
Impact of failures in a MPSoC with shared coprocessors to extend
the RISC-V ISA

Jorge Reis
jorge.reis@lesc.ufc.br

PPGETI-UFC Federal University of
Ceará

Fortaleza, Ceará, Brazil

Jarbas Silveira
jarbas@lesc.ufc.br

PPGETI-UFC Federal University of
Ceará

Fortaleza, Ceará, Brazil

César Marcon
cesar.marcon@pucrs.br

PPGCC-PUCRS Pontifical Catholic
University of Rio Grande do Sul
Porto Alegre, Rio Grande do Sul

Brazil

ABSTRACT
Reduced Instruction Set (RISC) architectures optimize a complex
ISA by implementing only the most frequently used instructions
in hardware; however, the application execution time significantly
increases when executing heavily used instructions in software.
One technique that optimizes the trade-off of implementation cost
and execution time is the use of a Multiprocessor System-on-Chip
(MPSoC), in which RISC processors extend their ISA by sharing
coprocessors that implement lesser-used instructions. This article
analyses the impact of shared coprocessor failures on two RISC-V
MPSoC architectures. We evaluated these architectures using two
image processing applications and four failure rates in terms of
power dissipation, energy consumption, area consumption, maxi-
mum operating frequency, and execution time. The experiments
show a 16% maximum increase in execution time for the application
with a low percentage of instructions executed. In contrast, for the
application with the highest rate of coprocessor use, considering
a one-fault scenario, the execution time does not increase signifi-
cantly in one of the architectural configurations proposed for the
MPSoC.

CCS CONCEPTS
• Computer systems organization→ Fault-tolerant network
topologies; Redundancy; System on a chip.

KEYWORDS
RISC-V, ISA, MPSoC shared resources, NoC, Fault Tolerance

ACM Reference Format:
Jorge Reis, Jarbas Silveira, and César Marcon. 2022. Impact of failures in a
MPSoC with shared coprocessors to extend the RISC-V ISA. In 11th Latin-
American Symposium on Dependable Computing (LADC 2022), November
21–24, 2022, Fortaleza/CE, Brazil. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3569902.3569906

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LADC 2022, November 21–24, 2022, Fortaleza/CE, Brazil
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9737-7/22/11. . . $15.00
https://doi.org/10.1145/3569902.3569906

1 INTRODUCTION
Underutilized instructions in an Instruction Set Architecture (ISA)
can increase area and power costs if implemented in hardware
or increase execution time if implemented by software routines
[6][1][3]. The Reduced Instruction Set Computer (RISC) architec-
ture is a solution for reducing the ISA and simplifying hardware
implementation.

RISC-V is a modular ISA that includes a 32-bit standard ISA called
RV32I that can perform all computer functions with only integer
and control instructions and emulate other modular extensions by
software routines [8]. But while this reduces the complexity of the
CPU, the program execution time increases. So, to boost RV32I
processing power, these extensions can also be implemented in
hardware. This modular design of RISC-V provides different ap-
proaches to implementing an ISA. Nevertheless, a RISC-V processor
can have an underutilized extension implemented on hardware.

Several studies [5] [2] [7] [4] show that a way to minimize these
problems is by utilizing a Multiprocessor System-on-Chip (MPSoC)
to extend the ISA amongmultiple processors. This work proposes an
MPSoC using arithmetic coprocessors to extend the ISA of multiple
low-complexity 32-bit RISC-V processors (RV32I), sharing them to
implement the modular extension RV32M and what happens to
them when some of these coprocessors fail.

The remaining of this article is organized as follows. Section
II gives an overview of related works. In Section III, we present
the target architecture of this work describing the elements of the
MPSoC and the fault models. Subsequently, Section IV explains the
metrics and benchmarks in our experimentation. Finally, Section V
discusses the results, and Section VI summarizes the conclusions
of this work.

2 RELATEDWORK
This paper proposes to expand the RISC-V ISA using RV32I pro-
cessors and shared coprocessors implementing the extension con-
nected through an NoC, as presented in Lima et al. [5], and analyze
the outcomes in the system when part of the coprocessors starts to
fail.

Lima et al. [5] address this issue by presenting an MPSoC that
allows ISA to extend multiple RV32I processors, simultaneously
sharing system resources. This way, the hardware cost decreases
at a low penalty for the program execution time. Four different
scenarios were analyzed in their work, comparing area and energy
consumption, power dissipation, and execution time. Unlike our
work, they do not examine the impact of failures on the coprocessors
shared amongst the RV32I processors.

29

https://doi.org/10.1145/3569902.3569906
https://doi.org/10.1145/3569902.3569906
https://doi.org/10.1145/3569902.3569906
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569902.3569906&domain=pdf&date_stamp=2023-01-17

LADC 2022, November 21–24, 2022, Fortaleza/CE, Brazil Jorge Reis, Jarbas Silveira, and César Marcon

Becker et al. [2] propose to trim off the support for costly ISA
extensions in some cores of the MPSoC, transforming them into
Partial-ISA cores. The proposal was tested using the Floating Point
operations of a RISC-V ISA extension as a case study, evaluating
power and area reduction with real-life processor descriptions.
Their results showed that it is possible to reduce energy consump-
tion with a better energy-delay trade-off reducing the support for
underutilized instructions, which is done in our work by sharing
the coprocessors that implement them as opposed to trimming
them.

Vieira et al. [7] propose a Single-ISA asymmetric multicore archi-
tecture to combine high performance and energy efficiency in the
same chip by providing different microarchitectures so the applica-
tions can transparently migrate from one to another accordingly.

This work proposes a mechanism that optimizes the use of hard-
ware resources to have an energy-efficient MPSoC, supporting a
complex ISA set through coprocessors. Unlike [2], this work has
a similar approach to the one our work proposes: optimizing the
implementation of the underutilized instructions.

3 TARGET ARCHITECTURE
This work expands the RV32I architecture to RV32IM by imple-
menting the RV32M extension instructions in themultiplication and
division coprocessors shared between the MPSoC RV32I processors.
Among the various configurations of coprocessor organization ana-
lyzed by Lima et al. [5], FineGrain Coprocessing (FGC) obtained the
best cost-benefit among area consumption, power dissipation, and
execution time; therefore, we chose this configuration to analyze
the fault-tolerant architecture.

The target architecture is a 3D MPSoC in a 4x4x2 configuration
with 16 RV32I processors, eight multiplication, and eight division
coprocessors. All coprocessors are shared by MPSoC processors
that execute RV32M extension instructions, sending packets with
the instruction and data and receiving back packets containing the
result.

In a no-fault scenario, each coprocessor is shared by only two
processors. However, in fault scenarios, the workload of each failed
coprocessor executes in a no-fault coprocessor.

3.1 Processor
The target architecture employs a single-cycle processor imple-
mentation of the RISC-V architecture that supports the RV32I and
RV32M (“M” extension) ISAs. The RV32I configuration can perform
multiplication and division operations via software to emulate the
RV32M. The RV32M extension adds four multiplication operations
(MUL, MULH, MULHSU, and MULHU) and four division operations
(DIV, DIVU, REM, and REMU) to the RV32I ISA.

The RV32M extension in coprocessors external to the datap-
aths of processors that implement the RV32I architecture allows
programs to be compiled for an RV32IM architecture.

3.2 NoC
We use a 3D NoC with 4x4x2 regular mesh topology, XYZ rout-
ing, wormhole packet switching, on-off flow control, and buffering
at the input ports. It also features fixed priority and round-robin
scheduling. A router with six ports (north, south, east, west, up,

and down), a Network Interface (NI), and a PE with its local mem-
ory make up each NoC tile. The NI is in charge of interfacing the
router and PE by packing and unpacking data. Figure 1 displays
the structure of an NoC tile. Each PE can be a processor, as shown
in Figure 1a, a divider arithmetic coprocessor, as shown in Figure
1b, or a multiplier arithmetic coprocessor, as shown in Figure 1c.

Figure 1: Configuration of the MPSoC tiles.

3.3 Architectural Organization
Figure 2 shows that the MPSoC processing elements are organized
into FGC and FGC_MIX configurations.

In the FGC configuration, the first layer has only RV32I proces-
sors, and the second has multiplication and division coprocessors.
In this configuration, the processors share the two closest multi-
plication and division coprocessors, keeping the maximum load
distribution at two processors per coprocessor. For example, in
Figure 2a, processors 0 and 1 share coprocessors 16 and 17, while
processors 6 and 7 share coprocessors 22 and 23.

In the FGC_MIX configuration, the first layer has RV32I pro-
cessors and division coprocessors, while the second has RV32I
processors and multiplication coprocessors, as illustrated in Figure
2b. In this way, each processor has a multiplication and division
coprocessor one hop away, reducing the time spent by traffic in the
NoC. For example, processors 1 and 15 share coprocessors 0 and
17, and it is possible to notice that the two are one hop away from
their coprocessors in this configuration.

3.4 Fault Models
To analyze the impact of shared coprocessor failures in the system,
we choose two, six, and eight coprocessors (12.5%, 37.5% and 50%
of the total coprocessors), injecting faults before runtime. For each
fault rate, half is from the multiplication arithmetic coprocessor and
the other half from the division arithmetic coprocessor. Moreover,
we selected a spare coprocessor to handle the workload of each
failed coprocessor to ensure that processes do not fail due to these
crashes.

For each number of faults, we randomly chose coprocessors
in three models designated as A, B, and C. There are nine-fault
scenarios for FGC, nine-fault scenarios for FGC_MIX, and one
scenario without faults for each configuration, totaling 20 scenarios

30

Impact of failures in a MPSoC with shared coprocessors to extend the RISC-V ISA LADC 2022, November 21–24, 2022, Fortaleza/CE, Brazil

Figure 2: Proposed architectural organization of the MPSoC.

regarding FGC or FGC_MIX configurations, number of faults (0F,
2F, 6F, or 8F), and model (A, B or C).

After the fault selection process for the simulation, its replace-
ment is selected according to the following criteria:

• Must be the same type as the failed coprocessor;
• Must be chosen from the options with the fewest hops away
for the processors affected by the failure;

• Not yet being used as a replacement for another failed co-
processor.

According to these criteria, each coprocessor chosen as a replace-
ment is shared by a maximum of four processors. It is important
to emphasize that this work aims to evaluate the behavior of the
MPSoC RV32I processors by changing the number of shared copro-
cessors to run the RV32M extension and not structural NoC faults.
Therefore, the NoC topology is kept intact; only the coprocessor
address used in each affected processor is changed, enabling the
processors to send instructions to the replacement coprocessors.

In FGC_MIX configuration fault scenarios, the best replacement
case has the substitute coprocessor one hop away from an affected
processor and three hops away from the other. While in the FGC

configuration, the best replacement case has the substitute copro-
cessor two hops away from an affected processor and three hops
away from the other.

Figure 3 illustrates the 6F FGC_MIX B scenario displaying the six
fault coprocessors and the chosen substitutes. The multiplication
coprocessor 22 used by RV32I numbers 6 and 23 in the first and
second layers failed. The chosen replacement pointed by the red
arrow is the multiplier 19 in the second layer because it followed
the determined criteria of being one hop away from the 23 pro-
cessors and three hops away from the 6. One case in which this
does not occur is for processors 12 and 29, in which the division 13
coprocessor shared by them fails, and the only one that meets the
established criteria is number 15, which is three hops from each
other. For processor number 12, the situation is more critical be-
cause the multiplier shared by both fails, and the substitute is three
hops away. Therefore, this processor takes the most significant
number of MPSoC cycles to complete its part of the application.

Figure 3: Fault scenario 6F FGC_MIX B.

4 METRICS AND EXPERIMENTS
4.1 Metrics
The metrics used to evaluate the experiments are the following:

• The total area of the synthesized MPSoC, obtained by sum-
ming cells and connections between these cells;

• Dissipated power;
• Maximum operating frequency reached in the synthesis;
• Number of cycles required for the program execution;
• Energy consumed in each scenario regarding a benchmark.

4.2 Benchmarks
All scenarios were analyzed using Contrast and Conv digital image
processing programs. Both programs use the sixteen processors
available in the MPSoC, dividing the task of processing each part
of the image among the processors.

The Contrast benchmark is a program that receives an image
as input and adjusts its contrast. The multiplication and division

31

LADC 2022, November 21–24, 2022, Fortaleza/CE, Brazil Jorge Reis, Jarbas Silveira, and César Marcon

instructions are 2.1% and 1.4% of the total number of instructions,
respectively. The Conv benchmark uses the Sobel filter to convolve
a mask against an input image. This benchmark has 5.6% of multi-
plication instructions from the total number of instructions, and
there are no division operations.

Figure 4 exemplifies the flowchart of the applications. A python
script generates a header containing the datasets to be processed
and one to be used as a reference. The application divides the
image processing among the MPSoC threads, and after finishing
the processing, it compares the obtained result with the reference
dataset, returning success or failure.

Figure 4: Flowchart of developed applications.

4.3 Evaluation Procedure
Scenarios were simulated and validated with Verilator; the results
related to the synthesis metrics were obtained with the Genus Syn-
thesis Solution, configured for a 65 nm CMOS technology and 100
MHz operating frequency. Reports on power dissipation, execution
time, operating frequency, and area consumption are presented in
the next section.

5 EXPERIMENTAL RESULTS
Table 1 displays the synthesis results of power dissipation, area
consumption, and maximum operating frequency for both archi-
tectural MPSoC configurations. The synthesis results are similar,
as the difference between the two scenarios is only the placement
of tiles.

Table 1: Synthesis Results

Scenario Power (mW) Area
(mm2)

Freq
(MHz)Leakage Dynamic Total

FGC 32.508 203.065 235.574 4.13 100.0
FGC_MIX 32.398 204.635 237.033 4.12 100.0

Table 2 displays the data related to the execution time of the
benchmarks. N_Cycles is the number of cycles required to complete
the benchmark run, INC(%) is the percentage increase in the number
of cycles compared to the no-fault scenarios, and std_dev is the
standard deviation of the FGC and FG_MIX scenarios by the number
of failures. The execution time in ms is calculated using the number
of cycles obtained by the simulation and the operating frequency
calculated with the synthesis results.

In the 0F FGC_MIX scenario, the execution of the Contrast appli-
cation is completed with several cycles, only 3.7% less than in the 0F
FGC scenario. In the Conv application, the 0F FGC_MIX scenario is
executed with several cycles 15% less than the FGC configuration.

In the three 2F FGC scenarios, in the Contrast application, the
increase in the number of cycles presented more uniform values
than the 2F FGC_MIX scenarios, which have a higher standard
deviation. However, all FGC_MIX scenarios continue with a shorter
execution time than the FGC scenarios.

The Conv application shows that the percentage increase in
the number of cycles is significantly higher than in the Contrast
application, as the percentage of instructions used in the RV32M
extension is higher in the Conv application. In this way, the load
of packets sent by the CPU to the coprocessors is more significant,
which increases the weight of the number of cycles spent on packet
traffic on the network.

Furthermore, the behavior observed in the 0F scenarios is the
opposite of that observed in the 2F scenarios, with all FGC configu-
rations having a shorter execution time than the FGC_MIX config-
urations. This opposite behavior happens because the FGC_MIX
configuration has a lower number of hops among RV32I tiles, and
the number of MUL or DIV tiles is minimized with the increase
in the number of hops between the processors affected by failure
and replacement coprocessors. In the three 2F FGC scenarios, the
increase in the number of cycles presented more uniform values
than the FGC_MIX scenarios with a higher standard deviation.

With six coprocessors failing, both scenarios had a high standard
deviation value in the Contrast application. The FGC A scenario
presented the same execution time as the FGC_MIX B scenario,
while the other FGC scenarios continued with a shorter execution
time than the FGC_MIX scenarios.

In the Conv application, the standard deviation of the FGC sce-
narios was high mainly because of the 6F FGC B scenario, which
presented a much lower execution time than the others, with a
value close to that of the 2F FGC B scenario. This happened because
all route deviations for replacement coprocessors could get the
lowest number of hops for replacement, unlike the 6F FGC A E C
scenarios.

The data uniformity of the two applications of the 8F scenarios
occurs because, in all scenarios, some processors did not obtain
the lowest possible number of hops for their replacement coproces-
sor. The behavior observed in the FGC_MIX scenarios of having
a shorter execution time, even if not so significant, is inherent in
the configuration having a smaller number of hops of the distance
between the source-destination pairs.

We notice some 2F scenarios with execution times of the same
magnitude as those with 6F or 8F. For example, we see similar
execution times in 2F FG_MIX C and 6F FGC_MIX C scenarios
and 2F FGC_MIX A and 8F FGC_MIX B, regarding Contrast and
Conv applications, respectively. Figures 5 and 6 clarify these cases
showing the number of cycles required for each MPSoC processor
to complete the benchmark execution, allowing a more detailed
analysis of the 2F FGC_MIX A and 8F FGC_MIX B scenarios.

Table 2 displays that the 2F scenario completes the Conv bench-
mark with some cycles of the same magnitude as the 8F scenario,
even though the number of failures has quadrupled. This execution

32

Impact of failures in a MPSoC with shared coprocessors to extend the RISC-V ISA LADC 2022, November 21–24, 2022, Fortaleza/CE, Brazil

Table 2: Execution Time

SCENARIO CONTRAST CONV
N CYCLES INC(%) Execution time (ms) std_dev N CYCLES INC (%) Execution time (ms) std_dev

0F FGC 8438384 84.4 0 3219214 32.2 0
FGC_MIX 8133248 81.3 0 2731342 27.3 0

2F

FGC A 8944496 6% 89.4
0.54

3726437 16% 37.3
0.02FGC B 8928072 6% 89.3 3722953 16% 37.2

FGC C 9050182 7% 90.5 3721989 16% 37.2
FGC_MIX A 8851166 9% 88.5

1.02
4035044 48% 40.4

0.13FGC_MIX B 8782510 8% 87.8 4039401 48% 40.4
FGC_MIX C 9023972 11% 90.2 4010862 47% 40.1

6F

FGC A 9344860 11% 93.4
2.05

4162851 29% 41.6
2.18FGC B 9251569 10% 92.5 3736972 16% 37.4

FGC C 9725494 15% 97.2 4227448 31% 42.3
FGC_MIX A 8820825 8% 88.2

2.37
4047167 48% 40.5

0.02FGC_MIX B 9344838 15% 93.4 4049401 48% 40.5
FGC_MIX C 8864678 9% 88.6 4052806 48% 40.5

8F

FGC A 9733104 15% 97.3
0.08

4152418 29% 41.5
0.05FGC B 9744527 15% 97.4 4162874 29% 41.6

FGC C 9725494 15% 97.2 4162253 29% 41.6
FGC_MIX A 9411959 16% 94.1

0.12
4026550 47% 40.3

0.22FGC_MIX B 9434138 16% 94.3 4024374 47% 40.2
FGC_MIX C 9406855 16% 94.1 4072358 49% 40.7

Figure 5: Number of cycles to complete benchmark execution
for each processor.

time happens because the number of cycles increases across the
MPSoC processors as the number of failures increases.

Table 3 displays the energy consumption of running the Contrast
and Conv applications in mJ. The table also shows the percentage
increase in energy consumption for each scenario compared to the
equivalent 0F scenario. This increase is proportional to the rise in
the number of cycles.

Figure 6: Number of cycles to complete benchmark execution
for each processor.

Both 0F FGC and FGC_MIX scenarios present similar energy
consumption in the Contrast application, whereas, for 2F scenarios,
the increase was 6-11% compared to equivalent 0F scenarios. For
the 6F scenarios, the increase ranges from 8.5% to 15.3%. Finally, for
scenarios with 8F, the increase ranges from 15.3% to 16%. Important
to note that all scenarios reach a saturation level at 8F, but the 6F
FGC C scenario reached this saturation earlier.

33

LADC 2022, November 21–24, 2022, Fortaleza/CE, Brazil Jorge Reis, Jarbas Silveira, and César Marcon

Table 3: Energy Consumption of each Scenario

SCENARIO CONTRAST CONV
Energy (mJ) Inc (%) Energy (mJ) Inc (%)

0F FGC 19.9 7.6
0F FGC_MIX 19.3 6.5
2F FGC A 21.1 6.0 8.8 16.0
2F FGC B 21.0 6.0 8.8 16.0
2F FGC C 21.3 7.0 8.8 16.0

2F FGC_MIX A 21.0 9.0 9.6 48.0
2F FGC_MIX B 20.8 8.0 9.6 48.0
2F FGC_MIX C 21.4 11.0 9.5 47.0

6F FGC A 22.0 11.0 9.8 29.0
6F FGC B 21.8 10.0 8.8 16.0
6F FGC C 22.9 15.0 10.0 31.0

6F FGC_MIX A 20.9 8.0 9.6 48.0
6F FGC_MIX B 22.2 15.0 9.6 48.0
6F FGC_MIX C 21.0 9.0 9.6 48.0

8F FGC A 22.9 15.0 9.8 29.0
8F FGC B 23.0 15.0 9.8 29.0
8F FGC C 22.9 15.0 9.8 29.0

8F FGC_MIX A 22.3 16.0 9.5 47.0
8F FGC_MIX B 22.4 16.0 9.5 47.0
8F FGC_MIX C 22.3 16.0 9.7 49.0

For the Conv application in 0F scenarios, the FGC topology con-
sumes approximately 14% more power than FGC_MIX. For the 2F
scenarios, the FGC_MIX settings consumed 7% more energy than
the FGC_MIX settings, inverting the 0F scenario. For the 6F scenar-
ios, the FGC A and C scenarios increase the energy consumption
in percentage compared to the 2F scenario, unlike the FGC_MIX
and FGC B scenarios, which did not have a significant increase in
energy consumption. Finally, in the 8F scenario and the Contrast ap-
plication, the energy consumption reaches a saturation level; thus,
the FGC_MIX and FGC scenarios had similar energy consumption.

6 CONCLUSIONS
This paper analyzed the impact of failures on the coprocessors of a
system that extends the ISA from multiple RISC-V processors using
shared coprocessors in anMPSoC.We created 20 test scenarios with
four faulty rates (0, 12.5%, 37.5%, and 50%), two architectures for
the MPSoC (FGC and FGC_MIX), and three different fault scenarios
(a, b and c).

The Contrast application has a lower percentage of instructions
on the RV32M extension and therefore depends less from the MP-
SoC arithmetic coprocessors. So with up to 50% of coprocessors
failing, the execution time and energy consumption increase was
only 15-16%.

The Conv application, which has a higher percentage of instruc-
tions from the RV32M extension and therefore uses the MPSOC
arithmetic coprocessors more, with 12.5% of the coprocessors fail-
ing, the increase in execution time already reached 16% for the FGC
configuration and 48% for FGC_MIX. With 50% of failures in the

coprocessors, the number of cycles and energy consumption con-
tinue to increase, reaching 29% in the FGC scenarios, and remains
without a significant increase in the FGC_MIX scenarios.

Future work includes detecting the failures and analyzing the
costs of the replacement strategy during runtime.

REFERENCES
[1] Rafael Auler and Edson Borin. 2017. The Case for Flexible ISAs: Unleashing Hard-

ware and Software. 2017 29th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD) (2017), 65–72.

[2] Pedro Henrique Exenberger Becker, Jeckson Dellagostin Souza, and A. C. S. Beck.
2020. Tuning the ISA for increased heterogeneous computation in MPSoCs. 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE) (2020), 1722–
1727.

[3] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and
Grigore Rosu. 2019. A complete formal semantics of x86-64 user-level instruction
set architecture. Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2019).

[4] Mahmoud A. Elmohr, Ahmed S. Eissa, Moamen Ibrahim, Mostafa Khamis, Sameh
El-Ashry, Ahmed Shalaby, Mohamed Abdelsalam, and Mohamed Watheq El-
Kharashi. 2018. RVNoC: A Framework for Generating RISC-V NoC-Based MPSoC.
2018 26th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP) (2018), 617–621.

[5] Pedro Lima, Caio Vieira, Jorge Reis, Alexandre Almeida, Jarbas A. N. Silveira,
Roger C. Goerl, and César A. M. Marcon. 2020. Optimizing RISC-V ISA Usage
by Sharing Coprocessors on MPSoC. 2020 IEEE Latin-American Test Symposium
(LATS) (2020), 1–5.

[6] Bruno Cardoso Lopes, Rafael Auler, Luiz Ramos, Edson Borin, and Rodolfo Azevedo.
2015. SHRINK: Reducing the ISA complexity via instruction recycling. In 2015
ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).
311–322. https://doi.org/10.1145/2749469.2750391

[7] Caio Vieira and Antonio Carlos Schneider Beck. 2021. Improving energy efficiency
by transparently sharing SIMD Execution Units in Assymetric Multicores. 2021
34th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design
(SBCCI) (2021), 1–6.

[8] Andrew WATERMAN and Krste ASANOVIC. 2017. The RISC-V Instruction Set
Manual, Volume I: User-Level ISA , Document Version 2.2. RISC-V Foundation.

34

https://doi.org/10.1145/2749469.2750391

	Abstract
	1 Introduction
	2 Related Work
	3 Target Architecture
	3.1 Processor
	3.2 NoC
	3.3 Architectural Organization
	3.4 Fault Models

	4 Metrics and Experiments
	4.1 Metrics
	4.2 Benchmarks
	4.3 Evaluation Procedure

	5 Experimental Results
	6 Conclusions
	References

