RTOS Scheduler Implementation in Hardware and Software for
Real Time Applications

Melissa Vetromille, Luciano Ost, César A. M. Marcon, Carlos Reif, Fabiano Hessel
PPGCC - FACIN - PUCRS - Av. Ipiranga, 6681, Porto Alegre, RS — Brazil
{mvetromille, ost, marcon, reif, hessel } @inf.pucrs.br

Abstract

In order to enhance performance and improve
predictability of the real time systems, implementing some
critical ~operating system functionalities, like time
management and task scheduling, in software and others in
hardware is an interesting approach. Scheduling decision
for real-time embedded software applications is an
important problem in real-time operating system (RTOS)
and has a great impact on system performance. In this
paper, we evaluate the pros and cons of migrating RTOS
scheduler implementation from software to hardware. We
investigate three different RTOS scheduler implementation
approaches: (i) implemented in software running in the
same processor of the application tasks, (ii) implemented in
software running in a co-processor, and (iii) implemented
in hardware, while application tasks are running on a
processor. We demonstrate the effectiveness of each
approach by simulating and analyzing a set of benchmarks
representing different embedded application classes.

1 Introduction

The development of real-time embedded systems is
continuously increasing. Real-time applications, which
require fast response and high synchronization, are
becoming even more popular. The operating system is
without hesitation the most important software of all system
programs in a real-time embedded system. Hence, a Real-
Time Operating System (RTOS), which handles both soft
and hard real-time tasks, is extremely necessary to the
effectiveness of those designs.

As the system becomes larger, the scheduling of tasks
and communications becomes more complex and its impact
on the entire system performance becomes more significant
[1]. Furthermore, real-time demands inject an additional
correctness criterion into embedded systems. It is not just
the result that is important, timing issues also have to be
considered. Moving RTOS scheduler functionalities from
software to hardware can enhance performance of RTOS
systems. However, this approach can increase design
complexity and enlarge silicon area occupation.

This work investigates and discusses the pros and cons
of three different scheduler implementations: software,
software-software, and hardware/software. A software
implementation considers a processor running the scheduler
and the application tasks. A  software-software
implementation considers a processor running the
application tasks, and a co-processor running the scheduler.
In a hardware-software implementation, the scheduler is
implemented directly in hardware, and a processor running
the application tasks.

Figure 1 and Figure 2 illustrate a comparison of a
scheduler implemented in the same processor where
application tasks are running, with the one implemented in
a different processing element (hardware or software).
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Figure 1: Example of a RTOS scheduler implemented in
software running on a single processor.

In Figure 1, the system is entirely implemented in
software running on a single processor. As a result, every
determined time slice (tp, t4, t¢ and tg) the processor is
interrupted to enable a new task scheduling. When the
interrupt occurs, if the scheduler is implemented as a
process [11][12], the processor takes time dealing with the
interrupt routine, performs the RTOS functionalities as well
as four context switches: (i) execution task information
saving; (if) RTOS execution status recovering; (iii) RTOS
execution status information saving; and, (iv) next task
information recovering. It occurs; even if the previous task
would be elected to continue running, as it is illustrated in
time slices t,, t, and tg of Figure 1. Here, it is obvious that
the processor wastes time with OS tasks scheduling and
unnecessary context switches.

In Figure 2, the RTOS scheduler is being executed in
parallel with the application tasks processing, enabling to
interrupt the task processing only if a priority task has to be
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executed. With this implementation the processor does not
waste time with unnecessary context switches, increasing
the overall system performance.
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Figure 2: Example of a RTOS scheduler running on a
co-processor or specific hardware.

Let RTOS interrupt interval be the interval of time
between to instant that the processor is interrupted to
perform RTOS scheduling. Therefore, when the scheduler
is totally implemented in software, we must consider the
time necessary to fulfill deadlines, and this time varies from
zero to RTOS interrupt interval.

Normally, RTOS interrupt intervals are based on a
multiple of clock system frequency, and in general, not all
application tasks deadline are multiple of this value,
implying variations in the deadline fulfilling. These
variations characterize the jitter problem (Figure 3). For
some application, the jitter problem can damage the real-
time operation, since real-time applications depend not only
on the results achieved, but also on the instants that the
results are achieved.
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Figure 3: Jitter problem.

The remaining of this paper is organized as follows. The
related work is presented in Section 2. Section 3 provides
an overview of three scheduler models implementation.

Section 4 shows a case study and Section 5 presents our
conclusions, and future work.

2 Related work

Few researches address hardware/software RTOS
implementation. Table 1 shows a comparison among them.

Mooney [8] proposed a framework to generate a
partitioned hardware/software RTOS. Independent of tasks
requirements, this approach generates only one OS that is
replicated on every processor. The designer does not have
the flexibility to choose which components are
implemented in software or hardware. Additionally, the
designer cannot control the task mapping onto the target
processors.

Nakano [9] implemented a partitioned OS, called
STRON (Silicon TRON). Nevertheless, the system does not
allow choosing which components are going to be
implemented in hardware and which ones are going to be
developed in software.

Ortiz [3] described the implementation of the scheduler
and the processes control queues directly in hardware. Such
as the others approaches presented, this one implements just
a few predetermined components in hardware.

In order to investigate area overhead and performance,
Cho [1] proposed the implementation of centralized and
distributed schedulers in a multiprocessor SoC. This
approach considers only static scheduler implementation.

Samuelsson [10] presented a performance comparison
between a real-time kernel implemented in hardware and an
equivalent one implemented in software. They used a
hardware multiprocessor platform, called SARA. The
hardware kernel implements the scheduler, inter-process
communication methods, semaphores and timer.

Table 1: Comparison among related work.

Kernel Functions Comparison Result
Deadlock control unit, block|{Performance (kernel software x .

Mooney Atalanta cache and memory management | partitioned kernel) Better performance in hardware
Event flags, task queues, module|Performance  (kernel  software  x .

Nakano WTRON control, scheduler and timer partitioned kernel) Better performance in hardware

Scheduler, event

Ortiz KURT-Linux interrupt handling

queues, | Performance
partitioned kernel)

(kernel  software  x|Better performance in hardware

just for tasks executing in WCET

Cho - Scheduler

Performance and area (centralized
scheduler x distributed scheduler)

Distributed scheduler occupies
greater area, but presents better
performance

Scheduler, IPC

Samuelsson | Kernel model -
semaphores and timer

methods, | Performance (kernel software x kernel
hardware)

Better performance in hardware

Vetromille | Kernel model | Scheduler and task queues

Performance
partitioned kernel — software/software|or software, depending on the
and software/hardware)

(kernel  software  x|Better performance in hardware

application class
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Applications can be classified according to some
relevant  characteristics, like  communication and
computation requirements. Applications of a given class
have similar behavior front of a given stimuli, requiring
similar mechanisms to work properly. For instance, hard
real time applications need to operate with hard time
constraints, implying in using hard scheduling policy.

Different from the others, this work analyzes what
scheduler implementation is more suitable for a given
application class: software using a single processor,
software  partitioned using two processors and
hardware/software partitioned using a processor and a
dedicated hardware block. These topics are better discussed
in Sections 4 and 5.

3 Scheduler models implementation for
real-time applications

This Section provides an overview of three scheduler
models implementation: (i) SORTS (Software Real-Time
Scheduler), (ii) Co-SoRTS (Co-processor Software Real-
Time Scheduler), and (iii) HaRTS (Hardware Real-Time
Scheduler). The architecture and the execution of the
scheduler policy for each approach are discussed next.

We implemented these schedulers on a Xilinx Virtex-II

Pro XC2VP30 FPGA, wusing Xilinx Embedded
Development Kit (EDK) and Modelsim.
In order to validate the software scheduler

implementations, we used MicroBlaze processor available
in the EDK environment. The MicroBlaze is a 32-bit
Harvard RISC architecture and its operating frequency was
determined to be 50 MHz, for prototyping purposes.

3.1 SoRTS

The SoRTS architecture (Figure 4) consists of six
components: (i) MicroBlaze processor, (ii) Block RAM
memory, (iii) OPB (On-chip Peripheral Bus), (iv)
communication interface, (v) interrupt and time control, and
(vi) UART.
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Ready queue

Processor Memory
(MicroBlaze) (Block RAM)

Date Idie queue

il |
( il il %

UART Communicatior Interrupt anc

interface ! time control
time

i

PC Host

Figure 4: SoRTS block diagram architecture.

The MicroBlaze executes application tasks, which are
characterized by: (i) period, (ii) deadlines, (iii) task ID, (iv)
execution time. The Block RAM stores two structures:
Ready queue and Idle queue. The ready queue contains an
ordered list of tasks that can be executed according to their
priorities, which is determined by the scheduling policy.
The idle queue has a list of executed tasks that are waiting
for a new time slice to execute. The communication among
architecture components is performed by a 32-bit OPB. The
communication interface is a specific model instanced by
EDK that allows the communication between software
(RTOS and application tasks running in the MicroBlaze)
and proprietary hardware (interrupt and time control) via
OPB. This communication is based on two registers: (i)
time — which returns the system time, and (ii) the int —
which is used to send an interruption to the MicroBlaze.
These registers are accessed through functions available in
EDK tool. Finally, the UART provides communication
between the Xilinx development board and the host
computer (EDK development kit), which has been used to
validate our experiments.

3.2 Co-SoRTS

Co-SoRTS increases SoRTS architecture with an
additional MicroBlaze. The first MicroBlaze processor
executes a set of tasks stored in the Block RAM. The
second MicroBlaze is used as a co-processor for RTOS
scheduler implementation, as it is illustrated in Figure 5.
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Figure 5: Co-SoRTS block diagram architecture.

This approach eliminates the incidence of non-necessary
context switches and reduces the jitter problem. Here, the
context switch only occurs if a new task is scheduled. At
this moment, the co-processor send an interrupt signal to
the processor to performs a context switch.

In some application class, the decrease of context
switches is a potential advantage if compared to a scheduler
running in a single processor. Three new internal registers
had been used to attend the MicroBlazes
intercommunication requirements. The remaining system
components are responsible for supplying the same
functionalities adopted and described in the Section 3.1.
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3.3 HaRTS

Similar to the Co-SoRTS, the HaRTS architecture uses a
dedicated hardware component for scheduling tasks and list
management, as shown in Figure 6.

The dedicated hardware (Figure 7) has four main
modules: (i) scheduler module, (ii) queue control, (iii)
communication interface, (iv) time control.

The scheduler module is composed by three blocks: (i)
fail process; (ii) running process; and (iii) ready process.
The running and ready process are responsible for task
scheduling, according to parameters previously stored in
the queue control. In order to reduce the area cost the queue
control implements only one list for task management. This
list is accessed to find out the current task state (fail,
running or ready), in order to perform the scheduling
policy. No task is removed from de list; just its states are
updated. The fail process verifies the occurrences of task
fails and signalizes the scheduler module.

Instruction
Processor Memory
(MicroBlaze) (Block RAM)
Date

= 0

= UART Dedicatec
hardware

Figure 6: HaRTS block diagram architecture.
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Figure 7: Dedicated hardware architecture.

The HaRTS communication interface is much more
complex than the one implemented in SoRTS and Co-
SoRTS, implying the usage of sixteen internal registers due
to native MicroBlaze communication protocol.

Finally, the time control is responsible for the time
system management.

4 Case study

This Section presents a case study composed by a set of
synthetic benchmarks, representing different embedded
application classes. We are interested in compare the
number of deadline fails, the number of context switches
and the CPU occupation time dedicated to tasks execution.
It allows verifying what scheduling implementation
approach (SoRTS, Co-SoRTS, and HaRTS) is better suited
to execute a specific application class. Each benchmark is
composed by a set of tasks modeled by its period, deadline
and average case execution time. We vary the context
switches time of each benchmark in the range of 25, 50, 75
and 100 us. For each context switch time we applied three
different values for RTOS interrupt interval (250, 400 and
500 us). Results were achieved by 10 seconds of execution
of each benchmark. In all benchmarks we used RM (Rate
Monotonic) as scheduling policy.

4.1 Context switch

Figure 8 illustrates the number of context switches
(vertical axis) and the context switches execution time
(horizontal axis) after 10 seconds of system execution,
considering SORTS implementations.
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Figure 8: Comparison of number of context switches
between different SORTS implementation.

Figure 8 show that when the time of the context switches
increases, the number of context switches reduces. This
reduction happens due to the increase of tasks fails (Figure
10). Additionally, we can observe that the number of
context switches decreases with the increase of the RTOS
interrupt interval (250, 400 and 500 us). Obviously, it
happens due to the increase of task interrupt frequency.
However, this augment implies in the jitter increase,
consequently some real-time tasks may not have the correct
result in the correct time.
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Analyzing HaRTS and Co-SoRTS  scheduler
implementations, we conclude that HaRTS presents less
number of context switches than Co-SoRTS (Figure 9). It
happens since the communication protocol used in Co-
SoRTS is more complex because of the intrinsic processor

communication interface, which  generates larger
communication overhead.
9050 - | - CoSoRTS ——HaRTS |
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Time of Context Switches (us)

Figure 9: Comparison between Co-SoRTS and HaRTS.

Comparing Figure 8 and Figure 9, we can observe that
Co-SoRTS and HaRTS present less number of context
switches than SoRTS. It happens because application tasks
run concurrently with Co-SoRTS or HaRTS schedulers,
eliminating unnecessary context switches. In addition, these
approaches reduce the jitter increasing the predictability of
the real-time system.

4.2 Deadline fails

Figure 10 illustrates the number of fails (vertical axis)
taking into account different time of context switches
(horizontal axis).
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Figure 10: Number of fails after 10 seconds of execution.

We can observe that an increase of the context switch
time also increases the number of fails for SORTS scheduler
implementation. Besides, Figure 10 shows that for SORTS
approach, the enlargement of the RTOS interrupt interval
(250, 400 and 500 us) reduces the number of fails.
Furthermore, as larger as the time of context switches,

lesser is the available CPU time for tasks execution (Figure
11), increasing the number of context switches and
inducing the system to fail. Figure 10 shows that Co-
SoRTS and HaRTS do not present deadline fails. We can
conclude that Co-SoRTS and HaRTS are indicated
scheduling approaches for hard real-time applications.

4.3 CPU utilization

Figure 11 shows the CPU availability for task execution
(vertical axis) considering different time of context
switches (horizontal axis).

In SoRTS approach, the increase of the context switches
time decreases the CPU availability for tasks execution.
This behavior is expected since the number of context
switches and fails increases. As a result, the CPU wastes
more time accomplishing context switches, providing less
time to execute tasks. The context switch time does not
affect the CPU availability for Co-SoRTS and HaRTS since
for these approaches the scheduler executes in parallel with
the application tasks.
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Figure 11: CPU availability.

5 Conclusions

This paper compares three scheduler implementations:
SoRTS, Co-SoRTS and HaRTS, in order to relate
application classes with scheduler approaches. The idea is
to find out which approach is the most suitable for a given
application class.

For all applications HaRTS scheduler implementation
always achieved better performance results, fulfilling all
application deadlines. Co-SoRTS and HaRTS have similar
results. However, a scheduler implemented in the dedicated
hardware of HaRTS can be implemented compromising
less energy and area consumption if compared to an
equivalent one implemented in a Co-SoRTS co-processor.
The overall system performance for schedulers
implemented in the same processor than application tasks
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(SoRTS approach) is more affected by relative variations of
the RTOS interrupt interval and the time necessary for
context switch.

It’s important to consider the implementation efforts and
cost of each approach. The HaRTS approach is more
complex and expensive compared to Co-SoRTS or SoRTS
approach due to the complex nature of the hardware
implementation. Comparing Co-SoRTS and SoRTS
approaches, we also find an extra complexity. Relating the
considerations discussed here, we conclude that Co-SoRTS
and HaRTS present the best results for hard real-timer
application. On the other hand, SoRTS is suitable for soft
real-time systems.

Future work includes the development of a MPSOC
RTOS scheduler that allows the processor task migration in
an efficient way.
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