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Fc Gamma Receptor IIA (CD32A) R131 Polymorphism
as a Marker of Genetic Susceptibility to Sepsis
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Abstract—Sepsis is a devastating disease that can affect humans at any time between neonates and the
elderly and is associated with mortality rates that range from 30 to 80 %. Despite intensive efforts, its
treatment has remained the same over the last few decades. Fc receptors regulate multiple immune re-
sponses and have been investigated in diverse complex diseases. FcγRIIA (CD32A) is an immunor-
eceptor, tyrosine-based activation motif-bearing receptor that binds immunoglobulin G and C-reactive
protein, important opsonins in host defense. We conducted a study of 702 patients (184 healthy
individuals, 171 non-infected critically ill patients, and 347 sepsis patients) to investigate if genetic
polymorphisms in the CD32A coding region affect the risk of septic shock. All individuals were
genotyped for a variant at position 131 of the FcγRIIA gene. We found that allele G, associated with
the R131 genotype, was significantly more frequent in septic patients than in the other groups (p=0.05).
Our data indicate that FcγRIIA genotyping can be used as a marker of genetic susceptibility to sepsis.
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INTRODUCTION

Sepsis is a complex disease characterized by massive
systemic inflammatory responses of infectious origin that

lead to a multitude of clinical manifestations that frequently
culminate in multiple organ dysfunction or failure. Sepsis
is the leading cause of death in intensive care units and
represents a constant source of concern for health systems
around the world, mainly because of its high incidence and
associated hospital costs [1, 2].

The genetic variability of septic patients is a factor
that has been extensively investigated in the last decades,
as sepsis is a heterogeneous disease affecting different
subpopulations of critically ill individuals and is character-
ized by high individual presentation. Genetic association
with different immune profiles or clinical outcomes might
help clinicians to diagnose and treat sepsis, contribute to a
better understanding of its pathophysiology, and open new
avenues for drug development [3–6].

Fc receptors (FcRs) are major components of the
immune system that elicit pleiotropic effector responses
including the production of inflammatory mediators,
phagocytosis, antibody-dependent cellular cytotoxicity,
and chemotaxis, among others [7, 8]. FcγRII (CD32) is
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an IgG receptor widely expressed by neutrophils, mono-
cytes, macrophages, dendritic cells, and platelets, and com-
prises two subclasses: FcγRIIA and FcγRIIB [7].
FcγRIIA (CD32A) is an immunoreceptor tyrosine-based
activation (ITAM)-containing receptor that bears either an
arginine (R131) or a histidine (H131) at position 131
of the mature protein [9]. The arginine residue
decreases the affinity of FcγRIIA for IgG2 [10], a
subclass of IgG that binds to carbohydrate portions
in bacterial capsules. As a consequence, the lower
affinity affects phagocytosis mediated by IgG2 [11].
Interestingly, FcγRIIA-H131 displays a high affinity
for C-reactive protein [12], an acute-phase protein
produced in high amounts during infection.

The purpose of this study was to investigate the
prevalence of two well-characterized FcγRIIA alleles in a
cohort of septic patients compared with healthy subjects to
determine their potential as biomarkers for sepsis.

PATIENTS AND METHODS

Study Design

Blood samples were collected at the Intensive Care
Unit of Hospital São Lucas (septic patients: case, and non-
infected patients: control 1) and at the Research Unit of
Paternity (healthy individuals: control 2), both from the
Pontifical Catholic University of Rio Grande do Sul. Se-
vere sepsis and septic shock were defined according to the
criteria of the ACCP/SCCM Consensus Conference Com-
mittee proposed in 1992 [13].

Exclusion criteria included human immunodeficiency
virus infection, patients in immunosuppressive therapy,
patients aged under 16 years, non-Caucasian ancestry,
and pregnant or lactating women.

All subjects were from southern Brazil and
were composed of a singular genetic background:
the majority of subjects had European ethnicity
(Portuguese, Spanish, Italian, and German ancestry),
and a small number of individuals had African ge-
netic traits [14].

The study was approved by the ethics committees of
the Hospital das Clinicas de Porto Alegre and Hospital das
Clinicas da Universidade de Sao Paulo (protocol no. 205/
13), being performed in accordance with the Declaration of
Helsinki. All subjects or patient surrogates received de-
tailed explanations and provided written consent prior to
inclusion in this investigation.

DNA Extraction and Genotyping

A total of 702 samples were collected including 184
samples from healthy individuals, 171 from non-infected
critically ill patients, and 347 samples from patients with
sepsis. Genomic DNAwas extracted from leukocytes by a
standard method [15].

The genotyping protocol previously described by
Ahlgrimm et al. [16] was used with minor changes. In
brief, DNA was diluted in water to a final concentration
of 10 ng/μL per reaction, and mutation tests were per-
formed using the TaqMan® (Invitrogen) single nucleotide
polymorphism (SNP) Genotyping Assay C9077561-20 for
the polymorphism rs1801274, which detects the FcγRIIA-
R/H131 allele.

The reaction was optimized for a total of 3 μL
genomic DNA mixed with 6.25 μL TaqMan Univer-
sal Master Mix and 0.312 μL TaqMan SNP Genotyp-
ing Assay Mix. After an initial step at 95 °C for
10 min, amplification was performed using 40 cycles
of denaturation (92 °C, 15 s), annealing (60 °C,
1 min), and extension (60 °C, 1 min). The PCR
was performed using the real-time PCR (RT-PCR)
StepOne kit (Invitrogen, USA).

DNA Sequencing

For validation of the probes used in the geno-
typing tests, we carried out the sequencing of some
samples. PCR of the CD32 gene region containing
the rs1801274 SNP was performed with 1 μL of
genomic DNA, 1× PCR buffer, 0.1 mM of dNTPs,
4 mM of MgCl2, 0.5 pM of each primer, and 0.5 U
of Taq DNA polymerase (Life Technologies, USA)
and distilled water. Primer sequences are described
in Table 1.

All reactions were performed in a Veriti Ther-
mal Cycler (Applied Biosystems, USA) with an
initial step at 95 °C for 5 min, followed by
40 cycles at 95 °C for 15 s, 55 °C for 30 s, and
72 °C for 30 s, followed by 1 cycle at 72 °C for
10 min. After purification with EXO-SAP and
quant i f icat ion with Low Mass DNA Ladder
(Invitrogen), sequencing was performed using the
ABI3500 Genetic Analyzer using BigDye Termina-
tor v3.1 (Applied Biosystems).

Sequences were analyzed by comparison to reference
sequences described in the dbSNP Database (accession
number rs1801274) and confirmed by reverse-strand
sequencing.
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Statistical Analysis

Statistical analysis was performed using the SPSS 18
statistical package (SPSS 18.0 for Windows, Chicago, IL,
USA) for the Pearson chi-squared test or the Student t test.
A p value ≤0.05 was considered statistically significant.

RESULTS

A total of 518 critically ill patients were included in
our study, as well as 184 healthy individuals. We geno-
typed 347 critically ill patients with sepsis, 171 critically ill
patients without sepsis (non-infected group), and 184
healthy individuals. The characteristics of these patients
are summarized in Table 2.

To validate the results obtained by RT-PCR, we ran-
domly chose some samples for DNA sequencing. At least
three samples of each genotype were analyzed per group.
All sequencing and genotyping results matched perfectly
and were aligned with the Hardy–Weinberg equilibrium
(data not shown).

The comparison of genotypic and allelic CD32A
frequencies did not show any differences among the study
groups (Table 3) or between different degrees of sepsis
(Table 4).

Our mortality results, however, indicated that although
allele A did not appear to interfere with the development of

sepsis, the presence of allele G appears to increase the risk of
evolution to this picture (p=0.050) (Tables 5 and 6). These
results, along with observations made by many other groups
in inflammatory and autoimmune diseases [17–21], indicate
the role of FcγRIIA-R131 as a susceptibility factor and
indicator of a poor prognosis of sepsis.

DISCUSSION

Recently, genetic variations in sepsis patients have
been extensively investigated by the scientific community
[4, 22–26]. Most studies focused on components of innate
immunity and the coagulation system. Toll-like receptors
[27, 28], their intracellular signaling molecules [29, 30],
cytokines [31–36], chemokines [37], transcription factors
[38], andmany other molecules have been studied [39–45].

Polymorphisms with an exchanged single nitroge-
nous base (SNPs) occur throughout the genome and can
alter the expression or function of their gene products [46].
This type of polymorphism is the most common genetic
variation in the general population. SNPs occur in approx-
imately 1:1000 base pairs and the most common is the
substitution of cytosine for thymine (C>T). It is estimated
that 10 % of all SNPs in the human genome are functional.
A number of studies have investigated multiple SNPs from
multiple genes with the hope of identifying biomarkers in
complex diseases.

Table 1. PCR Primers Used for rs1801274 Amplification

SNP Primer sequence (5′>3′) Amplicon size (bp) Tm

rs1801274 F CATCTTGGCAGACTCCCCATACC 348 55 °C
R GTACCTCTGAGACTGAAAAACCCTTGG

SNP single nucleotide polymorphism, Tm melting temperature, bp base pair

Table 2. Demographic Data of Patients According to Presence or Absence of Sepsis

Polymorphism Demographic
data

Non-infected Sepsis p value

CD32 Number 171 347
Female sex, n (%) 79 (46.2) 156 (45.0) 0.851a

Age, mean (SD) 51.75 (20.37) 56.19 (19.62) 0.017b

Survival, n (%) 134 (78.4) 164 (47.3) <0.001a

Septic shock, n (%) 0 (0.0) 245 (70.6)

Entries in italics represents p<0.05
SD standard deviation
aChi-squared test
b Student’s t test
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Elucidation of the role of these genetic variations in
the inflammatory process and in the course of infection
might enhance our understanding of the molecular events
that occur during sepsis and help improve its diagnosis and
treatment. Indeed, the search for reliable sepsis biomarkers
is one of the greatest goals in critical care medicine, be-
cause clinicians are challenged daily to differentiate sepsis
from other excessive inflammatory processes [47]. In
many cases, antibiotics are administered in the absence of
infection, when the risk of death is high and the physician
cannot exclude possible infection. This common scenario
generates unnecessary costs and might lead to antibiotic-
resistant bacteria.

FcγRIIA (CD32A) polymorphisms have been de-
scribed in association with infectious, inflammatory, and
autoimmune diseases. Examples include systemic lupus
erythematosus [48], sickle cell disease [49], fulminant
meningococcemia in children [50], malaria [51], human
immunodeficiency virus infection [52], and Epstein–Barr
virus infection [53]. Homozygosity for FcγRIIA-H131
was associated with a higher risk of pneumococcal
community-acquired pneumonia [54–56], and neutrophils
from subjects homozygous for FcγRIIA-R131 exhibited a
significantly reduced uptake of opsonized pneumococci,
group B streptococci, neisseriae, and staphylococci com-
pared with FcγRIIA-H131 cells [57]. In our study, we

aimed to identify an FcγRIIA polymorphism that was
more prevalent in sepsis when compared with healthy
individuals or non-infected patients or that could be asso-
ciated with sepsis mortality. As blood cultures are only
positive for bacteria in 30 % of sepsis cases, we did not
focus on specific etiologic agents. Our goal was to identify
an FcγRIIA polymorphism that could serve as a biomarker
for bacterial sepsis in general, independently of the source
of infection or deeper microbiological classification. We
found that the presence of allele G in the FcγRIIA gene
was associated with an increased risk of sepsis.

The mechanisms that are triggered by FcγRIIA dur-
ing sepsis are complex. Because FcγRIIA is an ITAM-
bearing receptor and the R131 polymorphism has a lower
affinity for IgG2 [58], this polymorphism might induce a
weaker inflammatory response than the H131 genotype.
However, many previous studies by our group indicated
that ITAM-bearing receptors also trigger inhibitory signals
under special conditions [59–63]; thus, it is very difficult to
predict the signaling mechanisms elicited by FcγRIIA
polymorphisms during sepsis.

Moreover, FcγRIIA binds to CRP, an acute-phase
protein that recognizes pathogenic microbes and damaged
cells; activates complement; and promotes the clearance of
apoptotic cells [64]. However, its mechanisms of action,
including Fc receptor biology, are largely unknown. CRP

Table 3. Comparison of Genotypic and Allelic Frequencies in Patients With or Without Sepsis and in Healthy Individuals

CD32 allele Non-infected patients (n=171) Sepsis patients (n=347) Healthy subjects (n=184) p valuea

n (%) n (%) n (%)

AA 50 (29.2) 74 (21.3) 49 (26.6) 0.197
AG 75 (43.9) 172 (49.6) 93 (50.5)
GG 46 (26.9) 101 (29.1) 42 (22.8)
A 175 (51.2) 320 (46.1) 191 (51.9) 0.127
G 167 (48.8) 374 (53.9) 177 (48.1)

aChi-squared test

Table 4. Comparison of Genotypic and Allelic Frequencies in Septic
Patients Requiring Vasopressors (Septic Shock) or Not (Severe Sepsis)

CD32 allele Severe sepsis
patients (n=102)

Septic shock
patients (n=245)

p valuea

n (%) n (%)

AA 24 (23.5) 50 (20.4) 0.286
AG 44 (43.1) 128 (52.2)
GG 34 (33.3) 67 (27.3)
A 92 (45.1) 228 (46.5) 0.739
G 112 (54.9) 262 (53.5)

aChi-squared test

Table 5. Comparison of Genotypic and Allelic Frequencies of CD32 by
Patient Survival

CD32 allele Death (n=220) Survival (n=298) p valuea

n (%) n (%)

AA 49 (22.3) 75 (25.2) 0.713
AG 106 (48.2) 141 (47.3)
GG 65 (29.5) 82 (27.5)
A 204 (46.4) 291 (48.8) 0.451
G 236 (53.6) 305 (51.2)

aChi-squared test
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exists in conformationally distinct forms, which explain its
various functions [65, 66]. A recent report described that
CRP-FcγRIIA interactions mediate potent antineutrophil
and antiplatelet adhesion functions, limiting inflammation
and thrombosis [67]. In addition, some FcγRIIA-mediated
responses triggered by CRP are allele specific [68].

Our findings, thus, put in evidence the importance of
Fc receptors in sepsis and emphasize the complex biolog-
ical functions of these molecules in the presence of over-
whelming infection, regardless of the source of infection or
bacterial agent. Our strongest limitations are the number of
patients included and the lack of mechanistic assays, so we
believe that further studies are necessary to confirm our
data, investigate the role of other Fc receptor polymor-
phisms in sepsis, and conduct in vitro studies to provide a
broader view of this fascinating topic. A greater under-
standing of these phenomena might contribute to develop-
ing personalizedmedicine for sepsis patients [69] and bring
new hope to the critically ill.

CONCLUSION

The identification of genetic variants associated with
altered susceptibility and clinical manifestations in sepsis
will permit the early identification of infected patients or
those at a higher risk of death and allows tailored treatment,
avoiding unnecessary or detrimental drug administration.
Further studies are necessary to clarify why the R131
polymorphism is prevalent in septic patients and the mo-
lecular events that follow its activation.
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Table 6. Comparison of the Presence and Absence of Alleles A and G in Critically Ill Patients With or Without Sepsis

CD32 allele Non-infected patients (n=171) Sepsis patients (n=347) p valuea

n (%) n (%)

AA+AG 125 (73.1) 246 (70.9) 0.607
GG 46 (26.9) 101 (29.1)
GG+AG 121 (70.8) 273 (78.7) 0.050*
AA 50 (29.2) 74 (21.3)

Presence of G: non-infected 121/394 (31 %), sepsis 273/394 (69 %). Absence of G: non-infected 50/124 (40 %), sepsis 72/124 (60 %)
*p<0.05 compared with non-infected patients
aChi-squared test
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