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Abstract—Stream processing applications compute streams of
data and provide insightful results in a timely manner, where
parallel computing is necessary for accelerating the application
executions. Considering that these applications are becoming
increasingly dynamic and long-running, a potential solution is
to apply dynamic runtime changes. However, it is challenging
for humans to continuously monitor and manually self-optimize
the executions. In this paper, we propose self-adaptiveness of the
parallel patterns used, enabling flexible on-the-fly adaptations.
The proposed solution is evaluated with an existing programming
framework and running experiments with a synthetic and a real-
world application. The results show that the proposed solution
is able to dynamically self-adapt to the most suitable parallel
pattern configuration and achieve performance competitive with
the best static cases. The feasibility of the proposed solution
encourages future optimizations and other applicabilities.

I. INTRODUCTION

Large amounts of data are being generated due to the

proliferation of devices (e.g., sensors, cameras) able to sense

the external world. It is difficult to process fast enough the high

amount of data being generated. Hence, parallel computing

is a potential solution for accelerating stream processing

programs [1]. The continuous data arrival requires stream

processing applications to run for long or even infinite periods.

These long executions are subject to occasional fluctuations in

the environment (e.g., resource availability) and at the applica-

tion level (input rate, workload trend) [2], [3]. Responsiveness

at run-time is a potential way of coping with such a scenario.

A potential way of achieving responsiveness in stream

processing applications is by applying autonomic management

with self-adaptiveness [4]. This can reduce the burden on

application programmers by transparently self-optimizing the

executions and entities, such as the degree of parallelism [5],

[6], [7], the number of cores and clock frequencies [8], and

batch sizes [9], [10]. Moreover, supporting dynamic changes

to parallel application structure has been proposed as a more

powerful adaptation [11], [12] that can provide the flexibility

needed for stream processing applications.

From a programming perspective, supporting parallel execu-

tion is still complex, i.e. application programmers are in charge

of threads creation, synchronization, and load balancing. These

complexities can be alleviated with parallelism abstractions

that provide a simplified and high-level view of the features re-

lated to parallelism. Structured parallel programming provides

relevant methodologies for improving programmability [13],

where the concepts are incorporated into parallel programming

frameworks like Intel TBB [14] and FastFlow [15].

In structured parallel programming, application program-

mers can easily create different application structures by in-

stantiating high-level pattern constructors and combining them

in compositions. However, it can be complex to find a pattern

composition that provides Quality of Services (QoS) under

dynamic executions (e.g., stream processing). Supporting dy-

namic changes in the pattern compositions used is expected

to be a potential solution for abstracting complexities from

users/application programmers and at the same time providing

QoS or efficiency. For instance, alternative pattern composi-

tions could be automatically discovered and instantiated, then

the best one can be found and activated transparently.

Dynamically reshaping the pattern compositions can be

relevant for several domains. In this work, we focus on stream

processing applications where it tends to be more challenging.

First, effective and safe mechanisms for applying changes are

complex. Second, there is a need for more generic strategies

for self-adaptive decision making. Third, applying changes

can have detrimental effects on the QoS like application

downtime1. In this work, we intend to tackle these main

challenges. To the best of our knowledge, the novel scientific

contributions provided in this paper are:

• A strategy for providing self-adaptiveness and deciding

which parallel pattern composition to use. This strategy is

expected to be generic enough for different frameworks

and applications.

• Integration of the proposed strategy into a C++ program-

ming framework (FastFlow).

• Experimental evaluation of the proposed strategy and

runtime mechanisms with stateless applications.

This paper is organized as follows. Section II shows the

motivational context of this work as well as related approaches.

Then, Section III presents the proposed solution and Sec-

tion IV provides an experimental evaluation. Finally, Section V

highlights the conclusions and perspectives of this paper.

1A time period where a given application does not produce output
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II. CONTEXT

A. Motivation

Attempting to simplify the parallelism exploitation, parallel

patterns are usually composed and combined by users/pro-

grammers creating pattern compositions (a.k.a. stream graph,

graph topology). In Figure 1 we show pattern composition

configurations 2, where a number of functions (f1, f2, f3) are

decomposed in stages. A representative for stream processing

applications, there is a data source and at least a Sink stage

that will collect the results for producing an output. In the

middle part, different compositions can be used according to

specific application characteristics and user goals.

Fig. 1: Example of compositions for stream processing.

Configuration 1 represents a sequential stage (1S.) running

the three functions. Configuration 2 separates the functions

into two stages (Pipe-2S.), whereas Configuration 3 runs with

one more stage(Pipe-3S.). Considering that some applications

or performance goals are not suitable for sequential stages,

Configuration 4 shows an example of a pipeline with a

parallel stage (P.E.1) running all functions. Considering that

functions can be decomposed into multiple parallel stages,

Configuration 5 provides a variation of Configuration 4 where

2 parallel stages (P.E.2) are employed, which can be useful for

applications that are not embarrassingly parallel. For instance,

there can be an internal state that prevents the easy replication

of independent computations, i.e., first performing (in parallel)

a filtering step, then computing the filtered data.

A stage can be represented as a node in the programming

framework, where an important characteristic is the mapping

of nodes to threads. In some cases, the nodes are mapped

and executed by software threads. There is also the concept

of tasks that are logical entities executed as independent

operations, where software threads compute the tasks, i.e.,

a given computation in a stage can be processed as a task.

2Here the terms composition and configuration are used interchangeably.

Importantly, the mapping of nodes to threads and the pattern

compositions shape the application structure, which can have

a high impact on the application’s performance and resource

consumption. For instance, in a mapping of each node to a

thread (one to one), there is only one software thread in the

middle part of Configuration 1, such a configuration is suitable

only for applications with a low-performance demand.

Figure 2 shows the performance of a stream processing

application (setup described in Section IV) with the config-

urations from Figure 1 using two programming frameworks:

Intel TBB [14] and FastFlow [15]. The data arrives at a fixed

input rate (IR) of 2 frames per second (F/s), where 2 is a

suitable throughput for sustaining the IR. Latency is another

relevant metric that corresponds to the time taken to compute

a given item, low latency is a constraint for many applications.

Figure 2a evinces that in FastFlow Configuration 2 was

the best one by sustaining the input rate, providing lower

latency, and using fewer nodes that consume fewer resources.

In case other entities were being adapted this best pipeline

configuration with a given number of stages would not be

achievable. For instance, adapting the number of workers

(parallelism degree) would only be suitable for configurations

using parallel stages. In TBB only the configuration with one

parallel stage achieved a competitive latency. Under a higher

input rate, Figure 2b shows that only the configurations with

one parallel stage sustained the input rate with low latency.

The results from Figure 2 emphasize that different config-

urations can be necessary to be used at run-time because the

input rate can change due to network fluctuations or varia-

tions in the number of devices producing data [3]. Resource

availability can also fluctuate in shared/dynamic environments

like Clouds. Consequently, stream processing applications

are expected to support dynamic adaptations at run-time.

Considering that there are several aspects that correlate in a

nonlinear manner, the user/programmer should not be expected

to on-the-fly hand-tune the configurations. A solution is to

support users/programmers to set only high-level goals like

throughput or latency and rely on expert strategies that enforce

a suitable QoS by finding and enforcing the best parallel

pattern configuration at run-time.
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Fig. 2: Example on a Video Processing App.
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B. Related Work

Several entities can be optimized at run-time [1]. For

instance, although being complex to manage with applications’

metrics like throughput and latency, batching can be used as

an optimization in some application scenarios [9], [10].

The number of cores and their frequency can be changed

at run-time for reducing energy consumption [8]. Another

optimization consists of dynamic tuning the communication

queues’ concurrency modes [16]. More related to the paral-

lelism exploitation, there are works changing dynamically the

degree of parallelism of parallel stages [5], [6], [17], [17], [7].

However, the aforementioned optimizations are not as flexi-

ble as they target specific scenarios with difficulties for cover-

ing different pattern compositions that real-world applications

may need. Changing the pattern compositions at run-time has

been proposed as a more powerful adaptation strategy [12].

Dynamic compilation [11] was proposed as a solution for

changing at run-time to alternative configurations. However,

dynamic recompilation for stream processing applications is

still limited because it requires suspending and restarting

the application affecting the QoS (latency glitch, throughput

spikes, or downtime) [1].

In this vein, concurrent recompilation has been proposed for

reducing application downtime [12]. However, the techniques

needed for controlling downtime are intrusive, which can af-

fect the task’s processing (ordering, throughput) and consume

additional resources. Additionally, we have seen in practice

that this approach is hard to generalize to other applications

and programming frameworks.

Considering the QoS cost of reconfigurations, [2] pro-

posed network-aware optimizations specific for route-maps

in Storm’s topologies. However, the approach of Rapolu et
al. [2] optimizes lower-level aspects from the network instead

of pattern compositions.

Contrasting with the related approaches, we propose a

decision making strategy that is expected to be more generic

by avoiding the need for overwhelming technicalities (e.g.,

input duplication, resource throttling) for changing the pattern

compositions. Moreover, the implementation of the proposed

solution avoids the need for recompilation by creating multiple

pattern compositions and finding at run-time the best one to

satisfy the user-defined QoS.

III. PROPOSED SOLUTION

A. Design Goals and Requirements

An effective approach of dynamic compositions for stream

processing have different goals and requirements. 1) control

loop with periodic monitoring applying changes only when

necessary. 2) the adaptation should not cause application

downtime. 3) smooth transition between configurations. 4) a

suitable approach is lightweight without demanding a sig-

nificant extra amount of resources and optimizes resource

consumption while achieving the user goals.

B. Decision Making Strategy

Proposing a flexible and generalizable decision making

strategy demands several assumptions to abstract specific

implementation technicalities. Runtime mechanisms should be

available for applying changes in programming frameworks.

Moreover, the strategy receives a number of configurations to

be tested i.e., by a user or system. Finally, external entities fed

the strategy with information and alerts for making decisions.

The designed self-adaptive decision making for the pattern

compositions is described at a high-level abstracting the for-

malism. Such a description is expected to be sufficient for the

reproducibility of the proposed solution that has three steps:

1) Training step: it activates each configuration for a time

interval (e.g., 1 second) and collects execution statistics.

2) Optimal configuration: is the one that sustains QoS and

needs fewer nodes. If the user goal is not achievable,

enforces the configuration with the closest value.

3) Steady-state: returns to step one if the monitoring detects

changes or if the user-defined goal is violated.

The proposed strategy is expected to enable non-functional

requirements for stream processing. The users/programmers

set an objective to be pursued by the self-adaptive strategy.

Detecting fluctuations is an important part where values are

considered significantly different when they have a contrast

equal to or higher than a threshold of 20%, the suitability of

such a value was ascertained in [18]. Moreover, pursuing sta-

bility and avoiding response to minor fluctuations, adaptation

is triggered when three successive values indicate a change.

C. Implementation

Frameworks and libraries available were considered for im-

plementing the proposed solution. There are available industry

and academic solutions such as Intel TBB [14], FastFlow [15],

and SPar [19]. Considering the support for performing adapta-

tions at run-time, TBB supports only dynamic task distribution

and load balancing for stream processing applications, where

other adaptations have to be implemented at the lower level.

Considering that we are interested in higher-level abstractions,

FastFlow is more flexible by supporting dynamic adaptation on

several aspects like the parallelism degree and communication

queues’ concurrency modes [16]. Thus, FastFlow was used for

implementing the proposed solution.

Fig. 3: Proposed solution implemented in FastFlow.
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Abstracting specific implementation technicalities, the pro-

posed self-adaptive strategy was implemented in FastFlow

in the form of a ready-to-use C++ header-only library. The

solution works by default in FastFlow’s blocking mode. Fig-

ure 3 provides a representation of the implementation, where

one entity is the Manager is embedded in the data source

and uses runtime mechanisms for applying changes in an

autonomous mode. Another entity is Monitor implemented as

another embedded entity within the Sink stage that periodically

collects data and feds the Manager. Figure 3 shows some

possible configurations from Figure 1, where a pipeline with

3 stages is active and the other is inactive. Moreover, the

lower part of Figure 3 demonstrates the achievable flexibility

because several other configurations can be composed by the

user/programmer.

In our solution, the business logic code inside the appli-

cation functions is reused instead of duplicated. The user

declares a parallel pattern using the FastFlow skeleton library.

For instance, the three staged pipeline used in Figure 3

can be declared and added with two C++ code lines, other

compositions can be declared and included with similar coding

productivity. In addition to including headers and patterns

instantiation, the self-adaptive strategy only requires two extra

code lines for calling the Manager and Monitor.

The implementation covers a smooth transitioning from one

configuration to another. It is important to prevent two config-

urations to be active at the same time because it causes unpre-

dictable performance variability or losses, such as throughput

peaks and latency glitches [12]. This is tackled in our solution

with a draining phase that estimates the amount of time to wait

for the active configuration to finish its computations before

sending tasks to the next configuration.

IV. EVALUATION

A. Experimental Setup

A multicore machine equipped with an Intel Xeon processor

2.40 GHz (12 cores- 24 threads) and 32 GB of memory

was used for running experiments. The operating system is

Ubuntu Server 16.04 and G++ compiler (7.5.0) with -O3 flag.

The runtime buffer sizes were set to 1. The configurations

illustrated in Figure 1 were used for evaluating if the proposed

strategy is able to find the best configuration. Testing five

configurations in different applications can be considered a

pessimistic scenario that increases the training step. However,

each application can have specific configurations and our

solution provides flexibility for programmers to instantiate the

configurations to be tested.

The strategy is characterized in a scenario simulating unex-

pected input rate changes. The performance is also evaluated

with static executions using the same configurations as a base-

line, where parallel stages configurations used a parallelism

degree equal to the number of cores. Moreover, the Adaptive
(abbrev. Adapt.) executions are the ones relative to the pro-

posed strategy and Adaptive−A.T. (abbrev. Adapt.−A.T.)
refers to the performance collected after the training step.

Executions correctness was ascertained by hashing the outputs.

B. Experimental Results

The first application is a synthetic where 10,000 stream

items are processed and each one has a service time of 24

milliseconds (ms). Figure 4a shows results from the execution

of the self-adaptive pattern composition configurations, where

the user-defined goal is throughput in items per second (I/s)

equal to the input rate. The execution starts with a training

step of the self-adaptive strategy that tests each configuration.

After the training, the decision making enters a stable phase

with configuration 3, which is a 3 staged pipeline configuration

that sustained the input rate demanding the fewest amount

of resources. Then, around the second 30, another training

step was necessary because the input rate changed, where

the strategy stabilizes with configuration 4. Another training

step was performed when the input rate changed again to

75 I/s, where the execution stabilized with configuration 2.

From a QoS perspective, it is possible to note that the self-

adaptive strategy was able to effectively change and find the

best configuration for achieving a suitable throughput.

Results from real-world applications are also provided with

a customized version of the Person Recognition applica-

tion [20], which has multiple functions to recognize people

in video streams. The input used was a 30 seconds long video

with frames resolution of 260 pixels. Figure 4b shows the

results where the goal of the self-adaptive strategy was to

achieve an application throughput that would sustain the input

rate. Importantly, the input rate varies from 2 to 12 tasks per

second, wherein in this application, each task is a video frame.

Although the throughput fluctuated when testing suboptimal

configurations, the proposed solution effectively reconfigured

to find the best configuration.

Figure 5 provides performance results with the metrics of

throughput and latency. The collected metrics are an average

of all processed tasks in a given execution. Moreover, each

execution was repeated ten times (except in Adaptive−A.T.).
Adaptive − A.T. is a relevant outcome of the performance

without the overhead of the training step. Figure 5a shows a

representative execution of the synthetic application with an

input rate of 150 I/s, where the best static configuration was

with a parallel stage. Noteworthy, this was the configuration

used by the self-adaptive strategy showing its effectiveness.
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Fig. 5: Performance Evaluation.

Figure 5b shows a representative result of the Person

Recognition application with an IR of 12 F/s. The self-adaptive

strategy was effective by choosing a parallel stage after the

training step, which is the best static configuration under the

high input rate of 12. However, the average throughput is lower

than the static one, because the input used was not large with

a short execution time of around 75 seconds. Consequently,

the adaptive execution spent a significant amount of time

in training (around 15 seconds) that reduced the throughput

average. In long-running executions, the training impact could

be lower with a performance similar to the Adaptive−A.T..

V. CONCLUDING REMARKS

In this paper, we presented a solution for supporting self-

adaptive pattern compositions, which was validated in stream

processing applications. There are implications of the achieved

results as well as some limitations that are relevant to empha-

size. The results show that the proposed solution is technically

feasible and that the proposed strategy is effective for adapting

pattern compositions at run-time. Importantly, the adaptation is

possible with competitive performance. A relevant implication

of these results is that new abstractions can be provided for

users/programmers. The dynamic adaptations and self-adaptive

executions can provide additional flexibility for improving

QoS (throughput, latency) and/or system efficiency.

This study is limited in some aspects. The solution was

designed to be generic, but mechanisms are necessary for the

programming framework for achieving self-adaptive pattern

compositions on each scenario. FastFlow framework provides

these mechanisms, but we argue that other tools can be

extended to support flexible adaptations at run-time.

Moreover, the adaptation space can be limited by the alter-

native configurations provided, but this potential limitation can

be mitigated. One way is to increase the adaptation space by

combining the dynamic compositions with other less flexible

optimizations such as batching and parallelism degree.

In future works, we intend to provide techniques for op-

timizing the training step of the decision making, i.e. black-

listing inappropriate configurations. Moreover, we intend to

validate our solution on stateful stream processing applications

and with other workloads.
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