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Abstract—Stream Processing applications are spread across 
different sectors of industry and people’s daily lives. The in-
creasing data we produce, such as audio, video, image, and text 
are demanding quickly and efficiently computation. It can be 
done through Stream Parallelism, which is still a challenging task 
and most reserved for experts. We introduce a Stream Processing 
framework for assessing Parallel Programming Interfaces (PPIs). 
Our framework targets multi-core architectures and C++ stream 
processing applications, providing an API that abstracts the 
details of the stream operators of these applications. Therefore, 
users can easily identify all the basic operators and implement 
parallelism through different PPIs. In this paper, we present the 
proposed framework, implement three applications using its API, 
and show how it works, by using it to parallelize and evaluate 
the applications with the PPIs Intel TBB, FastFlow, and SPar. 
The performance results were consistent with the literature.

I. I n t r o d u c t i o n

The demand for real-time processing has grown and tra-
ditional batch-oriented data processing is known not to be 
sufficient to keep up with this demand [1], This way, orga-
nizations are increasingly adopting Stream Processing (SP) 
systems, which can process data in nearly real-time. In SP, 
data is continuously processed as new data becomes available 
for analysis, applying a series of small computations as stages 
in a pipeline, doing this processing incrementally [1]. SP is 
present in many sectors, such as: surveillance systems, signal 
processing, fraud detection, stock market, data compression, 
image/audio/video processing, etc. [2], [3].

SP applications require parallelism exploitation to accelerate 
the computation and process large volumes of data in a timely 
manner. This parallelism can be applied through different 
Parallel Programming Interfaces (PPIs). However, as the SP 
domain is growing, so is the development of new PPIs. In ad-
dition, there are many studies focused on evaluating PPIs [4], 
[5], [6], [7] or developing techniques to improve different 
aspects of them, such as self-adaptive parallelism [8], add new 
features [9], and support for new parallel abstractions [10], [6] 
and architectures [11], [3], [7].

At the moment, we lack SP benchmarks for developers 
and researchers to test and evaluate PPIs, techniques, and 
parallelism strategies. Even with the few existing solutions, 
evaluating these new technologies with different SP applica-
tions is a time-consuming task that shifts the programmer’s 
focus away from the technology itself. In this paper, we

introduce a Stream Processing framework for assessing PPIs. 
The goal is to provide a set of SP applications for the 
C++ community plus a framework that makes it easy for 
programmers to implement parallelism and evaluate PPIs and 
technologies. The main contributions of this work are: 1) 
A high-level framework API for SP applications; 2) A shell 
to manage the applications, add new parallel implementations, 
and collect performance metrics, such as latency, throughput, 
CPU and memory usage; 3) We evaluate our work with three 
PPIs: Intel TBB [12], FastFlow [13], and SPar [14],

II. R e l a t e d  W o r k

As related work we consider benchmarks suites for Stream 
Processing, suites that includes some Stream Processing ap-
plications, and other benchmark approaches for SP. We found 
no similar research idea to ours. NAMB (Not only A Micro-
Benchmark) is a platform for a generation of prototype 
applications based on their high-level description [15]. It 
can generate a set of synthetic/micro-benchmarks as well as 
prototypes of Java applications for Apache Flink, Storm, and 
Heron platforms. The framework also allows users to change 
data input rates, degree of parallelism, load balancing, etc. 
RIoTBench [16] is a suite that regroups a large set of IoT 
micro-benchmarks to cover different patterns and common 
IoT tasks. Similarly, StreamBench [17] consists of 7 micro-
benchmarks with 4 different synthetic work-load suites gener-
ated from real-time Web logs and network traffic to evaluate 
Distributed Stream Processing Systems (DSPSs). There is 
another suite called StreamBench [18] that also specific targets 
DSPS. It uses three micro-benchmarks and measures latency 
and throughput.

SparkBench [19] is a framework-specific suite for Apache 
Spark that evaluates CPU, memory, disk, and network IO, 
intending to identify the best configurations to improve Spark’s 
performance. Bordin [2] proposed a benchmark suite to pro-
vide a common reference for DSPS evaluation. It includes 
14 benchmarks from several domains using Storm and Spark. 
The author identified the most frequently used metrics in SP: 
latency, throughput, scalability, tuple loss, and resource usage. 
Within the suite, there is an API framework that allows users 
to run, collect metrics, and validate the resulting output.

Streamlt [20] is a compiler and programming language 
focused on SP applications. It comes within a benchmark
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suite, but it only supports the Streamlt language and ar-
chitecture. Moreover, it is limited to the dataflow and data 
stream domains. PARSEC [21] is a suite that includes three 
representative real-world stream applications (dedup, ferret, 
and x264), among others, implemented in POSIX Threads.

Most of the related work focus only on data stream appli-
cations [15], [16], [17], [18], [19], [2]. These are applications 
that intersect the domains of Big Data and IoT, which are 
developed using frameworks for DSPS platforms. Almost all 
of them are implemented in the Java language. The remaining 
related work do not focus on SP [20], [21]. They include some 
traditional SP applications but their benchmarks have several 
limitations in terms of language, parallelism exploitation, 
execution metrics, and parametric options. In our work, we 
focus on applications for more generic stream processing 
targeting the C++ community. However, we also intend to 
include C++ data stream applications using emerging libraries 
such as WindFlow [4] in the near future. Our work also 
includes most of the metrics identified as important by 
some of the related work [19], [2],

III. F r a m e w o r k  P r o p o s a l

The main feature of our framework (Figure 1) is a set 
of Stream Processing applications implemented in the form 
of an API. To build our API, we disassemble all operators 
from the original application and put them individually into a 
new source code. This way, the application calls the operators

by including a header file. Therefore, the cornerstone of the 
framework is composed of APIs representing each application 
and a set of sequential applications that instantiates them. 
As we parallelize these applications with different PPIs, the 
parallel implementations are also integrated into the set. In 
addition to the sequential applications and given parallel 
implementations, the framework provides tools to add new 
PPIs or freely modify the existing parallel code examples. We 
expect that through the API and the framework, users can 
easily implement one of the sequential applications with a new 
PPI or simply modify and customize the available examples of 
parallel implementations given within the framework. All of 
this is done through the command-line shell, where users can 
edit, configure, compile, execute, add execution metrics, select 
the workload, and from where it will be read (disk, memory, 
or network), among several other features.

Figure 1 describe the big picture of our framework. Paral-
lelize applications from the Stream Processing domain often 
requires a great learning curve to the programmers unfamiliar 
with this paradigm. Programmer have to identify different 
operators in the source code, which is not a simple task. 
Each operator region may be from a few lines of code up to 
thousands. Using our framework API, users only have to insert 
a function call for given stream operator. Figure 1 shows in a 
code snippet (in the left) how an application is implemented 
using the API. Between lines 5-7 are the n operators calls

Parallel implementations with 
different PPIs available as examples

New parallel implementations 
added by the user

Default sequential applications 
of the framework

1 int mainfint arge, char *argv[ ]){
2 init_bench(argc, argv);
3 whilefl) {
4 Item item;
5 if(loperator_1(item)) break;
6 operator_2(item);
7 operator_n(item);}
9 >

Command-Line Shell

\  New ~ f— 9^Configure^— 9^ Compile^— 9^ Execute^

$ bench new -name my_parallel_implementation -bench <some of the suite benchmarks> -ppi <some PPI>
$ bench configure my_parallel_implementation 
$ bench compile my_parallel_implementation
$ bench exec my_parallel_implementation -input <input file> -source <disk, memory, or network» -latency -throughput.

Fig. 1: Proposed framework for assessing PPIs.
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(in the original application this may be hundreds of lines). 
The API also inserts execution metrics and manages the data 
source. This data source can be the disk, the memory (in-
memory execution), or the network. For the last one, we 
plan to develop an independent system that generates data for 
the applications simulating a real system, with data arriving 
through the network with dynamic input rates.

In addition to the operators, the API also provides abstrac-
tion for the data that is communicated among them. Usually, 
these applications have smaller items that can change their data 
structure in different operators. Identifying all the variables 
that run through the operators as well as their dependencies, 
is a complex and time-consuming task. For this reason, our 
API encapsulates this data in a way that each operator uses 
the same data structure. In the API this generic class is called 
“Item” and this structure is the only thing that is communicated 
among all the operators of an application. This Item  is created 
in line 4 of the code snippet in Figure 1. It is passed as 
a parameter to the operators. All programmers have to do 
to parallelize one of these applications is to structure the 
parallelism of a given PPI around these operators, considering 
the loop (lines 3-7). Thus, the API abstracts all main aspects 
regarding the application, where programmers can exclusively 
focus on parallelism aspects.

The central part of Figure 1 shows how the applications 
set is organized within the framework. Besides the default 
applications and the parallel examples, users can also use the 
command-line shell to re-code, or add new versions of the 
parallel implementations, or add implementations with other 
PPIs. At the bottom of the Figure 1, there is an example of 
how the shell can be used to add a new implementation. The 
“new” command creates a copy of the sequential application 
for users to edit. The “configure” opens a JSON configuration 
file to insert the PPI dependencies. Then “compile” and 
“exec” compile and execute the new program (to execute 
the default applications these two commands are enough). In 
the “exec” command, users can select the workload, the data 
source, the execution metrics, among other options. Among the 
metrics, users can select execution time, latency, throughput 
(itens/second), and CPU and memory usage for the whole 
application or individual operators. These metrics were chosen 
because they were considered the most relevant for SP by 
related work [19], [2],

IV. M e t h o d o l o g y

In this section we discuss the methodology that was used 
for the experiments in the next sections. All experiments 
were performed in a computer that has 32 GB of RAM 
and two Intel(R) Xeon(R) CPU E5-2620 v3 2.40GHz (total 
of 12 physical cores and 24 threads with Hyper-Threading) 
processors. The operating system was Ubuntu Server 18.04, 
64 bits, kernel 4.15.0-88-generic, and GCC 7.5.0 using -03  
flag. Other libraries used were OpenCV version 2.4.13.6, TBB 
2017 (INTERFACEJVERSION 9107), and FastFlow (revision 
2.2.0-45).

To monitor the applications, we used the routines of the 
API itself. These routines allow us to monitor runtime with 
microsecond precision and get CPU/memory usage informa-
tion obtained from the / p r o c /  [p id ] / s t a t  pseudo-file. 
Although each new item can be monitored, we choose to 
monitor every 250 ms to avoid interfering with the results. For 
parallel executions, we used from 1 to 24 replicas. 0 replicas 
indicates the result of sequential applications (do not confuse 
replicas with threads, as the amount of threads varies at each 
PPI). Each result represents the average of 10 executions, with 
standard deviation properly included in the graphs with error- 
bars. For the Bzip2 application, we used an ISO Image of 
702 MB as an input file. For Lane Detection and Person 
Recognition, we used 640 x 360 resolution MPEG-4 videos 
with 1858 and 450 frames, respectively. The validation of the 
results was done through the md5sum tool, comparing our 
solution with the ones given by the original applications.

V. P e r f o r m a n c e  C h a r a c t e r i z a t i o n

The applications set of the framework is initially composed 
of three real-world applications: Bzip2, Lane Detection, and 
Person Recognition. We chose these applications because they 
have been explored and used as benchmarks in prior work [5], 
[6]. We plan to include more applications in the future.

Bzip2 (Compress)

Fig. 2: Characterization results for the sequential applications.

Bzip2 [22] is a free and open-source data compression 
application. This application can be divided into a three-stage
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pipeline (read, compress/decompress, write). In this work, we 
present the results only for the compression operation, for 
the sake of space. Lane Detection application is the task of 
detecting lanes of a road from a camera device. It captures 
each frame of a input video file and applies three computer 
vision algorithms. It can be divided into a nine-stage pipeline. 
Through these stages, the detected lanes are marked with 
straight lines in a new frame. This new frame with the marked 
lanes is then overlaid on the original, and the resulting frame 
is written to the output file.

The Person Recognition application matches human faces 
from a video frame against a database of faces. For each frame 
it applies a detection algorithm to detect all the faces in it. 
Then, it uses a set of face images and compares each of the 
detected faces in the frame with the faces on that set. The 
recognized faces are marked with a circle, and then the frames 
are written to the output file. Therefore, this application can 
be divided into a four-stage pipeline.

To show the behavior of these applications and how they 
differ from each other, in Figure 2 we present the char-
acterization results. We monitor CPU and memory usage, 
Analyzing CPU usage, we can see that all three applications 
use 100% CPU almost all the time. It shows great potential to 
achieve performance through parallelism. Regarding memory, 
they present distinct behavior, Bzip2 is the application that 
uses less, and Person Recognition presents a lower curve until 
reaching its maximum level.

VI. F r a m e w o r k  U s e  C a s e

To evaluate our proposal, we parallelized the applications 
using Intel TBB, FastFlow, and SPar, and evaluate their per-
formance in terms of latency and throughput. The parallelism 
strategy was based on prior works [5], [6], where there the 
Farm-like pattern is implemented using PPIs.

The experiments were conducted as described in Section IV. 
We chose in-memory executions as it is a new feature and 
previous studies have performed similar experiments with the 
default mode (reading directly from disk) [5], [6]. The three 
chosen PPIs are widely used for stream processing in C++. 
TBB offers few customization options and it is by default 
very well optimized for these specific scenarios that we will 
test. On the other hand, FastFlow provides more optimization 
options and it is up to the programmers to understand the 
characteristics of each application and workload in order to 
extract the maximum performance. In contrast, SPar provide 
a small set of annotation to express stream parallelism. Its 
compiler generates parallel code, calling FastFlow’s pattern 
routines. For FastFLow and SPar, we used an on-demand + 
blocking [13] queue configuration, as recommended by [6], We 
also tested both with the custom FastFlow’s thread mapping 
(physical cores first) and without it (no mapping).

For all cases, the scalability is reduced above 12 replicas. 
From this point, the processor needs to start allocating threads 
in both physical and virtual cores. This is an expected behavior 
of these applications that have high CPU usage. Regarding 
latency, lower is better. The difference between TBB and

FastFlow/SPar can be explained by the characteristic of the 
communication queues. TBB has a work stealing scheduler. 
This means that a thread can take over any operator along the 
pipeline. In FastFlow the threads always run the same operator, 
Therefore, the one that runs the read _ o p  () operator is done 
faster. This adds an extra delay when calculating from the 
moment a item is read to the moment it is finally processed 
by the last stage, increasing the latency.

Figure 3 (higher is better) has plotted the throughput. All 
PPIs and test cases presented good scalability. The higher la-
tency of FastFlow/SPar did not negatively impact the through-
put and these PPIs showed even better performance than 
TBB in Lane Defection with 12 replicas, for instance. The 
exception occurs in Bzip2 and Person Recognition above 
12 replicas, where FastFlow/SPar using the default mapping 
showed a slight drop in throughput. The throughput obtained 
by FastFlow and SPar was equivalent to the TBB, which 
is by default highly optimized for this type of application. 
The applications were easily parallelized using the framework 
and we were able to achieve results similar to those in the 
literature [9]. This first version of the framework allowed fast 
development and easy reconfiguration of parallel applications 
for stream processing.

VII. C o n c l u s i o n

In this paper, we introduced a Stream Processing framework 
for assessing Parallel Programming Interfaces (PPIs). The goal 
was to create a way to facilitate the implementation of stream 
parallelism on the Stream Processing domain. We showed 
the main features of the proposed framework by using it to 
evaluate TBB, FastFlow, and SPar. The results were similar 
to the literature and the API worked perfectly with the three 
evaluated PPIs. This way, our work has reached its initial 
goal. In the next steps, we will include more applications to 
the framework and parallelize them with more PPIs, add new 
workload classes, add the possibility to change the receiving 
data input rate and also add the feature that allows reading 
data from the network.
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