2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD) | 978-1-6654-5155-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/SBAC-PAD55451.2022.00034

2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-

PAD)

IntP: Quantifying cross-application interference via
system-level instrumentation

Miguel G. Xavier, Carlos H. C. Cano, Vinicius Meyer, Cesar A. F. De Rose
School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS) - Porto Alegre, Brazil
miguel.xavier @pucrs.br, carlos.cano@edu.pucrs.br, vinicius.meyer@edu.pucrs.br, cesar.derose @pucrs.br

Abstract—Large-scale container datacenters host tens of thou-
sands of diverse container-wrapped applications each day im-
proving resource usage and maintenance costs. However, resource
contention-related interference between co-located applications
can severely degrade performance, affecting the quality of service
at the user level and compromising experience. Understanding
the sources of noise that generates this interference and better
managing how to consolidate applications to physical hosts can
significantly improve resource usage and overall performance
reducing costs for providers and users. This paper presents
IntP—an open-source system-level monitoring tool, which anal-
yses selected architectural counters and operating systems data
structures to estimate the stress an application puts on each
hardware’s subsystem and consequently infer the potential in-
terference it could generate in other applications hosted in the
same physical machine. Different from state-of-the-art tools that
apply a more high-level approach using micro benchmarks and
application metrics, IntPs low level instrumentation enables a
more accurate prediction of the performance degradation that
results from contention on shared resources, with less monitoring
overhead. This information can be used to optimize scheduling
strategies, which will make datacenter more resource-efficient
and cost-effective. To show examples on how to use this tool and
validate its results we present three cases studies that applied IntP
in their interference-aware methodologies to improve resource
utilization in distributed architectures that were able to achieve
an increase up to 35% in resource efficiency and up to 25% in
user level performance.

Index Terms—Resource contention, Performance Interference,
System-level Instrumentation, Monitoring

I. INTRODUCTION

Large-scale container datacenters host tens of thousands of
diverse container-wrapped applications each day improving
resource usage and maintenance costs. However, interference
between co-located applications — the overhead generated in an
application running in a consolidated environment with other
applications due to contention in accessing shared resources
as CPU, memory, disk, and network — can severely degrade
performance, affecting the quality of service at user level and
compromising experience.

Preventing interference is a challenging task when managing
large-scale heterogeneous data centers. Allocating one host for
multiple applications increases cost efficiency and achieves
better scalability, but the applications’ performance tends to
vary unpredictably, and the performance guarantee is likely
compromised. Even allocating different applications to differ-
ent processors’ cores can induce the resources to a state of
contention, as they share uncore caches (LLC), memory buses,
storage subsystems, and the network layers [1], [2], [3].

The processor industry is trying to avoid contention with al-
ternative cross-core networks and dedicated buses from proces-
sors to memory slots, promoting higher isolation across CPU’s
cores with lower interference. Even though it has opened new
horizons for more controlled and isolated CPU architectures,
contention still exists since the capacity of devices to handle
interruptions is not superior to the capacity of buses to carry
data, leading to bottlenecks that come from hardware to
operating system drivers and application buffers. For example,
multiple application tasks randomly accessing an HDD disk
make its cylinder rotate asynchronously, reducing the number
of segments it can write per unit. Or when cache sensitive
tasks write and read data into the same shared cache, making
their cached pages dirty and impossible to be evicted and
reused. Many works have explored this topic in recent years,
especially on cache contention. StatCC [4], for example, uses
the StatStack [5] statistical model to efficiently estimate the
stack distance [6] of an application to predict the cache miss
rate for LRU caches. The cache miss ratio is commonly used
to estimate performance (CPI) and model cache contention
of co-scheduled applications. However, this also requires the
cache pages to be referenced with task labels to estimate cache
occupancy per task. Recent technologies have been embedded
in processor chips to allow operating systems to collect cache
occupancy per application task, allowing instrumentation with
lower intrusion and performance overheads.

In this paper, we present IntP, a tool which analyses selected
architectural counters and operating systems data structures
from the host machine to estimate the stress running appli-
cations put on each hardware’s subsystem and consequently
infer the potential interference they could generate in other
applications hosted in the same physical machines. Results
provided by IntP can assist data center administrators to create
scheduling strategies to place applications that stress the same
hardware subsystems onto different machines thus reducing
or even avoiding interference among them. We validate our
tool presenting three case studies that exemplify how IntP
was applied in their interference-aware strategies to improve
resource utilization in distributed architectures that were able
to achieve an increase up to 35% in resource efficiency
and up to 25% in user level performance. Specifically, our
contributions are as follows:

o We propose a methodology to quantify cross-application
interference in consolidated environments based on low

2643-3001/22/$31.00 ©2022 |EEE 231
DOI 10.1109/SBAC-PAD55451.2022.00034

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

level instrumentation that enables a more accurate pre-
diction of the performance degradation that could result
from contention on shared resources without previous
knowledge of applications and with very low monitoring
overhead;

« We introduce an open source tool called IntP ! that imple-
ments this methodology and can be easily incorporated
to interference-aware strategies;

« We demonstrate with a experiment with BigData-centric
applications how IntP can be leverage to improve
interference-aware scheduling policies;

o We present two other case studies from related work
showing how seamlessly IntP can be applied in dif-
ferent interference-aware scheduling scenarios and how
resource utilization and performance was improved by
its use.

II. BACKGROUND

Uncontrolled access to shared resources can cause perfor-
mance variations that lead applications to fail or run unsteadily.
The friction generated by the competition to access RAM, disk
storage, cache, or internal busses is called resource contention.
Many efforts have been made to alleviate contention at the
operating system level, ranging from better scheduling tech-
niques in multicore architectures [7] to dynamically addressing
mapping to minimize memory contention [8]. The steady
growth of virtual data centers has raised a concern about
resource contention and its impact in environments where
performance is crucial, and SLA cannot be violated, such
as clouds. For instance, I/O contention occurs when multiple
tasks compete for a portion of disk bandwidth in a scenario
where the demand is higher than the available resources. To
illustrate, the dispersion in Figure 1 presents a contentious
scenario in which two disk-intensive applications simultane-
ously write to/read from a single disk while the bandwidth
is not sufficient to carry all data segments to disk without
performance impacts.

200

hadoop

« liozone

hadoop

Bandwidth — (MBps)
g .8

a
L

250 500 750 1000 1250

Execution Time (s)

Oa—é——é—g—.—.—
250 500 750 1000 1250

Execution Time (s)

Fig. 1. Performance interference between two co-located applications due to
the disk contention

On the other hand, performance interference may also arise
due to isolation issues in the virtualization layer, which occurs
when a virtual instance exceeds the number of allocated

Uhttps://github.com/projectintp/intp

232

resources. Because resource limit settings are capacity-driven
(e.g., GB, VCores, etc.) and not throughput-driven (e.g., band-
width, IPC, etc.), even though a virtual instance receives a
limited portion of the resource, there is nonetheless leakage
due to uncontrolled access to operating system queues and
uncore hardware components [9], [10]. Datacenter adminis-
trators have exaggerated the allocated resources to sidestep
contentious scenarios, making the data center underutilized.

A. CPU Contention

Multiple CPU-intensive applications content for CPU when
the tasks require a large number of cycles per unit of time
to execute and the OS is barely able to allocate it for every
instruction that is needed. This contention scenario is essen-
tially observed in virtualization systems in which multiple
virtual CPUs pinned over the same physical CPU are assigned
to many instances running on the same computer. It makes
virtual instances wait in a ready-to-run state before they can be
scheduled on a CPU. The best defense against CPU contention
is knowledge and understanding of the characteristics of the
application and taking into that account while making better
scheduling decisions, placing it together with applications that
are the least likely to cause performance interference.

B. Memory Access Delay

Memory contention occurs when active tasks exceed the
available physical memory. In a memory contention state, the
system can not provide enough memory space for the tasks to
run, and it starts to crash. Memory contention also prevents
the CPU cores from achieving their peak performance. To
address this problem, the OS starts to move fractions of active
processes to the disk and tries to recover physical memory and
reestablish stability. This management strategy is called system
paging. Another alternative is to swap an entire process to the
disk to reclaim memory, causing high disk overheads. This
is an emergency technique used to combat extreme memory
shortages, called system swapping. It is relatively difficult to
avoid system paging and swapping, and in the end, there are
only two simplistic possibilities to optimize memory perfor-
mance: make more memory available for what the processes
depend on most or decrease the extent of the competition for
tasks. Unfortunately, if the users continue to spawn more tasks,
the system will continue to induce performance overloads in
memory, I/O, and consequently CPU [11].

C. Cache Pollution

LLC memory is a hardware device created to accelerate
the speed of accessing data contained in RAM. It reduces the
system bus and RAM traffic and restores recent translations
from the virtual memory to the physical one. This procedure
is also defined as the principle of locality. When two or more
tasks are assigned to the same CPU node, tasks occasionally
share on-chip memory space, which may lead to contention.
This occurs when a greedy task pollutes LLC pages with data
that is never reused, forcing other co-located cache sensitivity
tasks to fetch data from RAM most of the time [44]. This is

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

the case with streaming applications. On the other hand, when
co-located tasks are cache-sensitive, the level of occupancy
(capacity) should be taken into account during scheduling to
minimize the cache miss ratio—the number of cache misses
in the function of data loading.

D. Block Storage Latency

Disk throughput can be seen as the most volatile perfor-
mance metric in a system because it is architecture-driven
and might be affected by external components, such as virtual
memory, bus, and I/O controllers. OS level I/O schedulers,
such as CFQ, deadline, and noop, detect resource utilization
bottlenecks and attempt to divide block devices by reorder-
ing/prioritizing operations in a fairly-balanced manner. As a
result, the overhead is distributed equally across applications,
but performance still varies unpredictably since the schedulers
are unable to predict and make decisions based on workload
characteristics. Applications might suffer from interference
when there are consecutive random operations arriving in the
disk. Then, the head assembly rotates to the track of the disk
where the data will be read or written. This scenario makes
the disk become busy while the I/O bus is kept below its
full capacity. Furthermore, when short expressive operations
(under 4KB) arrive in the disk, it makes the disk handle a
bunch of operations without reaching its maximum throughput.

E. Network Back-pressure

Network card vendors have often changed the way that
packets are handled from the hardware buffers up to the
networking data path of the operating system. The faster
the network devices become, the more processing time is
necessary to handle hardware interrupts and process incoming
packets at the same rate as they arrive. The time for processing
a packet is strongly related to the multitude of protocol
functions that it passes through after being fetched from NIC
internal buffers and before reaching application sockets. In
NUMA (Non-Uniform Memory Access) architectures, where
there are different costs for accessing memory across CPU
sockets, it becomes even worse. When data has to be traversed
between the sockets, it consumes CPU cycles resulting in
less work per unit of time since the tasks consume resources
to deal with the cross-talk. A great deal of work has been
done with the Linux kernel over the past few years, but the
improvements sometimes depend on the workload type and
are not always system-agnostic. Therefore, the system must
be manually tuned to adjust depth queues, flow control, DMA
delay, etc. With an understanding of the underlying factors
that actually affect network packet processing and the need to
do so, it is possible to minimize overheads and mitigate the
network back-pressure.

III. INTP: QUANTIFYING CROSS-APPLICATION
INTERFERENCE

In this section, we present the architecture and the built-
in components of IntP, a tool that not only quantifies the
interference application’s tasks cause on hardware resources,

233

but also provides insights about application demands during
runtime. Since such an application has been instrumented, the
users are capable of deciding which piece of hardware is more
likely to be the bottleneck and making a decision about the
queued application that best interleaves with it. Or, if one
application starts to affect others, it could be migrated to other
machines to minimize interference and maximize performance.

Some requirements were posed during the designing phase,
including (1) IntP should not be intrusive to workloads; (2)
IntP should run during application runtime; (3) IntP should in-
strument an application independent of how many applications
are running together in the same machine. These requirements
were raised considering limitations found in state-of-the-art
solutions and are part of our effort to be constraints in this
work. We developed IntP at the operating system level (kernel
mode). This allowed us to instrument all OS components from
drivers to scheduler queues with minimal performance intru-
sion. Figure 2 depicts IntP’s components and the relationship
between all of them.

Application Tasks

Network Stack Processing

1/0 Scheduler Packet Scheduler Task Scheduler

dispatch TR sched
queue queues Queue
[} [} [}
T E——— E— ‘
IntP layer [[

™

i
i
i
i
|
i
i
i
|
i
i
i
i
.
i
i
| | Block Stack
i
i
i
i
i
i
|
i
|
i
i
i
i
i
i
|
i
|

CPU

N [N
B [}
| [
i i| storage block network scheduling cache memory '
i ! module module module module module [
| 1
e T e i
| Device/Controller Drivers ‘ ’ CPU interfaces ‘ |
i i
. _]
R S e EE—— |
| cpu interconnect context switch |
I |
|

i

|

]

SCSI/IDE / SAS

i
i
1
'
i
! Disk Controller
|
i
|
i
|

Fig. 2. Communication of IntP with kernel subsystems

Every time a user space task (userland) is waiting for
an I/O event or synchronization operation to be completed,
the OS needs to execute privilege instructions to take its
place. This operation requires the OS’s dispatcher to perform
a context switch, saving the current task state in PCB to
be restored/resumed later. The IntP’s scheduling module is
responsible for measuring the number of context switches
a task performs per unit of time and provides the level of
interference that a task can generate for other tasks during its
lifetime. While in kernel mode, such a task can be waiting
for storage block I/O interrupt, meaning that it invokes a disk-

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

related system call (read, write, seek, etc.) and is waiting for
data to be retrieved from the disk. All data requests that come
from userland tasks are queued, scheduled, and dispatched
as the I/O controller is able to handle new requests. Hence,
many queued requests make the I/O controller overloaded and
unable to handle requests at the same rate as they arrived,
given that the disk speed is slower than the CPU. The IntP’s
block storage module quantifies the level of pressure a task
puts on the I/O dispatch queue, classifying those that are
disk-intensive from those that do not disturb the I/O queue.
The IntP’s network module works similarly, but it relies on
transmitted and received queues of network buffers, assessing
network back-pressure generated per task. All instruction
requires memory to be mapped and switched from user to
kernel stack. However, there are tasks that require even more
memory to process their instructions. This is the case for
memory-intensive tasks such as those that belong to machine
learning or streaming applications. These tasks not only use
a lot of RAM memory to compute data but also pollute the
CPU cache while running on it. The IntP’s memory module
connects to the CPU to collect per task cache occupation and
derives with cache hits to generate cache sensitivity level.
The level of memory bandwidth usage is also measured to
classify memory-intensive tasks and differentiate them from
cache-intensive tasks.

IV. SYSTEM-LEVEL RESOURCE CONTENTIOUS
INSTRUMENTATION

Unlike current solutions, IntP is composed of a set of
modules running at the operating system level, which collect
metrics from different hardware subsystems and operating
system levels. Once started, the modules consist of hooks
that probe operating system functions and apply filters on
every instruction that comes from tasks to the hardware. For
the case of storage block and network stack, interference
may come from scheduling queues, and the dispatch rate is
governed by the synchronism between the operating system
and an external timer clock. This synchronism is architecture-
dependent and comes from an external hardware timer that
fires interrupts (jiffies) in time intervals of 1/HZ, where HZ
is a compile-time constant that varies from 100 to 1000 in
modern operating systems. Hence, the variables analyzed by
IntP to assess interference in scheduling queues are defined as
follows:

TABLE I
QUEUE INSTRUMENTATION VARIABLES
Variable Description
v average service time
¥ arrival rate
t elapsed time
HZ timer interrupt rate

The service time per unit of time is defined by:

(O]

234

Considering that the operating system performs scheduling
decisions at intervals denoted by HZ, we divided the service
time by HZ and integrate it from the instant ¢g to t1:

tq

J()/HZDt @)

Iqueue =
to

It means that each time the operating system looks at a
scheduling queue, a job may or not be in progress. This
assumption gives us the level of stress that an application is
putting on queues over the operating system level at instant
time ¢. The next subsections describe IntP instrumentation
points that collect the above-mentioned variables and other
interference perspectives that IntP is capable of inferring.

A. Block Layer Points

Despite many optimization techniques that have been de-
veloped, such as page caches for Writeback operations, the
performance of block devices has a big impact on overall
system performance. When a block request arrives into el-
evator scheduling queues, the scheduler does optimization
functions (sorting, merging) in request queues to get efficient
I/O. It means that requests are merged with others if either
request ever grows large enough that they become contiguous.
Afterward, they are sorted, not allowing a read to be moved
ahead of a write or vice-versa. These optimization algorithms
allow more contiguous read/write operations dispatched to
disks, reducing seeks, and head movements in hard drives
per unit of time. However, the higher the number of requests
arriving at the elevator queues, the less efficient the general
operation becomes since the disk handles incoming requests at
lower rates than the CPU. This overload increases the queue
depth (number of pending requests) and becomes even more
noticeable in SMP machines, on which multiple tasks contend
for a single disk.

A good metric to assess performance is defined by the time
the disk takes to handle a request (i.e., service time). In order
to infer the service time, we measured the delta-time from the
block_rq_complete to block_rq_issue kernel functions. These
points are called whenever a block segment is added and
removed from the scheduling queue after the optimizations
have taken place. Based on this, we measured the average
service time v (in milliseconds) for I/O requests and the arrival
rate v to quantify interference in the elevator queue. This
interference metric is referred to as Ij;s; in the IntP.

B. Network Stack Points

With advances in CPU architectures and operating system
structures, the network performance has also been improved
in modern operating systems by changing packet receipt from
interrupt-driven to polling mode. Previously, the network cards
would typically fire a hardware interrupt whenever a packet
arrives, causing the suspension of the executing software, and
affecting application performance. Current operating systems
have changed the way that network packets are handled
once they are pulled off the wire. They implement a polling
mechanism that is periodically interrupted. While the poll

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

method is executing, receive interrupts for the network device
is disabled. The effect of this is that the operating system
can drain potentially multiple packets from the network device
receive buffer, increasing throughput, and decreasing latency
at the same time as reducing the interrupt overhead. In an
operating system based on Linux, the packet processing begins
when the interrupt handling process (ksoftirgd) determines that
a softirq is pending. It calls the net_rx_action driver-specific
method, which begins processing all packets available in the
network device ring-buffer before its CPU time is up (limited
to 2 jiffies). The processing ends up when the data is copied
to an application-specific socket buffer. It turns out that at this
point, applications still suffer from throughput issues due to
back-pressure caused by cross-application tasks, making either
the interrupt handling mechanism unable to drain packets from
the network device fast enough or the application unable to
dequeue packets from the socket buffer fast enough.

We focused on analyzing the network packet path from the
network device (ring buffer) to the application buffer (socket’s
receive buffer) or vice-versa so that an application can be
classified by its level of pressure placed on the hardware device
(throughput) and operating system’s network stack (latency).
The latency is meant as the average service time v. Since
the OS’s network stack controls two-ways communications
(send/recv) using different queues, the IntP should instrument
the scheduler functions in isolation. The average service time
of the sending queue is obtained by the delta-time from the
net_dev_xmit to __dev_queue_xmit functions. And the average
service time of the receiving queue is obtained by the delta-
time from the napi_complete_done to __napi_schedule_irqoff
functions. The average service time v is given by the sum of
both metrics. The arrival rate « is given by the total of send
and receive packets per unit of time. This interference metric
is referred to as I,etstacr 1N the IntP.

On the other hand, IntP aims to measure the interference
sourced from contention in the network card, which occurs
when the bandwidth is not enough for multiple tasks to
carry all the data that is needed (i.e., capacity overflow). The
bandwidth consumed per task is obtained using the probes as
above, but accumulating the length of each packet dispatched
and received per unit of time. Hence, the interference from
the hardware device is given by:

t
t SUM (length
]netcapacity :/ & (3)
t

bandwidth
Where bandwidth is the nominal limit of the network card
capacity.

C. CPU and OS Dispatcher Points

The IntP’s scheduling module collects the context-
switch(CSW) metric. When a context-switch occurs, the mod-
ule probes the OS’s dispatcher process and accumulates the
event-waiting time « for each application’s thread in the
blocking state waiting for I/O or system call. IntP ignores the
waiting time in preemptive operating systems when quantum
expires. The delta-time gives the waiting time of a thread in

235

the blocking state between the instant that it was preempted
and resumed back to the CPU. The waiting time is collected
for all context-switch operations throughout the task runtime
in intervals denoted by ¢y and t; as follows:

t1
o = [CSWaneAt @)
to
Given that an application may be multithreading, then we
need a discrete equation to sum the waiting time « of a set of
threads. Thus, let S : S C E be a subset of threads running
in the system E. The context-switch instrumentation metric of
the application’s threads .S is given by

Lew = Y aun,¥in €S (5)

D. Memory Points

IntP aims to assess the level of interference an application
causes during memory access. The IntP’s memory module col-
lects counters from the memory controller, a digital circuit that
manages the flow of data going to and from the main memory.
It is usually called Integrated Memory Controller (IMC). The
first approach was to use LLC_MISS (last level cache miss)
* 64 Bytes (size of a cache line). However, the problem with
this approach is that the LLC_MISS counter would not include
prefetch misses. This can be a huge issue when there are a
lot of prefetching activities involved (for example, when there
is streaming access involved in the program). Recent CPU
architectures made available counters that can be fetched from
the uncore IMC, allowing more precise observations. Hence,
the level of interference an application puts on memory access
is given by:

t1
o = / (MRC + MWC) « CLDt ©6)

to
Where M RC and MW C denote the number of reads and
memory writes, respectively. And C'L is the size of cache line
(commonly 64). Finally, the integration of the application’s
threads is summed as follows:

Imem = Z’Yth,avth €s (7

By normalizing I,,,er,, IntP outputs a metric (0..1), which
ranges from lowest to highest interference degree, of which
is possible to infer the behavior of the application’s threads
while they are accessing the main memory.

E. LLC Points

The last level cache is a key resource to manage since multi-
threaded architectures and multicore platforms are constantly
arising. The chip industry has been introducing a new feature
in the hardware that allows an OS to determine the usage of
the cache by applications running on the platform. This is the
case with Intel Cache Monitoring Technology (CMT) [12].
CMT provides mechanisms for an OS to indicate a software-
defined ID for each of the threads that are scheduled to run on
a core. This ID is called the Resource Monitoring ID (RMID).

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

Since there are associations between threads and RMIDs, they
are programmed via a thread-specific model-specific register
called MSR and can be read by system software at any
time through an MSR interface. The built-in cache module
of IntP takes advantage of this feature and begins mapping
the application’s threads to RMIDs during runtime to infer
per-application cache usage; thus, cache interference can be
denoted by;

t1

eth

MSR(rmidy,)Dt (8)

to
Where M SR is the interface that read the thread-specific
rmid from the CPU register during the instant time ¢. Finally,
the total cache occupancy of an application is given by:

Icache = Z et}u vth €S)

IntP monitors an application process that it expects as
a parameter. It profiles the application during runtime, re-
turning the interference the application generates on each
subsystem. Moreover, IntP returns the interference metrics, in
percentage, normalized, where the higher the metric is, the
more interference the application being profiled generates. IntP
differs from other resource usage tools since it inspects OS’s
internal components to infer contention-related performance
interference due to bottlenecks in I/O queues, buffers, and
uncore buses. From the memory’s point of view, an application
that allocates 80% of memory would not imply that it is
stressing the memory, as it could just have it allocated and not
do further operations. On the other hand, an application that
is using only 20% could be doing a great amount of reading
and writing operations to the memory; thus, it would generate
a higher interference. These interference levels, though, are
measured by IntP.

IntP outputs interference metrics for CPU, disk, memory,
network, and cache. More specifically, it returns the following
metrics:

« netp - percentage of physical network interference

« nets - percentage of network queue interference

o blk - percentage of disk interference

« mbw - percentage of memory bus interference

o llocc - percentage of cache interference

e cpu - percentage of cpu interference

Figure 3 shows the interference levels generated by a given
application while varying its workload. This application is
disk-intensive and has a high network affinity with another
application. It is noticeable that the interference levels tend to
increase as the workload also grows. Moreover, the contention
in disk storage has a unique behavior, which varies between
every data collection. This behavior is due to the write
operations that are being executed in an asynchronous manner.

V. INTP-ASSISTED CASE STUDIES

In this section we validate our tool presenting three
case studies that exemplify how IntP was applied in their
interference-aware strategies to improve resource utilization

236

blk —#—mbw —m—Illocc

—e—netp

cpu

0.8
T
3
o 0.6
o
i~
o
€ 0.4
£ 0.
£
0.2
A o s OO
0 B ul
CMUN A MNP N A AMINN QA Mmn N O
- NM S ONO0OOO AN MSTET NN OO0 O =+ N < 1N O 0
S80IV 2RRIILERA
Requests per second
Fig. 3. Example of an IntP output for a disk-intensive application.

and user level performance in distributed architectures. Im-
portant to note that [13] showed that IntP profiling was non-
intrusive, with very low overhead even with hundreds of
running applications.

A. BigData interference-aware Task Scheduling

In this first case study we demonstrate how IntP can be
leveraged to improve interference-aware scheduling policies,
in this case for better BigData-centric application scheduling.
IntP was used to assess interference metrics of heterogeneous
applications that put stress on different hardware components
and OS subsystems. We selected popular benchmarks from
HiBench Benchmark Suite [14], which are well-known rep-
resentatives in the field of data analytics. The applications
were chosen and classified by their resource intensity levels,
such as cache intensive, compute-intensive, and disk-/network-
intensive. Such classification covers contention scenarios that
IntP proposes to the instrument. The applications we choose
are presented in Table II.

TABLE II
WORKLOAD CHARACTERISTICS
App Type workload

AppOl machine learning LLC
App02 machine learning LLC
App03 machine learning LLC
App04 streaming LLC/memory
AppO5 streaming LLC/memory
App06 ordering memory
App07 ordering memory
App08 classification CPU/memory
App09 classification CPU/memory
ApplO search engine CPU
Appll sort network
Appl2 sort network
Appl3 query/scan disk
Appl4 query/join disk
Appl5 query/merge disk

Our hardware setup comprises 16 identical Dell PowerEdge
R810 machines. Each of them is equipped with two 3.46Ghz
Intel Xeon C5690 processors with eight cores each (with
Hyper-Threading), totaling 32 virtual cores; 64Gb of RAM
memory, and four Gigabit Ethernet adapters. The communica-
tion between them is done via a Gigabit switch. We deployed

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

the Linux distribution Ubuntu 16.04 onto the machine. The
IntP was compiled and loaded into the kernel with all modules
enabled. The applications were scheduled on the experimental
testbed in a 1-after-1 manner to collect the IntP metrics for
each application individually. Figure 4 presents the interfer-
ence ratios obtained from IntP for each application.

appo1 app02 app03 app04 app05
1.0
08 [
06 [
1 I
04 |
02 |
el | ™ | T --I - ml
app06 app07 app08 app09 app10
1.0
08
2 0
g I I
02 ——
gl =T L[] - =l | M
app11 appi2 appi3 app14 app15
1.0
08
06
04
02 [
o= _l .= uEEl Ain- nlln

§ LLOC for cache mcry BLK (Disk) - MBW (Memory) Nets (Network)

Fig. 4. IntP instrumentation outcome per application (llocc for cache in red,
cpu in brown, blk for disk in green, mbw for memory in blue and nets for
network in pink)

We can obtain some insights from the similarity among the
applications. It is easy to see that by placing applications
that least interfere with each other on different computing
nodes, it would be possible to minimize resource contention
and maximize performance. To classify this level of similarity
among them, we need to reduce the dimensions from 5D to 2D.
Hence, we used the statistical procedure called Principal com-
ponent analysis (PCA) [15], which uses an orthogonal trans-
formation to convert a set of observations/results or correlated
variables into a set of values of linearly uncorrelated variables,
also called principal components. Generally, PCA results are
less than or equal to the number of original variables. As a
result, we generated a 2D representation that allowed us to see
the interference-related proximity between applications. The
PCA results lead us to an optimization problem (clustering
analysis) in such a way that we can find the K cluster centers
and assign the objects to the nearest cluster center, where the
squared distances from the cluster are minimized. We applied a
centroid-based clustering analysis using the K-means method
to group variables (i.e., applications) by their similarity. As
we are interested in using IntP results for better scheduling
and placement strategies in computer clusters, the value of
K may be defined considering the number of cluster nodes.
The higher the number of nodes, the greater the granularity
of K to accommodate applications with the least possible
interference among them we excluded K = 3 because one
cluster would have 10 applications (red+blue) and the model
would try to avoid putting them together in the same physical
node. The clustering results for K = 4 is presented in Figure
5. Results produced using cluster analysis can now be used
to assist system administrators during a placement process, in

237

which applications that least interfere with one another are
consolidated.

0.2-

2p®03
apM

0.0 cluster

2 :
3 [+
8’702 [a]s
a 4

appi11
a;li 2
04 -02 00 02
PC1 (45.8%)

Fig. 5. K-means with K=4

From our analysis, we implemented an interference-aware
task scheduling in Apache Hadoop YARN [16]. YARN is
the architectural center of Hadoop that allows multiple data
processing engines such as interactive SQL, real-time stream-
ing, data science, and batch processing to handle data, as
such the applications we have used during our analysis.
We selected a set of applications from different frameworks
and programming engines to extend heterogeneity, including
Hadoop, Spark, and Storm. In addition, we chose the YARN’s
Fair policy (default installed) to compare it with the proposed
interference policy. We used a carefully-crafted external script
to connect to the YARN’s client API and work like the
dispatcher moving jobs every 5 seconds on the 10-in-10 order
(no job completion waiting). The experiment aims to evaluate
the jobs’ turnaround times (makespan) and total completion
times. The performance evaluation, as well as the comparison
with the default YARN scheduler, is presented in Figure 6.

YARN scheduler

tanzn

2
= .
5 interference—aware scheduler
©
1~
0 350 700 1050 1400 1750
time

Fig. 6. Comparison between intp-based scheduler and YARN’s scheduler.
Density represents the number of jobs completed per time slice.

The graph shows that the reduced job turnaround times
reflected in the total completion time, and also improved the

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

efficiency (density) expected when evaluating performance in
scheduling. We observed a performance optimization of up to
35%. This is because applications have been better balanced
according to their interference level so that they compete less
for resources.

B. Interference-aware multi-tier application placement

Cloud providers are constantly seeking to become more
cost effective, where a common strategy is to consolidate
multiple applications in physical machines using virtualization
techniques. This consolidation, however, may result in perfor-
mance related problems such as resource interference. More-
over, if the workload is composed of multi-tier applications,
an increasingly popular method of application development,
especially for web and mobile, in which tiers need to commu-
nicate through the network, we have another possible source of
performance degradation, which we refer as network affinity.
In order to reduce the effects of such problems, Ludwig
et al. [17] explored the problem of multi-tier application
placement in consolidated environments, focusing on resource
interference and network affinity. They propose placement
policies and algorithms and evaluated them for different work-
load scenarios using a simulation tool we developed called
CIAPA (Capacity, Interference and Affinity-aware Placement
Algorithms). CIAPA introduced a performance degradation
model, a cost function, and heuristics to find an optimized
placement for a specific workload of multi-tier applications.

CIAPA relied on IntP to individually profile all parts of each
application of a specific workload, gathering their interference
levels, so that each of them is labeled and treated as a separated
scheduling unit. This is possible because IntP is able to mea-
sure these metrics for specific processes, based on a process ID
(pid). All this information is then passed to the performance
degradation model, and a cost function and heuristics will be
used to decide the best placement. This strategy was validated
with four scenarios, being of them a set of 50 tiers with a
mixed distribution of used resources. This configuration is
used to reproduce the same level of complexity we are seeing
in real industry problems and also in related work. Tiers were
divided into five groups, where each group used the following
resources intensively: CPU, disk I/O, memory, cache, and
mixed. Moreover, three tiers of each group had network
affinity with other tiers in the same group. Other two tiers also
had network affinity, but with tiers from other groups. This
case aims at simulating a more controlled environment, where
there is an equal distribution of utilized resources. Figure 7
shows the cost comparison for placements generated by the
above strategies for the described scenario. It is noticeable that
CIAPA using the best results by using Simulated Annealing
(CIAPA-SA) generates placement configurations with much
lower cost when compared to both strategies from related work
(up to 60% reduction when compared to Affinity and up to
10% to Interference). This is expected since interference has
a higher impact on the cost function and Affinity strategies do
not optimize for it. Also noticeable is CIAPA-SA significant
advantage in configurations with fewer PMs.

238

1048576 W CIAPA-SA Interference Affinity
262144
65536
16384 j{
., 4096 L
8 1024
256 I
64 I
16 I + oI L
4 . =
1 |
6 8 10 12 15
PMs
Fig. 7. Cost comparison of CIAPA-SA against related work by Physical

Machines(PM). Adapted from [17].

Experimental results compared the solution generated by
CIAPA-SA to other placement strategies from related work,
and for the tested scenarios, it delivered placement decisions
with better cost and, consequently, improved performance.
They observed a reduction in response time of up to 10%
when compared to interference strategies and up to 18% when
considering only affinity strategies.

C. Dynamic interference-aware
sensitive workloads

scheduling for latency-

Performance interference among web applications is known
to adversely impact Quality of Service (QoS) properties and
Service Level Agreements (SLAs) of applications. Dynamic
service demands and irregular workload profiles further raise
the challenges for cloud service providers in managing re-
sources on-demand to satisfy SLAs while minimizing opera-
tional costs [18]. To deal with these issues, Meyer et al. [13]
developed IADA, a full-fledged dynamic interference-aware
cloud scheduling architecture for latency-sensitive workloads.
Motivated by experimental results that show that applica-
tions may change their interference profiles due to workload
variations, their approach constantly reevaluates this inter-
ference metrics during execution to reduce cross-application
interference and dynamically trigger rescheduling operations
to improve resource usage and reduce SLA violations. To
evaluate the proposed architecture, the authors utilized real
workload traces, initially using a real cluster and subsequently
scaling it out through simulation tests. In all experiments,
IADA improved the average response time by 25% when
compared to other scheduling approaches in similar scenarios.

To be able to accomplish this, IADA has a profiling phase
that uses IntP to extract information on how individual appli-
cations stress hardware resources and, based on this, triggers
rescheduling operations to minimize this overhead in nodes
that are consolidating applications. To give a visual example
of IntPs pivotal role in the proposed interference-aware ar-
chitecture, Figure 8 shows how interference metrics are used
to reduce overhead across consolidated applications. The red
dashed line demonstrates the exact moment the scheduling

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

was executed. By looking at the interference measurements
and the respective applications consolidated in each node, it
is possible to see two consequences of this rearrangement:
(i) app2 (disk intensive) and app6 (cpu intensive) applications
(emphasized in bold) switched nodes; and (ii) because of that
average interference levels are reduced in both nodes due to
less cross-application interference.

100 4 I
1
] 1
50 >
(=]
&
1 2
S 07 app1 —disk T Aapp1 —disk
N2 app2—disk | app6 - cpu
o app3 —cpu app3-—cpu
g app4 —cache 1 app4 —cache
3)
= -
'*g 100 I
g |
= I
50 4 o
(=]
&
(3]
0 T
app5 —cpu app5-cpu
app6 —cpu | app2 —disk
app7 —mem app7 —mem
app8 —cache 1 app8—cache
Time (seconds)
Resource Cache — CPU Disk =—— Memory

Fig. 8. IntP measured interference levels in two nodes while performing a
scheduling operation (cpu in black, blk for disk in green, llloc for chache in
orange, and mbw for memory bus in blue). Applications which have migrated
across nodes after the rescheduling (red dotted line) are emphasized in bold.
Adapted from [13].

VI. RELATED WORK

Minimizing the performance interference effect from co-
located applications is a trending topic nowadays, and it occurs
due to the inherent nature of data-intensive distributed analytic
frameworks to move large volumes of data to be processed in
virtual data centers [19]. Recent research proposes quantifying
performance interference in several virtualized scenarios [20]
[21] [3] [22] [23].What we propose is a very accurate tool
to quantify the performance interference for any workload by
using selected architectural counters and OS data structures.
Matthews et al. [24] present the Isolation Benchmark Suite
(IBS), but it relies on deprecated micro-benchmarks that render
it a very inaccurate and they have to be executed manually and
individually, leading to error-prone, inaccurate, and unreliable
results.

Tracon [25] uses machine learning algorithms for modeling
performance interference on cloud environments. Then Euca-
lyptus [23] considers CPU load as the main factor instead of
using other inputs as this tool provides focusing it on Web

239

applications. Both tools are focused in Cloud and hypervisor
environments while our tool is able to work in Bare metal,
hypervisor or cloud and provide better information for inter-
ference profiling.

The benchmark proposed by Delimitrou et al. Ibench [26]
presents highly reliable results, but it is limited to quantifying
interference across multi-tenant workloads in traditional data
centers, consisting of a set of carefully-crafted benchmarks
that induce interference of increasing intensity in resources
that span the CPU, cache hierarchy, memory, storage, and
networking subsystems.Then neither the compiled IBench’s
program nor the source codes are available to the community.
Our tool does not uses benchmarks nor increase load while
running and is open source and available to anyone.

Bubble-Up [27] is a characterization methodology that
enables the accurate prediction of the performance degradation
that results from contention for shared resources in the mem-
ory subsystem. Its main focus the memory subsystem while
our tool can provide interference metrics for 10, CPU, Disks,
Network and memory.

Paragon [28] is an online and scalable DC (Data Cen-
ter) scheduler that is heterogeneous and interference-aware.
Paragon is derived from robust analytical methods and instead
of profiling each application in detail, it leverages information
the system already has about applications it has previously
seen. It uses collaborative filtering techniques to quickly
and accurately classify an unknown, incoming workload with
respect to heterogeneity and interference in multiple shared
resources, by identifying similarities to previously scheduled
applications. The classification allows Paragon to greedily
schedule applications in a manner that minimizes interference
and maximizes server utilization.

Quasar [29] determines the right amount of resources to
meet these constraints at any point. Second, Quasar uses
classification techniques to quickly and accurately determine
the impact of the number of resources (scale-out and scale-
up), type of resources, and interference on performance for
each workload and data set.

Recent works, such as Mage [30], have a more active role
in using micro benchmarks and staged processes to infer the
interference and using offline and online data to infer its
interference.

Aforementioned tools above have an active role as using
benchmarks to measure and profile [28] [2] [29] performance
and how the applications will perform and [30] will use staged
process to scale the load. Meanwhile the tool proposed is
very passive and does not create additional load on the host
system, allowing it be run anytime without any degradation.
Hardware monitoring tools as Perfmon2 [31] provides an
common interface to access CPU and hardware counters
thru several architectures, its model focus onto providing
an interface where you can create contexts to monitor the
whole system or specific threads. That monitoring interface
can have as many as 290 [32] raw specific counters to choose
and select for. The tool described here is able to gather the
needed counters and use it to report the interference the

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

application has on the host without any interruption or load. In
addition to these techniques, other remote works have explored
interference detection in hypervisor-based systems by collect-
ing hypervisor’s performance counters from its scheduling
components. In contrast, but designed differently, IntP works
within the OS’s kernel like a minimalist, but non-intrusive
resource sensitiveness reporting module.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed a methodology to quantify cross-
application interference in consolidated environments based
on low level instrumentation. It enables a more accurate pre-
diction of the performance degradation that could result from
contention on shared resources without previous knowledge of
applications and with very low monitoring overhead. Further,
we introduced an open-source tool called IntP that implements
this methodology and can be easily and efficiently incorporated
to interference-aware strategies. To validate our methodology,
we presented three cases studies where IntP was used in
different distributed scenarios to quantify cross-application
interference and how it contributed to improvements up to 35%
in resource efficiency and up to 25% in user level performance.

In future work, we will improve IntP to be more compat-
ible with newer hardware architectures and operating system
kernels and also its support for virtualization environments
implemented by either virtual machines or containers.

REFERENCES

[1] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated
virtual machines,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011, p. 22.

J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in 44th IEEE/ACM International Symposium on
Microarchitecture. ACM, 2011, pp. 248-259.

R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing
performance interference effects for qos-aware clouds,” in Proceedings
of the 5th European conference on Computer systems. ACM, 2010,
pp. 237-250.

D. Eklov, D. Black-Schaffer, and E. Hagersten, “Statcc: a statistical
cache contention model,” in Parallel Architectures and Compilation
Techniques (PACT), 2010 19th International Conference on. IEEE,
2010, pp. 551-552.

D. Eklov and E. Hagersten, “Statstack: Efficient modeling of Iru caches,”
in Performance Analysis of Systems & Software (ISPASS), 2010 IEEE
International Symposium on. 1EEE, 2010, pp. 55-65.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems journal, vol. 9, no. 2,
pp. 78-117, 1970.

S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in ACM
SIGARCH Comp. Arch. News, vol. 38. ACM, 2010, pp. 129-142.

K. H. Potter, “Dynamic addressing mapping to eliminate memory
resource contention in a symmetric multiprocessor system,” Jan. 7 2003,
uS Patent 6,505,269.

M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose, “Performance evaluation of container-based vir-
tualization for high performance computing environments,” in 2073
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. 1EEE, 2013, pp. 233-240.

M. G. Xavier, M. V. Neves, and C. A. F. De Rose, “A performance
comparison of container-based virtualization systems for mapreduce
clusters,” in 2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. 1EEE, 2014, pp. 299-306.

(2]

(9]

[10]

240

[11] M. Loukides and M. Loukides, System Performance Tuning, ser.
Computer Science Series. O’Reilly, 1992. [Online]. Available:
https://books.google.com.br/books?id=3qpQAAAAMAA]J

A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer, “Cache qos: From concept to reality in the intel® xeon®
processor €5-2600 v3 product family,” in IEEE Int. Symp. on High
Performance Computer Architecture (HPCA), 2016, pp. 657-668.

V. Meyer, M. L. da Silva, D. F. Kirchoff, and C. A. De Rose, “lada: A
dynamic interference-aware cloud scheduling architecture for latency-
sensitive workloads,” Journal of Systems and Software, vol. 194, p.
111491, 2022.

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis,” in
New Front. in Inf. and Soft. as Services. Springer, 2011, pp. 209-228.
M. Mohammed, M. B. Khan, and E. B. M. Bashier, Machine Learning:
Algorithms and Applications. CRC Press, 2016.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing. ACM, 2013, p. 5.

U. L. Ludwig, M. G. Xavier, D. F. Kirchoff, I. B. Cezar, and C. A. F.
De Rose, “Optimizing multi-tier application performance with inter-
ference and affinity-aware placement algorithms,” Concurrency and
Computation: Pract. and Exp., vol. 31, no. 18, p. e5098, Sep 2019.

V. Meyer, D. F. Kirchoff, M. L. Da Silva, and C. A. De Rose, “MI-
driven classification scheme for dynamic interference-aware resource
scheduling in cloud infrastructures,” Journal of Systems Architecture,
vol. 116, p. 102064, Feb 2021.

M. V. Neves, C. A. F. D. Rose, K. Katrinis, and H. Franke, “Pythia:
Faster big data in motion through predictive software-defined network
optimization at runtime,” in [EEE 28th International Parallel and
Distributed Processing Symposium, IPDPS, 2014, pp. 82-90.

R. Krebs, C. Momm, and S. Kounev, “Metrics and techniques for quan-
tifying performance isolation in cloud environments,” in Proceedings of
the 8th Int. ACM SIGSOFT Conf. on Quality of Soft. Architectures, ser.
QoSA ’12. New York, NY, USA: ACM, 2012, pp. 91-100.

X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
performance interference of i/o workload in virtualized cloud environ-
ments,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on. 1EEE, 2010, pp. 51-58.

0. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual machine
performance: Challenges and approaches,” SIGMETRICS Perform. Eval.
Rev., vol. 37, no. 3, pp. 55-60, Jan. 2010.

W. Igbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871-879, 2011.
J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens, “Quantifying the performance
isolation properties of virtualization systems,” in Proceedings of the 2007
workshop on Experimental computer science. ACM, 2007, p. 6.

R. C. Chiang and H. H. Huang, “Tracon: Interference-aware scheduling
for data-intensive applications in virtualized environments,” in Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2011, p. 47.

C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for
datacenter applications,” in Workload Characterization (IISWC), 2013
IEEE International Symposium on. 1EEE, 2013, pp. 23-33.

J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous”
warehouse-scale computers: A performance opportunity,” IEEE Com-
puter Architecture Letters, vol. 10, no. 2, pp. 29-32, 2011.

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in ACM SIGPLAN Notices, vol. 48, no. 4.
ACM, 2013, pp. 77-88.

——, “Quasar: resource-efficient and qos-aware cluster management,”
in ACM SIGPLAN Notices, vol. 49, no. 4. ACM, 2014, pp. 127-144.
F. Romero and C. Delimitrou, “Mage: Online and interference-aware
scheduling for multi-scale heterogeneous systems,” in 27th International
Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’18, New York, NY, USA.

S. Eranian, “Perfmon2: a flexible performance monitoring interface for
linux,” in Proc. of the 2006 Ottawa Linux Symposium. Citeseer, pp.
269-288.

Intel. Perfmon
events.intel.com

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31

[32] events. [Online]. Available: https://perfmon-

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 04,2023 at 17:07:55 UTC from IEEE Xplore. Restrictions apply.

