N)
e High-Level Stream and Data Parallelism in C++ for GPUs

Dinei A. Rockenbach
School of Technology, Pontifical
Catholic University of Rio Grande do

Junior Loff
School of Technology, Pontifical
Catholic University of Rio Grande do

Gabriell Araujo
School of Technology, Pontifical
Catholic University of Rio Grande do

Sul (PUCRS) Sul (PUCRS) Sul (PUCRS)
Porto Alegre, Brazil Porto Alegre, Brazil Porto Alegre, Brazil
dinei.rockenbach@edu.pucrs.br juniorloff@edu.pucrs.br gabriell.araujo@edu.pucrs.br

Dalvan Griebler
School of Technology, Pontifical

Catholic University of Rio Grande do

Sul (PUCRS)
Porto Alegre, Brazil
dalvan.griebler@pucrs.br

ABSTRACT

GPUs are massively parallel processors that allow solving problems
that are not viable to traditional processors like CPUs. However,
implementing applications for GPUs is challenging to programmers
as it requires parallel programming to efficiently exploit the GPU
resources. In this sense, parallel programming abstractions, notably
domain-specific languages, are fundamental for improving pro-
grammability. SPar is a high-level Domain-Specific Language (DSL)
that allows expressing stream and data parallelism in the serial code
through annotations using C++ attributes. This work elaborates on
a methodology and tool for GPU code generation by introducing
new attributes to SPar language and transformation rules to SPar
compiler. These new contributions, besides the gains in simplicity
and code reduction compared to CUDA and OpenCL, enabled SPar
achieve 331% of higher throughput when exploring combined CPU
and GPU parallelism, and 665% when using batching.

KEYWORDS

Programming language, parallelism, parallel patterns, algorithmic
skeletons, C++ annotations, source-to-source code generation

ACM Reference Format:

Dinei A. Rockenbach, Junior Loff, Gabriell Araujo, Dalvan Griebler, and Luiz
Gustavo Fernandes. 2022. High-Level Stream and Data Parallelism in C++
for GPUs. In XXVI Brazilian Symposium on Programming Languages (SBLP
2022), October 6—7, 2022, Virtual Event, Brazil. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3561320.3561327

1 INTRODUCTION

Stream processing systems have been increasing in popularity over
the last few years. They are especially relevant for dealing with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBLP 2022, October 6-7, 2022, Virtual Event, Brazil

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9744-5/22/10...$15.00
https://doi.org/10.1145/3561320.3561327

Luiz Gustavo Fernandes
School of Technology, Pontifical

Catholic University of Rio Grande do

Sul (PUCRS)
Porto Alegre, Brazil
luiz.fernandes@pucrs.br

the large amount of data being produced by live sources such as
IoT devices, social media, and financial markets. However, in order
to achieve efficient computation, programmers need to carefully
accommodate the streaming application according to the under-
lying computing resources. This task usually requires parallelism
strategies and other low-level optimizations, which are challenging
for most application programmers. Usually when programmers
try to implement efficient code, they end up mixing the applica-
tion business logic with the parallelism strategy. Consequently,
the code quickly becomes complex, and ordinary activities such as
implementing, debugging, and maintaining code become cumber-
some and error-prone tasks. Furthermore, modern applications can
benefit from the composition of different parallelism strategies to
improve performance. For example, stream processing applications
usually expose data parallelism within some streaming stage.

In this sense, new methodologies promote parallel programming
abstractions to ease the task of writing parallel code. Commonly,
we organize parallel programming abstractions into three layers or
levels: 1) a set of fundamental and low-level mechanisms that allow
accessing hardware features such as triggering or synchronizing
threads (e.g., CUDA); 2) a set of parallel patterns that hide many
lower-level complexities via templates that work as ready-to-use
parallelism strategies (e.g., Intel TBB); and 3) domain-specific lan-
guages that employ high-level abstractions via code annotations
that are used to generate automatic parallel code (e.g., SPar).

The state-of-the-art parallel programming abstractions targeting
general purpose CPUs are mostly from the second-level. The pro-
grammer is equipped with composable, parametric, and reusable
abstractions that can be inter-connected to help modeling complex
data streams. Apart from that, GPUs are powerful architectures
that are equipped with thousands of cores targeting problems that
are complex to be solved on CPUs. When the programmer needs to
deal with specialized computing systems like GPUs, the available
solutions he can use are essentially from the first-level of paral-
lelism abstractions. Therefore, programmers need to reason about a
new lower-level language and design a new strategy for combining
multi-core and many-core parallelism.

When we inspect the available frameworks for GPU program-
ming in the literature, the standard tools are CUDA and OpenCL.

https://doi.org/10.1145/3561320.3561327
https://doi.org/10.1145/3561320.3561327
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3561320.3561327&domain=pdf&date_stamp=2022-10-06

SBLP 2022, October 6-7, 2022, Virtual Event, Brazil

Also, there are some alternatives in the industry and scientific
community. Frameworks like HIP [2] offer wrappers over CUDA
and OpenCL, which facilitates developing portable code between
GPUs of different vendors. Some frameworks like FastFlow, Kokkos,
SkePU, and Thrust additionally offer parallel patterns via structured
parallel programming to approach GPUs. Other frameworks such as
OpenACC, OpenMP, and hiCUDA provide code annotations do ab-
stract some complexities, but they still require hardware knowledge
and specific optimizations. Despite the differences between GPU
supported frameworks, all of them share a common characteristic:
they require significant programming efforts and knowledge about
parallelism and hardware aspects. In fact, very few frameworks
tried to provide abstractions for stream parallelism targeting CPUs
and GPUs simultaneously.

Considering the literature limitations, in this paper, we leverage
SPar’s high-level language and extend it to support parallel code
for CPUs combined with GPUs on stream processing applications.
SPar is a Domain Specific Language (DSL) embedded in C++ that
offers third-level abstractions to express stream parallelism via code
annotations. However, SPar was only generating code for multi-
core architectures. In this work we define and implement new
transformation rules in SPar’s compiler to make it able to generate
automatic parallel code for CPUs combined to GPUs via source-
to-source code transformations. Our main scientific contributions
are: (1) a high-level language extension to support GPUs; (2) a code
generation methodology for the compiler that translates high-level
annotations to parallel code; and (3) an evaluation of our proposed
methodology using three applications from different domains.

The remainder of this paper is organized as follows. Section 2
gives a bird’s eye view of SPar, highlights our motivations, and
introduces our new language for GPUs along with the compiler
methodology for source-to-source parallel code generation. Sec-
tion 3 presents the results of our experiments. Section 4 introduces
our related work and Section 5 the conclusion and future work.

2 HIGH-LEVEL STREAM AND DATA
PARALLELISM

In this section, we introduce a programming model for expressing
stream and data parallelism in stream processing applications target-
ing multi-cores and GPUs. The outline of this section is the follow-
ing: Section 2.1 introduces the SPar programming model. Section 2.2
describes our motivation for extending SPar to offload streaming
data-intensive computation routines into GPUs. Section 2.3 intro-
duces the new high-level language that enables stream and data
parallelism annotations in C++ code. Then, in Section 2.4 we lever-
age the new language and implement a new compiler methodology
that automatically generates heterogeneous parallel code using
source-to-source code transformations.

2.1 SPar Programming Model

SPar (acronym for Stream Parallelism) is a programming model
for expressing stream parallelism in C++ codes. SPar was first in-
troduced in 2016 [8, 10] and is being built upon since. Currently,
different research works are being conducted in SPar’s ecosystem,
mainly they target different architectures (i.e. CPUs, Clusters, and

4

Dinei A. Rockenbach, Junior Loff, Gabriell Araujo, Dalvan Griebler, and Luiz Gustavo Fernandes

D Application code

(] sPar code

O Dataitem
Communication
queue

fwhile(1){
item = read();

Figure 1: SPar annotations and the data flow generation.

low-resource hardware devices) and extend support to further par-
allelism paradigms (i.e. data parallelism and data flow).

SPar aims at providing higher levels of abstraction to hide the
difficulties inherited of computer architectures and systems and
the challenge of writing parallel code. SPar design principles are
towards productivity and portability. It provides a clear separation
of concerns between the application business logic and parallelism
details. Therefore, programmers that employ SPar can focus on
the application, while SPar’s compiler is in charge of providing
parallelism-specific optimizations.

SPar equips programmers with a domain-specific language (DSL)
that can be used for annotating data stream regions in sequential
C++ code. Afterwards, the SPar compiler analyses these information
and automatically generates parallel code. The code generation is
accomplished using source-to-source transformations performed
directly in the standard C++ AST (abstract syntax tree). Since the
SPar compiler represents the full semantics of the C++ standard
in an internal AST, it gives SPar the support required to perform
complex and powerful code transformations.

The SPar language was initially conceptualized via five domain-
specific attributes: (1) ToStream denotes the scope of a data stream
in the code (can be a loop constantly receiving data); (2) Stage
denotes the scope of a sequential stage/block (can be a computation
step applied to each item of the data flow); (3 and 4) Input and
Output, as the name suggests, are the inputs and outputs of a data
stream region or a processing stage; (5) Replicate is a special
attribute that informs a processing stage could be replicated.

The programmer may use the aforementioned attributes in order
to express information about the data stream in a sequential C++
code. Note that the programmer uses a high-level language and
does not deal with low-level code. For instance, Figure 1 shows a
traditional stream processing application annotated with SPar. The
application constantly reads data from a source, applies a computa-
tion step and writes results into a sink. The ToStream indicates the
annotated region of code represents a data flow. In this region, each
item read from a source is processed by two Stages. The first Stage
consumes a data item, applies a computational routine over the data
and sends it forward. Also, the Replicate attribute indicates the
stage is replicated using the specified number. The second Stage
consumes the previous data item and writes them into a sink.

A high-level representation of the parallelism mechanisms gen-
erated by SPar is represented in cyan on the right-hand side of

High-Level Stream and Data Parallelism in C++ for GPUs

Figure 1. After analyzing the information provided by the pro-
grammer, SPar’s compiler converges into a suitable parallel data
stream by employing the Farm pattern. Once the parallel pattern
was selected, SPar can generate the parallel code targeting differ-
ent runtimes. The original SPar version [9] generates parallel code
using the FastFlow library. Recent works [14, 15] extended SPar to
support parallel code generation targeting Intel Threading building
blocks and OpenMP.

2.2 Motivation for language extension

In the last few years, the rise of massively parallel hardware and the
performance differences of the multi-core and many-core architec-
tures led developers to move computationally intensive (parallel)
parts of programs to accelerators (such as GPUs). However, pro-
gramming for many-core hardware poses additional challenges
concerning parallel programming for multi-core machines, due to
the differences in the architectural design and separate memory
spaces. It is a challenge to synchronize computation and data be-
tween different computing systems. Usually, programmers require
to design and implement exclusive low-level parallelism strategies
particular to each application and computing system architecture.

Modern High-Performance Computing (HPC) servers are com-
posed of a combination of multi-core CPUs and many-core GPUs.
In order to take advantage and efficiently exploit the underlying
parallel resources, applications programmers rely on available APIs
(Application Programming Interface) or parallel programming mod-
els. While many tools for GPU programming does not offer efficient
abstractions for stream parallelism [6, 31], other tools are not able
to efficiently exploit the computing resources since they do not
consider the data parallelism exposed by the stream processing
applications [16, 32]. Even tools that support stream and data par-
allelism require significant code refactoring in order to exploit the
heterogeneous hardware [1].

Ideally, the tools developed by system programmers should pro-
vide efficient abstractions that does not require stream process-
ing application programmers to learn hardware details in order
to exploit the parallelism available in the computer architecture.
However, the lack of high-level abstractions to explore these ar-
chitectures was limiting SPar’s usage among application program-
mers. Although possible, exploiting GPU parallelism using SPar
annotations required much effort and deep knowledge about the
underlying architecture [29]. The current SPar attributes are closely
related to the stream parallelism domain. Also, they do not express
any semantics of the data parallelism properties. It was necessary
an extension to SPar language to express data parallelism along
with stream parallelism.

Therefore, we posed ourselves the challenge to design efficient
and high-level parallel programming abstractions for expressing
parallelism on stream processing applications targeting heteroge-
neous parallel computer architectures, without substantial changes
to the original syntax and semantics. We propose a simple and ex-
pressive unified programming model for expressing stream and data
parallelism using C++ attributes. We introduce the new language
and compiler strategies in the following sections.

43

SBLP 2022, October 6-7, 2022, Virtual Event, Brazil

2.3 Data parallelism attributes in SPar

In order to safely generate parallel code, the compiler must be
sure that the operation being applied to the data elements can be
executed in parallel, i.e. it is a pure function: “whose output depends
only on its input and does not modify any other system state” [21].
Functional programming semantics defines a pure function as “a
function that, given the same input, will always return the same
output and does not have any observable side effect” [19]. Since
there is no standard way of automatically detecting this property
in a given C++ code block [3, 7, 26], the application programmer
must provide this information. In the following we present the SPar
language extension we propose to support data parallelism:

2.3.1 Pure. None of the current SPar attributes (presented in Sec-
tion 2.1) carries information about the pureness of the code. Thus,
we created a novel attribute called Pure to identify operations that
can be safely executed in parallel [28]. The Pure attribute indicates
that the annotated code block is a pure function. This attribute may
be used along with the Stage attribute list to mark the entire Stage
as pure, or as an identifier attribute inside code regions annotated
with Stage to mark specific portions of the Stage region as pure
operations. The input and output data of the pure region are de-
fined by the Input and Output attributes. In SPar, a Stage or code
block is considered a pure function when it satisfies the following
statements to guarantee correct use and correct code generation:

(1) The Pure region cannot have any side effects (i.e., mutation
on non-local variables).

(2) Pure loop iterations cannot have execution order depen-
dency (i.e., depending on the values modified by previous
iterations).

(3) The Pure region cannot access any global variable that are
not listed in the Input attribute.

From the programmer perspective, the Pure is another attribute
that increases the language expressiveness. It enables programmers
to identify and annotate data parallelism inside the Stage. On the
other hand, the compiler transformation rule identifies that this
region/function can be computed in parallel over multiple data.
It is up to the compiler scan the available hardware and decide
to which parallel architecture (GPU or multi-core) generate the
stream parallelism with data parallelism code. Figure 2 presents
a high-level representation of the transformations performed by
SPar’s compiler in the presence of the Pure attribute. Besides gen-
erating the code for the stream management, as it was illustrated
in Figure 1, SPar generates the code for host-device data transfer
and communication (represented as offload() in Figure 2) and
invokes the pure function (compute()) in the accelerator.

Figure 3 presents examples of more complex annotation schemas.
Figure 3(a) shows a Pure region calling compute_A() inside a
Stage that is not replicated and then a replicated Stage calling
compute_B(). The activity graph shows that SPar generates the
GPU code and then sends the outputted data items to the n repli-
cated workers. Figure 3(b) shows a Pure attribute being used inside
a replicated Stage. In this case, SPar leverages the thread-safety
capabilities of the underlying runtime library to manage multiple
workers invoking kernels on the GPU simultaneously.

SBLP 2022, October 6-7, 2022, Virtual Event, Brazil

e —
Source

(7] Application code

() sparcode

O Dataitem
Communication

read();

{ compute(item); }

{ write(item); }

Figure 2: Example of SPar annotations for GPU offloading.

2.3.2 Impure. As explained before, the Pure attribute enables pro-
grammers to express stateless data parallelism. However, pure re-
gions can perform stateful or "impure" operations that hinders the
ability to exploit parallelism in this region. For instance, a single
line of code with side effects, by definition, would classify the entire
block of code as being not pure. For enabling SPar to leverage the en-
tire properties of a Pure block of code, users would require to man-
ually deal and synchronize the impure operations while "purifying"
them. Alternatively, we equipped programmers with the Impure
attribute to identify impure regions inside pure blocks. Therefore,
programmers can use the Impure to annotate the code region they
want to "purify”. Then, SPar’s compiler will try to automatically
implement the required synchronization mechanisms to allow par-
allelism. For example, when targeting multi-cores an impure region
of code is purified using locks or other optimizations such as the re-
duce parallel pattern [20]. In this work, we already implemented an
optimization that identify Reduce patterns and automatically gen-
erate the required synchronization between parallel GPU threads
and kernels. Other abstractions for the Impure attribute that can
be investigated in the future are speculative synchronization mech-
anisms, different parallel patterns, and GPU atomic operations.

2.3.3 Data Management. When designing our high-level language,
we also identified that in order to automatically manage data copies
between host and device memories, the SPar compiler must know
the length of any data to be copied. This also applies to other
computing architectures supported by SPar such as distributed
memory. Therefore, in our language we propose a modified syntax
to express vector and array sizes in the SPar Input and Output
attributes. We expect the programmer to annotate the size of a
contiguous allocated memory space via Input(datalsize]) or
output(datalsize]). The data can be statically or dynamically
allocated, and can be of any data type, however, the declaration of
custom types must be accessible by the compiler.

2.3.4 Batch. A previous work [29] has evaluated different parallel
programming models when combining stream and data parallelism.
One of their conclusions is that fine-grained stream processing
may not generate enough workload to properly exploit massively
parallel architectures such as GPUs. Thus, some stream processing
applications may not provide the expected performance scalability

44

Dinei A. Rockenbach, Junior Loff, Gabriell Araujo, Dalvan Griebler, and Luiz Gustavo Fernandes

when using GPUs. For these cases, we are providing the possibil-
ity to express stream batches in SPar through the new auxiliary
attribute for the Stage, named Batch, which activates the batching
optimization for this specific Stage [13]. The programmer can spec-
ify as argument the size of the batch with literal or integer variable.
In principle, this is the amount of stream items to be computed at
once by the annotated stage, which must be a Pure stage. In short,
Batch allows programmers to define the stream item granularity.
Figure 4 represents the transformations performed by SPar’s com-
piler when the attributes Pure and Batch are used together with a
Stage attribute. SPar generates the code to accumulate N (which is
4 in Figure 4) data items and processes them together in the GPU.
Data source and sink are omitted in the Figure for simplicity.

2.4 Parallel Code Generation

The SPar programming model is based on the C++ attributes pre-
sented in Section 2.1, which we extended by adding the attributes
presented in Section 2.3. Figure 5 presents an overview of SPar’s
methodology for parallel code generation. The attributes defined in
the SPar language are combined in annotation schemas, following
the definitions to ensure correct usage. The rules define parallel
patterns that are generated based on each annotation schema and
are implemented in the compiler.

The compiler implementation follows a three-step approach:
(1) the compiler scans the code and parses the C++ syntax, vali-
dating the combination of attributes in annotation schemas. Af-
ter parsing the code the compiler generates an Abstract Syntax
Tree (AST), which is then analyzed to extract information from
the annotated source code. The analysis of the AST identifies the
attributes being used, optimization opportunities, and extract any
information needed for the next steps; (2) the compiler matches
the transformation rules defined in the language to the annotated
code, deciding which parallel pattern will be generated according
to the annotation schema. This is performed in a per-annotation
schema basis, i.e., the transformation rules implemented in the
compiler are checked individually against each annotation schema
in the code, which allows programmers to apply many annotation
schemas in a single source file. By checking all transformation
rules for each annotation schema, the compiler also allows for both
data and stream parallelism to be exploited in a single annotation
schema; and (3) the compiler then applies the transformation rules
and transforms the AST code by inserting calls to lower-level run-
time libraries that implement the parallel patterns. The transformed
AST is then converted into C++ code and compiled into a binary
executable.

The original rules to generate the Pipeline and Farm parallel
patterns were presented in [9]. An example of the Farm pattern
generated from an annotation schema is presented in Figure 1.
With the novel attributes for data parallelism, we extended the
existing rules to generate the data-parallel patterns Map, Reduce,
and MapReduce. The full set of attributes now allow transforma-
tion rules targeting stream and data parallelism to be combined.
Figures 2 and 3 present examples of combined stream and data
parallelism being generated by the SPar compiler targeting an het-
erogeneous architecture. We implemented the data parallel patterns
for both CUDA and OpenCL via C++ template library in order to

High-Level Stream and Data Parallelism in C++ for GPUs

() Avplication code
Source

fwhitle(1)4

. () sPar code
item = read(); © Outaom
queue
o """ Device

GPU

3t compute_A()

{ compute_A(item); }

{ compute_B(item); }

{ write(item); }

(a) Pure region before Replicated Stage.

SBLP 2022, October 6-7, 2022, Virtual Event, Brazil

S —
Source

[Application code

[0 sPar code

O Dataitem
Communication

‘while(1){
v item = read();

queue
%..i Device

CPU i
offioad()

i R

GPU

CPU
offload()

Voorrrrhonns

GPU

{compute() } [compute()]

{ compute(item); }

{ write(item); }

(b) Pure region inside Replicated Stage.

Figure 3: Example of SPar annotations for GPU offloading in complex graphs.

D Application code

D SPar code

O Dataitem
Communication

.. Queue

H Device

fwhile(1){
item = read();

;,: Batching

{ compute(item); }

{ write(item); }

tion.

' Code annotation rules

Rules

fep) Eor)
For) (o)

Attributes Annotations

ta)(1nJout)|> | [[Tstzn Jout]]
CorfimeffenlEat) (5N [Porll]

N

,

A4
"Compiler' Implementation A
Parsing Applying Code.
rules generation

. C++ sy'ntax Matching rules (m \ '
. parsing and annotations [(rap J :
: V% \ N 1
; Extract (1 1) [Rnt N
; infzr'rrn\:zion [[]] li;:aﬂzs '
@apReduce}/ \[Distr‘ibuted]/ :

Figure 5: Methodology for Parallel Code Generation.

45

avoid vendor lock-in (enabling different GPU vendors). This library
is an intermediate code representation of low-level template-based
parallelism implementations when generating GPU parallel code.

2.4.1 Automatic and Semi-automatic Optimizations. When com-
bining stream and data parallelism, the compiler inserts the code
for preparing and compiling the GPU kernel before the streaming
region so that these initialization steps are performed only once for
the entire processing of the stream. Some of the objects of CUDA
and OpenCL runtimes cannot be shared among the host threads
used to exploit stream parallelism. During the code generation, the
compiler handles them appropriately when generating the GPU
parallel code.

If the Batch attribute is present in a Stage annotation, the com-
piler adds a vector of stream items in the stage structure to store
all the incoming stream items. When the vector reaches the size
defined as argument of the Batch attribute or if the stream comes to
an end, the entire batch of items is processed at once in a single GPU
kernel invocation. This process increases the latency but improves
throughput in cases where stream items do not expose enough
computation to be worth offloading to the GPU. The application
developer should consider this trade-off between throughput and
latency to decide whether to use the Batch attribute and the batch
size that best suits their needs. We present details of this trade-off
in Section 3.3.

3 EXPERIMENTS
3.1

The experiments were conducted on a machine equipped with a
processor Intel i9-7900X @ 3.3 GHz (10 cores and 20 threads), 48 GB
of RAM (3x16 GB DDR4 @ 2400 MT/s), and a GPU NVIDIA Titan Xp
(3840 CUDA cores) with compute capability 6.1 and 12 GB GDDR5X
@ 2400 MHz of memory. The operating system was Ubuntu 20.04
LTS (kernel 5.4.0-86-generic). The NVIDIA driver installed was the
450.102.04. The software utilized was CUDA Toolkit v11.0, OpenCL
1.2, and GCC 9.3 with -03 compiler flag.

Methodology and Environment

SBLP 2022, October 6-7, 2022, Virtual Event, Brazil

Caltech dataset (1,225 frames of 640x480)

KITTI dataset (3,169 frames of 1242x375)

12345

6 7
Workers ~ © 9 10

6 7
Workers ~ © 9 10

(a) Workload 1 (1225 frames). (b) Workload 2 (3169 frames).

Figure 6: Results of Lane Detection (LD) throughput.

Each version of the benchmarks is named as follows: Serial ver-
sion as serial. SPar parallel code for CPU as SPar. SPar parallel
code for GPU combined with CPU as SPar (CUDA) (CUDA code
generation) and SPar (OpenCL) (OpenCL code generation). The
metrics were collected from ten executions of each test, a negligible
standard deviation was observed in all tests.

3.2 Overall Performance Evaluation

In this section we present the throughput performance for three
stream processing applications: Lane Detection (LD) [34], Mandel-
brot Streaming (MB) [33], and Raytracer (RT) [17]. In the graphs,
the X axis indicates the number of replicas of each stage, the Y
axis lists the versions of the benchmarks, and Z axis presents the
amount of throughput achieved, which are measured in Frames
Per Second (FPS) in LD and RT, and Lines per second (Lines/s) in
the MB. We tested the applications using two different workloads,
where workload 1 has inputs with medium size and workload 2 has
larger input sizes.

3.2.1 LD benchmark. Figure 6 shows the results of the LD bench-
mark. As can be seen, the GPU versions were up to 22% better than
the best result of the CPU parallel version in Figure 6(a), and 47%
in Figure 6(b). The difference of performance when varying the
Workloads for the GPU occurs because the Workload 1 is a low
resolution video. Processing small frames is not computationally
intensive for GPUs, imposing a GPU under-utilization. The frames
in the Workload 2 are larger, which improves the GPU performance.
Using larger workloads on GPUs improves the performance mainly
because it prevents the GPU cores from becoming idle, additionally
it triggers schedule mechanisms for the GPUs that lower the latency
of instructions and memory accesses. In the CPU parallel version
we observe a more noticeable performance improvement when
varying the number of workers, the same does not repeat in the
GPU versions. Since the most intensive computational routines are
performed by the GPU, CPU cores compute only a small amount of
work and become idle. Finally, the performance of the CUDA and
OpenCL code generated was similar.

3.22 MB benchmark. The results of MB benchmark are illustrated
in Figure 7. The GPU versions achieved up to 81% better throughput
than the best result of the CPU parallel version in Figure 7(a), and

46

Dinei A. Rockenbach, Junior Loff, Gabriell Araujo, Dalvan Griebler, and Luiz Gustavo Fernandes

Mandelbrot with 3,000x3,000 fractal and 100k iterations Mandelbrot with 5,000x5,000 fractal and 100k iterations

fog(Lines/s)

8930

6 7
Workerg

7
89

(a) Workload 1 (3000x3000 matrix). (b) Workload 2 (5000x5000 matrix).

Figure 7: Results of Mandelbrot Streaming (MB) throughput.

Ray tracing with 1,200 frames of 1280x720 and 16 spheres Ray tracing with 1,200 frames of 1920x1080 and 16 spheres

log(FPs)
log(FPS)

(a) Workload 1 (1280x720 resolution). (b) Workload 2 (1920x1080 resolution).

Figure 8: Results of Raytracer (RT) throughput.

135% in Figure 7(b). However, this performance improvement is
only observed when SPar generates CUDA code, it occurs due to
CUDA low-level mechanisms that are more optimized than OpenCL
for NVIDIA GPUs. Different from LD, we observe a more noticeable
performance difference when varying the amount of workers in the
GPU versions. It occurs because the GPU usage is lower, and the
CPU is responsible for computing more routines. This explains the
better scaling when adding more parallel workers. However, the
performance starts to decrease when using 6 workers or more as
upon increasing the amount of workers also increases the overhead
of communication in the application.

3.23 RT benchmark. Figure 8 shows the results of RT benchmark.
The GPU versions were up to 286% better than the best result of
the CPU parallel versio