
Applying Memory Test to Embedded Systems

César Augusto M. Marcon1, Alexandre de Moraes Amory1, Marcelo Lubaszewski1, Altamiro Amadeu
Susin1, Ney Laert V. Calazans2, Fernando Gehm Moraes2, Fabiano Hessel2

1Universidade Federal do Rio Grande do Sul (PPGC-UFRGS), Porto Alegre – RS – BRASIL
2Pontifícia Universidade Católica do Rio Grande do Sul (PPGCC-PUCRS), Porto Alegre – RS – BRASIL

marcon@inf.ufrgs.br

ABSTRACT
Embedded systems designers are faced today

with stringent performance requirements on, e.g. power
and area consumption. This work analyses power
consumption and execution time of memory test
algorithms, considering both hardware and software
implementations. Software implementation is carried
experimentally on four different processors. Comparative
results are presented to guide the designer to select the
best solution for applications.

1. INTRODUCTION
Embedded systems have a broad spectrum of

requirements depending largely on the applications
specificity. For applications on mobile telephony, for
example, low power dissipation leads to an increase of
telephone set autonomy. For applications of high-speed
data communication, the execution speed of data
manipulation algorithms is an essential requirement. For
most embedded applications, silicon area consumption
and number of input/output pads are requirements that
guide the design flow. In general, embedded systems
design must always be concerned with area consumption
and power dissipation. Area consumption directly affects
the system production cost. Power dissipation, on the
other hand, is an additional requirement in the system
total cost, due to the power dissipater sizing. Besides,
power is a limiting factor for all battery-powered
systems. For some embedded systems, the execution
speed is also a limiting design requirement, mainly to
embedded systems that operate in critical real time
applications [1].

An embedded system design flow must include
verification steps to guarantee its correct operation.
Memory circuits are usually present in embedded
systems and are very important in the power and area
budgets, implying that memory test procedures are one of
the main concern for system verification.

Memory verification can be executed during the
design flow, manufacturing or system operation. The
verification during the design searches for errors induced
for an inadequate specification. The verification during
the manufacturing process looks for coarse errors making
impracticable the system use or at least restricting its
applicability. On the other hand, verification during
system execution seeks to evaluate the correct operation

with regard to transitory or permanent faults. Device
fatigue is generally responsible for such faults.

Two test classes perform the verification during
system operation for random access memories (RAM).
The first one is the destructive tests class, which is not
concerned with keeping the information integrity; the
second one is the non-destructive tests class, which
preserves the original memory contents after test.

The destructive tests class allows greater flexibility
to test various memory faults. On the other hand, to
perform such tests during system operation implies data
loses. The non-destructive class is less flexible and
implies extra care with the system global design, because
these tests are designed to be executed during system
operation. Both test classes can be integrated on systems
that will be tested, i.e. BIST [2].

The motivation for this work is the characterization
of memory test algorithms in hardware/software
domains, having as target embedded systems
applications.

This work addresses the evaluation of destructive
and non-destructive memory tests. These costs are area
consumption, power dissipation and execution speed.
Section 2 presents the algorithms used for memory tests.
Section 3 presents the implementations of the algorithms.
Section 4 shows a comparative analysis of the results and
Section 5 presents some conclusions.

2. MEMORY TEST
Several types of faults can occur in memory

devices, as stuck-at-faults, transitions faults, coupling
faults and address decoder faults.

A stuck-at fault (SAF) happens when a cell or line
is always at the value 0 or 1, and it is not possible to
modify this value. Tests to detect and locate SAFs must
satisfy the following requirement: "from each cell or line
a 0 and a 1 must be read" [3].

A transition fault (TF) is a special case of SAF. It
occurs when a write in a cell or line does not generate a
correct transition. A test that allows detecting and
locating all the TFs must submit all the cells or lines to
transitions 0 → 1 and 1 → 0, and all cells or lines must
be read after each transition and before being submitted
to a new transition.

mailto:marcon@inf.ufrgs.br

A coupling fault (CF) involves two or more cells.
This fault occurs when a writing operation, which
induces a cell transition, modifies the content of another
cell. Tests to detect and locate all the CFs must satisfy
the following requirement: "For the entire cell that is a
coupled cell, each cell should be read after a series of
transitions that could cause coupling faults, with the
condition that the number of transitions in the coupled
cells be odd" [3].

Address decoder faults (ADF) occur when one or
more of the four following faults occur.
1. For a given address, no cell will be accessed;
2. There is no address accessing a given cell;
3. With a certain address, multiple cells are accessed;
4. A certain cell is accessed by more than one address.

Tests to detect and locate all the ADFs must test all
fault combinations illustrated in Figure 1, for all the cells.

 Ax Cx Cx

No address
accesses a cell

Faults 1 or 2

Ay Cy

Ax Cx

Ay

Ax Cx

Ay Cy
An address
accesses more than
one cell

Faults 1 or 3

2 or more addresses
access the same
cell, and there are
cells never accessed

Fault 2 or 4

2 or more addresses
access the same cell

Fault 3 or 4
Ax and Ay are addresses;
Cx and Cy are cells addressed by Ax and Ay, respectively.

Ax

Cy

Figure 1 – Combinations of address decoder fault

2.1 Memory Test Algorithms
This work analyses 3 March algorithms, which have

a destructive behavior, and an algorithm that preserves
the memory contents, named in this work Ndestructive.
The following notation is used to describe the memory
test algorithms:
• Curly brackets determine the beginning and the end

of the algorithm;
• An algorithm is composed of subalgorithms separated

by semicolon;
• The ↑ and ↓ arrows represent the access order to the

memory elements, either increasing or decreasing
addressing;

• Parentheses represent actions performed in the same
memory address. These actions are separated by
comma;

• A subalgorithm is composed of a direction arrow and
actions delimited by parentheses;

• The actions are: r, r_s, w0, w1 and w_s, where:
 r represents a memory reading operation. Such read

implies the comparison to the value previously
written;

 w0 – write a pattern into memory (0 in this work);
 w1 – write the complemented pattern into memory;

 r_s represents the reading and saving of a memory
cell or line;

 w_s represents the writing of the last saved value by
the r_s action.

2.1.1 March Algorithms

A March algorithm consists of a sequence of March
elements. A March element contains reading and/or
writing that are applied to all n memory cells in
increasing (for 0 until n-1) or decreasing (for n-1 down
to 0) order. The class of March algorithms is very useful
for memory BIST implementation; therefore, the
complete address range is executed sequentially many
times. This operation allows the use of a simple counter,
counting up or down depending on the memory access
direction. The complexity of the selected March
algorithms is O(n). However, this complexity
measurement is not sufficient to evaluate the algorithms
execution speed.

2.1.1.1 MATS

The Modified Algorithmic Test Sequence (MATS) is
explained in Figure 2 and represented in Figure 3. It is
the simpler possible March algorithm with reasonable
fault coverage. The algorithm detects all the SAFs in
memory cell and in the write and read logic. It also finds
all ADFs, if the cell placement corresponds to the address
sequence, i.e. the access to an address i can affects the
cell addresses i-1 and i+1. For the ADFs it is assumed
that the reading of two or more coupled cell will result in
the “or function” of the contents of these cells. MATS
requires 4 * n memory accesses.

(I)

for i ←0 to n-1
 cell[i] ← 0

(II)

for i ←0 to n-1
 if cell[i] ≠ 0
 ERROR
 cell[i] ← 1

(III)

for i ←0 to n-1
 if cell[i] ≠ 1
 ERROR

Figure 2 – MATS algorithm description

(I)

{ ↑ (w0);
(II)

↑ (r, w1);
(III)

↑ (r) }
Figure 3 – MATS algorithm representation

2.1.1.2 March C Algorithm

The March C algorithm is used to test coupling fault
of unlinked cells. Moreover, this algorithm detects SAFs
and TFs, because all the cells are alternately read in 0 and
1 states. The March C algorithm requires 11 * n memory
accesses.

{ ↑(w0); ↑(r, w1); ↑(r, w0); ↑(r); ↓(r, w1); ↓(r, w0); ↓(r) }
Figure 4 – March C algorithm representation

2.1.1.3 March B Algorithm

March B is a test algorithm that detects SAFs, TFs,
ADFs and CFs. March B also detects all the

combinations of SAFs, TFs, ADFs and CFs. Figure 5
illustrates the March B algorithm. This algorithm
requires 17 * n memory accesses.

{↑ (w0); ↑ (r, w1, r, w0, r, w1); ↑ (r, w0, w1); ↓ (r, w0, w1, w0); ↓ (r, w1, w0);}

Figure 5 – March B algorithm representation

2.1.2 Non-Destructive Algorithm

There are many algorithms for non-destructive test
implementation as it is presented in [2]. This work uses a
minimum non-destructive algorithm, namely
NDestructive, which essentially test SAFs. The
algorithm, depicted in Figure 6, saves the tested cell
value while it performs some actions to test the cell. The
NDestructive algorithm requires 6 * n memory accesses.

{ ↑ (r_s, w0, r, w1, r, w_s) }
Figure 6 – NDestructive algorithm representation

3. TARGET COMPONENTS OF MEMORY TEST
This Section presents the architectures chosen for

the comparison of memory test implementations taking
into account software and hardware components.

3.1 Memory Test Implementation with
Hardware
The hardware implementation of the memory test

algorithms were described with VHDL, creating a
common interface for all tests, such as described in
Figure 7. The difference between two algorithms is only
the control part, while auxiliary elements, used for
memory communication and control and data verification
keeps unchanged. The advantage of this approach is the
code reuse: only the description part that changes from
one algorithm to the other needs to be evaluated.

commands

Common Memory
Interface

(Addresses generation
and memory
verification)

Data Memory

addresses

data NDestructive Algorithm

March B Algorithm

March C Algorithm

MATS Algorithm

Hardware implementations

Figure 7 – Memory test implementations with

hardware

3.2 Memory Test Implementations with
Software
Four IP soft-core processors were chosen to analyze

software implementations: 8051, MIPS, FemtoJava and
R8. Two of them are commercial processors and two are
academics. The choice of these processors has two
reasons: the first one is the availability of the VHDL
description, and the second one is that they are target to
embedded systems. These VHDL descriptions allowed an
accurate comparison of the architectures with respect to

execution speed, area consumption and power
dissipation. Table 1 summarizes the processors features.

Table 1 – Features of the processors used to run
memory test algorithms

M
IP

S

Commercial processor with load-store architecture and
pipeline with three stages. Supports interrupts and all
MIPS-I user mode instructions, except unaligned load
and store operations. The processor word is 32 bits long.
IP-core available at
http://www.opencores.org/projects/mips.

Fe
m

to
Ja

va
 Academic microcontroller [4] based on stack

architecture. It was developed for embedded applications,
running a subset of java bytecodes. Address/data is 16
bits long. IP-core is available at
http://www.inf.ufrgs.br/~gme.

R
8

Academic processor [5], with load-store architecture.
Low complexity control unit. 16 general-purpose register.
Address/data is 16 bits long. Soft-core, including
specification, several implementations and software
development tools are available at
http://www.inf.pucrs.br/~gaph.

80
51

The Intel 8051 is an 8-bit micro-controller. This micro-
controller is able to address 64 Kbytes of program and
64 Kbytes of data memory. To be Intel 8051 cycle
compatible, the IP-core available at
http://www.cs.ucr.edu/~dalton/i8051/i8051syn was
partially modified.

Memory test algorithms are stored in the program

memory of each processor. The memory to be tested is
the data memory. The processor job is reading
instructions sequence dictated by the algorithm and
generating addresses and data for the data memory. We
presume that instruction memory is previously tested
with similar approach to [6].

4. EVALUATION RESULTS
This Section presents the comparison of area

consumption, power dissipation and execution speed for
the test algorithms developed to hardware and software
implementations, considering three memory sizes. The
chosen memory sizes are 128, 1024 (1K) and 65536
(64K) words. The reduced memory size reflects the small
memory sizes found in embedded systems.

4.1 Methods Used to Results Comparison
The four memory test algorithms (MATS, March C,

March B and NDestructive) have each one five
implementations (one for each processor and one for
hardware), which are evaluated in this Section. For
hardware implementations, all memory tests were
described with VHDL RTL. For software
implementations, the assembly generation was performed
manually. The reason for this approach is that memory
tests compilation cannot be done with optimisations
switch; because of the compiler removes some sequences
of instructions like, for example, double write at the same
memory address. Without optimisations, the generated

code and the test execution time were four times bigger
than the manual implementation.

The availability of VHDL soft-core of all
processors allowed the comparisons of power dissipation,
area consumption and execution speed, taking into
account the available devices by the synthesis tools.

The execution speed of the memory tests
implemented in software was evaluated with Active-
HDL™ simulator. For each processor was implemented a
VHDL test-bench able to read text files containing the
object-code corresponding to each test algorithm. Each
test-bench was compiled together with the correspondent
VHDL processor code. The simulation flow is depicted
in Figure 8. The evaluation process of hardware
implementations was similar. However, instead of having
a file describing the object-code program, the algorithm
was described in a VHDL module, one module for each
test algorithm. For all the implementations were
considered the number of clock cycles and the operation
frequency reported by the simulation and synthesis tools.

The evaluation of power dissipation was done using
the Quartus™ synthesis tool of Altera and the
ModelSim™ simulator. The Quartus was used to
synthesize all the implementations for a common device,
which was the APEX20KE (APEX20K200EFC484-2X)
of Altera. The ModelSim, in turn, generates files with
signal transitions produced by simulation of switching
activity. These files are used by Quartus to evaluate
power dissipation carried out by synthesis step.

VHDL Simulator

VHDL test
bench

description

VHDL core
processor

description

Text files with the
assembly description

Figure 8 – Evaluation of execution speed for software

implementations
The area consumption evaluation was performed

with Leonardo Spectrum™ synthesis tool target to a 0.35
micron TSMC ASICs standard cell library. The synthesis
was executed with typical values and low effort.

4.2 Area Consumption Analysis
Table 2 and Table 3 show processors and hardware

implementations area, respectively. FemtoJava processor
presented the smaller area consumption, while MIPS had
the biggest area occupation. Hardware implementations
achieved a great variation of area consumption between
different algorithms. An important aspect is that the area
consumption of the smaller processors is six times bigger
than the average of hardware implementations. Since
processors are present in mostly embedded systems, their
area is not really an overhead; only the memory used to

store test code counts. The aim of this comparison is to
select the well-suited processor regarding the memory
test procedures.

Table 2 – Comparison of processors area
consumption (in equivalent gates)

MIPS 8051 FemtoJava R8
19,243 6,512 4,023 4,742

Table 3 – Comparison of hardware area consumption
(in equivalent gates)

Algorithm 128 words 1K words 64K words
MATS 380 403 471
March C 603 628 718
March B 681 706 795
NDestructive 396 409 477

Figure 9 illustrates the number of bytes for

algorithms implemented in software. Figure 9 also shows
that MIPS expend more bytes of code, it happens manly
due to the instruction memory size. On the other hand
8051 consumes less bytes because of the processor
instruction word is 8 bits long.

76

181

50

122

130

66

228

72

240

104

48

165

52

154

172

76

0 50 100 150 200 250

MATS

March C

March B

Ndest

bytes

8051 MIPS FemtoJava R8

Figure 9 – Comparison of code size

4.3 Execution Speed Analysis
The tests execution speed for all the

implementations showed an almost linear behavior with
the memory size variation.

Figure 10 depicts that hardware implementations
always achieve the smaller clock cycle result for all test
algorithm. Figure 10 also shows that MIPS has the best
performance if compared to others processors due to its
pipeline architecture. 8051 has the worst performance
because of its CISC architecture, which implements
many instructions with more than 12 machine cycles.
FemtoJava has lower performance either due to its stack
architecture. The MIPS showed to have an average of
cycles per instruction (CPI) equal to 1.7, 8051 has a CPI
near of 14.9, while R8 has a CPI near of 3.8; the CPI of
FemtoJava is 5.9.

396.502

38.978

156.960

66.568

4.099

101.487

396.352

185.576

10.246

107.635

419.552

183.216

16.388

228.640

32.814

125.920

52.128

8.192

910.804
823.012

1 10 100 1.000 10.000 100.000 1.000.000

8051

MIPS

FemtoJava

R8

Hardw are

cycles

MATS March C March B NDestructive

Figure 10 – Comparison of execution time for a 1K

words memory (logarithmic scale)
The clock frequency, estimated by the synthesis

tool, is shown in Figure 11.

98.4

57.6

67.2

70.8

174.2

165.8

187.4

165.6

0 50 100 150 200

8051

MIPS

FemtoJava

R8

MATS_HW

MarchC_HW

MarchB_HW

NDest_HW

MHz
Figure 11 – Clock frequency obtained from synthesis

Applying the estimated frequency to all
implementations, as it is depicted in Figure 12, the
hardware execution speed is still bigger, which gives to
the hardware the ability to execute fast memory test.

4,029.5

676.7

2,335.7

940.2

23.5

1,761.9

5,898.1

2,621.1

61.9

1,868.7

6,243.3

2,587.8

98.8

2,323.6

569.7

1,873.8

736.3

43.7

9,256.1
8,363.9

1 10 100 1,000 10,000

8051

MIPS

FemtoJava

R8

Hardw are

us

MATS March C March B NDestructive

Figure 12 – Comparison of execution time for a 1K

words memory (logarithmic scale)

4.4 Power Dissipation Analysis
Figure 13 presents the result of the power

consumption comparison in mW, obtained form
association of Quartus and ModelSim tools. The test-

bench input frequency for all implementations was
normalized to 10 MHz.

31,02
31,80

47,86
73,12

76,76
105,16

36,80

37,20

0 20 40 60 80 100 120mW

MATS
NDestructive

March C
March B

R8
8051

FemtoJava
MIPS

Hardware

Processor

Figure 13 – Power dissipation (in mW)

This work performs power analysis not taking into
account the memory power consumption, just the test
circuit. Therefore, it was verified that the tested memory
size scale does not affect significantly the power
consumption of hardware and software implementations.
The reason of this is that the signals transitions of the test
circuits depend weakly on the memory size.

Figure 13 highlights that hardware implementations
have around of 20% of power consumption differences
due to the algorithm variations. However, software
implementations showed little variation on the average
power consumption by modifying the test algorithms.
This occurs because the four test algorithms use similar
processor resources, i.e. registers bank, arithmetical and
logical operations. This explanation is corroborated by
code coverage analysis, available in Active-HDL and
ModelSim simulators. The code coverage analysis shows
the number of times that a code line is executed during a
simulation. Power dissipation is function of α.C.V2.f,
where α, C, V and f represent the switching activity,
capacitance, voltage and operation frequency,
respectively. For the same C, V and f, the power
dissipation depends only on α. In turn, α does not depend
on the code execution order. Indeed, it depends on the
number of times that the code is executed and the input
data for each code line. For all test algorithms, it was
observed that the input data was very similar (test pattern
are FFFFh and 0000h) and the code coverage shows less
than 3% of differences among algorithms. This roughly
demonstrates that the power consumption did not have to
change from one algorithm to the other.

Proportional analysis concerning power dissipation
and used area shows that the implementations of
hardware have higher costs of power dissipation if
compared to software, mainly for the R8 processor. This
demonstrates that for processors only small part of
transistors is switching during the memory test.

The absolute value of power dissipation of the
memory access is not presented in this work. Instead of,
it is presented a comparative evaluation, which allows
qualifying the implementation results. The first aspect is
observed in Figure 11: hardware implementations allow
greater clock frequency and consequently more power
dissipation. The second aspect is that hardware
implementations were performed in such a way to allow
practically one memory access per cycle. It means that

the data memory is always been read or written implying
power dissipation in all clock cycles.

Software implementations imply power dissipation
for data and instruction memory. However, it does not
necessarily imply more system power dissipation, for
some processors the power dissipation caused by data
and instruction memory access is smaller than the power
dissipation caused by data memory access in hardware
implementations. MIPS processor has CPI equal to 1.7,
32 bits of instruction memory and, in average; it is
necessary 6 instructions for each data memory access. It
means that for each 10 cycles (1.7 * 6) there are 6
instruction memory accesses and 1 data memory access.
Considering that the instruction memory consumes two
times more than the data memory (double word size), the
average power costs due to memory access is 131 for 10
cycles while for hardware the average cost is just 1 for
cycle. Therefore, memory tests with MIPS expend
around of 30% more power than memory tests with
hardware. However, hardware operation frequency is 3
times greater than MIPS and the memory reading
operation dissipate less power than the memory writing
operation. These two reasons lead to the conclusion that
MIPS memory power dissipation is smaller than
hardware memory power dissipation. The power
dissipation difference is greater if hardware
implementations are compared to others processors
without pipeline and smaller instruction memory, like
8051 and R8. For example, the CPI of R8 is 3.7, 16 bits
of instruction memory and it is necessary 8 instructions
for each load/store instruction. It means that each 30
cycles (3.7 * 8) exists 8 instructions memory access and
1 data memory access. In this case, the memories of
hardware implementations dissipate around of 230%
more power than the software equivalent, without
considering the frequency effects.

Finally, Figure 14 shows the processor and
hardware power dissipation considering the synthesis
estimated clock depicted in Figure 11. It is possible to
observe that when it is used the highest hardware
frequency, the software power dissipation is
proportionally reduced, and in some cases is smaller.

167,66
249,60

308,56
357,34

221,54
222,58
234,74

248,80

0 100 200 300 400

March B
March C

MATS
NDestructive

R8
FemtoJava

MIPS
8051

Hardware

Processor

Figure 14 – Power dissipation (in mW) for synthesis

estimated clock

1 (6 instruction memory access and 7 data memory access)

5. CONCLUSIONS
The hardware implementations have significant

advantage in the execution speed requirement. Software
implementations achieve good results with MIPS
processor that uses pipeline techniques and bad results
with FemtoJava and 8051 processors due to the stack and
CISC architecture, respectively.

It is possible to observe that the processors power
dissipation has the same magnitude order of the hardware
implementations power dissipation, and for a dedicated
embedded processor, like R8, the power dissipation is
smaller if considered the synthesis estimated clock. This
fact is more salient concerning the analysis of power
dissipation.

For the software implementations, modification in
the memory test algorithms changes insignificantly the
processor power dissipation. Another important aspect,
related to the power dissipation, is the low deviation due
to the memory size changing.

As it was expected, the area consumption analysis
shows that the hardware implementations achieved the
smaller number of equivalent gates. It happens because
of the memory test algorithms are not complex, being
able to be implemented with little logic. However, the
majority of the embedded systems use some type of
processor, independent of having or not memory tests.
Thus, if the memory test will be executed in software, the
power dissipation and area consumption requirements
will be well fulfilled, being the execution speed the only
restrictive factor.

6. REFERENCES
[1] C. A. M. Marcon, N. L. V. Calazans and F. G.

Moraes – “Requirements, Primitives and Models for
Systems Specification”. SBCCI 2002.

[2] M. L. Bushnell and V. D. Agrawal – "Essentials of
Electronic Testing for Digital, Memory, and Mixed-
Signal VLSI Circuits". Kluwer Academic, 2000.

[3] A. Van de Goor and C. Verruijt – “An Overview of
Deterministic Functional RAM Chip Testing”, ACM
Computing Surveys, 1990.

[4] S. A. Ito, L. Carro, R. P. Jacobi - System Design
Based on Single Language and Single-Chip Java
ASIP Microcontroller. Design, Automation and Test
in Europe (DATE '00), 2000.

[5] N. L. V. Calazans, F. G. Moraes, C. A. M. Marcon –
“Teaching Computer Organization and Architecture
with Hands-On Experience”. 32nd ASEE/IEEE
Frontiers in Education Conference. November,
Boston, 2002.

[6] Y. Zorian, A. Ivanov – An effective BIST scheme
for ROM's. IEEE Transactions on Computers, p.:
646 -653, Volume: 41 Issue: 5, May 1992.

	Introduction
	Memory Test
	Memory Test Algorithms
	March Algorithms
	MATS
	March C Algorithm
	March B Algorithm

	Non-Destructive Algorithm

	Target Components of Memory Test
	Memory Test Implementation with Hardware
	Memory Test Implementations with Software

	Evaluation Results
	Methods Used to Results Comparison
	Area Consumption Analysis
	Execution Speed Analysis
	Power Dissipation Analysis

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

