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Abstract
We analyze the performance portability of the skeleton-based, single-source multi-
backend high-level programming framework SkePU across multiple different 
CPU–GPU heterogeneous systems. Thereby, we provide a systematic application 
efficiency characterization of SkePU-generated code in comparison to equivalent 
hand-written code in more low-level parallel programming models such as OpenMP 
and CUDA. For this purpose, we contribute ports of the STREAM benchmark suite 
and of a part of the NAS Parallel Benchmark suite to SkePU. We show that for 
STREAM and the EP benchmark, SkePU regularly scores efficiency values above 
80% and in particular for CPU systems, SkePU can outperform hand-written code.

Keywords  Algorithmic skeletons · Parallel efficiency · Performance portability · 
Heterogeneous parallel computing · High-level parallel programming

1  Introduction

High-level parallel programming aims to simplify programming of systems with 
parallel (and possibly heterogeneous) hardware architectures. A high-level parallel 
programming model typically achieves this by abstracting away properties such as 
load balancing, synchronization, data movement, and other practical considerations, 
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e.g., languages, compilers, and underlying APIs. Typically, the goal is also to pro-
vide portability across a large number of different platforms and even types of 
platforms (sometimes called “backends”). However, the efficiency of the resulting 
platform-specific code may vary considerably across the different platforms. This 
can be a particular challenge for single-source multi-backend high-level parallel pro-
gramming models that need to generate, from the same high-level source, code for 
architecturally very diverse target platforms.

For high-level programming models, and in particular their concrete implementa-
tions in languages, libraries, and frameworks, it is therefore of interest to measure 
performance portability in addition to absolute performance. Performance portabil-
ity is a property of a program and a set of specific target platforms; it quantifies the 
program’s ability to run correctly and at decent efficiency across the given set of 
platforms without requiring (significant) modification of the source code. In order to 
achieve a good understanding of the overall performance portability, it is therefore 
important to find a representative platform set to gather experimental results from. 
The program(s) should also be representative of the target application area of the 
high-level parallel programming model, or alternatively, a general set of programs 
that can be used for comparison between a range of high-level parallel programming 
models or implementations.

A promising class of single-source high-level programming models are multi-
backend skeleton programming frameworks such as SkePU [23], MueSLi [21], Fast-
Flow [1], GrPPI [17] or SPar [25]. These frameworks provide a set of composable 
generic programming constructs (known as algorithmic skeletons) that implement 
certain parallelizable computation patterns, that can be parameterized in sequential, 
problem-specific code, and for which different platform-specific implementations 
(backends) are available.

This work investigates the performance portability of the skeleton-based, single-
source multi-backend high-level data-parallel programming framework SkePU [23] 
across multiple different CPU–GPU heterogeneous systems. We provide a system-
atic application efficiency characterization of SkePU-generated code in comparison 
to equivalent hand-written code in more low-level parallel programming models 
such as OpenMP and CUDA. For this purpose, we contribute new SkePU ports of 
the STREAM benchmark suite and of a part of the NAS Parallel Benchmark suite.1

We show that for STREAM and the EP benchmark, SkePU regularly scores effi-
ciency values above 80% and in particular for CPU systems, SkePU can outperform 
hand-written code. In addition, we provide code complexity metrics for the evalu-
ated programs. It is shown that the size and complexity of SkePU code is signifi-
cantly reduced compared to GPU implementations.

The remainder of this article is organized as follows: Sect. 2 presents background 
about high-level parallel programming, SkePU, performance portability and relevant 
benchmarks, esp. STREAM and NAS benchmarks. Related work is discussed in 
Sect. 3. Section 4 presents details about our experimental method. Results are listed 

1  The SkePU NPB implementations are available online at https://​skepu.​github.​io/​npb/.

https://skepu.github.io/npb/
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and discussed in Sects.  5 and  6, respectively. Section  7 presents conclusions and 
Sect. 8 proposes future work.

2 � Background

2.1 � High‑Level Parallel Programming and SkePU

Parallel programming is widely considered as being more difficult and error-prone 
than sequential programming, because the parallel execution dimension introduces 
new challenges, bug risks and potential performance issues that do not exist in the 
sequential computing world, such as load imbalance, race conditions, deadlocks and 
overheads for parallelism management, communication and synchronization.

Simple low-level extensions of sequential programming models by multithread-
ing, accelerator control or message passing constructs, such as Pthreads, OpenCL 
or MPI respectively, leave the programmer alone with this additional complexity 
exposed. High-level parallel programming models promise to reduce complexity by 
providing structured programming constructs that manage parallelism, synchroniza-
tion and communication for certain patterns of parallel computation. In particular, 
skeleton programming [11, 12] has been intensively researched during the last three 
decades, and improvements in programmability have been experimentally demon-
strated [2, 3, 7, 15]. The approach is based on expressing computations in terms of 
pre-defined high-level constructs called (algorithmic) skeletons such as map, reduce, 
scan or stencil, which capture a specific, parallelizable computation pattern as a 
higher-order function that can be parameterized in user-provided code to instantiate 
executable code. All details of managing parallelism, communication and synchro-
nization are encapsulated in the skeleton implementation. In this way, skeleton pro-
grams are, conceptually, no harder to write, read and maintain than well-structured 
sequential code for the same problem.

The reduced programming effort is usually paid for with some efficiency over-
heads compared to expert-written explicitly parallel code, and the skeleton approach 
is not applicable to computations that do not match any of the supported compu-
tation patterns. Nevertheless, the approach has been successfully demonstrated in 
research projects such as FastFlow [1], SkePU [23], SPar [25], and also been adopted 
in many modern parallel programming interfaces, such as Intel TBB, Nvidia Thrust, 
Hadoop MapReduce or Apache Spark.

Skeleton programming is particularly promising as a means to provide better code 
portability through a high-level abstraction which can more easily map to different 
types of target architectures (e.g., multicore CPU, GPU or cluster) in today’s hetero-
geneous parallel computer systems. Even performance portability (see below) can 
benefit, as we shall see in this paper, as the programming system (compiler, runtime 
library) can build its own internal performance models for skeleton-based computa-
tions and is, in general, free to automatically select the expected fastest backend for 
each skeleton call.
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In this work, we consider SkePU2 [23] as a case study. SkePU is a domain-spe-
cific skeleton programming language embedded into modern C++. It provides cur-
rently 7 data-parallel variadic skeletons as well as STL-like generic abstractions for 
multidimensional operand data in memory and abstractions for different data access 
patterns. For each skeleton, implementations (backends) are provided for single-
threaded and multi-threaded (OpenMP) CPU execution, single- and multi-GPU 
execution in CUDA and OpenCL, hybrid CPU–GPU execution, and cluster execu-
tion. The data abstractions for 1D, 2D, 3D and 4D generic array-based operands 
wrap array based data structures in main memory; they are referred to as "smart" 
data-containers as they transparently perform run-time optimizations such as coher-
ent software caching and lazy device memory allocation and copying [13] and data 
locality optimizations [24]. SkePU is implemented by a light-weight source-to-
source precompiler and an include-only runtime library for the interfaces and imple-
mentations of skeletons and data abstractions which makes intensive use of template 
metaprogramming in C++. SkePU is available as open-source with a permissive 
modified BSD license. Recent examples for the use of SkePU in HPC applications 
are described in [29].

2.2 � Performance Portability

Performance portability is commonly understood as the ability of an application 
codebase, together with tools or layers of the hardware-software stack, to automati-
cally achieve decent performance across different target architectures without signif-
icant changes. This is an intuitive quantity which is harder to define formally. In this 
work, we define performance portability in terms of application efficiency across 
platforms, which means the measured performance as a fraction of the best observed 
performance on the specific platform (by some other, ideally well optimized and 
tuned, code). This is contrasted with architectural efficiency, which instead com-
pares the measured performance to the peak hardware throughput of the target sys-
tem. Architectural efficiency is by definition lower than application efficiency.

Pennycook et al. [30] recently proposed a concrete metric for performance port-
ability (PP) in terms of efficiency measurements ei(a, p) (for application a solving 
problem p on platform i) on a given specific set H of platforms:

(1)PP(a, p,H) =

⎧
⎪⎨⎪⎩

�H�
∑

i∈H

1
ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

2  https://​skepu.​github.​io/.

https://skepu.github.io/
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It is determined as the harmonic mean of the (application or architectural) efficien-
cies across all platforms in H, or 0 if any of these platforms does not support the 
computation (i.e., the program crashes or produces incorrect3 results).

Notably, this metric is dependent on the considered platform set H and not an 
inherent property of an application. It makes sense to consider PP for architectur-
ally related subsets of H, e.g., for the subset of all GPUs of interest, of all CPUs, 
as well as for all platforms together, because this will show common performance 
problems with certain architectural properties, as well as the sensitivity to product 
family variations (e.g., cache sizes). Taking the harmonic mean has a similar effect 
as minimization over the efficiencies for the different platforms, and also reflects the 
intuitive notion that adding new platforms to H will generally reduce the PP score, 
while algorithmic specialization (i.e., adding special code paths for some platforms) 
will generally increase the PP score.

We use this PP metric in this work, and time will tell if it achieves broad adoption 
in the scientific community.

2.3 � Benchmarks

There is an ongoing effort to create SkePU implementations, and subsequently eval-
uations, of many benchmark workloads across several benchmark suites. Such suites 
include Rodinia [10], PARSEC [9] and its parallel derivate P3ARSEC [15], Poly-
Bench [34], and NAS Parallel Benchmarks [5, 8, 27]. The complexity and effort 
required for benchmarking parallel programming models, interfaces, and frame-
works is well-known [32] and examples of ongoing efforts to simplify and standard-
ize parallel benchmark suites are many, including P3ARSEC and Task Bench. These 
efforts are seemingly conducted mostly in parallel to the work toward a widely 
accepted performance portability metric, and it remains one of the scientific goals of 
high-level parallel programming to merge these efforts into a methodology to evalu-
ate programming models and frameworks across both application domains and plat-
forms in a holistic process.

2.3.1 � STREAM Benchmark Suite

The STREAM benchmark suite by McCalpin [28] of University of Virginia is pri-
marily intended for measuring and comparing memory bandwidth of high-perfor-
mance computing architectures. Versions of STREAM for distributed memory sys-
tems also exist, e.g. using MPI, but in this work we are working with single-node 
systems. However, heterogeneous architectures equipped with accelerators with 
separate memory spaces are also considered here.

3  The notion of ”correct” behavior is not always obvious: especially when using accelerators or for more 
efficient parallelization, one might want to tolerate small differences in the result values within some lim-
its, e.g. with respect to round-off errors of floating-point computations or the behavior of parallel pseu-
dorandom number generation.
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2.3.2 � NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) was created and made available by the NASA 
Advanced Supercomputing division for benchmarking parallel hardware and soft-
ware in the Computational Fluid Dynamics (CFD) application domain [8]. The 
benchmark suite is composed of five kernels (named Embarrassingly Parallel—EP, 
Multi Grid—MG, Conjugate Gradient—CG, Discrete 3D Fast Fourier Transform—
FT, and Integer Sort—IS) and three pseudo-applications (named Block Tri-diago-
nal solver—BT, Scalar Penta-diagonal solver—SP, and Lower-Upper Gauss-Seidel 
solver—LU). They are well-known in the research community and represent recur-
rent linear algebra computations. The user can execute these programs with prede-
fined workloads (named classes S, W, A, B, C, D, E, and F) that vary the computa-
tional problem’s size. The original version was written in Fortran and the parallel 
implementations were in OpenMP and MPI. In recent years, an effort was made to 
provide parallel versions for C/C++ parallel programming frameworks on multi-
core systems [26, 27] as well as heterogeneous parallel programming on GPUs [5, 
6, 19].

3 � Related Work

Deakin et al. [16] provide ports of the STREAM benchmark set to several single-
source parallel programming models: Kokkos, RAJA, OpenMP 4.x, OpenACC, 
SYCL, OpenCL and CUDA. (The "modern" version of SkePU that we use in our 
work did not yet exist at that time.) They evaluate performance portability for these 
programming models on a variety of GPU and CPU types from different vendors, 
including Intel Xeon Phi (Knights Landing). In contrast, our work focuses on SkePU 
and its supported platforms on both STREAM and NPB benchmarks. We also apply 
a stricter interpretation of performance portability, in that we do not admit any man-
ual modifications to SkePU source code or backend code generated from the SkePU 
pre-compiler.

A number of papers such as [20] present and evaluate multi-platform implemen-
tations of the NPB, including GPU implementations in OpenCL and CUDA. A 
recent review and comparison of previous work on NPB parallelizations is given by 
Löff et al. [27]. There are also research efforts porting NPB to higher-level program-
ming languages such as Python, providing parallel implementations for GPUs by 
using Numba (an LLVM-based Python JIT compiler) [18].

In the interest of brevity, we focus here on work based on single-source high-
level programming models. Xu et  al. [33] study the efficiency of the NAS Paral-
lel Benchmarks rewritten in the directive-based single-source programming model 
OpenACC on GPUs and identify performance-critical GPU-specific optimizations 
such as array privatization that need be addressed by an OpenACC compiler. Per-
formance is compared to hand-written OpenCL code for the NPB. A fundamental 
difference from our (NPB) implementations in SkePU is that SkePU is based on the 
more high-level skeleton concept rather than annotated sequential loop-based code 
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as in OpenACC, so that SkePU’s skeleton backend implementations are not con-
strained by the sequential code structure.

4 � Methods

We compare an implementation of the STREAM benchmark suite in SkePU to the 
reference implementation across a set of 10 target platforms. Application efficiencies 
are calculated from the performance data, measured in terms of throughput data-
rate, and used as a basis for calculating the performance portability metric. The four 
STREAM workloads are evaluated on single and double precision floating-point 
data resulting in eight applications in total across ten platforms. We also document 
the programming effort required to implement the STREAM benchmarks in SkePU.

This work was conducted in three main steps: benchmark selection, platform 
selection, and performance evaluation.

4.1 � Benchmark Selection and Implementation

The first step of this work was to select a set of benchmarks used to evaluate per-
formance portability of SkePU. As the metric used takes efficiency data as input, 
a baseline requirement was to find data-parallel benchmark applications with inde-
pendent reference-implementations available for all target platforms used in the 
evaluation. The choice fell on the STREAM benchmark suite as it is simple and 
well-known, facilitating the above requirement also with consideration of the lim-
ited scope of this project. SkePU has also not been evaluated on STREAM before, 
and a secondary aim is to further grow the set of benchmarks targeted by SkePU as 
part of the project.

In addition to the lightweight STREAM workloads, we also considered NPB 
as a means to select additional possible evaluation points, since these are different 
computations and are considered standard benchmarks for HPC evaluation. Like 
STREAM, NPB has not been subject to SkePU parallelization before, and given the 
recent work on NPB implementations in both C++ parallel CPU frameworks and 
CUDA for Nvidia GPUs [5, 27], we have good reference points for efficiency com-
parison against SkePU implementations. However, SkePUizing the entirety of NPB 
will be a future work, because the experience from this initial effort will indicate the 
viability of such a project. We therefore select two NPB kernels: EP and CG. EP 
shares similar properties to the STREAM kernels, such as being memory-bound, 
while the computational pattern modeled is not only a single Map, like STREAM, 
but rather a MapReduce, with a global reduction. One aspect that is also shared 
between STREAM and EP is that, during the entire program runtime, synchroniza-
tion is only necessary at the start and end phases. In typical SkePU usage, we expect 
also to be able to handle multiple skeleton invocations in sequence in an efficient 
manner. To evaluate this, CG provides an iterative workload with each iteration also 
containing several global synchronization points. I.e., a SkePU implementation will 
have to consist of a substantial sequence of skeleton calls.
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While the STREAM reference implementation in C could be applied mostly 
unchanged, manual implementation work was required (as is explained in detail 
in Sect. 5.1) for SkePU versions of the workloads. Reference STREAM results for 
GPUs was based on open-source third-party implementations, but those required 
more tweaks to provide compatibility and a fair evaluation methodology. Table  1 
lists the four workloads that make up STREAM: copy, scale, add, and triad, 
and shows the computational properties for each.

As NPB base-line to compare with, we use the CUDA implementations of EP 
and CG described in [27] as these have been experimentally shown [27] to perform 
on-par or better than other state-of-the art EP and CG implementations such as [20], 
see also Sect. 3.

4.2 � Platform Selection

The platform selection is primarily guided by availability, but with the goal of hav-
ing at least two physically distinct systems represented and also several different 
types of computational units. In this work, we are using the term platform in the 
sense of a compilation target + a physical host system, e.g., “sequential C++ pro-
cessing on a server” or “laptop GPU with OpenCL runtime”.

The platforms are derived from three physical systems: laptop computer, the local 
server Excess, and the supercomputer cluster Tetralith/Sigma4.

The laptop is equipped with a single 2 GHz quad-core Intel Core i5 with Intel Iris 
Plus graphics and 16 GiB main memory and runs Mac OS. This GPU notably does 
not support double-precision compute kernels and cannot run CUDA programs.

Excess is a 12-core server (two six-core Intel Xeon E5-2630L CPUs with two-
way hardware multi-threading, thus 24 logical cores) with one Nvidia K20c GPU 
and 64 GiB main memory. This system runs Ubuntu.

Tetralith and Sigma are large clusters with thousands and hundreds of nodes, 
respectively. We only use one node at a time in this work, of various configurations. 
Each Tetralith/Sigma node contains two Intel Xeon Gold 6130 CPUs for a total of 
32 cores, with no hardware multi-threading. The minimum amount of node memory 

Table 1   Arithmetic intensity of individual STREAM kernels

Benchmark Memory
reads

Memory
writes

Total mem
accesses

Unique mem
accesses

FLOPS

copy 1 1 2 2 0
scale 1 1 2 2 1
add 2 1 3 3 1
triad 2 1 3 3 2

4  Tetralith and Sigma are sister clusters and share most of their hardware and software. Each cluster 
offers special nodes equipped, for example, with different GPU accelerators. We have used nodes from 
both clusters in this work.
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is 96 GiB, with more available on GPU nodes. Tetralith GPU nodes are equipped 
with one Nvidia Tesla T4 GPU with 16 GiB of GPU memory, and the Sigma GPU 
nodes contain 4 Nvidia Tesla V100 SXM2 with 32 GiB of memory each.

From these systems we derive and define 14 target platforms  (Table  2), using 
either different computational units or backend interfaces. Sequential platforms are 
targeted with C++ (OpenMP extensions disabled). For multi-core platforms we 
chose to run OpenMP with as many threads as there are physical and logical cores, 
respectively, but no thread pinning or similar was utilized.

On Excess, the GPU is targeted with both OpenCL and CUDA as separate plat-
forms. The laptop GPU has a platform only for OpenCL, but for the sake of inves-
tigation, we define one “platform” as requiring a flush of GPU memory buffers 
between each measurement sample run, and one that only requires synchronizing 
with the GPU. This is purely a software differentiator but allows some insights into 
GPU bandwidth bottlenecks.

4.3 � Evaluation Method

The STREAM and NPB benchmarks are compiled with GCC 10 and 11 in C++ 
mode (even for the reference program) with –O3 optimization level and no fur-
ther optimization passes explicitly turned on. Evaluation is done using the default 
STREAM parameters: array sizes of 10 million elements and 10 runs per data point; 
and the default NPB problem size classes, except the D and E classes, as the time 
and memory requirements are impractically large.

Evaluation on STREAM benchmarks is repeated on single precision floating-
point numbers and double-precision floating-point numbers, resulting in a memory 
load of 0.1 GB for the former and 0.2 GB for the latter.

Table 2   Platforms used in the performance portability evaluation

Platform name System Progr. model Note

excess-seq Excess C/C++
excess-omp-12 Excess OpenMP All physical cores
excess-omp-24 Excess OpenMP All logical cores
excess-cl Excess OpenCL
excess-cuda Excess CUDA
laptop-seq Laptop C/C++
laptop-omp-4 Laptop OpenMP All physical cores
laptop-omp-8 Laptop OpenMP All logical cores
laptop-cl-flush Laptop OpenCL
laptop-cl-noflush Laptop OpenCL
cluster Tetralith/Sigma C/C++
cluster-omp-32 Tetralith/Sigma OpenMP All physical cores
cluster-v100-cuda Sigma CUDA
cluster-t4-cuda Tetralith CUDA
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5 � Results

Results are reported in three evaluated categories: programming effort, performance, 
and performance portability.

5.1 � Parallel Implementation in STREAM

The baseline code-churn of adapting the reference STREAM benchmarks to 
SkePU is very low. SkePU first needs one line minimum for its header inclusion: 
#include <skepu>.

5.1.1 � Data Model

Next, the three arrays used in the workloads need to be wrapped in SkePU smart 
data-containers: SkePU cannot use raw arrays.

Listing 1: Smart data-container model SkePU-STREAM.
1 skepu::Vector <T > vec_a (&a[0], STREAM_ARRAY_SIZE +OFFSET , false);

skepu::Vector <T > vec_b (&b[0], STREAM_ARRAY_SIZE +OFFSET , false);
skepu::Vector <T > vec_c (&c[0], STREAM_ARRAY_SIZE +OFFSET , false);

The smart data-container definitions in Listing 1 utilize a SkePU smart data-
container feature that claims “ownership” of raw memory regions and uses them 
internally for the lifetime of the data-container. This pointer is used as the memory 
buffer for sequential CPU or multi-threaded OpenMP backends; for GPUs additional 
device memory is allocated. The false argument passed here indicates that SkePU 
shall not deallocate the pointer as the lifetime of the container ends.5

5.1.2 � Benchmarking Bookkeeping

SkePU skeleton invocations are not guaranteed to be synchronous. There are explicit 
optimizations in the framework relying on the opposite: that invocations are lazily 
evaluated only when strictly necessary. In fact, since STREAM is embarrassingly 
parallel, the iterated invocations are perfect targets for the tiling optimization on 
such lazily-built invocation chains. Even when this feature is explicitly disabled, e.g. 
the GPU backend implementations are also partly asynchronous, relying on internal 
GPU driver scheduling queues for synchronization of computation and requests for 
memory transfers. SkePU’s interface exposes a flush() function (and related con-
structs) which guarantees a full synchronization to a completed skeleton invocation, 
but it is arguably too strong, as this operation will also trigger deallocation of GPU 
memory and possible memory transfers. The benchmarking code therefore uses an 

5  In fact, STREAM allocates these arrays on the stack, so freeing the pointers is always undefined behav-
ior in C++.
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internal SkePU synchronization operation between each measurement run to ensure 
as accurate results as possible.

Similarly, the result verification component of STREAM needs a flush call before 
it can run its checking algorithm.

5.1.3 � Computations

Next, the skeletons representing the workload need to be defined. Each benchmark 
workload is straightforward to model with a single Map skeleton instance, and with a 
lambda expression this is done with a single statement/line-of-code per benchmark.

In Listing 2, T is a preprocessor macro symbol from the STREAM reference 
code defined to be either float or double at compile-time. While SkePU some-
times struggles with macro-heavy code, this usage here is handled properly by the 
precompiler.

Listing 2: STREAM kernels as SkePU skeletons.
1 auto skel_copy = skepu::Map ([]( T a)

{
return a;

});
5 auto skel_add = skepu::Map ([]( T a, T b)

{
return a + b;

});
auto skel_scale = skepu ::Map <1 >([]( T a, T s)

10 {
return a * s;

});
auto skel_triad = skepu ::Map <2 >([]( T b, T c, T s)
{

15 return b + s * c;
});

Note that the element-wise arity declared within chevrons is optional for copy 
and add, but mandatory for scale and triad as SkePU cannot otherwise distin-
guish the scalar s as not being an element-wise parameter.

5.2 � Parallel Implementation of NPB‑EP

The EP kernel requires relatively little effort to adapt for SkePU. A single MapRe-
duce models the entire kernel, but the reduction step is more involved than the typ-
ical “dot-product” MapReduce archetype which reduces only a single value. EP 
computes global sums of sx, sy, and q values (see Listing 3), where the latter is a 
static array. SkePU can model this multi-way reduction pattern either by declaring 
a custom type and reducing on said type, or by using variadic tuple-return syntax 
introduced in SkePU 3 [23]. Notably, SkePU’s internal reduction implementation for 
the OpenMP backend performs the final summation of thread-partial sums sequen-
tially, while the reference OpenMP code [6] uses a mix of OpenMP pragma direc-
tives and a shared critical section, as shown in Listing 3.
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Listing 3: Excerpt from the EP reference implementation in OpenMP.
1 #pragma omp parallel

{
double t1, t2, t3 , t4 , x1, x2;
int kk, i, ik, l;

5 double qq[NQ]; /* private copy of q[0:NQ -1] */
double x[NK_PLUS ];

for (i = 0; i < NQ; i++) qq[i] = 0.0;

10 #pragma omp for reduction (+:sx ,sy)
for(k=1; k<=np; k++){

int thread_id = omp_get_thread_num ();
/* ... business logic code omitted */

}
15

#pragma omp critical
{

for (i = 0; i <= NQ - 1; i++) q[i] += qq[i];
}

20 } /* end of parallel region */

5.3 � Parallel Implementation of NPB‑CG

NPB’s CG kernel is considerably more complex than the other benchmark work-
loads considered in this paper. This is exemplified by the fact that CG cannot be 
implemented with just one SkePU skeleton call; rather twelve distinct skeleton 
instances are invoked in sequence for each CG iteration, totaling hundreds of skel-
eton calls during an entire CG execution. SkePU conceptually induces a global syn-
chronization point between skeleton invocations, and while this can result in perfor-
mance bottlenecks especially for iterative workloads, it is in most cases required by 
the CG algorithm as it contains global reductions and other non-local dependency 
structures. The skeleton structure of the SkePU implementation is closely following 
the CUDA kernels of the reference CUDA code,6 which makes the GPU efficiency 
results of particular interest in this work.

In the process of porting the CUDA CG kernel to SkePU, we noted two limita-
tions of the SkePU interface. Firstly, the current SkePU version does not include a 
smart data-container abstraction for sparse matrices. A sparse matrix can be mod-
eled by a series of vector containers, but with additional programmer effort. Sec-
ondly, we observe a limitation in matrix-vector multiplication patterns as modeled 
by Map and SkePU’s random-access container interface (“container proxies”). The 
typical way of encoding such computations in SkePU is shown in Listing 4.

6  This is, in our experience, a good approach for SkePUizing applications with GPU implementations 
already available. For further information about programming in SkePU, we refer to Ernstsson [22].
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Listing 4: Sparse matrix-vector multiplication in SkePU.
1 auto skepu_skel_three = skepu::Map ([](

skepu:: Index1D index ,
skepu::Vec <int > colidx ,
skepu::Vec <int > rowstr ,

5 skepu::Vec <double > a,
skepu::Vec <double > p) -> double {

int begin = rowstr(index.i);
int end = rowstr(index.i + 1);
double sum = 0.0;

10 for (int k = begin; k < end; ++k) {
sum += a(k) * p(colidx(k));

}
return sum;

});
15

skepu_skel_three(q, colidx , rowstr , a, p);

Compared to the reference CUDA kernel in Listing 5, the SkePU variant paral-
lelizes strictly on the elements in the output vector. The CUDA kernel allocates one 
block of threads for each output element, and can share the row calculations among 
the threads in the block, which in the SkePU case has to be managed by one thread. 
The reason for the discrepancy is that SkePU user functions are completely inde-
pendent with no observable side effects, and as such the user functions executed 
within the same GPU block can neither communicate, synchronize, or even access 
the block size.

Fig. 1   Efficiency per platform on double-precision STREAM workloads
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Listing 5: Sparse matrix-vector multiplication in CUDA.
1 __global__ void gpu_kernel_three(int colidx[],

int rowstr[],
double a[],
double p[],

5 double q[]) {
double* share_data = (double *) extern_share_data;
int j = (int) (( blockIdx.x*blockDim.x+threadIdx.x) / blockDim.x);
int local_id = threadIdx.x;
int begin = rowstr[j];

10 int end = rowstr[j+1];
double sum = 0.0;
for (int k=begin+local_id; k<end; k+= blockDim.x) {

sum = sum + a[k]*p[colidx[k]];
}

15 share_data[local_id] = sum;

__syncthreads ();
for (int i=blockDim.x/2; i>0; i>>=1) {

if (local_id <i) { share_data[local_id ]+= share_data[local_id+i]; }
20 __syncthreads ();

}
if (local_id ==0){q[j]= share_data [0];}

}

25 gpu_kernel_three <<<blocks_per_grid_on_kernel_three ,
threads_per_block_on_kernel_three ,
size_shared_data_on_kernel_three >>>(

colidx_device , rowstr_device ,
a_device , p_device , q_device );

With the exception of this parallelization scheme, all of the CUDA kernels are 
straightforward to adapt into SkePU skeletons while simplifying and reducing code 
size.

5.4 � Performance Evaluation

The benchmark performance results for STREAM are presented in Figs. 1 and 2, 
visualizing the relative efficiency of the SkePU programs as compared to refer-
ence STREAM results. Note that the single-precision results contain two additional 
platforms: the laptop GPU is evaluated with and without explicit memory flushes 
between test runs.

Similarly, the performance results for NPB, EP in Fig. 3 and CG in Fig. 4, are pre-
sented as collected on the 12 platforms which can run double-precision calculations.

5.5 � Performance Portability

We use efficiency cascade plots in Fig.  5 and Fig.  6  as proposed in [31] to visu-
alize performance portability of the workloads when considering successively 
smaller platform sets. The rightmost data point in each line shows the PP metric 
for the entire set of platforms, and in each successive data point to the left, the least 
efficient platform is removed from the set and the PP metric is re-evaluated on the 
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new subset. We use this method of visualization as the singular PP number is heav-
ily influenced by the least efficient platform in the set. By computing the PP met-
ric for the most interesting subsets of platforms, more detailed information can be 
conveyed.

Fig. 2   Efficiency per platform on single-precision STREAM workloads

Fig. 3   Efficiency per platform and problem size class on NPB-EP

Fig. 4   Efficiency per platform and problem size class on NPB-CG
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Note that the order of platform removals may be different across workloads, so 
the different lines in each graph are not directly comparable.

This approach of visualization makes the different trade-offs between single- and 
double-precision workloads apparent. We see that the single-precision PP metrics 
are overall significantly lower, but the programs which depend on double-precision 
suffer from incompatibility on two platforms (and as such the PP metric would drop 
to zero on the rightmost platform subsets here).

The efficiency cascade plots clearly show that the SkePU implementation of the 
copy workload exhibits worse performance portability than the other three work-
loads, which cluster tightly together in the plot. This fact is not as easy to discern in 
the traditional bar graphs.

5.6 � Code Complexity Evaluation

In order to provide context into the single-source nature of SkePU code as compared 
to the separate code-bases of the reference implementations, we also conducted an 
evaluation of code complexity. Estimating programming effort for high-level pro-
gramming models is an open research topic (see e.g., [4]), and for this paper, we 
limit the evaluation to established metrics not specific to parallel computing. We 
consider lines-of-code (NLOC), token count, and cyclomatic complexity. For this 
purpose, we use the Lizard tool.7

For the STREAM benchmark, we evaluate code complexity metrics on the Triad 
kernel (non-SkePU versions are taken from Deakin et al. [16]) and compare with the 

Fig. 5   Efficiency cascade plots for STREAM kernels by kernel and precision

7  https://​pypi.​org/​proje​ct/​lizard/.

https://pypi.org/project/lizard/
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single-source SkePU code in Listing 6, see Table 3. The remaining STREAM ker-
nels are highly similar in their computational structure, and therefore omitted from 
the evaluation.

Listing 6: SkePUized Triad kernel in the style of Deakin et al. [16].
1 template <class T>

void SkePUStream <T>:: triad ()
{

const T scalar = 3.0;
5

skepu::Vector <T> v_a(a), v_b(b), v_c(c);
auto skel_triad = skepu ::Map <2 >([](T b, T c, T s)
{

return b + s * c;
10 });

skel_triad(v_a , v_b , v_c , scalar );
}

Fig. 6   Efficiency cascade plots for NPB kernels by problem size class

Table 3   Code complexity for STREAM benchmark triad 

Code metric Seq. C++ OpenMP CUDA OpenCL SkePU 
(single-
source)

NLOC 7 9 13 21 11
Token count 44 51 93 109 84
Cyclom. compl. 2 2 2 2 1
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For the NPB benchmarks, we run the reference benchmark implementations 
of Araujo et  al. [6] directly through the evaluation tool. The evaluation therefore 
includes benchmark overhead code, which is equal across data points. Note, in par-
ticular, that the GPU-enabled variants (CUDA and SkePU) include per-kernel profil-
ing code, which makes them slightly longer. The results are summarized in Table 4.

6 � Discussion

From the STREAM results, we observe that the SkePU programs with single-preci-
sion workloads are less efficient than the corresponding double-precision ones. The 
STREAM reference implementation is a set of microbenchmarks in a tightly con-
trolled environment: program parameters are all compile-time configuration options, 
including array size. The arrays are allocated on the program stack, so all program 
addresses are statically known, allowing for far-reaching optimization opportuni-
ties by the compiler. In comparison, SkePU skeleton code is generated behind layers 
of abstractions. SkePU smart data-containers operate on pointers that are normally 
dynamic allocations of arbitrary size, and the backend selection is entirely a run-
time decision. This means that even though SkePU is embedded into the STREAM 
reference codebase with only minor alterations, the static information is unlikely to 
propagate all the way down to the skeleton internals unless the backend compiler is 
extremely aggressive with global static analysis. Examples of optimization stages 
that can be affected include inlining of SkePU user function calls, loop unrolling, 
loop fusion, auto-vectorization, and pointer de-aliasing.

The STREAM workloads are all memory-bound, so the hyper-threaded platforms 
do not scale linearly in throughput from the baseline platforms with thread counts 
matching the number of physical cores. However, the laptop still benefits quite a bit 
from hyper-threading, while Excess is largely flat.

The application efficiency numbers presented in the paper could be made more 
accurate if per-system-tuned reference implementations were used. Performance 
efficiency properties differ a lot between the evaluated systems, even for the same 
types of backend targets, and several times the efficiency is recorded as over 100%. 
This indicates that the task of finding optimal reference implementations requires 

Table 4   Code complexity for NPB-EP and NPB-CG benchmarks

Benchm. Code metric Seq. C++ OpenMP CUDA SkePU 
(single-
source)

NLOC 163 178 298 233
NPB-EP Token count 1273 1403 2111 1703

Cyclom. compl. 30 36 38 30
NLOC 547 561 1247 703

NPB-CG Token count 3517 3428 6522 4769
Cyclom. compl. 109 106 216 136
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implementations with built-in platform-tuning capabilities. In particular, the EP ker-
nel frequently results in cases where the SkePU version outperforms the reference 
code. For OpenMP, it is likely that the synchronization approach by SkePU contrib-
utes to this, as discussed in Sect. 5.2.

For the CG kernel, the efficiency results on GPU platforms are very low. For 
smaller problem sizes, the skeleton invocation overhead is contributing to these inef-
ficiencies, but more importantly SkePU programs induce initialization delays due to 
environment set-up and lazy memory allocations on device, and so on. These delays 
may still occur in hand-written implementations, but the abstractions in SkePU 
make it impossible to assure that initialization delays happen outside of the critical 
timing regions, without considerable code instrumentation. For larger problem sizes, 
such overhead is a smaller quota of the total execution time. For large CG sizes, 
instead, the issue discussed in Sect. 5.3 becomes important. The matrix-vector mul-
tiplication phase becomes dominating at large problem sizes, and the parallelization 
inefficiency in the SkePU version becomes a performance bottleneck.

From the code complexity evaluation, we see that SkePU variants of the bench-
mark kernels are generally somewhat longer and more complex than serial reference 
code, but considerably shorter than GPU-parallelized implementations. Note also 
that the single-source SkePU code can run on all tested platforms without further 
modification.

7 � Conclusions

Of the benchmarks evaluated in this work, we have shown that STREAM bench-
marks, specifically in their original double-precision form, and the EP kernel in 
NPB result in high efficiency and performance portability when implemented using 
the SkePU skeletons and smart data-containers. For the CG benchmark, the results 
are not as consistent and SkePU’s efficiency is highly platform-dependent. We 
have identified specific performance bottlenecks in SkePU, in particular for GPU 
backends.

The results demonstrate that SkePU-parallelized programs can achieve good 
application efficiency and even outperform hand-written parallel code in some 
cases, even though SkePU code is single-source and often shorter than any of the 
individual platform-specific programming models. Note also that this work does 
not even take the auto-tuning functionality of SkePU [14] into account, which 
does provide an advantage for SkePU compared to distinct and unrelated parallel 
implementations.

8 � Future Work

In the long term, we aim for complete SkePU coverage of the NPB kernels. In this 
work, we have worked entirely within the existing pattern and feature set of SkePU, 
but some of the kernels do not fit well the data-parallel patterns that are available, 
and may be suitable case studies for extensions to the framework. One such possible 
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extension is a multi-backend sorting skeleton. Such a construct would be useful for a 
convenient and efficient implementation of the IS kernel in NPB.

In addition to new benchmarks, the evaluation can be extended by considering 
further platforms, in particular multi-node cluster platforms and multi-GPU as well 
as CPU+GPU hybrid computing.

A further direction for future work is to extend our performance portability anal-
ysis of SkePU by including other single-source high-level parallel programming 
models, such as directive based models like OpenACC, SPar, as well as other single-
source skeleton programming frameworks.
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