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Abstract
Several real-world parallel applications are becomingmore dynamic and long-running,
demanding online (at run-time) adaptations. Stream processing is a representative
scenario that computes data items arriving in real-time and where parallel execu-
tions are necessary. However, it is challenging for humans to monitor and manually
self-optimize complex and long-running parallel executions continuously. Moreover,
although high-level and structured parallel programming aims to facilitate parallelism,
several issues still need to be addressed for improving the existing abstractions. In this
paper, we extend self-adaptiveness for supporting autonomous and online changes of
the parallel pattern compositions. Online self-adaptation is achieved with an online
profiler that characterizes the applications, which is combinedwith a new self-adaptive
strategy and a model for smooth transitions on reconfigurations. The solution provides
a new abstraction layer that enables application programmers to define non-functional
requirements instead of hand-tuning complex configurations. Hence, we contribute
with additional abstractions and flexible self-adaptation for responsiveness at run-
time. The proposed solution is evaluated with applications having different processing
characteristics, workloads, and configurations. The results show that it is possible to
provide additional abstractions, flexibility, and responsiveness while achieving per-
formance comparable to the best static configuration executions.
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1 Introduction

Large amounts of data are being generated due to the proliferation of devices (e.g.,
sensors, cameras) used to sense the external world. In this scenario, parallel computing
is relevant for processing fast enough the high amount of data being generated [13,18].
Moreover, the continuous data arrival requires stream processing applications to run
for long or infinite periods, where such long executions are often subject to fluctua-
tions in the environment (e.g., resource availability) and at the application level (input
rate, workload) [24]. Hence, self-adapting entities (e.g., degree of parallelism, cores,
and their frequencies) during the execution is important for achieving responsiveness
[4,5,15,23].

From a programming perspective, structured parallel programming facilitates the
task of parallelizing applications. Programmers can instantiate high-level pattern con-
structors and combine them in compositions [1,3]. In this scenario, online changing
the pattern composition configurations1 has been proposed for abstracting complex-
ities from application programmers and increasing the adaptation space to provide
flexibility [20]. This can reduce the burden on application programmers in such a way
that configurations are adapted transparently [19]. However, the configuration space
is usually large, which is challenging to find optimal configurations at run-time.

Moreover, more generic strategies for self-adaptive decision-making are needed,
and dynamic changes can have detrimental effects on the Quality of Services (QoS).
Hence, in previous work [24], we contributed with mechanisms for online self-
adaptiveness of parallel patterns. The solutionwas integratedwith aC++ programming
framework (FastFlow [2]) and experimentally evaluated. In this extended version, we
provide the following contributions:

– An autonomous self-adaptive strategy that avoids suboptimal configurations,
which encompasses a lightweight online profiler of the application stages and an
optimized decision-making for accuracy. The new strategy also supports latency
as a new Service Level Objective (SLO). SLO refers to a metric of interest and its
proper value to be enforced [10,12].

– A model for smooth transitions between the parallel pattern configurations. A
smooth transition is important because changing the configurations can have a
critical impact on the QoS of applications (see Sect. 3.3).

– Extended validation of the proposed solution, including new scenarios and appli-
cations. Noteworthy, we provide a custom version of the PARSEC’s Ferret
application to regulate the InputRate (IR) and support user-definedSLOs (through-
put, latency).

This paper is organized as follows. Section 2 shows the motivational context of this
work. Then, Sect. 3 presents the proposed solution andSect. 4 provides an experimental

1 The term composition refers to the application topology (a.k.a. stream graph, graph topology). Here, the
terms composition and configuration are used interchangeably.
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evaluation. Moreover, Sect. 5 discusses related approaches and Sect. 6 concludes this
paper.

2 Problem statement andmotivation

The use of high-level parallel programming methodologies is a potential alternative
to provide coding abstractions for application programmers [3], which can reduce the
application programmers’ burden. High-level parallel programming aims at reducing
the programming efforts while ensuring proper performance. In this vein, pattern-
based parallel programming provides composable recurrent structures instantiated
by programmers, combining the patterns creating different configurations. Stream
processing applications running in multicore machines can use high-level parallel
programming frameworks, where Intel Threading Building Blocks (TBB) [25] is an
example from the industry and FastFlow [2], GrPPI [7], and SPar [8] are academic
frameworks.

In TBB, the application programmers can create a parallel pipeline by declaring
each function as a filter and defining if a stage is parallel or sequential. In FastFlow,
the user can also create pipelines and replicate (run in parallel) specific stages using
the Farm pattern.

TBB creates tasks that are scheduled to a pool of threads in a runtime system’s
perspective, where dynamic scheduling controls thread oversubscription by avoiding
context switching and time-sliced execution. However, TBB can incur scheduling
overheads with fine-grained tasks and I/O blocking operations. FastFlow, on the other
hand, avoids these issues with a runtime where nodes are fixedly mapped onto threads,
and the runtime can statically merge the nodes without changing the user functions.
Nevertheless, FastFlowhas a rigid executionmodel thatmay not suit streamprocessing
with more irregular and dynamic applications. This model may increase the demand
for resources without guaranteeing performance gains. Hence, we argue that there is
a need to support adaptation in existing programming frameworks.

In previous work [24], we evinced that streaming applications computing data in
real-time require the programmers to create a configuration of sequential or replicated
stages. However, maintaining such a configuration for the entire execution can be
limited due to the dynamic nature of applications. For instance, it was demonstrated
with a video stream processing application executing under fluctuations in the IR that
the best configuration combining replicated, sequential, and merged stages varies with
different scenarios that occur at run-time and from one programming framework to
another.

The complexity increases robust applications that have several sequential or repli-
cated stages. For instance, Fig. 1 shows the structure of the Ferret [17] application
from the PARSEC suite, where the four middle stages are thread pools that can run
in parallel. However, the profitability of running them in parallel can vary from how
balanced the stages are and according to the expected performance and QoS. Ferret
has a robust structuremodeledwith different shapes by composing and nesting parallel
patterns [6]. Figure 2 provides performance results with different Ferret’s configura-
tions, where the setup is described in Sects. 4.1 and 4.2.2. This new streaming version
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Fig. 1 PARSEC’s Ferret pipeline structure. Extracted from [6]

(a) (b)

Fig. 2 Ferret stages configurations. Latency is on logarithmic scale

of Ferret computes data at a given IR and provides stream processing performance
metrics like throughput and latency. In Fig. 2a the IR is 10 items per second, and 10
is a suitable throughput (items/s) for sustaining the IR. Latency is another relevant
metric that corresponds to the time taken to compute a given item, where low latency
is a constraint for many applications [4].

Here we show the performance from 15 configurations described in Sect. 4.2.2.
There are no results from configurations 13, 14, and 15 with TBB because merging
functions would require refactoring the business logic code. Configuration 12 cor-
responds to the native implementation using Pthreads where all stages are parallel2,
demanding more resources and not performing so well in terms of latency. In fact, the
best performance is when the last stage is parallel. Although declaring such a con-
figuration is trivial, it is not intuitive for application programmers and significantly
impacts QoS.

Notably, the best configuration to be used at run-time can vary due to stream pro-
cessing fluctuations [15,24], e.g., the IR can change due to network fluctuations or
variations in the number of devices producing data. Consequently, flexible adaptations
are expected to be applied at run-time. But, several aspects correlate nonlinearly, where
we argue that the programmers should not be expected to online hand-tune the con-
figurations. In Sect. 3 we present the proposed solution tackling the aforementioned
challenges and providing abstractions with dynamic self-adaptation at run-time.

2 The Pthreads version is not structured pattern-based, such results are not shown here for the sake of visual
clarity. The performance of FastFlow and TBB is comparable with the native implementation. The reader
interested in such a comparison can refer to reference [6].

123



Online and transparent self-adaptation…

3 Proposed solution

Here we describe the solution that we envision for providing additional abstractions
to application programmers and to enable flexible online self-adaptation at run-time.
In our perspective, a feasible solution is to support users/programmers to set only
high-level goals like throughput or latency SLOs, which can be offered as parameters
or attributes [10].

3.1 General design goals and requirements

An effective approach for dynamic parallel pattern compositions is expected to meet
the following goals:

– Relieve application programmers from the burden to find the best configuration
of parallel patterns. The programmers should set SLOs instead of hand-tuning
configurations. This can be achieved with autonomous strategies that can provide
a suitable QoS (achieves the SLO consuming fewer resources).

– Enable dynamic and flexible reconfigurations at run-time to avoid the need to
recompile and rerun long-running stream processing applications.

– Respond at run-time to changing conditions, where dynamic reconfigurations can
enable self-adaptiveness.

There are also important requirements for ensuring QoS and efficiency:

– No application downtime. The adaptation should not interrupt the data processing
and output provisioning.

– Smooth transition on reconfigurations. Change from one composition to another
can be necessary. However, this is expected to be stable without intrusiveness and
overheads like latency glitches and throughput spikes [20].

– A suitable solution is expected to be lightweight and execute without demanding
a significant extra amount of resources.

– Efficiency. An optimal configuration is one that meets user/programmer goals and
that requires fewer computing resources. Consuming fewer resources increases the
system efficiency, reduces energy consumption, and costs less (i.e., pay-per-use
environments).

3.2 Decision-making strategy

A decision-making strategy is the core of a self-adaptive strategy responsible for
deciding the best actions to be enforced. However, assumptions are necessary for
designing a flexible and generalizable decision-making strategy. The rationale for such
assumptions is to abstract technicalities that have to be implemented for each specific
scenario. In Sect. 3.4 we show an example of implementation in a C++ programming
framework. The main necessary assumptions are:

– Runtime system’s mechanisms are available supporting dynamic changes to con-
figurations from one configuration to another.
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– The strategy receives alternative configurations to be considered at run-time. Such
configurations could be defined by a user or by an expert system.

– The strategy receives information for making decisions, which can be provided by
external monitoring entities.

– The data to be processed comes at a given IR and the strategy is alerted in case the
IR changes.

Considering that self-adaptation is expected to encompass relevant properties,
SASO (stability, accuracy, settling time, and overshoot) properties [12] are relevant
ones to be considered when designing the proposed solution. Stability refers to the
capacity of producing the same output under a given condition. Accuracy is related to
achieving the control goal with sufficiently good decision-making, and Short settling
times are desired for reaching fast enough an optimal state. Moreover, overshooting
should be avoided by using only the amount of resources needed. In this vein, the
designed decision-making for the pattern composition configurations is described in a
manner that abstracts lower implementation details. However, the description provided
is expected to be sufficient for replicating the proposed solution. The decision-making
is built out of the following steps:

1. Online profiling stepLightweight instrumentation gathers execution statistics from
each stage, which helps in characterizing how intensive and balanced they are. The
profiling stepmeasures the actual processing capacity of each stage and ranks them
by less to more intensive. Moreover, a given stage is tagged if its average service
time (time spent computing the tasks) is at least 20% higher than all other service
time of stages. This step is executed at the beginning of the execution with the
first configuration provided. It can be repeated at any time, such as when a given
application enters a new processing phase. For increasing the profiling accuracy,
it is recommended that the first configuration executes all stages sequentially.

2. Evaluation Assesses if the defined SLO is satisfied. If positive, goes to step 6
with the current configuration. If not, goes to step 3. The decision-making strategy
infers that two values are significantly different when they contrast higher than
20% (a threshold ), which is a configurable parameter that the used value of 20%
was ascertained in previous work [23].

3. Shortlisting configurations Previous work [24] applied experimental runs with all
configurations. In practice, this can affect QoS because bad configurations could be
used. Considering that the new proposed strategy aims to reduce the settling time
without limiting the configuration space, the profiling step’s information is used
to shortlist the potentially optimal configurations. If more than one configuration
can be optimal, the strategy goes to step 4, or if only one is suitable, sets this one
as active and go to step 6. Also, a configuration with the most replicated stages
is set if the SLO is not being achieved and there are no bottlenecks or optimal
configurations.

4. Trial phase Activates each suitable configuration candidate for a given time inter-
val and gathers execution statistics. The rationale for executing each shortlisted
configuration is to increase the accuracy by finding the configurations that perform
better for the specific application, workloads, and environments. Considering that
the time interval in which each configuration is tested is a relevant parameter that
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expert users can customize, 5 s is the default value ascertained from empirical
results. The previous implementation from [24] tested all configurations for only
1 second because it did not profile and shortlisted the best ones. In practice, we
have seen that one second as time interval is too low and subject to unpredictable
variations during the training step. In the current optimized version, 5 seconds is
the proper time interval because a suboptimal configuration will not be tested as
these do not pass the shortlisting step.

5. Selects the best configuration This phase evaluates which configurations from step
5 achieved the desired SLO. If no configuration achieved the goal, enforces the
one with the best value. On the other hand, if more than one is optimal, select
the one with light stages merged and fewer replicated stages. This decision is to
enforce the most optimal configuration that maintains QoS and at the same time
consumes fewer resources for avoiding overshooting.

6. Steady state Stabilizes in a configuration and periodically evaluates if the SLO
is being satisfied. In practice, every 10s, the current status is verified. This com-
parison uses the same threshold from step 2 to avoid the instability caused by
fluctuations. Steps 3 to 5 are repeated if the data gathered indicates changes or
if the SLO is violated. In this case, it is searched for additional bottlenecks and
potentially optimal configurations.

It is important to note that the decision-making strategy is not employing an exhaus-
tive search. In fact, up to 20 alternative configurations are supported. However, only the
suitable ones are to be activated and tested at run-time. Moreover, Sect. 3.3 addresses
the relevant aspect of how to achieve safety and stability when transitioning from one
configuration to another.

3.3 Transitioning between configurations

Reconfigurations at run-time should be smooth such that they do not compromise the
QoS. One possible solution is to employ a draining phase that flushes all the tasks
from the configuration to be stopped before activating the new one. From a theoretical
standpoint, a flush is relevant for avoiding that two configurations run simultaneously,
which would cause unpredictable performance variability or losses (throughput spikes
and latency glitches [20]).

One may think that the draining phase is a trivial problem solved by simply waiting
for a random time. However, we have seen that choosing for how long to wait for the
draining to complete is a non-trivial value in practice. On the one hand, not waiting for
enough causes performance and resource fluctuation, influencing the training step and
QoS. On the other hand, waiting for too long on reconfigurations can also hurt QoS and
the designed goal of avoiding application downtime. Consequently, we tackled this
challenge by developing an autonomous model that automatically estimates how long
towait. Such amodel ismainly expected tofind a balance value being accurate, generic,
and lightweight. The draining time estimation considers the following samples/entities
subject to variance on parallel applications:

Number of items buffered This aspect refers to buffer sizes used in the runtime
system and the number of computing elements (e.g., nodes) that use buffers for com-
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municating in a given composition. For a generalization purpose, we assume that the
runtime system provides mechanisms for collecting this value or provides parameters
for limiting the buffer’s sizes.

Computations’ service timeConsidering that applications have significant contrasts
in terms of grain and tasks computational intensiveness, the service time is expected
to be a broad metric and flexible for different applications. A monitor can gather data
and feed the model with the information of the average service time of the tasks being
processed at a given moment, which corresponds to a given active configuration.

Processing capacity Refers to the computation capacity of the active configuration
to process the tasks buffered and finalize the draining phase. We have discussed in
Sect. 2 that each configuration and programming framework has specific processing
capacities in terms of the number of nodes and the mapping to threads. Consequently,
only considering the service time and the number of buffered tasks would be subopti-
mal because the actual computational capacity of each configuration varies. Generally,
the processing capacity considers the number of computing elements that compute a
given application’s business logic code. Additional nodes/elements that do not process
business logic code necessary in the programming framework should not be included
in the processing capacity.

From the provided description, it is possible to note that the model is not simple
and must consider the variability of service time, runtime parameters, and processing
capacity. Moreover, the model must continuously measure and accurately estimate
the time to drain. Considering the potential overhead of the machinery to collect
and process data at run-time, in Sect. 4.3, we characterize the transitioning between
configurations using this model.

3.4 Implementation

C++ frameworks and libraries available were considered for implementing the pro-
posed solution. There are industry and academic solutions such as Intel TBB [25],
FastFlow [2], and SPar [10]. Considering the support for performing adaptations at
run-time, TBB has mechanisms only for dynamic task distribution and load balanc-
ing, where other mechanisms have to be implemented by hand. Considering that we
are interested in higher-level abstractions, FastFlow is more flexible by supporting
dynamic adaptation on several aspects like the parallelism degree and communication
queues’ concurrency modes [5,22].

FastFlow provides building blocks components to increase the flexibility in the
parallelism exploitation. While parallel patterns are highly specialized structures that
usually provide less flexible implementations, the building blocks approach incor-
porated in FastFlow [1,22] provides reusable components that can be combined and
customized by programmers. Considering that building blocks are at a lower level,
a drawback may consist of fewer parallelism abstractions available. It is believed
that higher abstractions and flexibility can be provided by enabling building blocks
compositions to be self-adapted at run-time, which can be achieved with practical
implementations using FastFlow’s mechanisms.
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Fig. 3 Implementation in FastFlow

Abstracting specific implementation technicalities, the proposed strategy was
implemented in FastFlow as a ready-to-use C++ library, which works by default in
FastFlow’s blocking mode. Figure 3 provides a representation where the Manager is
the entity that implements the self-adaptive strategy, which is embedded in the data
source and uses the runtime system’smechanisms for autonomously applying changes.
The Monitor is implemented as another entity within the Sink stage that gathers data
and feds the Manager . Figure 3 represents a scenario where a pipeline with 3 stages
is active and any other configuration that could declared would remain inactive. More-
over, the lower part of Fig. 3 demonstrates the achievable flexibility because several
other configurations can be created and activated at run-time if necessary.

In the current implementation, the applications’ business logic code is reused by
alternative configurations. For using the proposed solution, the application program-
mers have to include self-adaptive strategy headers and add two extra code lines for
calling the Manager and Monitor . Moreover, the higher accuracy of the profiling
step demands on each application stage that a timer is initialized and that the Monitor
is called.

The programmer can declare custom configurations using the FastFlow interface.
For instance, the three staged pipeline used in Fig. 3 can be declared and added with
two C++ code lines, and other compositions can be declared and included with similar
coding productivity. The characteristics of the configurations (e.g., buffer sizes, stages
are sequential, parallel, or merged) also have to be defined at a higher parametric
description. The application programmer can be assisted with tools for designing
additional configurations and coding, such as RPL [14] and SPar’s compiler [8].

4 Evaluation

4.1 Experimental setup

We used a multicore machine equipped with two Intel Xeon E5-2620 processors (a
total of 12 cores-24 threads), 32 GB of memory for running experiments, Ubuntu
Server 16.04 as operating system, and G++ compiler (7.5.0) with O3 compilation
flag. The FastFlow runtime system’s buffer sizes were set to 1.

The strategy is characterized in a scenario simulating IR changes. The performance
is evaluated with static configuration executions using the same configurations as a
baseline. We call static configuration the executions where a given configuration is
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compiled and maintained during the entire execution. The execution’s correctness
was checked by hashing the outputs. In Sect. 4.2 we describe the applications and
configurations tested. Then, in Sect. 4.3 the decision-making is characterized with
the different SLOs supported and application characteristics, Sect. 4.4 evaluates the
performance of self-adaptive executions compared to baseline static executions, and
Sect. 4.5 provides an overview of the results.

4.2 Applications and configurations

The evaluation of the proposed solution covers different applications and configura-
tions. Considering that each application has a specific number of stages, workload
pattern, and balance between stages, for each application we created a scenario of
relevant configurations to be available for the self-adaptive strategy to use (or not) at
run-time. In this evaluation, configurations using parallel stages use the default value
of 2 replicas (parallelism degree) per stage.

4.2.1 Synthetic application

“Synthetic” is an application where 10,000 tasks with a total service time of 24 mil-
liseconds (ms) are computed. This application has three functions where different
configurations can be composed with a sequential or parallel stage. Configuration 1
has the three sequential stages representing scenarios where the performance demand
is not high, and the stages are balanced. Configuration 2 has the first stage computing
in parallel and stages 2 and 3 are sequential. Such a configuration can be suitable
when the stages are not balanced, and the parallel stage is the bottleneck. Configura-
tion 3 has the second stage computing in parallel and the stages 1 and 3 sequential
and Configuration 4 has the third stage computing in parallel and the stages 1 and 2
sequential.

InConfiguration 5 stages 1 and 2 execute in parallel and the third stage is sequential,
such a configuration is relevant when the performance demand is higher and the
sequential stage is lighter than the others. Configuration 6 has stages 2 and 3 execute
in parallel and the first stage is sequential and in Configuration 7 all stages execute
in parallel, which can be relevant when the performance demand is higher and the
stages are balanced. It is important to note that Configuration 7 tends to consume
more resources.

The configurations that are suitable vary from application characteristics and the
performance demand. In this synthetic application, many other configurations could
have been declared and made available for the self-adaptive strategy. However, these 7
are representative enough for evaluating the accuracy and performance of the proposed
solution. Additionally, this synthetic application allows flexible customizations of load
balancing between the stages. Two application versions were created for evaluating
the self-adaptive strategy: one where the stages are balanced and the other that has
unbalanced stages. In the balanced version, if we attribute a total computing weight
of 6 each stage would have a weight of 2, meaning they are perfectly balanced. With
the balanced stages, the optimal configurations are 1 and 7. On the other hand, the
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unbalanced version has also a total stages’ weight of 6. However, the first stage has a
weight of 1, the second weight of 3, and the third stage has a weight of 2. In this case,
the major bottleneck is the second stage and if the performance demand is high the
third stage can become the second bottleneck.

4.2.2 Ferret

Ferret is a stream-parallel benchmark that searches for similarities on data items like
audio, images, and video [6,17]. For the evaluation, we modified the original ferret
version to a streaming version. This streaming version computes data items at a fixed
speed instead of reading the data as fast as possible from the disks, simulating a
scenario where the data comes in real-time from the network at a given speed to be
computed. The streaming version also covers the instrumentation to collect stream
processing metrics like throughput and latency, instead of the execution time.We used
the PARSEC native as the input set, which is a representative workload.

Ferret can be modeled with several configurations. In this evaluation, we created 15
alternative configurations for challenging the self-adaptive strategy tofind the best ones
at run-time considering different scenarios. The four parallel stages from Fig. 1 are
represented as user functions a,b,c,d.Moreover, the configurations from1 to 12 explore
possible combinations of sequential (S) and parallel (P) stages, whereas configurations
13, 14 and 15 cover the merging of sequential stages. Merging can be relevant when
the stages are unbalanced and the lighter ones can be merged. Importantly, the self-
adaptive strategy has a profiling step for characterizing the stages and their workload.

4.2.3 Person recognition

The Person Recognition is a stream processing application [9] where we used a cus-
tomized version that has three functions to detect and verify people in video streams.
It receives a video input and applies a denoising step for improving the quality. Then,
it detects and marks the faces with a red circle. These faces are compared with the
training set of faces. The experiments were run using as input a 30s video with a
resolution of 260 pixels.

In the Person Recognition, we used 5 alternative configurations from reference
[24] that cover sequential, parallel, and merged stages. In Configuration 1 all appli-
cation functions are merged in a sequential stage (1S.). Configuration 2 separates the
functions into two stages (Pipe-2S.), whereas Configuration 3 runs with one more
stage(Pipe-3S.). Considering that some applications or performance goals are not
suitable for sequential stages, Configuration 4 shows an example of a pipeline with
a parallel stage (P.S.1) running all functions, which in FastFlow is a Farm parallel
pattern. Considering that functions can be decomposed into multiple parallel stages,
Configuration 5 provides a variation of Configuration 4 where two parallel stages
(P.S.2) are employed, which can be useful for applications that are not embarrassingly
parallel.
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4.3 Self-adaptive strategy characterization

This section characterizes the decision-making process of the self-adaptive strategy.
The first results to characterize the solution are from the synthetic application. The
proposed solution is compared to the previous one called PDP21 [24]. Figure 4a shows
the results of balanced application stageswhere the definedSLO is to have a throughput
(items/s) outcome equal to the IR, where there are two changes in the IR representing
fluctuations that can occur at run-time in stream processing.

The PDP21 strategy started trying all configurations. Considering that the SLO
was being achieved, the new strategy avoided the unnecessary training in step 2 of the
decision strategy (see Sect. 3.2). By Reacting to the IR change around the second 30,
the new strategy accurately went on one step to configuration 7 that executes all stages
in parallel, inferred by the profiling step that detected balanced stages. By contrast,
the PDP21 strategy tested all configurations again, resulting in lower throughput and
higher latency for several seconds due to testing suboptimal configurations. Then, after
the second 50, the IR dropped, and the executions went back to configuration 1 that
sustained the SLO without demanding additional resources.

Figure 4b shows a distinct outcome in a scenario with unbalanced stages. The exe-
cution starts with a throughput lower than the IR. Therefore, the new strategy searches
for better configurations, which results in shortlisting and entering the trial phases with
configurations 3, 5, 6, and 7. The rationale behind such as decision is that the profil-
ing correctly detected the second stage as the bottleneck (Sect. 4.2.1) and shortlisted
the configurations where the second stage is parallel as an attempt to overcome the

(a) (b)

Fig. 4 Characterization with the synthetic application
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(a) (b)

Fig. 5 Throughput (items/s) Characterization

bottleneck. Even during the trial phase, it is noticeable that the performance improved
in terms of throughput and latency. Then, the strategy stabilized with configuration 6
that provides QoS and demands fewer threads than configuration 7.

The PDP21 strategy had to apply all configurations to find the best one. By contrast,
the new strategy inferred the best configurationwith fewer steps, which is very relevant
for real-world applications [15]. The strategies used different time intervals for testing
each configuration, the new strategy uses the default value of five seconds, and PDP21
tests configurations for one second. Although the time interval can be customized for
specific application’s characteristics, five seconds is expected to be a suitable value
for a wide range of applications. Another relevant aspect evinced in Fig. 4 concerns
the transitioning model. Notably, the transitions between configurations are smooth
without throughput drops or latency glitches.

The new strategy is also characterized with more realistic applications, where we
only show results from the new strategy for the sake of visual clarity. Figure 5 provides
results with two applications. Figure 5a shows Ferret where is notable that the metrics
collected in real-time present fluctuations due to the application’s processing charac-
teristics. Importantly, the self-adaptive strategy’s profiling step detected theRank stage
as the bottleneck and shortlisted configurations where this stage executes in parallel.
Then, after the trial phases, it stabilized with configuration 13 that presented a suitable
performance, and that consumes fewer resources with the first stages merged.

The results from the Person Recognition application shown in Figure 5b emphasize
the accuracy of the decision-making,which chooses the best configuration according to
IR changes. In a scenario with SLO violations, configurations 4 and 5 were shortlisted
and tried to achieve higher performance. Hence, the strategy applied configuration 4.
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(a) (b)

Fig. 6 Latency characterization

Under a lower IR, the self-adaptive strategy returned to configuration 1 to increase
efficiency by demanding fewer resources.Although the throughputwas reduced during
some reconfigurations, the transitioning model showed accuracy because there was
no application downtime.

Figure 6 shows results from the self-adaptive strategy with latency SLO as a con-
straint. Figure 6a evinces Ferretwith an SLOof 200mswith fluctuations due to Ferret’s
characteristics. The strategy stabilizes with configuration 13, overcoming the bottle-
neck on stage Rank. Near 100s time, a significant application fluctuation increased the
latency. Hence, the strategy detected an SLO violation and searched for a better con-
figuration because some change could have occurred. The third pool stage (Vec) was
detected as an additional bottleneck, where the strategy shortlisted and tried configura-
tions 10, 12, and 13, where the two bottlenecks are executed in parallel. However, the
strategy returned to configuration 13 that remained the most suitable configuration.

Figure 6b evinces a latency constraint of 600ms, where a fluctuating IR varies
from 1.5 to 3 FPS. A reconfiguration may be needed when the IR changes because not
sustaining the IR increases the buffering and latency. This occurred after the second
50 when the IR increased. The active configuration did not sustain the IR, which
increased the number of items buffered and the latency. Hence, the strategy detected
the latency violation and self-adapted to configuration 4. After the second 300, there
is a fluctuation (also seen in Fig. 6b) that caused the throughput to decrease and the
latency to increase. This fluctuation was not long enough for a reconfiguration because
the latency SLO was being achieved when the self-adaptive entered the training step.
Notably, the transition between configurations occurs without application downtime,
which shows that the model’s estimation is accurate.
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4.4 Performance evaluation

In this section, we compare the final performance of the self-adaptive executions to
static ones using real-world applications. The results represent an average of 10 runs
and we also show the standard deviation, which is difficult to visualize in the figures
because it is very low.

Figure 7 shows results from Ferret, where the self-adaptive strategy was able to
effectively adapt and find the best configuration (13) for achieving a performance
competitive with the best static configurations. The best throughput in FastFlow, the
runtime system of the self-adaptive solution, was with configuration 12 where the self-
adaptive throughput was 6.3% lower. However, in the latency metric, the self-adaptive
was 39.7% better than static FastFlow with configuration 12.

Figure 8 provides results from Person Recognition, where a notable outcome is
that the self-adaptive executions have a good performance competitive with the best
static scenarios. This is due to the accuracy of the self-adaptive strategy, especially
the profiling, trial, and transitioning steps.

(a) (b)

Fig. 7 Performance comparison with Ferret. Latency on logarithmic scale

(a) (b)

Fig. 8 Performance comparison: Person Recognition Application
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4.5 Results summary

The evaluation provided here shows that our solution for online self-adapting the
parallel patterns:

– has effective mechanisms for reconfiguring and maintaining program’s executions
correctness;

– accurately characterizes the applications for finding bottleneck stages;
– can transparently react to unpredictable fluctuations (e.g., IR, workload) that occur
at run-time;

– locates in a few steps, the best configuration according to different SLOs (through-
put, latency) and that demands fewer resources.

– provides a transitioning model that is sufficiently accurate as no application down-
time neither latency glitches occurred due to reconfigurations (Sect. 4.3);

– has a negligible overhead of instrumentation by the fact of achieving a competitive
performance (Sect. 4.4).

5 Related work

Considering that modern software applications are executed in dynamic environments
and subject to variations at run-time, the literature has different types and levels of
adaptation for coping with real-world challenges [13]. For instance, strategies can
apply adaptations actions in the environment/resources and at the application soft-
ware level. When designing self-adaptiveness, control theory [21] is one of the most
accepted principles.

In parallel computing,many entities can be adapted at run-time [13], such as batches
size [19] for increasing throughput, the cores frequency for reducing energy consump-
tion [5] and dynamically changing the degree of parallelism [4,15,23]. However, these
optimizations are arguably not flexible enough for the adaptations that real-world
stream processing applications demand. Hence, changing the application structurewas
proposed as a more powerful and flexible entity to be dynamically adapted [20,24].

Concurrent recompilation has been proposed for reducing application downtime
[20]. However, the techniques needed for controlling downtime are intrusive, which
can affect the computing (ordering, throughput) and consume additional resources. In
practice, we have seen that this approach is hard to generalize to other applications
and programming frameworks.

There are approaches employing profiling for guiding the deployment of stream
applications [16]. By contrast, we focus on more critical requirements and scenarios
with online profiling, where reconfigurations are online without pausing the applica-
tions and restarting their executions from scratch.

The study of [11] proposed Grizzly, a solution that encompasses adaptive compila-
tion to change the executions at run-time,which is a reaction to changes in applications’
data characteristics. Grizzly’s decision-making performs only speculative optimiza-
tions where in practice the accuracy can vary.
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Contrasting with the related approaches, we provide a strategy that uses online pro-
filing and tries only the suitable candidate configurations. This design is an attempt
to be generic enough to a wide range of applications and frameworks. In this vein,
it is possible to avoid the demand to rerun the applications to apply changes and
not demanding intrusive techniques (e.g., input duplication, resource throttling, out-
put smoothing). Recompilation is unnecessary because multiple configurations are
created, and the best ones for SLO and efficiency are found and applied at run-time.

Considering that our solution increases the self-adaptation space, we can combine
it with other specific entities, e.g., self-adapting the degree of parallelism when high
throughput is desirable in configurations with parallel stages. To the best of our knowl-
edge, this is the first approach that provides an accurate decision-making strategy for
choosing at run-time the best parallel pattern configuration to be employed and that
online self-adapts when it is necessary.

6 Conclusions

In this paper, we presented a solution for supporting self-adaptive pattern composi-
tions for stream processing applications. A relevant implication emphasized is the
importance of having well-defined building blocks components as composable and
nestable objects. The building blocks enable the creation of complex, well-defined
structures (e.g., patterns) that we have shown to be possible to self-adapt at run-time.
Moreover, the results demonstrated that self-adaptiveness could provide new efficient
abstractions and autonomous responsiveness for applications that compute data in
real-time.

The components of our solution can be generalized to be used in other scenarios.
For instance, the online profiler has the potential to be used for other application
classes and workloads. Moreover, the self-adaptive strategy can be generic enough to
be customized with other programming frameworks and execution environments. We
expect that one could apply the strategy to provide self-adaptations and abstractions
for regular parallel applications.

This study is limited in some aspects. We designed the solution to be generic, but
mechanisms in the programming frameworks are necessary for achieving self-adaptive
pattern compositions. Currently, the FastFlow framework supports such mechanisms.
In future works, we intend to support additional applications and workloads in our
solution. Moreover, we intend to evaluate our solution for self-adapting other parallel
patterns. Considering that we focus on self-adaptation at the application level, a future
approach could tackle changes in environment resources by integrating other adaptive
entities.
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