
Journal of Manufacturing Processes 75 (2022) 514–526

Available online 21 January 2022
1526-6125/© 2022 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

Investigation on machinability in turning of as-cast and T6 heat-treated 
Al-(3, 7, 12%)Si-0.6%Mg alloys 
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A B S T R A C T   

The machinability in turning of Al-Si-Mg alloys under as-cast and heat-treated conditions has been investigated. 
Three alloys with 3%, 7% and 12%Si and 0.6%Mg contents (wt%) were prepared. Unsteady solidified ingots 
were obtained in a vertical upward directional solidification apparatus using an instrumented cylindrical water- 
cooled mold. Samples extracted from the ingots were characterized by scanning electron microscopy (SEM) and 
energy dispersive spectroscopy (EDS) examinations and by Brinell hardness tests, before and after T6 heat 
treatments (540 ◦C solutioning temperature for 10 h, water quenching at 25 ◦C and artificial aging at 155 ◦C for 
5 h). Specimens in both the as-cast and heat-treated conditions were subjected to machinability tests as a 
function of cutting force in face turning operation using a CNC lathe machine, fixing parameters as cutting depth, 
feed rate, cutting speed, and cutting tool. The as-cast microstructure consists of a dendritic α-Al rich phase and an 
interdendritic eutectic microconstituent (α-Al + Si particles). As the alloy Si content increased, the solidification 
cooling rate increased, the amount and size of α-Al dendrites decreased while the amount of eutectic mixture 
increased. After heat treatment, Si particles were found to be more rounded and an increase in fraction of Mg2Si 
was observed. The hardness profile declines along the length of the as-cast ingots, however the values improved 
with both alloy Si content and heat treatment. The as-cast alloys showed maximum cutting force at the beginning 
of the process, decreasing during machining progress, whereas in the heat-treated condition the cutting forces 
showed values almost constant. The results suggest a more stable machinability behavior during turning of the 
heat-treated alloys as a consequence of a more homogenous microstructure and hardness.   

1. Introduction 

Binary Al-Si alloys are the most important and widely used of all 
aluminum alloys in the as-cast condition due to their excellent cast
ability, low thermal expansion, low-cost production, moderate me
chanical strength, and high wear resistance [1–4]. Gravity casting 
(permanent mold casting, green or dry sand casting, investment casting) 
and low-pressure die casting processes are used to manufacture a variety 
of parts and components. These alloys are an attractive option for ap
plications in the metalworking and automotive industries to produce 
components such as pistons, engine blocks, pumps, rods, wheels, gears 
[5–9]. In the aeronautical and aerospace industries, they are used in 
non-structural components, especially in mechanical and hydraulic 
systems, for example, valve housings, turbine impellers, cooling fans, 

clamps, rollers, pulleys, sticks, manifolds [10–12]. In general, the 
microstructure of hypoeutectic alloys consists of an α-Al rich matrix and 
a eutectic microconstituent (α-Al + Si phases). With Mg addition, the as- 
cast microstructure is composed of the α-Al matrix, the eutectic mixture 
and the Mg2Si phase. In the presence of impurities such as Fe, complex 
intermetallic compounds can be formed [13]. Depending on the 
magnitude of the solidification cooling rate, the α-Al matrix can show 
either cellular (under higher cooling rates) or dendritic (under lower 
cooling rates) morphologies. In addition, higher cooling rates also 
induce increase in the amount of Mg2Si particles. An opposite behavior 
is observed in the formation of Fe intermetallic which increases with 
decreasing cooling rate [14–15]. The presence of both Si and Mg enables 
the ternary Al-Si-Mg alloys to be heat-treated by precipitation hardening 
due to the controlled formation of Mg2Si intermetallic particles, 
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improving mechanical properties as hardness, tensile strength, and fa
tigue resistance [16–18], as well as electrical, wear and corrosion re
sponses [19–21]. Among the commercial Al-Si-Mg alloys, according to 
the Aluminum Association, the AA 356.0 (6.5–7.5%Si - 0.20-0.45%Mg - 
0.6%Fe) and the AA 357.0 (6.5–7.5%Si - 0.45-0.60%Mg - 0.15%Fe) al
loys are extensively used in the foundry industry, in both as-cast and 
heat-treated conditions [22–24]. 

Since the main properties of alloys are directly linked to their 
microstructure features, it is fundamental to understand the influence of 
these characteristics on the machinability, the ease with which the alloy 
can be cut. The influence of aspects as manufacturing processes and 
machining operational parameters are frequently related to the 
machinability performance of ferrous [25–26] and non-ferrous alloys 
[27–28]. As reported in recent reviews [29–30], aluminum alloys 
generally display good machinability when compared to steels. How
ever, higher cutting force, cutting temperature and surface roughness 
can be observed in the case of pure aluminum or soft aluminum alloys 
due to their higher ductility. In order to minimize these problems, 
strategies for selecting the appropriate cutting tool, improving opera
tional parameters, increasing alloys hardness and strength, adding free- 
cutting elements, and using cooled or dry conditions, are the most rec
ommended practices. In the case of wrought aluminum alloys, as 
AA6061, 6351, 6013 and 2117, the influence of microstructural fea
tures, machining parameters and heat treatments on alloys machin
ability considering parameters such as cutting forces, surface roughness, 
tool life, and tool wear rate have been reported by Froehlich [31], Veera 
ajay [32], Gonçalves [33], and Akyuz [34]. In the as-cast condition, 
Bayraktar and Afyon [35] investigated the machinability of an Al-7Si 
alloy with Zn and Cu additions under dry drilling process in a CNC 
vertical machining center. Operational parameters as cutting depth, feed 
rate and cutting speed were kept constant and an uncoated carbide drill 
was used as cutting tool. They observed that the increase in hardness and 
strength of the alloys due to Zn and Cu additions decreased the cutting 
force, torque, and surface roughness. Barzani et al. [36] have investi
gated how Bi, Sb and Sr additions affect microstructure formation and 
machining response in a commercial Al-Si-Cu alloy. Turning machining 
tests were performed under dry condition, and speed cutting and feed 
rate variations. The results showed that the additions of Bi, Sb and Sr 
modified the morphology of Si particles. As a consequence, a softer 
matrix was obtained, the tendency of build-up edge formation was 
enlarged, and the cutting force increased, mainly with Sr and Sb addi
tions. An exception was noted with the Bi-containing alloy, which dis
played the lowest cutting force compared with the other alloys. Kishawy 
et al. [37] investigated the effect of cooling condition on the machin
ability of the A356 alloy under high-speed face milling machining. 
Characteristics as tool wear, chip morphology and surface roughness 
were analyzed. It was observed that the main wear mechanism was 
abrasion due to the presence of hard Si particles. The best cooling con
dition was achieved using MQL (minimum quality of lubricant) with 
5200 m/min cutting speed and uncoated carbide insert, demonstrating 
the feasibility of the process. The influence of the precipitation hard
ening heat treatment on the machinability of A359 and A319 alloys was 
performed by Tash et al. [38]. The results showed that the cutting force 
increased with the increase in hardness as a consequence of the forma
tion of Al2Cu and Mg2Si precipitates in the matrix. 

Despite the aforementioned works, few studies have reported the 
effect of microstructural formation as a function of solidification/heat 
treatment conditions and the resulting mechanical properties on the 
machinability of Al-Si-Mg alloys. In this view, the present work aims to 
investigate the effects of alloy Si content (3, 7 and 12 wt%), solidifica
tion conditions and precipitation hardening heat treatment on micro
structure features, hardness, and machinability of three Al-Si-Mg alloys. 

2. Experimental procedure 

For the experimental investigation, three Al-Si-Mg alloys were 

prepared using silicon carbide crucibles covered with boron nitride in an 
electric resistance pit furnace for melting small blocks of commercial 
eutectic aluminum‑silicon alloy (Al-11.9wt%Si), pure aluminum (99.9% 
purity) and pure magnesium (99.9% purity). The chemical composition 
of the alloys analyzed by optical emission spectrometry (average values 
of five measurements in each sample) is presented in Table 1. The 
amounts of Si and Mg are close to the required values, and the presence 
of Fe was observed in all alloys. With a view to determining the Liquidus 
(TL) and Solidus (TS) temperatures of each alloy, thermal analyzes were 
performed to acquire cooling curves during solidification under high 
cooling rates. The alloys were poured into a cylindrical SAE 1010 steel 
mold (30 mm × ϕ50 mm) with a type-K thermocouple located at the 
cavity center, and the obtained cooling curves are shown in Fig. 1. The 
temperatures corresponding to the solidification range for the 
Al3Si0.6Mg alloy were determined to be TL = 621 ◦C and TS = 529 ◦C, 
the Al7Si0.6Mg alloy had the experimental values of TL = 601 ◦C and TS 
= 550 ◦C, while the Al12Si0.6Mg alloy showed values close to those of 
the eutectic alloy, i.e., TL = 567 ◦C and TS = 564 ◦C. The time-scale axis 
was suppressed and expressed as an arbitrary unit (a.u.) to permit 
plotting all curves in the same graph. 

The casting assembly used in the directional solidification experi
ments is shown in Fig. 2a. The alloys were melted in-situ in an AISI 1020 
carbon steel mold, and type-K thermocouples (1.6 mm-diameter) were 
used to measure the temperatures in the casting during solidification. 
The bottom part of the mold was closed with a 5-mm thick steel sheet. 
Details about the solidification apparatus can be found in previous 
works [39–40]. Each alloy was melted with a superheat of about 10% 
above the Liquidus temperature assessed in Fig. 1. When the desired 
melting temperature was attained, water at a flow-rate of 4 l/min was 
initiated at the bottom of the mold. The cooling curves acquired by the 
six thermocouples strategically positioned at specific locations along the 
height of the mold cavity from the cooled bottom (TC1–6 mm, TC2–12 
mm, TC3–18 mm, TC4–24 mm, TC5–30 mm, TC6–50 mm) were used to 
determine the tip growth rate (VL), the liquid thermal gradient (GL) and 
the liquid cooling rate (Ṫ). The time-derivative of the cooling curves 
(dT/dt) immediately ahead the Liquidus temperature at each thermo
couple position (P) permitted the evolution of Ṫ to be determined along 
the length of the ingots; VL was obtained by the time-derivative of 
experimental functions P = f (tL), where tL is the time of passage of the 
Liquidus isotherm by each thermocouple, and GL = Ṫ/VL. The experi
ments were repeated with identical parameters to obtain two ingots of 
each alloy. 

The metallography of longitudinal samples extracted from the center 
of the ingots (Fig. 2b) was performed along with scanning electron mi
croscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). 
Traditional metallographic techniques were used by grinding, polishing 
and etching using a HF 5% solution. The secondary dendrite arm spac
ings (λ2) were measured from the bottom to the top of the ingots. At least 
30 measurements were taken for each selected position. Brinell hardness 
tests were carried out on both faces of the longitudinal samples (three 
measurements were performed on each sample taken at 12, 30 and 50 
mm from the cooled bottom of each ingot, corresponding to the ther
mocouples TC2, TC5 and TC6, respectively), according to the ASTM E 10 
Standard Test Method [41], using a test load of 2500 N, a 5 mm-diam
eter sphere and a dwell time of 30 s. Precipitation hardening heat 
treatments were carried out at 540 ◦C ± 3 ◦C for 10 h into a resistance 
muffle furnace for solutioning, quenched into water at 25 ◦C ± 2 ◦C, 
followed by artificial aging at 155 ◦C ± 3 ◦C for 5 h. 

Table 1 
Chemical composition of the alloys (wt%).  

Alloys Al Si Mg Fe Other 

Al3Si0.6Mg Balance  2.98  0.62  0.15  0.011 
Al7Si0.6Mg Balance  7.16  0.65  0.20  0.011 
Al12Si0.6Mg Balance  12.33  0.54  0.22  0.051  

P.A.B. Machado et al.                                                                                                                                                                                                                         



Journal of Manufacturing Processes 75 (2022) 514–526

516

The machinability evaluation was performed in face turning opera
tion as a function of the cutting force, using a conventional CNC lathe 
(Mazak, Quick Turn Nexus 100-II model) and cutting inserts of TiN 
cemented carbide (Iscar, VCGT 160408-AS). According to the manu
facturer's specifications, the recommended cutting speed ranges from 
60 m/min to 1500 m/min. Considering a minimum sample diameter of 
20 mm and a cutting speed of 250 m/min, the determined rotation is 
3980 rpm, which is suitable since the maximum rotation of the CNC 
lathe is 6000 rpm. Also, the cutting depth should vary between 0.5 mm 
and 3.0 mm for aluminum alloys. Since the cutting depth must be less 
than the tool nose radius for tuning process, in the present case the 
cutting depth must be less than 0.8 mm. Finally, the recommended feed 
rate is between 0.10 mm/rev to 0.25 mm/rev, and an intermediate value 
was chosen. Then, the cutting depth, feed rate and cutting speed, with 
values of 0.5 mm, 0.15 m/rev and 250 m/min, respectively, were 
selected and kept constants during all machining tests, minimizing the 
effect of machining parameters on cutting forces and focusing on the 
influences of microstructure and hardness on machinability. A three- 
component force dynamometer (Kistler, 9441B model) mounted on the 
turret/tool holder adapter (Fig. 2c) was used for measuring the cutting 
forces. The ingot was divided in three 3 regions: 0–20 mm, 20–40 mm 
and 40–60 mm from the cooled bottom, in order to associate the cutting 
force with each thermocouple position (TC2, TC5 and TC6). New inserts 
were used for each region. In order to avoid overspeed at the center of 
the ingot, a central hole with 20 mm diameter was drilled in the ingot. 
Since the speed cutting was kept constant, the spindle rotational speed 
started at 750 rpm at the external diameter (100 mm) and achieved at 
4000 rpm at the final diameter (20 mm). 

3. Results and discussion 

The as-cast microstructures revealed by SEM images at 30 mm from 
the bottom of the ingots (corresponding at the location of the thermo
couple TC5) are shown in Fig. 3. EDS analyses were used to identify 
phases and precipitates. For the Al3Si0.6Mg alloy (Fig. 3a), a typical 
microstructure consisting of a dendritic α-Al rich matrix (gray phase – 
spectrum #1) and an interdendritic (α-Al + Si particles) eutectic mixture 
(Chinese-script like structure – spectrums #2 and #3) was observed. 
Since the concentration of dissolved solutes in the α-Al matrix is small, 
their peaks were undetected in EDS analysis. Few globular particles with 
the presence of Al, Si, Mg and Fe were noted (spectrums #4 and #5), as 
shown in detail in Fig. 3a. These rounded particles are probably the 
ternary α-Al + Si + Mg2Si eutectic microconstituent [42]. The micro
structure of the Al7Si0.6Mg alloy is composed by the dendritic α-Al 

phase (spectrum #1), a higher amount of the eutectic α-Al + Si mixture 
(spectrums #2 and #3), and globular precipitates dispersed along the 
matrix (spectrums #4 and #5), as depicted in Fig. 3b. The 12%Si-con
taining alloy showed a quasi-fully eutectic microstructure (α-Al + Si), as 
seen in Fig. 3c. Some needle-like Fe-rich phases were observed in all 
alloys samples as a function of Fe-content, as well as the presence of Fe in 
the eutectic mixtures. As confirmed by Liu [13], Taylor [43] and Bid
meshki [44], the needle-shaped intermetallic compound is identified as 
the β-Al5FeSi phase, which is formed after solidification of the α-Al 
matrix. According to the equilibrium pseudo-binary phase diagram of 
Al-2.4%Si-x%Mg alloys simulated by Zhu et al. [45], the solidification 
path of an Al-2.4%Si alloy with 0.6%Mg is: L → (L + α-Al) → (L + α-Al +
Si) → (α-Al + Si) → (α-Al + Si + Mg2Si), when considering the absence of 
Fe. Lima et al. [46] simulated a pseudo binary phase diagram under non- 
equilibrium conditions of the Al-7%Si-0.6%Mg alloy containing 0.15% 
Fe content and concluded that β-Al5FeSi and π-Al8Mg3FeSi6 in
termetallics were present in the final as-cast microstructure. These re
sults were confirmed by Silva et al. [42] on an Al-7Si-3Mg-0.15Fe alloy. 

Using the cooling curves acquired during solidification (Fig. 4a to c), 
the tip growth rate (VL), the liquid thermal gradient (GL) and the tip 
cooling rate (Ṫ) along the length of the ingots were determined, as 
shown in Fig. 4d to f. The temperature profiles of the Al3Si0.6Mg alloy 
(Fig. 4a) indicates that the Liquidus temperature was achieved faster for 
positions far from the bottom of the ingot when compared with the other 
alloys, while the Al12Si0.6Mg alloy (Fig. 4c) exhibited the longest time 
to the beginning of solidification. 

Despite the aforementioned behavior, the Al12Si0.6Mg alloy casting 
exhibited the highest profile of Ṫ values (Fig. 4f) and the lowest profile of 
VL (Fig. 4d). This is attributed to the influence of the thermal gradient 
profile, which is much higher for the Al12Si0.6Mg alloy casting as 
compared with those of the two other examined alloys (Fig. 4e). This is a 
consequence of the highest liquid metal superheat exhibited by the 
Al12Si0.6Mg alloy ingot, as evidenced in Fig. 4c. 

Fig. 5a shows the longitudinal macrostructures and microstructures 
obtained from a set of samples extracted along the length of the solidi
fied ingots. Columnar macrostructures were observed along the entire 
casting length, and insignificant variances were observed in terms of 
grain size. The evolution of the secondary dendrite arm spacing (λ2) as a 
function of the solidification cooling rate (Ṫ) is shown in Fig. 5b. In the 
present work, it was observed that λ2 decreases with the increase in the 
alloy Si content. In the experimentally derived growth laws λ2 = f(Ṫ), 
different exponents were obtained for each alloy, varying from 0.18 to 
0.34. In general, the literature has reported values close to 0.33 for Al-Si- 
Mg alloys [47–48]. 

Fig. 6 shows the results of Brinell hardness measurements carried out 
in samples extracted at 12, 30 and 50 mm from the cooled bottom of the 
ingots for both as-cast and heat-treated conditions. In general, the 
hardness increases as the alloy Si content increases in both conditions, 
which is associated to the increase in the amount of the eutectic 
microconstituent. When analyzing the variation in hardness along the 
length of the ingots, a slight decrease can be noted in the as-cast con
dition (Fig. 6a) with increasing distance from the cooled bottom, 
whereas the hardness values in the heat-treated ingots are almost con
stant. In addition, it was noted a substantial increase in hardness 
(approximately 1.6× higher) from the as-cast samples to those heat- 
treated. This behavior is due to the Mg2Si precipitation during the 
artificial aging procedure. The results are similar to those reported by 
Yildirim et al. [16] for an A356-base alloy (Al-7%Si-0.3Fe) with Mg 
additions of 0.43, 0.67 and 0.86 wt%, subjected to the T6 heat treat
ment. Kaleel [19] found smaller hardness responses with an Al-7%Si- 
0.3%Mg alloy subjected to different solutioning and artificial aging 
conditions (temperature and time) probably due to the smaller amount 
of Mg in that alloy. In order to correlate the hardness with a represen
tative microstructure feature, a Hall-Petch type relation was obtained, 
given by HB = a + b * (λ2)− 0.5, which permits estimating the Brinell 

Fig. 1. Cooling curves of the alloys obtained by thermal analysis.  
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hardness as a function of the inverse square-root of λ2 for the examined 
alloys, as shown in Fig. 6c. 

Some typical microstructures obtained for the alloys after heat 
treatment are shown in Fig. 7. It can be seen that the eutectic Si particles, 
which were of an irregular faceted morphology in the as-cast condition, 
have been modified into more disconnected and rounded particles. Yao 
and Taylor [49] found similar microstructures for the Al-7Si-0.4 Mg- 
0.12Fe alloy after T6 heat treatment. As concluded by the authors, the 
heat-treated iron-containing phases are more refined than those of the 
as-cast condition. Costa et al. [50] reported the influence of the T6 heat 
treatment on the morphology and distribution of Si particles and λ2 in an 
Al-Si-Cu alloy. According to the results, λ2 tends to increase slightly after 
the T6 heat treatment in special for solution times higher than 5 h, which 
induces the progress of the coarsening process of λ2. The authors re
ported that the morphology of Si particles modified to a mixture of fibers 
and spheroids after the T6 heat treatment. In a subsequent work, the T6 
heat treatment applied in as-cast samples was reported not to affect λ2 
features [51]. However, more spheroidized Si particles were observed 
when smaller λ2 values were obtained in the as-cast microstructure. 

When the alloy Si-content increased to 7%, the same behavior was 
observed, with spheroidized-like Si particles being predominant close to 
the bottom of the ingot [52]. 

The cutting forces obtained in the machining experiments are sum
marized in Fig. 8 as a function of position along the length of ingots in 
both as-cast and heat-treated conditions. When the as-cast alloys were 
machined, it is worth noting that all alloys showed maximum cutting 
force values at the beginning of each cutting operation, decreasing as the 
machining progresses. This can be attributed to the variation of micro
structure and hardness of samples extracted from different regions along 
the length of the ingots (TC2: 0–20 mm; TC5: 20–40 mm; TC6: 40–60 
mm) and the heating of the material, which leads to soften the work 
material [29,32]. For the Al3Si0.6Mg alloy, the cutting force values at 
the beginning of the turning process were about 65 N, 78 N and 90 N in 
the regions corresponding to the TC2, TC5 and TC6 positions, respec
tively, decreasing to approximately 20 N, 30 N and 40 N at the end of the 
turning. In all regions, the variation in the cutting force during the 
process was approximately 47 N, which indicates a similar softening of 
the alloys during cutting, regardless of the alloy hardness. This can be 

Fig. 2. (a) Representation of the solidification apparatus, (b) solidified ingot, (c) specimen extracted for mechanical tests, and (d) cylindrical ingot for machin
ability tests. 
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Fig. 3. SEM micrographs and EDS analyses: (a) Al3Si0.6Mg, (b) Al7Si0.6Mg, (c) Al12Si0.6Mg alloys.  

P.A.B. Machado et al.                                                                                                                                                                                                                         



Journal of Manufacturing Processes 75 (2022) 514–526

519

associated with the characteristic of the microstructure, which consists 
predominantly of the α-Al rich matrix, a ductile and soft phase. With the 
increase in Si content from 3% to 7%, the cutting forces displayed var
iations in their behavior. The values at the beginning of cutting tend to 
decrease along with the positions at TC2 and TC5 regions, showing final 
cutting forces higher than those of the Al3Si0.6Mg alloy. The cutting 
force variations for the regions at TC2, TC5 and TC6 of the Al7Si0.6Mg 
alloy were about 25 N, 32 N and 50 N, respectively. While the smallest 
value observed at the position closest to the bottom of the ingot is related 
to the highest hardness and the more refined microstructure, the 
greatest variation obtained at the top of the ingot is linked to the 
smallest hardness and coarsest microstructure. According to Silva et al. 
[53] who investigated the influence of microstructure features on the 
machinability of an Al-7wt%Si cast alloy, the heating rate during 
machining increases with increasing secondary dendrite arm spacing 
(λ2) and with increasing Si particle size, caused by increased efforts 
during machining. The authors concluded that the machinability 
decreased with microstructure refinement and hardness increase. The 
Al12Si0.6Mg alloy showed more stable values during machining, with 
the variation along the region decreasing slightly for all positions (65 N 
at the beginning and 45 N at the end of turning). This homogenous 
behavior occurred due to the hardness/microstructure conditions 
(higher hardness and higher amount of eutectic microconstituent), 
which require lower forces to remove the material. In the as-cast con
dition, it was evident that the high Si content induces the hardening of 
the alloy and the weakening of the chips, causing rupture of the removed 
material, and consequently, improving the machinability. This behavior 
was also reported by Kamiya et al. [54] in Al-Si casting alloys with Si 
contents ranging from 2% to 25%. As the Si content increased, the chips 
became shorter and fragmented as a result of the increase in the amount 
of eutectic Si microconstituent and the material hardness. Both condi
tions reduce material adhesion on the rake face of the tool, facilitating 

material removing. Akyuz [55] also observed increase in machinability 
with increasing Si content in hypoeutectic binary Al-Si casting alloys as 
the cutting force during turning decreased with increasing alloy Si 
content. When comparing the heat-treated and as-cast conditions, a 
significant change was observed for all alloys. The cutting forces showed 
constant values (approximately 55 N) independently of both alloy 
composition and position along the length of the ingot. This demon
strates that precipitation hardening has a beneficial effect on the 
machinability of the alloys, probably due to the tendency of embrittle
ment of the chips as a consequence of the increase in hardness [35]. 
However, Akyuz and Senaysoy [34] found opposite behavior in a com
parison of cutting forces in turning of AA6013 alloy samples under 
unaged and aged conditions. The highest cutting forces were observed 
for the aged samples. 

Fig. 9 shows images of chip formation and cutting tool surfaces after 
machining of the investigated alloys in both the as-cast and heat-treated 
conditions. As observed, chip formation changed depending on Si con
tent and alloy condition. The chips were relatively longer and with a 
large radius of curvature in the alloy containing 3%Si, both in as-cast 
and heat-treated conditions. The chips became shorter and fragmented 
as the Si content increased to 7%. However, for the 12%Si alloy the chips 
were continuous and longer than for the 3%Si alloy, but the radius was 
smaller. When analyzing the cracks formed on the chip surfaces, it was 
observed that the incidence was more pronounced in the Al7Si0.6Mg 
alloy, followed by the Al3Si0.6Mg and Al12Si0.6Mg alloys, respectively. 
Build-up edge was observed on the rake face surface of the cutting tool 
after machining all alloys and conditions. The build-up edge was more 
severe for the alloy with 3%Si, and less severe for the 7%Si and 12%Si 
alloys. In general, build-up edge formation decreased with increasing Si 
content, probably due to the increase in alloy hardness as a function of 
the increase in the amount of the eutectic microconstituent and heat 
treatments, and consequent decrease in chip adhesion on the rake face of 

Fig. 3. (continued). 
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the cutting tool. These results are in agreement with those reported by 
Barzani et al. [56] who observed that the presence of hard phases am
plifies chip breakability and reduces chip adhesion. Demir and Gunduz 
[57] also stated that higher hardness facilitates material removal during 
machining in aging heat-treated alloys, preventing build-up edge 
formation. 

In order to analyze the combined behavior of cutting force (Fc) and 
hardness, Fig. 10a to c show the resulting correlations for the different 
regions along the length of the as-cast ingots and the obtained experi
mental laws. The expressions for the secondary dendrite arm spacing 

were incorporated into the cutting force model, in order to derive gen
eral expressions that correlate λ2 with Fc for the investigated as-cast 
alloys (Eqs. (1a) to (3c)). 

Al3Si0.6Mg 

FC(0− 20 mm) = 55.06*
[
48.7+ 42.1*(λ2)

− 0.5
]
− 2977 (1a) 

FC(20− 40 mm) = 63.46*
[
48.7+ 42.1*(λ2)

− 0.5
]
− 3391 (1b) 

FC(40− 60 mm) = 73.72*
[
48.7+ 42.1*(λ2)

− 0.5
]
− 3892 (1c) 

Fig. 4. Experimental cooling curves of the ingots: a) Al3Si0.6Mg, b) Al7Si0.6Mg, c) Al12Si0.6Mg, d) tip growth rate, e) liquid thermal gradient, f) cooling rate as a 
function of position. 

P.A.B. Machado et al.                                                                                                                                                                                                                         



Journal of Manufacturing Processes 75 (2022) 514–526

521

Al7Si0.6Mg 

FC(0− 20 mm) = 23.84*
[
44.1+ 88.1*(λ2)

− 0.5
]
− 1300 (2a) 

FC(20− 40 mm) = 24.52*
[
44.1+ 88.1*(λ2)

− 0.5
]
− 1327 (2b) 

FC(40− 60 mm) = 39.41*
[
44.1+ 88.1*(λ2)

− 0.5
]
− 2112 (2c) 

Al12Si0.6Mg 

FC(0− 20 mm) = 16.71*
[
57.1+ 39.3*(λ2)

− 0.5
]
− 1042 (3a) 

FC(20− 40 mm) = 11.37*
[
57.1+ 39.3*(λ2)

− 0.5
]
− 678 (3b) 

FC(40− 60 mm) = 14.63*
[
57.1+ 39.3*(λ2)

− 0.5
]
− 864 (3c) 

Direct comparison between experimental and calculated data using 
these equations is illustrated in Fig. 10d for the Al7Si0.6Mg alloy. As can 
be seen, relatively good agreement is observed, but the deviation in
creases for positions close to the bottom, where λ2 shows the highest 
variation, or to the top of the ingot that is generally associated with a 
higher incidence of pores for directionally solidified Al-based alloys 
ingots [58]. 

4. Conclusions 

The influence of as-cast and heat-treated microstructures and hard
ness on the machinability of Al-Si-Mg alloys with different Si content has 

Fig. 5. a) Typical as-cast macrostructures and microstructures, b) secondary dendrite arm spacing as a function of cooling rate.  
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been investigated in this work. The following conclusions can be drawn 
from the results:  

- Higher alloy Si content results in higher amount of the eutectic 
mixture in the microstructure, higher cooling rates during solidifi
cation, and consequently more refined λ2; 

- Hardness increases with the T6 heat treatment for all examined al
loys, approximately 1.6× higher than that of the as-cast samples; 

Fig. 6. Brinell hardness as a function of position along the length of the ingots: (a) as-cast, (b) heat-treated, (c) Hall-Petch type expressions HB vs (λ2)− 0.5.  

Fig. 7. Typical microstructures obtained for the alloys after heat treatment: a) Al3Si0.6Mg, b) Al7Si0.6Mg, c) Al12Si0.6Mg.  
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Fig. 8. Cutting force as a function of position along the length of the ingots for as-cast and heat-treated conditions: (a) Al3Si0.6Mg, (b) Al7Si0.6Mg, (c) 
Al12Si0.6Mg alloys. 
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- The increase in hardness is effective in improving the machining 
process by decreasing the cutting forces; 

- Expressions for the secondary dendrite arm spacing were incorpo
rated into the cutting force model, in order to derive general ex
pressions that correlate λ2 with Fc along the length of the 
investigated directionally solidified alloys castings;  

- The results confirm that both microstructure and hardness play an 
important hole on the machinability behavior of as-cast and heat- 
treated alloys. However, despite the good agreement observed be
tween the developed Fc = f(λ2) expressions and experimental results, 
further investigation is required to allow a better understanding of 
the set of additional metallurgical influencing mechanisms, such as 

Fig. 9. Chip morphologies and cutting tools used for machining in the as-cast and heat-treated conditions: (a) Al3Si0.6Mg, (b) Al7Si0.6Mg, (c) Al12Si0.6Mg alloys.  
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the distribution of pores along the length of directionally solidified 
ingots. 
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