
Assessing Coding Metrics for Parallel Programming
of Stream Processing Programs on Multi-cores

Gabriella Andrade∗, Dalvan Griebler∗†, Rodrigo Santos ‡, Marco Danelutto§, Luiz G. Fernandes∗
∗School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.

†Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty (SETREM), Três de Maio, Brazil.
‡Department of Applied Informatics, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.

§Department of Computer Science, University of Pisa, Pisa, Italy
Email: gabriella.andrade@edu.pucrs.br, {dalvan.griebler,luiz.fernandes}@pucrs.br, rps@uniriotec.br, marcod@di.unipi.it

Abstract—From the popularization of multi-core architectures,
several parallel APIs have emerged, helping to abstract the
programming complexity and increasing productivity in appli-
cation development. Unfortunately, only a few research efforts
in this direction managed to show the usability pay-back of the
programming abstraction created, because it is not easy and poses
many challenges for conducting empirical software engineering.
We believe that coding metrics commonly used in software
engineering code measurements can give useful indicators on
the programming effort of parallel applications and APIs. These
metrics were designed for general purposes without considering
the evaluation of applications from a specific domain. In this
study, we aim to evaluate the feasibility of seven coding metrics to
be used in the parallel programming domain. To do so, five stream
processing applications implemented with different parallel APIs
for multi-cores were considered. Our experiments have shown
COCOMO II is a suitable model for evaluating the productivity of
different parallel APIs targeting multi-cores on stream processing
applications while other metrics are restricted to the code size.

Index Terms—Development effort; Parallel computing; Parallel
software; Productivity; Software metrics.

I. INTRODUCTION

Multi-core architectures emerged in the 2000s due to

the semiconductor industry’s inability to increase the speed

of the central processing units (CPU) using traditional ap-

proaches [1]. From that moment on, multi-core CPUs have

become popular, being used from smartphones to servers.

Hence, all software products should be developed using par-

allel programming techniques to exploit the processing power

of these architectures, which integrate multiple processing

cores into a single chip [2]. Developing parallel applications

is a complex task because programmers must take into ac-

count various aspects in the development process, such as

implementing data synchronization, dividing the computation

problem among threads, exploiting concurrency, and providing

low-level hardware optimization [3]. To ease such develop-

ment, new parallel APIs (Application Programming Interface)

have been created, which provide abstractions to release the

developers from dealing with lower-level implementations.

Coding productivity is an important factor that together with

effectiveness and user satisfaction are indicators of usabil-

ity [4]. Based on usability or productivity indicators, it is

possible to give improvement indicators for designing new

parallel APIs and refine existing ones. However, obtaining

usability indicators is time consuming, because empirical

studies must be conducted with people. Also, an experiment

must be planned and executed, and finding a representative

sample of participants in parallel programming domain is quite

a challenge. Coding metrics may be not the ultimate solution,

but they at least provide specific coding productivity insights

that can be comparable in certain parallel programming sce-

narios and taken into account for usability analysis [5]–[14].
Different off-line coding metrics have been used to assess

parallel APIs over the years. In [6], the effort of novice

programmers to develop parallel applications in MPI (Message

Passage Interface) and OpenMP (Open Multi-Processing) was

assessed using LOC (Lines of Code), and cost per LOC. UPC

(Unified Parallel C) was compared to MPI in [5], using LOC,

NOC (Number of Characters), and CCN (Cyclomatic Com-

plexity Number). In [9], Chapel, Cilk, Go and TBB (Threading

Building Blocks) were compared in the development of six

benchmarks by expert and novice programmers using LOC

and coding time. In [11], 7,087 programs developed in C,

Go, C#, Java, F#, Haskell, Python, and Ruby were analyzed

considering LOC and executable size. In [8], 556 open-source

applications developed with TPL (Task Parallel Library) and

PLINQ (Parallel Language Integrated Query) were analyzed

using LOC and the number of parallel directives.
The effort to develop a GPU-based program using MPI

and Hitmap was analyzed using LOC, TOC (Tokens of

Code), CCN, and Halstead’s measures in [14]. In [13], the

programmability of Pthreads (POSIX Threads), TBB, Fast-

Flow, and SPar (Stream Parallelism) to implement three real-

world streaming applications was assessed using LOC and

CCN. In [7], the effort to parallelize the Bzip2 compression

program using OpenMP and Pthreads was compared using

total, modified, added, and removed LOCs, LOCs with parallel

constructs, and coding time. In [10], the DSL-POPP (Domain-

Specific Language for Pattern-Oriented Parallel Programming)

was compared to Pthreads using LOC and COCOMO II

(Constructive Cost Model II). In [12], COCOMO II was used

to evaluated the efforts of novice and professional developers

to implement projects with OpenACC on GPUs.
Although coding metrics provide productivity indicators,

they are designed for general purpose without considering in

their evaluation factors that impact the development of parallel

applications, such as the programming model and architecture.

Our work aims to identify whether existing coding metrics

provide useful insights for the parallel programming domain as

291

2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

978-1-6654-2705-0/21/$31.00 ©2021 IEEE
DOI 10.1109/SEAA53835.2021.00044

20
21

 4
7t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

an
d

A
dv

an
ce

d
A

pp
lic

at
io

ns
 (S

EA
A

) |
 9

78
-1

-6
65

4-
27

05
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SE
A

A
53

83
5.

20
21

.0
00

44

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:40:17 UTC from IEEE Xplore. Restrictions apply.

well as highlight their limitations. So important as performance

are productivity and usability analysis for parallel APIs. New

initiatives are need to minimize the lack of coding metric

analysis available in the literature of existing parallelism

abstractions. This study contributes for evaluating the use

of coding metrics when introducing parallelism in stream

processing applications executing on multi-core systems.

II. CODING METRICS

Coding productivity measures the amount of resources used

to develop an application, such as time and effort spent

by developer [4]. Some metrics and tools allow software

analysts and project managers to obtain indicators of coding

productivity. LOC is a commonly used metric, which considers

the total number of lines in the code, removing blank lines

and comments [15]. In general, the objective is to relate the

project size to the effort required to develop it. However,

using only LOC metric itself can provide false or inaccurate

results, because some small pieces of code can be harder to

develop than a large amount of code. Also, the use of bad

programming practices and the developer’s programming style

can also interfere in the count [16]. NOC is a similar metric

that can be used to avoid these issues, since it counts the

total number of characters in the code without consider new

lines and blank line characters [5]. However, NOC depends

on how verbose the developer is in defining identifiers, such

as variable, functions and classes names.

Developers’ productivity can also be analyzed based on the

number of TOCs [14], which are divided between operators

and operands. Operators include the keywords of a language,

arithmetic (e.g., +, −, ∗, /, %), relational (e.g., <, <=, >,

>=, ==, !=), logical (e.g., !, &&, ||) etc. The operands are

all those that are not operators but constants, variables etc.

[17]. TOC are measured from Eq. 1.

CCN uses Graph Theory to represent a program as a flow

graph and measures its complexity from Eq. 2, where E is the

number of edges, and N is the number of nodes. If there is

a main program M calling a procedure A, there will be two

TABLE I: Equations of coding metrics.

Metric Equation
TOC [14] TOC = Operators+Operands (1)

CCN [18] CCN = E −N + 2 (2)

CCN = E −N + 2× P (3)

IFC [19] IFC = length× (fanin × fanout)
2 (4)

N = N1 +N2 (5)

n = n1 + n2 (6)
Halstead’s V = N × log2(n) (7)

measures [17] D = (n1/2)× (N2/n2) (8)

E = V ×D (9)

T = E/S (10)

S = B + 0.001×
∑5

j=1
Fj (11)

COCOMO II Effort = A×KSLOCS ×
∏n

i=1
Mi (12)

[20] T ime = C × EffortD+0.2×(S−B) (13)

TeamSize = Effort/T ime (14)

flow graphs resulting in two connected components. In this

case, the complexity will be equal to the sum of the individual

complexities of M and A, or can be calculated from Eq. 3 [18],

where P is the number of connected components.

IFC (Information Flow Complexity) metric considers the

connections among the procedures of a program to measure

complexity, which are determined by the fan-in and fan-out.

Fan-in is the number of local flows to the procedure plus the

number of data structures from which the procedure retrieves

information, and fan-out is the number of local flows of the

procedure plus the number of data structures that the procedure

updates [19]. IFC of a procedure is measured from Eq. 4,

where the length is the LOC for the selected procedure [19].

Halstead’s measures assess a program based on the number

of tokens, which are measured according to: number of opera-

tors (n1) and operands (n2), and total occurrences of operators

(N1) and operands (N2) [17]. From these values, it is possible

to calculate the program length (Eq. 5), the vocabulary (Eq.

6), the volume in bits (Eq. 7), and the programming difficulty

(Eq. 8). From volume and difficulty, the programming effort

can be estimated using Eq. 9. Finally, it is possible measure

the development time (in seconds) from Eq. 10, where S is

the speed that the brain does elementary mental discrimination

to encode a program, which is set equal to 18 [17].

COCOMO II is a model for estimating software develop-

ment effort designed to add more variability and accuracy

into the initial version (COCOMO 81) [20]. This model uses

as input the thousand of source lines of code (KSLOC)

and a set of cost drivers and scale factors for calibrate it

according to the application, developers, environment, and

other issues that affect the development cycle. COCOMO

II has two types of cost drivers. The first one is post-

architecture model, comprising: Required Software Reliability

(RELY), Database Size (DATA), Documentation match to life-

cycle Needs (DOCU), Product Complexity (CPLX), Required

Reusability (RUSE), Execution Time Constraint (TIME), Main

Storage Constraint (STOR), Platform Volatility (PVOL), An-

alyst Capability (ACAP), Applications Experience (APEX),

Programmer Capability (PCAP), Platform Experience (PLEX),

Language and Tool Experience (LTEX), Personnel Continuity

(PCON), Use of Software Tools (TOOL), Multisite Develop-

ment (SITE), and Required Schedule Development (SCED).

The second one is early design model, comprising: Person-

nel Capacity (PERS), Product Reliability (RCPX), Platform

Difficulty (PDIF), Personal Experience (PREX), and Facilities

(FCIL). Each of them must receive a rating among: extra low,

very low, low, nominal, high, very high, and extra high [20].

COCOMO II implements scale factors related to Precedent-

edness (PREC), Development Flexibility (FLEX), Architec-

ture/Risk Resolution (RESL), Team Cohesion (TEAM), and

Process Maturity (PMAT). Each of them also must receive a

rating among very-low and extra-high. The scale factors of a

project (Fj) are all summed and used to determine a scale

exponent (S) from Eq. 11, where B is set equal to 0.91. After

calculating S value, it is used as an exponent for calculating

the effort (Person/Months) in Eq. 12, where A is set equal to

292

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:40:17 UTC from IEEE Xplore. Restrictions apply.

2.94, and Mi is the set of cost drivers. Moreover, COCOMO

II allows us to calculate the ideal time to develop a project

from the Eq. 13, where B, C, and D are set equal to 0.91,

3.67 and 0.28, respectively. Finally, the model also provides

the size of development team from Eq. 14 [20].

III. METHODOLOGY

In this study, we evaluated LOC, NOC, TOC, CCN, IFC,

Halstead and COCOMO II coding metrics applied to parallel

programming. To do so, our experiments aim to verify the pro-

ductivity of FastFlow [21], Pthreads [22], SPar [23], and TBB

[24] parallel APIs for multi-core systems in the development

of the following C++ stream processing applications1: Bzip2,

Dedup, Denoiser, Person Recognition, and Lane Detection.

We used the following tools to measure the coding metrics:

SLOCCount2 to get LOC and COCOMO II, Notepad++3 to

get NOC, Lizard4 to get CCN and IFC, and Commented Code

Detector (CCD)5 to get TOC and Halstead. Although CCD is

compatible with C++, some limitations remain. It considers

neither library objects as operators, e.g., the cout command,

nor the keywords of the parallel APIs as operators, since it is

not focused on evaluating parallel applications.

TABLE II: COCOMO II cost drivers and scale factors.

Post-architecture model Early design model
Name Option Value Name Option Value
RELY Low 0.92 PERS Low 1.26

DATA Very high 1.28 RCPX Nominal 1

DOCU Nominal 1.00 PDIF High 1.29

CPLX High 1.17 PREX Very high 0.74

RUSE Nominal 1 FCIL Nominal 1

TIME Extra high 1.63

STOR Extra high 1.43

PVOL Low 0.87 Scale factors
ACAP Very high 0.71 Name Option Value
APEX High 0.88 PREC High 2.48

PCAP Very high 0.76 FLEX Nominal 3.04

PLEX Very high 0.85 RESL Nominal 4.24

LTEX High 0.91 TEAM Very high 1.1

PCON Nominal 1 PMAT Nominal 4.68

TOOL Very high 0.78

SITE Nominal 1

SCED Nominal 1

Table II presents the values of the cost drivers and scale

factors used for COCOMO II. These values were chosen

because the applications evaluated in this study are data

compression and video processing applications, which require

more than 95% of the main memory due to the large volume

of data that will be processed. The parallel code use more

than 95% of the available processors in order to achieve

high performance. The development team has a few years of

1Codes in: https://github.com/GMAP/code-metrics-EuromicroSEAA-2021
2Available in: https://dwheeler.com/sloccount/.
3Available in https://notepad-plus-plus.org.
4Available in: http://www.lizard.ws/.
5Available in: https://github.com/dborowiec/commentedCodeDetector.

experience in developing these types of applications and has

been able to use the parallel APIs effectively and efficiently.

Also, no deadline was required for the applications developed.

To compare the estimated development time by Halstead

and COCOMO II, we converted both values to days needed

to develop the application. IFC and CCN were also measured

as the sum of complexities from each function in the program.

IV. EVALUATION

Table III presents the results for each application imple-

mented by the parallel APIs and the sequential version. Our

results show that SPar presented the lowest number of LOC,

NOC, and TOC compared to the other parallel APIs, consid-

ering all applications. This is because the SPar programming

model requires only to insert annotations in the code without

major changes. Compared to the sequential version, the LOC

value is only 5.80% greater for Dedup, 4.31% greater for

Lane Detection, and 6.62% greater for Person Recognition.

For Bzip2 and Denoiser, more code changes were required,

where the LOC value increased by 35.34% and 28.40%,

respectively. Similarly, there was a smaller difference between

the NOC and TOC values when comparing the sequential

version and the SPar version for Dedup, Lane Detection and

Person Recognition. In addition, NOC was not impacted by

the developers’ verbosity since it is not necessary to create

any data structures to parallelize the application using SPar.

FastFlow and TBB showed similar results. The greatest

difference was for Dedup, where the LOC, TOC, and NOC

values are 38.75%, 35.40% and 36.25% lower for TBB. This

is due to the structures required for building the farm pattern in

FastFlow. However, both parallel APIs have similar program-

ming models. For both FastFlow and TBB, the application

used similar data structures (class/struct) for each stage

of the pipeline. In addition, communication among the stages

TABLE III: Results on code size and complexity.

Application APIs LOC NOC TOC CCN IFC
Sequential 1327 35087 9592 288 1005
FastFlow 1991 54071 14184 431 5341
Pthreads 2312 61223 16199 473 6289

SPar 1796 49270 13148 392 5118
Bzip2

TBB 1868 51136 13732 404 7234
Sequential 569 18346 3902 111 2960
FastFlow 1027 32688 6833 192 3726
Pthreads 1052 35243 7322 196 1164

SPar 602 20261 4313 119 3088
Dedup

TBB 629 21121 4356 116 24
Sequential 176 7778 1590 28 30
FastFlow 243 9699 2006 35 643
Pthreads - - - - -

SPar 226 9660 1942 34 792
Denoiser

TBB 271 10718 2195 39 592
Sequential 116 3344 979 13 0
FastFlow 166 4384 1256 22 49
Pthreads 360 9639 2187 41 888

Spar 121 3496 1024 13 0

Lane
Detection

TBB 168 4648 1331 22 49
Sequential 136 5064 1172 18 0
FastFlow 194 6586 1557 28 49
Pthreads 393 11250 2476 46 888

SPar 145 5687 1239 18 0

Person
Recognition

TBB 193 6808 1560 25 49

293

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:40:17 UTC from IEEE Xplore. Restrictions apply.

Bzip2 Dedup Denoiser
Lane

 Detection
Person
 Recog.

Sequential
FastFlow
Pthreads
SPar
TBB

D
ev

el
op

m
en

t T
im

e
(d

ay
s)

0
20

40
60

80

(a) Halstead.

Bzip2 Dedup Denoiser
Lane

 Detection
Person
 Recog.

Sequential
FastFlow
Pthreads
SPar
TBB

D
ev

el
op

m
en

t T
im

e
(d

ay
s)

0
50

10
0

15
0

20
0

(b) COCOMO II.

Fig. 1: Results of development time estimated.

is also performed in a similar way, where the current stage

returns it as a pointer to be processed by the next stage

after processing a task. This number could be improved if

the application would be written using lambda functions [21],

[24], but it does not prove better productivity.

As expected, Pthreads presented the worst result among the

parallel APIs, with the highest value of LOC, NOC, and TOC.

In the worst case, it achieved LOC, NOC, and TOC values

171.03%, 175.71%, and 113.57% greater than SPar, respec-

tively. This is because of its low-level programming model and

programmers are required to explicitly implement and manage

parallelism techniques, strategies, and mechanisms.

Although program length is used as a predictor of maintain-

ability and reability [5], it is not possible to predict how a par-

allel application will behave based on its length alone. There

are other factors that directly impact the development effort

of parallel applications. Relevant examples are programming

model, architecture, and experience of developers. Each of

these factors has its own particular characteristics that impact

on the development effort differently. While experienced paral-

lel programmers are more aware of the problems faced, novice

parallel programmers may not know to follow the correct path

for parallelizing the code. Moreover, code size alone does not

guarantee that the application is concise and delivers better

performance. Therefore, LOC, NOC and TOC are only useful

for measuring the manual exercised effort of developers if they

are used together with other coding metrics.

Table III also presents the results of CCN and IFC. Our

results show that the applications parallelized with SPar

present the smaller CCN for Bzip2 (36.11% greater than

sequential), Denoiser (21.43% greater than sequential), Lane

Detection (same as sequential), and Person Recognition (same

as sequential). Dedup parallelized with TBB has CCN 2.52%

lower than SPar. It occurs because the CCN metric considers

the annotations of SPar as nodes with possible paths. Also, as

with the length metrics, Pthreads shows the worst result for

the CCN metric. A procedure with CNN value greater than

10 can be problematic [16]. The results in Table III show that

all analyzed case obtained CCN in such situation. It confirms

that parallel applications are more complicated to implement.

Considering IFC, the results regarding complexity are dif-

ferent from those obtained with CCN. For Bzip2, Lane De-

tection (same as sequential) and Person Recognition (same as

sequential), SPar presents the smaller IFC. For Dedup, TBB

presents the smaller IFC, which is 99.22% lower than SPar. For

Denoiser, Fastflow presents the smaller IFC, which is 18.81%

lower than SPar. Moreover, IFC presents results related to

complexity equal to zero. It occurs Lane Detection and Person

Recognition applications, in which the sequential application

has only the main function. When parallelizing Lane Detection

and Person Recognition, the application structure is maintained

because it is not necessary to create any data structure to

parallelize the application with SPar - we just need to insert

the annotations in the code. If the program contains only the

main function in the code, IFC is equal to zero even though

there is a complexity in adding the parallel directives.

Fig. 1a shows the results of Halstead’s development time.

Results show that SPar presents the smaller estimated devel-

opment time for Bzip2, Dedup, Lane Detection, and Person

Recognition. Denoiser implemented with Fastflow has a es-

timated development time 0.72% lower than SPar. Although

very small, such difference is due to the way the programming

difficulty is calculated in Eq. 8. While the FastFlow version has

more number of operands and total occurrences of operands

than the version implemented with SPar, the estimated pro-

gramming difficulty is lower for FastFlow. This may have

occurred because the tool used to calculate the Halstead’s

measures does not consider the keywords of the parallel APIs

such as operators. Thus, SPar and FastFlow presented the same

number of operators (n1 = 47).

Fig. 1b presents the results of COCOMO II for each ap-

plication implemented by the parallel APIs and the sequential

version. Results shows that SPar presents the smaller estimated

development time using COCOMO II for all the applications.

As COCOMO II evaluates the development effort based on the

LOC and SPar presents the smallest LOC for all applications,

SPar then should present the smallest development time. On

the other hand, Pthreads requires the larger times to develop

294

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:40:17 UTC from IEEE Xplore. Restrictions apply.

a parallel application, as it has the greater LOC value in

comparison to the applications with other parallel APIs.

Although we converted the development time estimated

by Halstead and COCOMO II to days, the metrics showed

different results. For Lane Detection, it took approximately

85 days to develop the SPar application according to CO-

COMO II. On the other hand, according to Halstead, it took

approximately 1 day (≈ 99.52% lower). A complex application

as this could not be developed from scratch in just 1 day,

even if the developer had several years of experience in C++

and SPar. This occurs because the Halstead model does not

consider essential aspects of software development, such as

the developers’ profiles. Therefore, COCOMO II seems to be

a more complete model in comparison to Halstead. However,

it does not consider factors that impact on the development

of parallel applications, such as the developers’ experience

in parallel programming, the programming model used, the

architecture etc. In addition, COCOMO II considers that the

application will be implemented from scratch disregarding the

insertion of parallel directives in the code.

V. CONCLUSIONS

LOC, NOC, and TOC metrics have shown to be insightful

for comparing parallel applications with respect to code size.

CCN proved to be more effective than IFC for measuring

the complexity of a parallel program. However, CCN proved

to be limited when evaluating SPar because it considers the

annotations as another loop. Alternatively, a metric could

be proposed based on the number of concurrent activities

(CA) set up in the program and the number of interactions

(INTER) among parallel activities deployed in the code. This

complexity could be calculated with CA× INTER.

COCOMO II proved to be the most suitable metric for

evaluate the productivity of parallel APIs. However, only

the CPLX cost driver assess the complex parallel computing

operations. There are other factors that can impact the devel-

opment of parallel applications, such as programming model,

architecture, developer’s background, and application domain.

Performance of applications is another idea from [15] that can

be included to these factors as well as the number of activities

that will be executed simultaneously, or even the amount of

data shared and accessed concomitantly among threads.

This study has some threats to validity. The learning effect

can be a threat to internal validity, because no order for

the use of the parallel APIs was specified. Another threat to

internal validity is related to instrumentation, such as the use

of CCD tool, which does not recognize parallel API keywords

as operators. The study design can be a threat to construction

validity, because FastFlow, SPar and TBB are pattern-based

parallel APIs, unlike Pthreads. Finally, a threat to the validity

of conclusion is the size of the applications evaluated.

A future investigation could be the extension of the CO-

COMO II to evaluate parallel programs by including new

cost drivers concerning the factors that affect the development

effort of such applications. Reusing the knowledge acquired

from years now, the model could be fine-tuned.

ACKNOWLEDGMENT

This research is partially supported by Università

di Pisa PRA 2018 66 DECLWARE, Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil

(CAPES) - Finance Code 001, FAPERGS 05/2019-PQG

project PARAS (No 19/2551-0001895-9), FAPERGS 10/2020-

ARD project SPAR4.0 (No 21/2551-0000725-7), Universal

MCTIC/CNPq No 28/2018 project SPARCLOUD (No

437693/2018-0), UNIRIO, and FAPERJ (Proc.211.583/2019).

REFERENCES

[1] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann, 2016.

[2] T. Rauber and G. Rünger, Parallel programming. Springer, 2013.
[3] M. McCool, J. Reinders, and A. Robison, Structured parallel program-

ming: patterns for efficient computation. Morgan Kaufmann, 2012.
[4] ISO 9241-11:2018, “Ergonomics of human-system interaction – Part

11: Usability: Definitions and concepts,” Geneva, Switzerland, 2018.
[Online]. Available: https://www.iso.org/standard/63500.html

[5] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi, “Productivity
analysis of the upc language,” in 2004 IPDPS Conference. Santa Fe,
USA: IEEE, 2004.

[6] L. Hochstein, J. Carver, F. Shull, S. Asgari, V. Basili, J. K.
Hollingsworth, and M. V. Zelkowitz, “Parallel programmer productivity:
A case study of novice parallel programmers,” in Proceedings of the
2005 ACM/IEEE Conf. on Supercomputing. Seatle, USA: IEEE, 2005.

[7] V. Pankratius, A. Jannesari, and W. F. Tichy, “Parallelizing bzip2: A
case study in multicore software engineering,” IEEE software, vol. 26,
no. 6, pp. 70–77, 2009.

[8] S. Okur and D. Dig, “How do developers use parallel libraries?” in
Proceedings of the SIGSOFT/FSE’12. New York, USA: ACM, 2012.

[9] S. Nanz, S. West, and K. S. Da Silveira, “Examining the expert gap
in parallel programming,” in Euro-Par’13. Aache, Germany: Springer,
2013, pp. 434–445.

[10] D. Griebler, D. Adornes, and L. G. Fernandes, “Performance and Usabil-
ity Evaluation of a Pattern-Oriented Parallel Programming Interface for
Multi-Core Architectures,” in Proceedings of SEKE 2014. Vancouver,
Canada: KSIGS, Jul 2014, pp. 25–30.

[11] S. Nanz and C. A. Furia, “A comparative study of programming
languages in rosetta code,” in Proceedings of ICSE ’15, vol. 1. Florence,
Italy: IEEE, 2015, pp. 778–788.

[12] J. Miller, S. Wienke, M. Schlottke-Lakemper, M. Meinke, and M. S.
Müller, “Applicability of the software cost model cocomo ii to hpc
projects,” IJCSE, vol. 17, no. 3, pp. 283–296, 2018.

[13] D. Griebler, R. B. Hoffmann, M. Danelutto, and L. G. Fernandes, “High-
Level and Productive Stream Parallelism for Dedup, Ferret, and Bzip2,”
IJPP, vol. 47, no. 1, pp. 253–271, 2018.

[14] J. Fernàndez-Fabeiro, A. Gonzalez-Escribano, and D. R. Llanos, “Sim-
plifying the multi-gpu programming of a hyperspectral image registra-
tion algorithm,” in HPCS 2019. IEEE, 2019, pp. 11–18.

[15] S. Wienke, J. Miller, M. Schulz, and M. S. Müller, “Development effort
estimation in hpc,” in SC’16. IEEE, 2016, pp. 107–118.

[16] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach, 3rd ed. CRC press, 2015.

[17] M. H. Halstead, Elements of software science. Elsevier, 1977.
[18] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software

Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.
[19] S. Henry and D. Kafura, “Software structure metrics based on infor-

mation flow,” IEEE transactions on Software Engineering, no. 5, pp.
510–518, 1981.

[20] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece, Software cost
estimation with COCOMO II. Prentice Hall PTR, 2000.

[21] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “FastFlow:
high-level and efficient streaming on multi-core,” in Programming multi-
core and many-core computing systems. Wiley, 2014.

[22] B. Nichols, D. Buttlar, J. Farrell, and J. Farrell, Pthreads programming:
A POSIX standard for better multiprocessing. O’Reilly Media, 1996.

[23] D. Griebler, M. Danelutto, M. Torquati, and L. G. Fernandes, “SPar:
A DSL for High-Level and Productive Stream Parallelism,” Parallel
Processing Letters, vol. 27, no. 01, p. 1740005, 2017.

[24] M. Voss, R. Asenjo, and J. Reinders, Pro TBB: C++ Parallel Program-
ming with Threading Building Blocks. Apress, 2019.

295

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 10,2023 at 13:40:17 UTC from IEEE Xplore. Restrictions apply.

