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ABSTRACT 
Embedded systems designers are faced today 

with stringent performance requirements on, e.g. power 
and area consumption. This work analyses power 
consumption and execution time of memory test 
algorithms, considering both hardware and software 
implementations. Software implementation is carried 
experimentally on four different processors. Comparative 
results are presented to guide the designer to select the 
best solution for applications. 

1. INTRODUCTION 
Embedded systems have a broad spectrum of 

requirements depending largely on the applications 
specificity. For applications on mobile telephony, for 
example, low power dissipation leads to an increase of 
telephone set autonomy. For applications of high-speed 
data communication, the execution speed of data 
manipulation algorithms is an essential requirement. For 
most embedded applications, silicon area consumption 
and number of input/output pads are requirements that 
guide the design flow. In general, embedded systems 
design must always be concerned with area consumption 
and power dissipation. Area consumption directly affects 
the system production cost. Power dissipation, on the 
other hand, is an additional requirement in the system 
total cost, due to the power dissipater sizing. Besides, 
power is a limiting factor for all battery-powered 
systems. For some embedded systems, the execution 
speed is also a limiting design requirement, mainly to 
embedded systems that operate in critical real time 
applications [1]. 

An embedded system design flow must include 
verification steps to guarantee its correct operation. 
Memory circuits are usually present in embedded 
systems and are very important in the power and area 
budgets, implying that memory test procedures are one of 
the main concern for system verification. 

Memory verification can be executed during the 
design flow, manufacturing or system operation. The 
verification during the design searches for errors induced 
for an inadequate specification. The verification during 
the manufacturing process looks for coarse errors making 
impracticable the system use or at least restricting its 
applicability. On the other hand, verification during 
system execution seeks to evaluate the correct operation 

with regard to transitory or permanent faults. Device 
fatigue is generally responsible for such faults. 

Two test classes perform the verification during 
system operation for random access memories (RAM). 
The first one is the destructive tests class, which is not 
concerned with keeping the information integrity; the 
second one is the non-destructive tests class, which 
preserves the original memory contents after test. 

The destructive tests class allows greater flexibility 
to test various memory faults. On the other hand, to 
perform such tests during system operation implies data 
loses. The non-destructive class is less flexible and 
implies extra care with the system global design, because 
these tests are designed to be executed during system 
operation. Both test classes can be integrated on systems 
that will be tested, i.e. BIST [2]. 

The motivation for this work is the characterization 
of memory test algorithms in hardware/software 
domains, having as target embedded systems 
applications. 

This work addresses the evaluation of destructive 
and non-destructive memory tests. These costs are area 
consumption, power dissipation and execution speed. 
Section 2 presents the algorithms used for memory tests. 
Section 3 presents the implementations of the algorithms. 
Section 4 shows a comparative analysis of the results and 
Section 5 presents some conclusions. 

2. MEMORY TEST 
Several types of faults can occur in memory 

devices, as stuck-at-faults, transitions faults, coupling 
faults and address decoder faults. 

A stuck-at fault (SAF) happens when a cell or line 
is always at the value 0 or 1, and it is not possible to 
modify this value. Tests to detect and locate SAFs must 
satisfy the following requirement: "from each cell or line 
a 0 and a 1 must be read" [3]. 

A transition fault (TF) is a special case of SAF. It 
occurs when a write in a cell or line does not generate a 
correct transition. A test that allows detecting and 
locating all the TFs must submit all the cells or lines to 
transitions 0 → 1 and 1 → 0, and all cells or lines must 
be read after each transition and before being submitted 
to a new transition. 
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A coupling fault (CF) involves two or more cells. 
This fault occurs when a writing operation, which 
induces a cell transition, modifies the content of another 
cell. Tests to detect and locate all the CFs must satisfy 
the following requirement: "For the entire cell that is a 
coupled cell, each cell should be read after a series of 
transitions that could cause coupling faults, with the 
condition that the number of transitions in the coupled 
cells be odd" [3]. 

Address decoder faults (ADF) occur when one or 
more of the four following faults occur. 
1. For a given address, no cell will be accessed; 
2. There is no address accessing a given cell; 
3. With a certain address, multiple cells are accessed; 
4. A certain cell is accessed by more than one address. 

Tests to detect and locate all the ADFs must test all 
fault combinations illustrated in Figure 1, for all the cells. 
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Figure 1 – Combinations of address decoder fault 

2.1 Memory Test Algorithms 
This work analyses 3 March algorithms, which have 

a destructive behavior, and an algorithm that preserves 
the memory contents, named in this work Ndestructive. 
The following notation is used to describe the memory 
test algorithms: 
• Curly brackets determine the beginning and the end 

of the algorithm; 
• An algorithm is composed of subalgorithms separated 

by semicolon; 
• The ↑ and ↓ arrows represent the access order to the 

memory elements, either increasing or decreasing 
addressing; 

• Parentheses represent actions performed in the same 
memory address. These actions are separated by 
comma; 

• A subalgorithm is composed of a direction arrow and 
actions delimited by parentheses; 

• The actions are: r, r_s, w0, w1 and w_s, where: 
 r represents a memory reading operation. Such read 

implies the comparison to the value previously 
written; 

 w0 – write a pattern into memory (0 in this work); 
 w1 – write the complemented pattern into memory; 

 r_s represents the reading and saving of a memory 
cell or line; 

 w_s represents the writing of the last saved value by 
the r_s action. 

2.1.1 March Algorithms 

A March algorithm consists of a sequence of March 
elements. A March element contains reading and/or 
writing that are applied to all n memory cells in 
increasing (for 0 until n-1) or decreasing (for n-1 down 
to 0) order. The class of March algorithms is very useful 
for memory BIST implementation; therefore, the 
complete address range is executed sequentially many 
times. This operation allows the use of a simple counter, 
counting up or down depending on the memory access 
direction. The complexity of the selected March 
algorithms is O(n). However, this complexity 
measurement is not sufficient to evaluate the algorithms 
execution speed. 

2.1.1.1 MATS 

The Modified Algorithmic Test Sequence (MATS) is 
explained in Figure 2 and represented in Figure 3. It is 
the simpler possible March algorithm with reasonable 
fault coverage. The algorithm detects all the SAFs in 
memory cell and in the write and read logic. It also finds 
all ADFs, if the cell placement corresponds to the address 
sequence, i.e. the access to an address i can affects the 
cell addresses i-1 and i+1. For the ADFs it is assumed 
that the reading of two or more coupled cell will result in 
the “or function” of the contents of these cells. MATS 
requires 4 * n memory accesses. 

(I) 

for i ←0 to n-1
  cell[i] ← 0 

(II) 

for i ←0 to n-1 
  if cell[i] ≠ 0 
    ERROR 
  cell[i] ← 1 

(III) 

for i ←0 to n-1
  if cell[i] ≠ 1
    ERROR 

Figure 2 – MATS algorithm description 

(I) 

{ ↑ (w0); 
(II) 

↑  (r, w1); 
(III) 

↑  (r) } 
Figure 3 – MATS algorithm representation 

2.1.1.2 March C Algorithm 

The March C algorithm is used to test coupling fault 
of unlinked cells. Moreover, this algorithm detects SAFs 
and TFs, because all the cells are alternately read in 0 and 
1 states. The March C algorithm requires 11 * n memory 
accesses. 

{ ↑(w0); ↑(r, w1); ↑(r, w0); ↑(r); ↓(r, w1); ↓(r, w0); ↓(r) } 
Figure 4 – March C algorithm representation 

2.1.1.3 March B Algorithm 

March B is a test algorithm that detects SAFs, TFs, 
ADFs and CFs. March B also detects all the 



combinations of SAFs, TFs, ADFs and CFs. Figure 5 
illustrates the March B algorithm. This algorithm 
requires 17 * n memory accesses. 

{↑ (w0); ↑ (r, w1, r, w0, r, w1); ↑ (r, w0, w1); ↓ (r, w0, w1, w0); ↓ (r, w1, w0);} 

Figure 5 – March B algorithm representation 

2.1.2 Non-Destructive Algorithm 

There are many algorithms for non-destructive test 
implementation as it is presented in [2]. This work uses a 
minimum non-destructive algorithm, namely 
NDestructive, which essentially test SAFs. The 
algorithm, depicted in Figure 6, saves the tested cell 
value while it performs some actions to test the cell. The 
NDestructive algorithm requires 6 * n memory accesses. 

{ ↑ (r_s, w0, r, w1, r, w_s) } 
Figure 6 – NDestructive algorithm representation 

3. TARGET COMPONENTS OF MEMORY TEST 
This Section presents the architectures chosen for 

the comparison of memory test implementations taking 
into account software and hardware components. 

3.1 Memory Test Implementation with 
Hardware 
The hardware implementation of the memory test 

algorithms were described with VHDL, creating a 
common interface for all tests, such as described in 
Figure 7. The difference between two algorithms is only 
the control part, while auxiliary elements, used for 
memory communication and control and data verification 
keeps unchanged. The advantage of this approach is the 
code reuse: only the description part that changes from 
one algorithm to the other needs to be evaluated. 
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Figure 7 – Memory test implementations with 

hardware 

3.2 Memory Test Implementations with 
Software 
Four IP soft-core processors were chosen to analyze 

software implementations: 8051, MIPS, FemtoJava and 
R8. Two of them are commercial processors and two are 
academics. The choice of these processors has two 
reasons: the first one is the availability of the VHDL 
description, and the second one is that they are target to 
embedded systems. These VHDL descriptions allowed an 
accurate comparison of the architectures with respect to 

execution speed, area consumption and power 
dissipation. Table 1 summarizes the processors features. 

Table 1 – Features of the processors used to run 
memory test algorithms 

M
IP

S 

Commercial processor with load-store architecture and 
pipeline with three stages. Supports interrupts and all 
MIPS-I user mode instructions, except unaligned load 
and store operations. The processor word is 32 bits long. 
IP-core available at 
http://www.opencores.org/projects/mips. 

Fe
m

to
Ja

va
 Academic microcontroller [4] based on stack 

architecture. It was developed for embedded applications, 
running a subset of java bytecodes. Address/data is 16 
bits long. IP-core is available at 
http://www.inf.ufrgs.br/~gme. 

R
8 

Academic processor [5], with load-store architecture. 
Low complexity control unit. 16 general-purpose register. 
Address/data is 16 bits long. Soft-core, including 
specification, several implementations and software 
development tools are available at 
http://www.inf.pucrs.br/~gaph. 

80
51

 

The Intel 8051 is an 8-bit micro-controller. This micro-
controller is able to address 64 Kbytes of program and 
64 Kbytes of data memory. To be Intel 8051 cycle 
compatible, the IP-core available at 
http://www.cs.ucr.edu/~dalton/i8051/i8051syn was 
partially modified. 

 
Memory test algorithms are stored in the program 

memory of each processor. The memory to be tested is 
the data memory. The processor job is reading 
instructions sequence dictated by the algorithm and 
generating addresses and data for the data memory. We 
presume that instruction memory is previously tested 
with similar approach to [6]. 

4. EVALUATION RESULTS 
This Section presents the comparison of area 

consumption, power dissipation and execution speed for 
the test algorithms developed to hardware and software 
implementations, considering three memory sizes. The 
chosen memory sizes are 128, 1024 (1K) and 65536 
(64K) words. The reduced memory size reflects the small 
memory sizes found in embedded systems. 

4.1 Methods Used to Results Comparison 
The four memory test algorithms (MATS, March C, 

March B and NDestructive) have each one five 
implementations (one for each processor and one for 
hardware), which are evaluated in this Section. For 
hardware implementations, all memory tests were 
described with VHDL RTL. For software 
implementations, the assembly generation was performed 
manually. The reason for this approach is that memory 
tests compilation cannot be done with optimisations 
switch; because of the compiler removes some sequences 
of instructions like, for example, double write at the same 
memory address. Without optimisations, the generated 



code and the test execution time were four times bigger 
than the manual implementation. 

The availability of VHDL soft-core of all 
processors allowed the comparisons of power dissipation, 
area consumption and execution speed, taking into 
account the available devices by the synthesis tools. 

The execution speed of the memory tests 
implemented in software was evaluated with Active-
HDL™ simulator. For each processor was implemented a 
VHDL test-bench able to read text files containing the 
object-code corresponding to each test algorithm. Each 
test-bench was compiled together with the correspondent 
VHDL processor code. The simulation flow is depicted 
in Figure 8. The evaluation process of hardware 
implementations was similar. However, instead of having 
a file describing the object-code program, the algorithm 
was described in a VHDL module, one module for each 
test algorithm. For all the implementations were 
considered the number of clock cycles and the operation 
frequency reported by the simulation and synthesis tools. 

The evaluation of power dissipation was done using 
the Quartus™ synthesis tool of Altera and the 
ModelSim™ simulator. The Quartus was used to 
synthesize all the implementations for a common device, 
which was the APEX20KE (APEX20K200EFC484-2X) 
of Altera. The ModelSim, in turn, generates files with 
signal transitions produced by simulation of switching 
activity. These files are used by Quartus to evaluate 
power dissipation carried out by synthesis step. 

VHDL Simulator 

VHDL test 
bench 

description 

VHDL core 
processor 

description 

Text files with the 
assembly description 

 
Figure 8 – Evaluation of execution speed for software 

implementations 
The area consumption evaluation was performed 

with Leonardo Spectrum™ synthesis tool target to a 0.35 
micron TSMC ASICs standard cell library. The synthesis 
was executed with typical values and low effort. 

4.2 Area Consumption Analysis 
Table 2 and Table 3 show processors and hardware 

implementations area, respectively. FemtoJava processor 
presented the smaller area consumption, while MIPS had 
the biggest area occupation. Hardware implementations 
achieved a great variation of area consumption between 
different algorithms. An important aspect is that the area 
consumption of the smaller processors is six times bigger 
than the average of hardware implementations. Since 
processors are present in mostly embedded systems, their 
area is not really an overhead; only the memory used to 

store test code counts. The aim of this comparison is to 
select the well-suited processor regarding the memory 
test procedures. 

Table 2 – Comparison of processors area 
consumption (in equivalent gates) 

MIPS  8051 FemtoJava R8 
19,243 6,512 4,023 4,742

  

Table 3 – Comparison of hardware area consumption 
(in equivalent gates) 

 

Algorithm 128 words 1K words 64K words 
MATS 380 403 471 
March C 603 628 718 
March B 681 706 795 
NDestructive 396 409 477 

  
Figure 9 illustrates the number of bytes for 

algorithms implemented in software. Figure 9 also shows 
that MIPS expend more bytes of code, it happens manly 
due to the instruction memory size. On the other hand 
8051 consumes less bytes because of the processor 
instruction word is 8 bits long. 
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Figure 9 – Comparison of code size 

4.3 Execution Speed Analysis 
The tests execution speed for all the 

implementations showed an almost linear behavior with 
the memory size variation. 

Figure 10 depicts that hardware implementations 
always achieve the smaller clock cycle result for all test 
algorithm. Figure 10 also shows that MIPS has the best 
performance if compared to others processors due to its 
pipeline architecture. 8051 has the worst performance 
because of its CISC architecture, which implements 
many instructions with more than 12 machine cycles. 
FemtoJava has lower performance either due to its stack 
architecture. The MIPS showed to have an average of 
cycles per instruction (CPI) equal to 1.7, 8051 has a CPI 
near of 14.9, while R8 has a CPI near of 3.8; the CPI of 
FemtoJava is 5.9. 
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Figure 10 – Comparison of execution time for a 1K 

words memory (logarithmic scale) 
The clock frequency, estimated by the synthesis 

tool, is shown in Figure 11. 
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Figure 11 – Clock frequency obtained from synthesis 

Applying the estimated frequency to all 
implementations, as it is depicted in Figure 12, the 
hardware execution speed is still bigger, which gives to 
the hardware the ability to execute fast memory test. 
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Figure 12 – Comparison of execution time for a 1K 

words memory (logarithmic scale) 

4.4 Power Dissipation Analysis 
Figure 13 presents the result of the power 

consumption comparison in mW, obtained form 
association of Quartus and ModelSim tools. The test-

bench input frequency for all implementations was 
normalized to 10 MHz. 
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Figure 13 – Power dissipation (in mW) 

This work performs power analysis not taking into 
account the memory power consumption, just the test 
circuit. Therefore, it was verified that the tested memory 
size scale does not affect significantly the power 
consumption of hardware and software implementations. 
The reason of this is that the signals transitions of the test 
circuits depend weakly on the memory size. 

Figure 13 highlights that hardware implementations 
have around of 20% of power consumption differences 
due to the algorithm variations. However, software 
implementations showed little variation on the average 
power consumption by modifying the test algorithms. 
This occurs because the four test algorithms use similar 
processor resources, i.e. registers bank, arithmetical and 
logical operations. This explanation is corroborated by 
code coverage analysis, available in Active-HDL and 
ModelSim simulators. The code coverage analysis shows 
the number of times that a code line is executed during a 
simulation. Power dissipation is function of α.C.V2.f, 
where α, C, V and f represent the switching activity, 
capacitance, voltage and operation frequency, 
respectively. For the same C, V and f, the power 
dissipation depends only on α. In turn, α does not depend 
on the code execution order. Indeed, it depends on the 
number of times that the code is executed and the input 
data for each code line. For all test algorithms, it was 
observed that the input data was very similar (test pattern 
are FFFFh and 0000h) and the code coverage shows less 
than 3% of differences among algorithms. This roughly 
demonstrates that the power consumption did not have to 
change from one algorithm to the other. 

Proportional analysis concerning power dissipation 
and used area shows that the implementations of 
hardware have higher costs of power dissipation if 
compared to software, mainly for the R8 processor. This 
demonstrates that for processors only small part of 
transistors is switching during the memory test. 

The absolute value of power dissipation of the 
memory access is not presented in this work. Instead of, 
it is presented a comparative evaluation, which allows 
qualifying the implementation results. The first aspect is 
observed in Figure 11: hardware implementations allow 
greater clock frequency and consequently more power 
dissipation. The second aspect is that hardware 
implementations were performed in such a way to allow 
practically one memory access per cycle. It means that 



the data memory is always been read or written implying 
power dissipation in all clock cycles. 

Software implementations imply power dissipation 
for data and instruction memory. However, it does not 
necessarily imply more system power dissipation, for 
some processors the power dissipation caused by data 
and instruction memory access is smaller than the power 
dissipation caused by data memory access in hardware 
implementations. MIPS processor has CPI equal to 1.7, 
32 bits of instruction memory and, in average; it is 
necessary 6 instructions for each data memory access. It 
means that for each 10 cycles (1.7 * 6) there are 6 
instruction memory accesses and 1 data memory access. 
Considering that the instruction memory consumes two 
times more than the data memory (double word size), the 
average power costs due to memory access is 131 for 10 
cycles while for hardware the average cost is just 1 for 
cycle. Therefore, memory tests with MIPS expend 
around of 30% more power than memory tests with 
hardware. However, hardware operation frequency is 3 
times greater than MIPS and the memory reading 
operation dissipate less power than the memory writing 
operation. These two reasons lead to the conclusion that 
MIPS memory power dissipation is smaller than 
hardware memory power dissipation. The power 
dissipation difference is greater if hardware 
implementations are compared to others processors 
without pipeline and smaller instruction memory, like 
8051 and R8. For example, the CPI of R8 is 3.7, 16 bits 
of instruction memory and it is necessary 8 instructions 
for each load/store instruction. It means that each 30 
cycles (3.7 * 8) exists 8 instructions memory access and 
1 data memory access. In this case, the memories of 
hardware implementations dissipate around of 230% 
more power than the software equivalent, without 
considering the frequency effects. 

Finally, Figure 14 shows the processor and 
hardware power dissipation considering the synthesis 
estimated clock depicted in Figure 11. It is possible to 
observe that when it is used the highest hardware 
frequency, the software power dissipation is 
proportionally reduced, and in some cases is smaller. 
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Figure 14 – Power dissipation (in mW) for synthesis 

estimated clock 

                                                           
1 (6 instruction memory access and 7 data memory access) 

5. CONCLUSIONS 
The hardware implementations have significant 

advantage in the execution speed requirement. Software 
implementations achieve good results with MIPS 
processor that uses pipeline techniques and bad results 
with FemtoJava and 8051 processors due to the stack and 
CISC architecture, respectively. 

It is possible to observe that the processors power 
dissipation has the same magnitude order of the hardware 
implementations power dissipation, and for a dedicated 
embedded processor, like R8, the power dissipation is 
smaller if considered the synthesis estimated clock. This 
fact is more salient concerning the analysis of power 
dissipation. 

For the software implementations, modification in 
the memory test algorithms changes insignificantly the 
processor power dissipation. Another important aspect, 
related to the power dissipation, is the low deviation due 
to the memory size changing. 

As it was expected, the area consumption analysis 
shows that the hardware implementations achieved the 
smaller number of equivalent gates. It happens because 
of the memory test algorithms are not complex, being 
able to be implemented with little logic. However, the 
majority of the embedded systems use some type of 
processor, independent of having or not memory tests. 
Thus, if the memory test will be executed in software, the 
power dissipation and area consumption requirements 
will be well fulfilled, being the execution speed the only 
restrictive factor. 
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