
978-1-4577-0660-8/11/$26.00 ©2011 IEEE

Task Mapping on NoC-Based MPSoCs with Faulty Tiles
Evaluating the Energy Consumption and the Application Execution Time

Alexandre M. Amory, César A. M. Marcon,
Fernando G. Moraes

FACIN – Faculdade de Informática –
PUCRS Catholic University

Porto Alegre, Brazil
{alexandre.amory, cesar.marcon,

fernando.moraes}@pucrs.br

Marcelo S. Lubaszewski
PPGC – Instituto de Informática –

UFRGS Federal University
Porto Alegre, Brazil
luba@eletro.ufrgs.br

Abstract— The use of spare tiles in a networks-on-chip based
multi-processor chip can improve the yield, reducing the cost of
the chip and maintaining the system functionality even if the
chip is defective. However, the impact of this approach on appli-
cation characteristics, such as energy consumption and execution
time, is not documented. For instance, on one hand the applica-
tion tasks might be mapped onto any tile of a defect-free chip.
On the other hand, a chip with a defective tile needs special task
mapping that avoid fault tiles. This paper presents a task map-
ping aware of faulty tiles, where an alternative task mapping can
be generated and evaluated in terms of energy consumption and
execution time. The results show that faults on tiles have, on av-
erage, a small effect on energy consumption but no significant
effect on execution time. It demonstrates that spare tiles can im-
prove yield with a small impact on the application requirements.

Keywords: MPSoC, task mapping, yield, energy consumption,
execution time.

I. INTRODUCTION
A multiprocessor system-on-chip (MPSoC) is typically a very

large scale integrated system that incorporates most or all the
components necessary for an application, including multiple pro-
cessors [1]. A network-on-chip (NoC) is the preferable intrachip
communication infrastructure for MPSoCs due to its superior per-
formance, scalability, and modularity. MPSoCs that use NoCs as
the communication infrastructure are also called NoC-based
MPSoCs.

NoCs can consume more than one third of the total chip ener-
gy [2][3]. On the other hand, the shrinking feature-sizes of newer
technologies and the supply voltage scaling [4][5] increases the
defect rate in the chip manufacturing and reduces the yield. High
manufacturability, low latency and energy consumption are con-
flicting design goals, thus all these requirements have to be jointly
evaluated to optimize a NoC-based MPSoC design.

The task mapping problem determines an association of each
application task to a tile to minimize some given cost function.
This paper presents a tool that finds an optimal task mapping in
terms of energy consumption and application execution time, giv-
en a set of tiles with manufacturing defects. This way, even chips
with defects can be sold, perhaps with some performance degrada-
tion, targeting low-end markets.

The goals of this paper are to present the aforementioned task
mapping tool and to investigate the energy consumption and ap-
plication execution time degradations assuming different applica-
tion classes. The contributions of this paper are (i) a task mapping
tool for NoC-based MPSoC, which consider faulty tiles to per-
form the mapping; (ii) the evaluation of energy consumption and

application execution time under the presence of faulty tiles; (iii) a
statistical method to generate fault scenarios for very large SoCs.

The paper is organized as follows: Section II presents motiva-
tion, usage of the proposed approach, and main assumptions. Sec-
tion III describes the related work. Section IV describes the task
mapping tool and its models. Section V describes the experimen-
tal setup, the evaluated applications, and the fault scenarios. Sec-
tion VI discusses the results. Section VII concludes the paper.

II. PRELIMINARIES

A. System Model and Assumptions
This paper assumes that the target MPSoC consists of a set of

identical (or homogeneous) tiles connected by a mesh-based NoC
with XY routing algorithm. Each tile contains three main compo-
nents: a network interface, a processor, and a memory block. A
tile supports one task only (no multitasking). This system model is
equivalent, for instance, to the underlying model of HeMPS
MPSoC [6] with the Hermes NoC [7].

The present work assumes faults only on the tiles since we as-
sume that the tile area is at least 90% of the router. Therefore, the
communication infrastructure is assumed faulty-free. A faulty tile
is completely shutdown, thus it does not consume energy and
generate traffic in the network.

The faults are result of defects created during the chip manu-
facturing. These defects are expected to be more common due to
the evolution of deep submicron technologies, thus multiple faults
on the chip are considered. The proposed task mapping is ex-
ecuted in design time for several fault scenarios, such that an
overall picture of the relationship between the fault location and
the performance metrics can be draw.

B. Motivating Example
Redundant hardware is commonly used to tackle the yield

problem. It has been successfully applied to all sorts of regular
and repetitive hardware, like different types of memories, pro-
grammable logic array, field programmable gate array, and recent-
ly to MPSoCs [5]. In the context of MPSoCs, the application task
located in a faulty tile can be mapped (in design time) or migrated
(in run-time) to a spare tile, keeping the chip functionality.

Shamshiri and Cheng [5] proposed a yield and cost analysis
framework employed to evaluate the use of spare tiles in
MPSoCs. This one can be used to determine the amount of redun-
dancy required to achieve a minimum cost. For instance, given
some input parameters detailed in [5], the yield of a block is 94%,
the NoC link is 72%, resulting in a system yield of just 21% for a
3x3 mesh NoC, i.e. there is probability of 79% of having at least
one faulty block in the system. By including three spare tiles to

164

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:30:54 UTC from IEEE Xplore. Restrictions apply.

the system, increasing the number of tiles from 9 to 12, the system
yield increases to 99% since only 9 out of 12 tiles are actually
required to have a functional system. Moreover, the manufactur-
ing cost is 3.2 times less than the original system, since the addi-
tional silicon area of the spare tiles is compensated by the in-
creased yield.

Given these motivating results, we decided to investigate the
use of spare tiles by evaluating the side effects of multiple faulty
tiles on the energy consumption and application execution time.

C. Usage of the Proposed Approach
Figure 1 illustrates the proposed test approach, which starts as

soon as the chip is manufactured. If the tested chip fails, a diag-
nose step is performed to locate the faulty tiles.

Let n be the number of system tiles and m be the number of
necessary tiles to implement the systems functionality, then n-m is
the number of spare tiles. If the number of faulty tiles is lower or
equal than n-m, the place of these faulty tiles is sent to task map-
ping tool, otherwise the faulty chip is discarded. The task mapping
tool, presented in Section IV, loads a NoC model and the applica-
tion task graph to determine the new task mapping avoiding the
faulty tiles. Finally, the tool is able to estimate the energy con-
sumption and the application execution time of the resulting task
mapping. Depending on the resulting overhead, chips with up to
n-m faulty tiles can still be sent to the market, perhaps targeting
low-end markets.

no

manufacturing test

pass test? diagnose
(find faulty tiles)

yes

sold to high-end
market - $$$

#faulty
tiles <= n -

no chip
discarded

yes fault location

application
model

task mapping
tool

sold to low-end market - $$

NoC
model

Figure 1. Proposed test flow for NoC-based MPSoCs with spare tiles.

III. RELATED WORK
There are several papers presenting approaches to improve the

reliability of NoC-based SoCs. These papers can be broadly clas-
sified (these classes are definitely not exhaustive) in: (i) fault tole-
rant circuitry for NoCs and MPSoCs [8][9]; (ii) fault tolerant NoC
routing algorithm used to explore different routes of packets in
case of network faults [10]; (iii) system-level reliability assess-
ment [5]; (iv) system-level reliability co-optimization [11].

This paper fits best in the system-level reliability co-
optimization category, where two main approaches are found:
dynamic approaches executed in run-time; or static approaches
executed in design time. The dynamic system-level reliability co-
optimization approach is commonly based on on-line task map-
ping and task migration to better accommodate new incoming
tasks on the fly assuming the chip might have faults. It can also be
used to react, for instance, upon a run-time fault which could have
been generated by transient effects or permanent faults due to
wear out or aging [15][16]. In this case the tasks located at the
faulty resources are moved in runtime to healthy resources. These
approaches are out of the scope of this paper since the goal is to
improve the yield of the chip manufacturing. Manufacturing de-
fects are not dynamic and they do not appear during run-time.

For this reason this paper is best related to static system-level
reliability co-optimization approaches, based on static task sche-
duling executed in design time. Typically these approaches are
largely used in design space exploration targeting the optimization
of metrics, such as application execution time, latency, thermal

constraints, and energy consumption [12][13][14]. Recently these
approaches also co-optimize reliability related metrics.

Manolache et al. [11] address the reliability problem at appli-
cation level. They propose a way to combine spatially and tempo-
rally redundant message transmission, where energy and latency
overhead are minimized.

Tornero et al. [17] propose a multi-objective optimization
strategy, which minimizes energy consumption and maximizes a
robustness index, called path diversity, which explores the mul-
tiple paths between a pair of nodes. In case of a faulty link, a NoC
with adaptive or source-based routing algorithms could explore
these multiples paths, improving the chip robustness.

Choudhur et al. [18] introduce a new task mapping, whose ob-
jective is to minimize the variance of the system power and laten-
cy when faults occur and maximizes the probability that the actual
system will work when deployed.

Huang et al. [19] argue that some processors might age much
faster than others might, reducing the system’s lifetime. They
proposed an analytical model to estimate the lifetime reliability of
MPSoCs. This model is integrated to a task mapping algorithm
that minimizes the energy consumption of the system and satisfies
system lifetime reliability constraint. Huang and Xu [20] expand
their previous task mapping tool [19] to support multi-mode em-
bedded systems. Huang and Xu [21] argue that exponential life-
time distribution can be inaccurate, thus they further refine the
lifetime reliability model to support arbitrary lifetime distribu-
tions, improving the accuracy of the simulation results.

IV. TASK MAPPING AWARE OF FAULTY TILES
The CAFES task mapping framework [22] is composed of

high-level models, algorithms and tools, whose goal is to map
application tasks onto the target architecture tiles aiming to save
energy and to minimize the execution time. Figure 2 illustrates a
partial mapping flow and the main elements used here.

t2 tn

Application
t1

CDCG

Optimum mapping

CRG

Communication and
computation extraction

MPSoC
modeling

Mapping algorithm

Faulty tile and
spare tile lists

Energy and
timing

parameters

Energy
consumption

and execution
time results

MPSoC
synthesis

τ2 τn

Target architecture - MPSoC

τ1 τ3

Production
test

Figure 2. Mapping flow used to obtain optima application mappings.

Based on the description of an application already partitioned
into tasks ti, the designer may extract the relevant computation and
communication aspects.

Communication Dependence and Computation Graph
(CDCG) is a model used to describe the application. Each CDCG
vertex models a communication with the source and target task,
the communication volume and the computation time - the period
between all dependences are solved and communication begin-
ning. CDCG edges represent the communication dependence, i.e.
all vertices are connected to each dependence with an edge. The
CDCG is similar to a schedule graph, but focusing on communi-
cation aspects instead of computation, which enables to explore
several requirements of communication architecture easily.

Figure 3 depicts a small example of CDGC, containing three
communications {C1, C2 and C3}. C1 and C3 are concurrent commu-
nications and both do not have dependences, since dependences of

165

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:30:54 UTC from IEEE Xplore. Restrictions apply.

the Start vertex (dStart_1 and dStart_3) are always solved. Thus, C1
and C3 communications start immediately after the respective
computation time: 10 and 20 clock cycles, respectively. Commu-
nication C1 states that t1 send 100 bytes to t2 and C3 states that t3
send 100 bytes to t1. As soon as the last byte of C1 is inserted into
the NoC, d1_2 is solved. On the other hand, d3_2 is solved only
when the last byte of C3 communication arrives to the processor
where t1 is mapped.

 Start

 t1
100

C1 t2

 t1
50

C2 t3
25

10

End

 20
t3

40
C3 t1

d2_End

d1_2

dStart_3 dStart_1

d3_2

Figure 3. CDCG example.

The target architecture topology is modeled by means of a
Communication Resource Graph (CRG), which consists of tiles
(graph nodes) and links (graph edges). The energy and execution
time parameters are extracted from the target architecture synthe-
sized to a given technology. The faulty tile list is generated by the
diagnostic flow presented in Figure 1. According to the applica-
tion description, NoC energy parameters, NoC execution time
parameters, NoC topology and the faulty tile list, the task mapping
tool estimates the NoC energy consumption and the application
execution time of different mappings, enabling to evaluate the
impact of faulty tiles. The next sections detail the underlying algo-
rithms and the timing and energy models.

A. Mapping Algorithm
As stated before, the mapping problem here consists in finding

an association of each application task to a given processor –
placed in a given tile – that minimizes the global energy consump-
tion and the application execution time. Let n be the number of
tiles, this problem allows n! possible solutions. Given that future
MPSoCs may contain hundreds of tiles, an exhaustive search of
the solution space is clearly unfeasible. Thus, optimal implemen-
tations of such SoCs require the development of efficient mapping
heuristics.

Exhaustive analyses of some small applications mapped on
NoC-based MPSoCs show that task mapping is clearly a problem
with self-similarity [23] behavior. In other words, there are sever-
al very different mappings with the same cost – i.e. the same ener-
gy consumption and execution time. Therefore, exploring, not all,
but very different random mappings followed by some refine-
ments (new mapping with few changes), normally result on an
optimized solution. Due to two nested loops – an external one,
which looks for very different solutions and an internal one, which
looks for a local minimum – Simulated Annealing (SA) is an al-
gorithm very well adequate to find solutions for self-similar prob-
lems.

Our SA mapping algorithm searches for mappings that result
in an MPSoC with minimum energy consumption and low execu-
tion time. To explore these requirements in the same cost func-
tion, the execution time requirement is expressed in terms of ener-
gy consumption. Therefore, the static power dissipation is multip-
lied by the application execution time (texec) performing the
static portion of energy consumption, which is detailed in Section
IV.B. As a result, both dynamic and static energy consumption are
considered to compute the mapping cost function.

To improve the yield, the SA algorithm searches for mappings
with minimum cost avoiding the ones that are marked as spares or

faulty. However, when a tile is marked as faulty, the algorithm
replaces the faulty tile with a spare tile, which is faulty-free.

B. Timing Model
The total packet delay (dijq) of a wormhole routing algorithm

is composed by the routing delay (dRijq) and by the packet delay
(dPijq) of the remaining flits. The routing delay is the time neces-
sary to create the communication path, which is determined dur-
ing the traffic of the packet header. The packet delay depends on
the number of remaining flits. Let nabq be the number of flits of
the q-th packet from pa to pb, obtained by dividing wabq by the
link width. Let λ be the period of a clock cycle, and let tr be the
number of cycles needed to route a packet inside a router. In addi-
tion, let tl be the number of cycles needed to transmit a flit
through a link (between tiles or between a processor and a router).
The routing delay (dRijq) and the packet delay (dPijq) of the q-th
packet from tile τi to tile τj, are represented in Equations (1) and
(2), considering that a packet goes through η routers without con-
tention. Contentions can only be determined at execution time.

dRijq = (η × (tr + tl) + tl) × λ (1)

dPijq = (tl × (nabq - 1)) × λ (2)

Equation (3) expresses the total packet delays (dijq) – packet
latency, obtained from the sum of (dRijq) and (dPijq).

dijq = (η × (tr + tl) + tl × nabq) × λ (3)

For example, when applying Equation (3) in a packet with 10
flits (nabq = 10), which is sent from tile τ1 to tile τ2 (two neighbors
tiles, i.e. η = 2), and considering λ = 1ns, tr = 3 and tl = 1 clock
cycles, then 18ns is the packet latency.

The application execution time (texec) depends on both the
application computation and communication. However, a simple
equation does not express texec, since several communications
and computations are many times parallel. In addition, some
communications may compete for the same communication re-
source (e.g. links and buffers) at same time, which may cause
contentions increasing the overall execution time. Contentions
also make a single equation more complex. Therefore, texec is
computed during the mapping algorithm execution, which uses
several times the dijq and time expend in each computation.

C. Energy Model
The dynamic energy consumption is modeled using the con-

cept of bit energy (EBit), similarly to the model described in [24].
For several communication architectures, EBit can be expressed
as a function of four variable quantities, as depicted by Equation
(4).

EBit = function(Es, Eb, Ec, El) (4)

Es is the dynamic energy consumption of a single bit on wires
and on logic gates of each router. Eb is the bit dynamic energy
consumption on router buffers. Ec is the dynamic energy con-
sumption of a single bit on links between routers and the local
module. El is the bit dynamic energy consumption on the links
between routers.

Equation (5) illustrates how EBit models a 2D direct mesh
NoC. It computes the dynamic energy consumed by a bit passing
in such a NoC from tile i (τi) to tile j (τj), where ηij corresponds to
the number of routers that the bit traverses.

166

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:30:54 UTC from IEEE Xplore. Restrictions apply.

EBitij = ηij × (Es+Eb) + 2 × Ec + (ηij – 1) × El (5)

Let wabq be the total amount of bits of a packet pabq going
from pa to pb (i.e. processors a and b, correspondingly), which
are mapped on tiles τi and τj, respectively. Then, the dynamic
energy consumed by the all k packets of pa → pb communica-
tions is given by Equation (6).

EBitab = ∑
=

×
k

abq
q

ijBit
1

Ew (6)

Hence, Equation (7) gives the total dynamic energy consumed
by the NoC (EDyNoC) and y represents the total number of
communication between different processors pa to pb.

EDyNoC = ∑
=

y

ab
i

iBit
1

)(E ∀ pa, pb ∈ processors set (7)

The static power dissipation of each router (PRouter) is pro-
portional to the number of gates that compose the router and it can
be estimated by electrical simulation. With n representing the
number of tiles, Equation (8) computes NoC static power dissipa-
tion (PNoC).

PNoC = n × PRouter (8)

Using texec explained in Section IV.B, Equation (9) com-
putes NoC static energy consumption (EsNoC).

EsNoC = PNoC × texec (9)

Finally, Equation (10) gives the overall energy consumption at
the NoC (ENoC) that considers the static and dynamic effects,
which SA algorithm uses as cost function to search for optima
mappings.

ENoC = EsNoC + EDyNoC (10)

D. Model Calibration
The Hermes NoC [7], configured with 16-bit phit and input

buffers with four positions, was used to validate the timing and
energy models. The Hermes VHDL description was synthesized
to an ASIC standard cell library. The library also supplies energy
values for the cells, which are used to extract the energy parame-
ters.

The synthesis result is a logic gate netlist. This netlist is asso-
ciated to a customized VHDL library, which enables fast and ac-
curate energy consumption and timing estimations. A testbench
applies both random and typical traffic to the netlist and the re-
sults achieved by VHDL simulation are compared to those ob-
tained from high-level mapping tool. Our experiments showed
average errors below 30.5% and 14% for energy consumption and
execution time estimations, respectively.

V. EXPERIMENTAL SETUP
This section presents the methods used to generate the combi-

nation of faulty tiles, called fault scenarios. The first method is
exhaustive used for small NoCs and the second method is the
statistical method used for bigger NoCs. Latter, we present the
application classes evaluated in this paper.

A. Exhaustive Fault Generation Method
Faulty tiles are exhaustively generated for all combinations of

faulty tile locations, assuming a system with 1 to 3 faulty tiles.
Thus, Equation 11 defines the total number of faults injected as
the sum of all 1, 2, to nfaults faults combination in x × y tiles. For
instance, a 3 × 4 mesh NoC requires 298 fault scenarios (12 single
faults, 66 double faults, and 220 triple faults).

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
=×

××× yxyxyx

yxscens
nfaults21

)nfaults,((11)

B. Statistical Fault Generation Method
The exhaustive fault generation method is precise; however, it

might not be possible to perform exhaustive fault simulation due
to the long CPU time. The main reason is that the total number of
executions required to perform exhaustive fault simulation, de-
fined in Equation 11, grows exponentially with the NoC size
(x × y) and the max number of simultaneous faults (nfaults).
Moreover, the CPU time of a single execution of the task mapping
tool grows with the NoC size.

For instance, assuming a 3 x 4 mesh NoC with up to 3 simul-
taneous faults requires 298 task mapping executions (about 3 mi-
nutes of CPU) to perform exhaustive fault simulation. However, a
bigger NoCs like a 5 x 5 mesh with up to 3 faults requires 2625
executions in about 60 hours of CPU time. The same 5 x 5 mesh
NoC with up to 4 simultaneous faults requires 15275 executions,
which we estimate that would require about 14 days of CPU use.

Even with the economical motivation of spare tiles is appeal-
ing; it might be unfeasible to perform an exhaustive fault simula-
tion since the CPU time becomes an issue for bigger NoCs with
multiple faults. This section presents a statistical approach, called
sample size estimation [25], used to determine the minimal num-
ber of fault scenarios required to have satisfactory results - near
to the ones achieved by exhaustive approach. This way, CPU time
can be drastically reduced, while the results are still accurate.
Moreover, this method enables trading off CPU time and result
accuracy.

Before executing the sample size estimation, a pilot simulation
is performed with a sample of small size. A sample represents a
set of executions of the task mapping tool, where each execution
assumes that the faulty tiles were randomly selected. Each execu-
tion of this pilot results in a different mapping with different ener-
gy consumptions and execution times. If the energy consumption
is the value to be estimated, then this pilot gives the population’s
estimated standard deviation s of energy consumed in the pres-
ence of faulty tiles randomly located. The population in this con-
text represents the entire combination of fault scenarios, as deter-
mined in Equation 11.

The goal of the sample size estimation is to estimate the popu-
lation average (μ), i.e. the average energy consumption of the
entire population of fault scenarios. The Equation 12 is typically
used for this purpose, where s is the estimated standard deviation
of the sample. (x - μ) is the difference of the estimated sample
average (x) and μ, which represents the acceptable error between
the sample and the population. tα,df is the value from student’s t-
distribution table [25], where (1 - α) is the confidence level and df
is the degree of freedom, defined as df = n - 1.

2
,2

2

)(
)(dft

x
sn αμ

×
−

= (12)

Since n is unknown, one can select an initial value of n to ob-
tain tα,df. This value is used in Equation 12 to find a new n and a
new tα,df. This calculation is performed iteratively until the value
of n stabilizes. The stable value of n is the minimal sample size
required to estimate the population average μ with the expected

167

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:30:54 UTC from IEEE Xplore. Restrictions apply.

accuracy of results.

C. System Application
We explore several parallel applications with distinct features

aiming to determine what kind of application increases the over-
head in energy and execution time in the presence of faulty tiles.
A synthetic application generator, detailed in [22], is used to
create random CDCGs.

This synthetic application generator can build several applica-
tion classes by varying parameters such as: (i) number of proces-
sors, which allows to investigate some target architecture dimen-
sions; (ii) number of graph levels, which allows to specify the
number of dependent communications an application has; (iii)
dependence degree that defines the probability of a vertex has
more than one dependence, keeping in mind that dependent com-
munications can´t concur for NoC resources; (iv) probability of
end meeting that defines if a vertex will have dependences or is a
final communication; (v) computation time that is the period, as-
sociated to each source task, between all dependences are solved
and the communication of the source task starts; (vi) communica-
tion volume that contains the quantity of bytes transmitted in each
communication; and (vii) parallel communications, which de-
scribes the minimum quantity of parallel communications an ap-
plication have.

For instance, varying the relation between computation time
and communication volume the application may change from IO-
bounded to CPU-bounded; varying the relation between number
of graph level and dependence degree the applications may be
dataflow or concurrent.

We built 39 synthetic applications, which enables to explore
applications classified as (i) IO or CPU bounded; (ii) dataflow
with different levels of parallelism; (iii) strongly parallel or se-
quential applications with different levels of concurrence by the
communication architecture.

VI. EXPERIMENTAL RESULTS
This section evaluates (i) the application execution time under

exhaustive faulty scenarios, (ii) the average energy consumption
under exhaustive faulty scenarios, (iii) the proposed statistical
fault generation method used to estimate energy consumption,
comparing it to the exhaustive method.

A. Evaluating the Application Execution Time
All application classes haves been evaluated in terms of ex-

ecution time using the exhaustive fault generation method.
The result is that, independently of the application class, the

execution time is not affect by the presence of faulty tiles. On av-
erage, the variation of execution time between the fault-free chip
and the chips with up to 3 faulty tiles is close to 0%.

The reason lies on the timing model, presented in Section
IV.B, more specifically in Equation (3). The total application time
consist of computation time plus the communication time. The
communication time consist of the routing delay, which depends
on the distance between the communication elements, plus the
packet delay, which depends on the packet size.

If the computation time is much greater than the communica-
tion time, then the task mapping has very small influence on the
application execution time. Even if both computation and com-
munication times are equivalent, if the packet size is big (hun-
dreds of flits) the routing delay has a very small impact on the
communication time (since the NoC works as a pipeline), thus
also a small impact on the application execution time.

Since in typical scenarios an application has more computa-

tion than communication and applications use packets with hun-
dreds of flits, then the impact of the routing delay on the overall
application execution time almost is negligible. This claim can be
demonstrated with the following example.

Let us assume a given application on a 3x4 mesh NoC, whose
normal behavior is to have more computation than communica-
tion. This application is modified such that it has three variations:
low communication (packets of one flit), low computation (CPU
time of 1 clock cycle), and both communication and computation
are low. Exhaustive fault generation is performed for these cases
generating the Figure 4, which is the difference between the aver-
age execution time of the population with faulty chips and the
execution time of the fault-free chip.

Figure 4. The average overhead of application execution time of faulty chips.

This figure demonstrates that faulty tiles have a significant in-
fluence on the chip execution time only if the both the computa-
tion and the communication are low, which is not the typical sit-
uation. Most actual applications typically have bigger packet sizes
and more computation than communication.

B. Evaluating the Energy Consumption
The energy consumption is evaluated for each class of appli-

cation described in Section V.C. The result is that, in spite of the
application class, only the proportion of good tiles per faulty tiles
affects the energy consumption. For instance, a chip with 15 tiles
where two of them are faulty consumes more energy than the
same chip with only one faulty tile. These results are illustrated in
Figure 5 for a 3x5 mesh and an application with 12 tasks and 3
spare tiles. The average impact of a faulty tile on energy con-
sumption is worse in the center of the NoC and it increases if there
are more faulty tiles in the chip (Figure 5(a)). This impact gradu-
ally decreases as the distance from the center tiles increases
(Figure 5(b)).

However, if we map the same application on a 4x4 mesh NoC,
then there are 12 tasks and 4 spare tiles. Figure 6 compares the
energy profile of this application of a 3x5 against a 4x4 mesh NoC
assuming three faults in each of them. It can be observed that the
energy overhead in a 4x4 is lower. The reason is the proportion of
good and faulty tiles. In a 3x5 with 3 faults the proportion is 15/3
while in a 4x4 it is 16/3. This extra tile of 4x4 gives more freedom
to the task mapping tool to determine a good scheduling, improv-
ing the effect of self-similarity (Section IV.A), resulting in a better
task mapping.

168

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:30:54 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Figure 5. The average energy consumption overhead of faulty chips.

Figure 6. The energy overhead with three faults on a 3x5 and a 4x4 mesh.

C. Evaluating the Statistical Fault Generation Method
This section demonstrates the fault generation method pro-

posed in Section V.B. For this experiment, we assume that a small
NoC is used, such as 3x4 mesh NoC, because the total CPU time
for both statistical and exhaustive fault generation methods is not
too high. An application with 9 tasks is used for this experiment,
even though all other applications presented very similar results.
Let us assume that the goal of this experiment is to estimate the
average energy overhead when a fault hit a given tile, considering
scenarios with 3 simultaneous faults.

First, the exhaustive method is executed, running all combina-
tions of 3 faults in 12 tiles, i.e. scens(3 x 4, 3) = 298 (Eq. 11) fault
scenarios. It took about 3 minutes of CPU time to execute them.
These results are considered the target results, i.e. the results we
want to achieve with the statistical method.

The second step is to execute a pilot experiment with small
number of randomly selected fault scenarios per router. This pilot
experiment is used solely to extract the standard deviation of the
energy consumed by the chips with three random faulty tiles. The
estimated standard deviation is 3.9% of deviation on energy con-
sumption.

The proposed approach of sample size estimation is executed
assuming two situations: (i) standard deviation of 3.9, confidence
interval of 95%, and maximum error of 4%; and (ii) standard dev-
iation of 3.9, confidence interval of 98%, and maximum error of
2%. The estimated sample size for each situation is 8 and 23, re-
spectively. It means that each tile must be in at least 8 or 23 fault
scenarios. For now on, the first situation is called sample8 and the
second is called sample23. TABLE 1 presents the obtained results
in terms of CPU time, total number of scenarios and the maximum

error observed for each tile.
TABLE 1. RESULTS FOR THE STATISTICAL FAULTS GENERATION METHOD.

 CPU
time (s) # scenarios max obs.

error (%)
Exhaustive 192 220 -
Sample8 27 39 2.4
Sample23 63 101 0.8

Figure 7 illustrates the three situations and their respective

heat charts, representing the energy overhead when a fault is
found at each tile. Each square represent the average energy con-
sumption for each tile.

It can be observed that the exhaustive method produce the ex-
pected results (the energy is gradually reducing from the center to
the borders). The sample23 produces almost the same results as
the exhaustive method, with small error but with much less CPU
time. The sample8 produce large errors, indicating that the sample
size is not sufficient to estimate accurately the energy overhead
for each router.

Even if the exhaustive results are not available, it is still possi-
ble to check the accuracy of the sample by visually analyzing the
heat chart demonstrated in Figure 7. For instance, the expected
appearance of a good heat chart is like the exhaustive test set,
even if we assume NoCs of different sizes and different applica-
tions. Note that the heat chart for sample8 deviates from the ex-
pected appearance, indicating that one should increase the sample
size, if it is possible, to increase the accuracy of the results.

exhaustive
sam

ple8
sam

ple23

Figure 7. Visual analysis of the statistical fault generation method.
Figure 8 overlaps the average results for the three situations.

By comparing the exhaustive with the other test sets, it can be
seen that the biggest error for sample8, located in the tile [2, 1], is
2.4% (see 1), which is below the maximum error stipulated to this
set of experiments (4%). The biggest errors for sample23, located

169

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:30:54 UTC from IEEE Xplore. Restrictions apply.

in the tiles [1, 1] and [2, 0] (see 2), are around 0.8%, which is
below the maximum error stipulated to this set of experiments
(2%).

Figure 8. Close analysis of the resulting error by overlapping the average

results for exhaustive, sample8, and sample23.

The example presented in this section demonstrates that the
proposed fault generation approach enables to trade-off CPU time
and result accuracy by selecting different values of difference (x -
μ) and confidence level (1 - α).

VII. FINAL REMARKS
Previous papers have demonstrated that the use of spare tiles

can significantly improve yield and reduce the manufacturing cost
of NoC-based MPSoCs. The tool presented in this paper deter-
mines task mapping for NoC-based MPSoCs with faulty tiles,
minimizing the energy consumption and the application execution
time. This way, these defective chips can still execute the applica-
tion, perhaps with some performance degradation, but at least it
can be sold to a lower-end market, for example.

This paper evaluates energy consumption and application ex-
ecution time of faulty chips compared to fault-free chips. We eva-
luated several different classes of applications to check if there
was any particular application feature that could affect the energy
consumption or application execution time under faulty tiles.
These results show that the spare tile approach has small impact
on energy consumption and this impact can be even smaller if the
proportion of good and faulty is higher. The existence of faulty
tiles on the chip has, on average, no significant influence on the
application execution time. Based on these results, we conclude
that the spare tile approach can increase yield and cost with small
penalties on the application requirements.

Finally, this paper also proposed a statistical fault generation
approach targeting very large MPSoCs. This approach demon-
strates that a small sample of fault scenarios is sufficient to have a
reasonably accurate estimation of energy consumption and it
enables trading of CPU time and result accuracy.

VIII. ACKNOWLEDGMENT
Alexandre is supported by postdoctoral scholarships from

Capes-PNPD and FAPERGS-ARD, grants number 02388/09-0
and 10/0701-2, respectively. Fernando Moraes is supported by
CNPq and FAPERGS, projects 301599/2009-2 and 10/0814-9,
respectively. Cesar Marcon and Marcelo Lubaszewski are partial-
ly supported by CNPq scholarships, grants number 308924/2008-
8 and 478200/2008-0, respectively.

IX. REFERENCES
[1] Wolf, W.; Jerraya, A. A.; Martin G. Multiprocessor system-on-chip

(MPSoC) technology. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 27(10), pp. 1701-1713, 2008.

[2] Kahng, A.; et al. ORION 2.0: a fast and accurate NoC power and
area model for early-stage design space exploration. DATE, pp. 423-
428, 2009.

[3] Lee, S. E. et al. A high level power model for network-on-chip (NoC)
router. Computers & Electrical Engineering, 35(6), 2009.

[4] Refan, F. et al. Reliability in application specific mesh-based NoC
architectures. IEEE International On-Line Testing Symposium,
pp. 207-212, 2008.

[5] Shamshiri, S.; Cheng, K-T. Yield and Cost Analysis of a Reliable
NoC. VLSI Test Symposium, pp. 173-178, 2009.

[6] Carara E. A. et al. HeMPS - a framework for NoC-based MPSoC
generation. ISCAS, pp. 1345–1348, 2009.

[7] Moraes, F. et. al. HERMES: an infrastructure for low area overhead
packet-switching networks on Chip. Integration, the VLSI Journal,
38(1), pp. 69-93, 2004.

[8] Bertozzi, D.; Benini, L.; De Micheli, G. Error control schemes for on-
chip communication links: the energy-reliability tradeoff. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 4(6), pp. 818-831, 2005.

[9] Ejlali, A. et al. Performability/energy tradeoff in error-control
schemes for on-chip networks. IEEE Transactions on Very Large
Scale Integration Systems, 18(1), pp. 1-14, 2010.

[10] Zhang, Z.; Greiner, A.; Taktak, S. A reconfigurable routing algorithm
for a fault-tolerant 2D-mesh network-on-chip. DAC, pp. 441-446,
2008.

[11] Manolache, S.; Eles, P.; Peng, Z. Fault and energy-aware communi-
cation mapping with guaranteed latency for applications imple-
mented on NoC, DAC, pp. 266-269, 2005.

[12] Hu, J.; Marculescu, R.. Energy-aware communication and task sche-
duling for network-on-chip architectures under real-time con-
straints. DATE, pp. 234-239, 2004.

[13] Lei, T.; Kumar, S. A two-step genetic algorithm for mapping task
graphs to a network on chip architecture. Euromicro Symposium on
Digital System Design, pp. 180-187, 2003.

[14] Murali, S. et al. Mapping and configuration methods for multi-use-
case networks on chips. ASP-DAC, pp. 146-151, 2006.

[15] Lee, C. et al. A task remapping technique for reliable multi-core
embedded systems. CODES/ISSS, pp. 307-316, 2010.

[16] Ababei, C.; Katti, R. Achieving network on chip fault tolerance by
adaptive remapping. International Symposium on Parallel & Distri-
buted Processing, pp. 1-4, 2009.

[17] Tornero, R. et al; A multi-objective strategy for concurrent mapping
and routing in networks on chip. International Symposium on Paral-
lel & Distributed Processing, pp. 1-8, 2009.

[18] Choudhury, A. et al. Yield enhancement by robust application-
specific mapping on network-on-chips. NoCArc, pp. 37-42, 2009.

[19] Huang, L. et al. Lifetime reliability-aware task allocation and sche-
duling for MPSoC platforms. DATE, pp. 51-56, 2009.

[20] Huang, L; Xu, Q. Energy-efficient task allocation and scheduling for
multi-mode MPSoCs under lifetime reliability constraint. DATE,
pp. 1584-1589, 2010.

[21] Huang, L; Xu, Q. AgeSim: A simulation framework for evaluating
the lifetime reliability of processor-based SoCs, DATE, pp. 51-56,
2010.

[22] Marcon, C. et al. CAFES: a framework for intrachip application
modeling and communication architecture design. Journal of Parallel
and Distributed Computing, 71(5), pp. 714-728, 2011.

[23] Mandelbrot, B. How long is the coast of britain? statistical self-
similarity and fractional dimension. Science. 156(3775) pp. 636-638,
1967.

[24] Ghadiry, M.; Nadi, M.; Rahmati, D. New approach to calculate ener-
gy on NoC. International Conference on Computer and Communication
Engineering, pp. 1098-1104, 2008.

[25] Hill, T.; Lewicki, P. Statistics: methods and applications: a compre-
hensive reference for science, industry, and data mining. StaSoft,
832p., 2006.

170

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:30:54 UTC from IEEE Xplore. Restrictions apply.

