared FBS with 0.4 bin width and FBN with 64
bins and found that the latter was the best discretization method.

Overall, comparing the discretization methods in PET studies
(FBN and FBS), 10 articles found FBS as the best method, while
8 articles found FBN as the best method. However, there is little
agreement between the same organ/disease values.
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TABLE I
LITERATURE REVIEW ON DISCRETIZATION IN RADIOMIC STUDIES FOR COMPUTED TOMOGRAPHY (CT) IMAGING

Ref. Study
1st author

Year Site/Organ Filters Feature groups Discretization
Methods

Discretization
Parameters

Best Method

[50] Chang 2021 Hepatocellular
Carcinoma

Original;
Wavelet

1st Order; Shape;
GLCM; GLSZM; GLRLM;

NGTDM; NGLDM

FBN; FBNequal FBN*: 8; 16; 32; 64 FBNequal: 8

[48] deFarias 2021 Lung Cancer Original GLCM; GLSZM; GLRLM;
NGTDM; NGLDM

FBNrange FBNrange: 8; 16;
32; 64; 128; 256

FBNrange: 64

[32] Le 2021 CT Angiography Original 1st Order; GLCM; GLSZM;
GLRLM; NGTDM; NGLDM

FBS; FBN FBS: 10; 15; 20; 25; 30; 35
FBN: 8; 16; 32; 64; 128; 256

FBS: 25; 30

[21] Chatterjee 2021 Head & neck
Carcinoma

Original GLCM; GLSZM; GLRLM;
NGTDM; NGLDM; GLDZM

FBS; FBSequal;
FBN; FBNequal

FBS*: 6.25; 12.5; 25; 50
FBN*: 8; 16; 32; 64

FBNequal

[33] Nazari 2020 Renal Cell
Carcinoma

Original;
Wavelet; LoG

1st Order; Shape; GLCM;
GLSZM; GLRLM; NGLDM

FBN FBN: 32; 64; 128 FBN: 128

[49] Li 2020 Phantom Original GLCM; GLSZM; GLRLM FBSrange FBSrange: 1; 5; 10; 15; 20;
25; 30; 35; 40; 45; 50

FBSrange: 15;
20; 25; range:

1400-2000 values

[46] Loi 2020 Pancreatic
Neuroendocrine

Neoplasms

Original GLCM; GLSZM; NGTDM;
NGLDM; VAM; NorGLCM;

Texture Spectrum

FBN FBN: 32; 64; 128 FBN: 64

[17] Wang 2019 Lung Cancer Original 1st Order; GLCM; GLSZM;
GLRLM; NGTDM

FBN; FBNrange;
FBN-0; FBNLloyd;

FBN*: 4; 5; 6; 7; ...
...126; 127; 128

FBNrange: 128

[53] Desseroit 2016 Lung Cancer Original 1st Order; Shape;
GLCM; GLSZM; NGTDM

FBS; FBN FBS: 10
FBN: 8; 16; 32; 64; 128

FBS: 10

[20] Bogowicz 2016 Lung Cancer
Perfusion Maps

Original;
Wavelet

1st Order; GLCM; GLSZM;
GLRLM; NGTDM; NGLDM

FBN; FBS-BF;
FBS-BV; FBS-MTT

FBN: 16; 32; 64
FBS-BF: 0.5%; 1%; 2%
FBS-BV: 0.5%; 1%; 2%

FBS-MTT: 5%; 10%; 20%

FBN: 64

Unless specified, all bin sizes for FBS and similar methods have their values shown in Hounsfield Units while FBN and similar methods are shown in number of bins. FBS*
and FBN* in the Values column refers to, respectively, all FBS and FBN based methods used in the study. FBS-BF, FBS-BV and FBS-MTT refers to fixed bin size

discretization in blood flow, blood volume and mean transit time, respectively.

In summary, for PET imaging, it is observed that the best
discretization method is the FBN with 64 bins, so it is a good value
to start the discretization evaluation. The FBS method with values
between 0.01 to 1 SUV also showed a good performance and
might lose less physical associated information. We recommend
both methods be evaluated for PET studies with other organs or
diseases not present in this review.

3) Magnetic Resonance - MR: Magnetic resonance imaging
is a non-ionizing imaging technique where the primary origin of
the signal comes from the hydrogen nuclei. Aside from the main
magnet, other magnetic fields excite the hydrogens in the different
tissues for signal production and localization [61]. As a result,
the MR images have arbitrary image intensity values, influenced
by the scanner magnetic field intensity, specific variations from
each scanner, and tissue characteristics like proton density, T1/T2
relaxation times, and tissue susceptibility [62].

A total of 13 studies evaluating discretization methods for MR
systems were included in this review, presented in Table III.

Six of them were related to brain tumors and, of those, four
used several methods and values of FBN. Reference [39] used a
number of bins between 8 and 128 with the FBNequal method.
The best discretization method was 16 bins. The study of [51] used
three methods (FBN, FBNequal and FBNLloyd) with a bin number
range from 32 to 256. They found FBN with 128 bins was the best
method but recommended multiparametric radiomic extraction
since different features and feature groups performed better with
other discretization values. References [40] and [23] used FBN with
varying numbers of bins. The best result for [40] was with a bin

number of 32, while for [23] FBN with 16 and 32 bins had the
best performance. Two other MR brain tumor studies [34] [18]
compared FBN and FBS discretization methods. Reference [34]
compared FBS with a bin width of 2 and FBN with a bin number
of 64 and found that the best performance occurred with the
FBS method. Reference [18] used different values for FBN and
FBSrange (where the range was defined with the mean minimum
and maximum gray values for the whole dataset), and the best
result was achieved with FBN with 32 bins. Therefore, we suggest
further investigation of the FBN method with 32 bins for brain
tumor in MR, once at least three of the studies reached this as
the best result.

Two MR prostate studies were found, both using different
FBS values. Reference [63] could not find a significant difference
among the values, so they used Pyradiomic standard bin width of
25. However, reference [15] found FBS with a bin width of 15 as the
best discretization method. Therefore, further investigations are
needed to find or confirm the best-suited discretization method
for this type of tumor.

Two carcinoma MR studies were also found, one regarding
nasopharyngeal Carcinoma [8] and the other about hepatocellular
carcinoma [22]. Both of the studies used FBN with a number of
bins between 8 and 128 in their analysis. Reference [8] achieved
its best outcome with the bin number of 128. Reference [22] used
different FBN based methods, that resulted in FBN as the best
method with a number of gray values equal to 64. A study regard-
ing lacrymal gland lesions and breast lesions [13] compared FBN
and FBS methods with different values, and the best outcome was
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TABLE II
LITERATURE REVIEW ON DISCRETIZATION IN RADIOMIC STUDIES FOR POSITRON EMISSION TOMOGRAPHY IMAGING (PET)

Ref. Study
1st author

Year Site/Organ Filters Feature groups Discretiz.
Methods

Discretization
Parameters

Best Method

[24] Tamal 2021 Phantom Original GLCM FBN FBN: 8; 16; 32;
64; 128; 256

FBN: 64

[44] Mahmoud 2021 Hepatocellular
Carcinoma

Original 1st Order; GLCM; GLRLM;
NGTDM; GLZLM

FBN FBN: 32; 64; 128; 256 FBN: 256

[43] Crandall 2020 Cervical Tumor Original 1st Order; Shape; GLCM;
GLRLM; NGTDM; GLZLM

FBN FBN: 32; 64; 128 FBN: 64

[42] Liberini 2021 Neuroendocrine
Tumor

Original 1st Order; Shape; GLCM;
GLRLM; NGTDM; GLZLM

FBSrange;
FBN

FBS: 0.95*
FBN: 64*

FBS: 0.95

[36] Barry 2021 Brain Tumor Original; Square;
SquareRoot; Exp; LoG;

Wavelet; Logarithm

1st Order; Shape; GLCM;
GLSZM; GLRLM;

NGTDM; NGLDM

FBS FBS: 0.05; 0.1; 0.15; 0.2 FBS: 0.1; 0.15

[41] Kolinger 2021 Lung Cancer Original 1st Order; Shape; GLCM;
GLRLM; NGTDM; GLZLM

FBSrange;
FBN

FBSrange: 0.25
FBN: 64

FBS: 0.25
Range: 0:60

[25] Pfaehler 2019 Phantom Original 1st Order; GLCM;
GLSZM; GLRLM;

NGTDM; NGLDM; GLDZM

FBS; FBN FBS: 0.25
FBN: 64

FBS: 0.25

[8] Yang 2020 Nasopharyngeal
Carcinoma

Original;
Wavelet

1st Order; GLCM;
GLSZM; GLRLM; NGTDM

FBN FBN: 8; 16; 32; 64; 128 FBN: 64

[52] Tamal 2019 Phantom Original GLCM FBN FBN: 8; 16; 32;
64; 128; 256

FBN: 64

[29] Papp 2018 Phantom Original Shape; GLCM;
GLSZM; NGTDM

FBS FBS: 0.01; 0.025;
0.05; 0.1 TTBR

FBS: 0.01 TTBR

[30] Pfaehler 2018 Phantom Original 1st Order; GLCM;
GLSZM; GLRLM; NGTDM

FBS; FBN FBS: 0.25
FBN: 64

FBS: 0.25 with 0.05
for low uptake data

[45] Ger 2019 Phantom Original 1st Order; GLCM;
GLRLM; NGTDM

FBS; FBN FBS: 0.5
FBN: 64

FBS: 0.5

[9] Branchini 2019 Solid Cancer Original 1st Order; Shape;
GLCM; GLRLM

FBS; FBN FBS: 0.1; 0.25
FBN: 16; 64

FBS: 0.1

[28] Carles 2018 Lung Cancer Original 1st Order; Shape; GLCM;
GLRLM; NGTDM

FBS; FBN;
FBNequal

FBS: 0.05; 0.1; 0.5
FBN: 16; 32; 64

FBNequal: 16; 32; 64

FBS: 0.1

[47] Presotto 2018 Phantom Original GLCM; GLSZM; GLRLM;
NGTDM; NGLDM

FBS; FBN FBS: 0.4
FBN: 64

FBN: 64

[27] Altazi 2017 Cervical Tumor Original 1st Order; Shape; GLCM;
GLSZM; GLRLM; NGTDM

FBN FBN: 32; 64; 128; 256 FBN: 64 with 32
and 64 with 128

[53] Desseroit 2016 Lung Cancer Original 1st Order; Shape;
GLCM; GLSZM; NGTDM

FBS; FBN FBS: 0.5
FBN: 8; 16; 32; 64; 128

FBN: 64

[26] Leijenaar 2015 Lung Cancer Original GLCM; GLSZM; GLRLM FBS; FBN FBS: 0.05; 0.1; 0.2; 0.5; 1
FBN: 8; 16; 32; 64; 128

FBS

Unless specified, all bin sizes for FBS and similar methods have their values shown in Standardized Uptake Values while FBN and similar methods are shown in number of
bins. FBS* and FBN* in the Values column refers to, respectively, all FBS and FBN based methods used in the study.

reached with FBS, but the best bin sizes varied depending on the
MR sequence. Another cervical tumor study [35] also compared
FBN and FBS methods and the best discretization method found
was the FBS with a bin size of 0.05. One of the studies used
phantom images [19] with different methods and values of FBN,
including FBNLloyd and FBNequal and bin numbers of 32 to 256.
The FBNequal discretization with 64 bins resulted in the greatest
number of features with the least variability.

It should be noted that FBNLloyd discretization was explored
in three MR studies and didn’t have the best performance in
any of them. This might indicate that FBNLloyd is not a suitable
quantization procedure in radiomics, at least for the MR imaging

modality.

Three of four MR studies that compared FBN and FBS methods
resulted in FBS as the best discretization method. However, the
IBSI recommends that FBS should not be used for imaging
modalities with arbitrary intensity values, such as MR.

Future MR studies might explore the FBS method but should
also include FBN for comparison, with bins between 16 and 128,
as this bin range includes the best results for the reviewed MR
studies. These recommendations apply to MR in general and
other organs where discretization has no impact. We recommend
exploring methods and similar values for diseases and organs
shown in this review to those that showed the best performance.
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TABLE III
LITERATURE REVIEW ON DISCRETIZATION IN RADIOMIC STUDIES FOR MAGNETIC RESONANCE IMAGING (MRI)

Ref. Study
1st author

Year Site/Organ Filters Feature groups Discretization
Methods

Discretization
Parameters

Best Method

[22] Dai 2021 Hepatocellular
Carcinoma

Original 1st Order; Shape; GLCM;
GLSZM; GLRLM; NGTDM;

NGLDM; NGLDS

FBN; FBNequal;
FBNLloyd

FBN*: 8; 16;
32; 64; 128

FBN: 64

[63] Xue 2021 Prostate Tumor Original;
Wavelet; LoG

1st Order; GLCM; GLSZM;
GLRLM; NGTDM; NGLDM

FBS FBS: 10; 15; 20;
25; 30; 35; 40

No significant
difference

[19] Simpson 2020 Phantom Original GLCM; GLSZM;
GLRLM; NGTDM

FBN; FBNequal;
FBNLloyd

FBN*: 32; 64; 128; 256 FBNequal: 64

[18] Carré 2020 Brain Tumor Original 1st Order; GLCM; GLSZM;
GLRLM; NGTDM; NGLDM

FBSrange; FBN FBSrange: (1/FBN)
× mean range

FBN: 8; 16; 32; 64;
128; 256; 512; 1024

FBN:32

[35] Traverso 2020 Cervical Tumor Original; Square;
SquareRoot; Exp;
LoG; Logarithm

Gradient

1st Order; Shape; GLCM;
GLSZM; GLRLM;

NGTDM; NGLDM

FBS; FBN FBS: 0.01; 0.05;
5; 15; 25
FBN: 64

FBS: 0.05

[8] Yang 2020 Nasopharyngeal
Carcinoma

Original;
Wavelet

1st Order; GLCM;
GLSZM; GLRLM; NGTDM

FBN FBN: 8; 16; 32; 64; 128 FBN: 128

[13] Duron 2019 Lacrymal gland &
breast lesions

Original 1st Order; GLCM; GLSZM;
GLRLM; NGTDM; NGLDM;

NGLDM; NGLDS

FBS; FBN FBS: 1; 5; 10; 20; 25; 50
FBN: 8; 16; 32; 64;
128; 256; 512; 1024

FBS: dif.
values for dif.

sequences

[15] Schwier 2019 Prostate Tumor Original; Square;
SquareRoot;

Wavelet; Exp;
LoG; Logarithm

1st Order; Shape; GLCM;
GLSZM; GLRLM

FBS FBS: 10; 15; 20; 40 FBS: 15

[40] Ortiz-Ramón 2018 Brain Metastases Original 1st Order; GLCM; GLSZM;
GLRLM; NGTDM

FBN FBN: 8; 16; 32; 64; 128 FBN: 32

[34] Goya-Outi 2018 Brain Tumor Original GLCM; GLSZM; GLRLM FBS; FBN FBS: 2
FBN: 64

FBS: 2

[39] Ortiz-Ramón 2017 Brain Metastases Original 1st Order; GLCM; GLSZM;
GLRLM; NGTDM

FBNequal FBNequal: 8; 16;
32; 64; 128

FBNequal: 16

[51] Li 2017 Brain Tumor Original 1st Order; GLCM; GLSZM;
GLRLM; NGTDM

FBN; FBNequal;
FBNLloyd

FBN*: 32; 64; 128; 256 FBN: 128

[23] Molina 2016 Brain Tumor Original GLCM; GLRLM FBN FBN: 8; 16; 32; 64 FBN: 16; 32

Unless specified, all sizes for FBS and similar methods are shown in units of gray values while FBN and similar methods are shown in number of bins. FBS* and FBN* in
the Values column refers to, respectively, all FBS and FBN based methods used in the study.

4) Ultrasound - US: Ultrasound (US) imaging delivers me-
chanical pulses of high-frequency to the tissues, and the fraction
reflected as an echo goes back to the detector providing infor-
mation about the tissues since different tissues reflect the pulses
to a greater or lesser extent. B-mode is the electronic conversion
of the information from the receiver into brightness-modulated
dots. The brightness of each dot can be proportional to the echo
signal amplitude, but the gain control can modify the range of
brightness. In the US B-mode final image, the intensity value of
each pixel carries information regarding the tissue that reflected
it. These intensity values are distributed on the image according
to the time it took between the pulse initiation and the reception
of the echo [64].

There are many variables in the US image formation process.
Aside from variations from different transducers and processing
techniques, there are also physical limitations, like the amplitude
of the original pulse that is reduced as parts of it are reflected.
This results in progressively darkening at deep tissues in the body.
Therefore, intensity values on US images are relative, meaning they
have no physical significance by themselves.

Only one US study [37] investigating the impact of discretization
in US imaging was found and it is presented in Table IV. The
study investigated features repeatability in orbital lesions using
B-mode US images. Four bin sizes and four number of bins
were evaluated. FBS showed overall better performance, and the
bin size 10 had the highest number of repeatable features. The
study also confirmed that pre-processing has a significant impact
on features extraction, as for other medical imaging modalities.
However, the ideal discretization method found might not be the
best for outcome prediction or diagnosis, which is the final goal
of radiomics. Still, future US radiomics studies should continue
to investigate the impact of discretization methods and should
include FBS with bin size 10 as one of them, even for other regions.

5) Single-photon Emission Computed Tomography - SPECT:
SPECT is a medical imaging technique based on conventional
nuclear medicine and tomographic reconstruction methods. A
labeled radioisotope is administered to a patient, and depending
on the biodistribution properties, it is taken up by different organs
and/or tissues. Different than PET, in SPECT images, there is not a
standard method to quantify images, although there recent studies
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TABLE IV
LITERATURE REVIEW ON DISCRETIZATION IN RADIOMIC STUDIES FOR ULTRASOUND IMAGING

Ref. Study
1st author

Year Site/Organ Filters Feature groups Discretization
Methods

Discretization
Parameters

Best Method

[37] Duron 2021 Orbital lesion Original 1st Order; Shape; GLCM
GLSZM; GLRLM; NGTDM

FBS; FBN FBS: 2; 5; 10; 25
FBN: 16; 32; 64; 128 bins

FBS: 10

All sizes for FBS are shown in units of gray values

combining SPECT and CT to allow calibrated SUV images. SPECT
images are usually presented in counts [65]. Only one study [66]
investigated the impact of discretization in SPECT imaging was
found and is presented in Table V.

The SPECT study analyzed the features reproducibility of cold
(low) uptake in renal scan with 99mTc-Sestamibi. The SPECT
images (presented in counts) were discretized using an FBN
method with eight bin numbers to evaluate the most reproducible
features. As a result, the quantization with 32 to 64 bins best
captured tumors heterogeneity information of cold uptake regions
of 99mTc-Sestamibi images [66].

Future radiomics studies regarding SPECT might explore other
discretization methods since FBN was the only one investigated.
Still, one should also include FBN with 32 and 64 bins as other
similar values in analysis for comparison.

6) Electronic Portal Imaging Device images - EPID: : Elec-
tronic Portal Imaging Devices (EPIDs) are digital x-ray imaging
systems that acquire projection images of patients using high-
energy photons, mainly in radiation therapy [67]. The image
formation principle is similar to a conventional X-ray. EPIDs have
mainly been used for accurate positioning of patients prior to
radiation treatment but also have the potential for dosimetry
verification [68].

EPID is not a traditional diagnostic modality. However, a study
was included in this review. It explores the temporal stability and
prognostic prediction of EPID and digitally reconstructed radio-
graphs (DRRs) radiomic features in lung cancer patients with three
number of bins [38]. FBN with 32, 64, and 128 number of bins
were evaluated, and 64 bins were recommended for computation
of radiomic features in EPID and DRR images, showing the highest
intra-class correlation coefficient between features.

Future EPID radiomics studies might explore other discretiza-
tion methods since FBN was the only one investigated but should
also include FBN with 64 bins.

IV. APPENDIX

This section describes the search strategy used in this scoping
review. Three different databases were used: PubMed, Scopus,
and Science Direct. The following keywords were used in the
search: medical, imaging,clinical, discretization, bin width, bin
size, quantization, binning, radiomics. Reviews, abstracts and non-
English articles were not considered. Next we describe the search
query string for each database.

On PubMed: ("discretization" OR "bin width" OR "bin size" OR
"quantization" OR "binning") AND ("radiomics") AND ("Medical"
OR "Imaging" OR "Clinical")

On Scopus: TITLE-ABS-KEY ( ( "discretization" OR "bin width"
OR "bin size" OR "quantization" OR "binning") AND ( "radiomics"
) ) AND ( "Imaging" OR "Medical" OR "Clinical" )

On Science Direct: ALL ("Medical" OR "Imaging" OR "Clinical")
AND Title, abstract and keywords ("discretization" OR "bin width"
OR "bin size" OR "quantization" OR "binning") AND ("radiomics")

V. CONCLUSION

In this review, we analyzed multiple studies on different med-
ical imaging modalities (CT, PET, MR, US, SPECT, and EPID),
and mapped the impact of discretization methods in radiomics.
Discretization methods recommendations were made for each
modality in the corresponding section, according to each organ
or disease.

Currently, the extraction of quantitative radiomic features has
drawn increasing research interest as a tool to improve the
diagnosis and prognosis of several diseases. There is, however,
considerably less research dealing with the impact of different
parameters on features extraction. In this review, significant vari-
ability was observed when searching for the best discretization
method, even for the same imaging modality and organ, tissue or
disease evaluated.

We highlight that a single discretization method is not ideal,
and multiparametric extraction might be an option for some
medical tasks [51], since different feature groups perform better
with different discretization procedures. Future studies could find
optimal parameters for each features group and imaging modality.
For other medical tasks not included in this review, we recom-
mend discretization methods for each modality. We reinforce the
importance of investigating different discretization methods since
they have a high impact on the resulting radiomic features.
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