Phoenix NoC: A Distributed Fault Tolerant Architecture

César Marcon, Alexandre Amory, Thais Webber, Thomas Volpato, Leticia B. Poehls

Pontifical Catholic University of Rio Grande do Sul
Av. Ipiranga 6681, Porto Alegre, Brazil

cesar.marcon(@pucrs.br

Abstract—The advances in deep submicron technology have
made the development of large Multiprocessor Systems-on-Chip
(MPSoC) possible and Networks-on-Chip (NoCs) have been
recognized to provide an efficient communication architecture
for such systems. With the positive effects on the device’s
integration some drawbacks arise, such as the increase of fault
susceptibility during the MPSoC manufacturing and operation.
This work presents Phoenix, which is a direct mesh NoC that
implements fault tolerant mechanisms in order to enable end-to-
end communication when some links fail. Phoenix implements a
distributed fault tolerant mechanism in software (i.e. in each
processor) and in hardware (i.e. in each router). Experimental
results show that Phoenix is scalable and allows the MPSoC
operation even in the presence of several faulty links.

Keywords - Fault tolerance, NoC, MPSoC.

L. INTRODUCTION

Recent submicron technologies allow to integrate billion
transistors into a single chip, creating high performance
Systems-on-Chip (SoCs). These technologies are increasingly
susceptible to faults due to the increasing complexity of the
submicron processes. Since the presence of faults detected
after the SoC’s manufacturing (or during the SoC’s operation)
may hinder the commercialization, industry and academia
spend much research effort on issues regarding fault tolerance.

High performance SoCs, commonly called Multiprocessor
SoCs (MPSoCs), have many Processing Elements (PEs),
which operate in parallel in order to achieve the application’s
functionality. It is essential that the MPSoC’s communication
architecture is efficient regarding performance including low
latency and high throughput. Networks-on-Chip’s (NoCs)
architectures are typically designed to meet such
communication features [1]. Furthermore, the parallelism of
NoC links are designed to provide redundant communication
among resources. If a link fails, another route can be employed
with parallelism reduction penalty, which is likely to reduce
NoC flow without impact on the application’s functionality.

NoCs tolerance to operating faults (faults that occur during
the MPSoC operation) is designed to offer mechanisms to
detect and recover from these faults. The efficiency of these
mechanisms determines whether the system is not only able to
withstand the detected faults, but also the delay needed to
recover the system. This paper describes the design of a 2D
mesh NoC named Phoenix, which represents a fault-tolerant
NoC with source routing tables and mechanisms to detect
faults and to efficiently distribute the information to all PEs.
The proposed Phoenix NoC is able to deal with both
manufacturing and operating faults. The main issues addressed
in this paper are: (i) the NoC architecture as well as its impact

978-1-4799-2987-0/13/$31.00 ©2013 IEEE

7

on the silicon area, (ii) the mechanism implemented in order to
detect faults (i.e. link analysis at idle moments), and (iii) the
distributed algorithm proposed to report faults. Although the
routing algorithm is undoubtedly important, it is not
specifically addressed in this paper.

The paper is organized as follows: Section II describes the
hardware and software of the monitoring mechanism of
Phoenix NoC. Section III explains the fault tolerant
mechanisms implemented on Phoenix. Section IV presents and
discusses some related works, while Section V shows
experimental results of the proposed mechanisms and their
implementation. Finally, Section VI concludes this work.

IL

Figure 1 shows the Phoenix distributed mechanism, which
places the hardware part (i.e. HwPhoenix) on each router and
the software part (i.e. OsPhoenix) on the Operating System of
each PE connected to each router.

PE
| User application |

PHOENIX NOC ARCHITECTURE

PE
 User application |

see Operating System

L OsPhoenix

P A ————

Operating System

S Route T — .
(\[Hwphoenix] [\, [HwPhoenix] If - ***

Figure 1 — Phoenix’s distributed architecture.

A. Phoenix NoC Fundaments

Phoenix NoC has direct 2D mesh topology, consisting of
mxn routers using bidirectional links to interconnect PEs
placed alongside with them. The NoC employs routing tables
for source routing decisions and the OsPhoenix performs
routing algorithms to fill the routing table according to the PE
position and the faulty links. Further, Phoenix NoC
implements wormhole switching, which divides packets into
flits (the flit size of Phoenix is equal to the phit size), needing
only small buffers for the necessary data storing. Additionally,
the Phoenix NoC uses a credit-based flow control to reduce the
number of clocks needed for flits’ transmission.

B. Phoenix Router Architecture

Figure 2 shows the Phoenix router architecture. The router
architecture is based on a routing table with an extra module,
which implements the fault tolerance mechanism. The basic
router architecture of Phoenix encompasses four components

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:16:08 UTC from IEEE Xplore. Restrictions apply.

described in the following: (i) Four bidirectional ports,
dedicated to interconnect routers (NORTH, SOUTH, EAST and
WEST), and a bidirectional port that enables the communication
between the router and its local PE (LOCAL). The input link
contains configurable buffers used when other packets congest
the routing path. (ii) A Crossbar switch that establish
unblocking connections between input and output ports, and
(iii) a Routing Table associating ranges of NoC addressing to
output ports. At last, (iv) a Switch Control circuit that performs
packets routing and arbitration according to the Packet Header
and to the Routing Table. The arbitration follows a dynamic
rotating policy to ensure that all incoming requests are
processed, avoiding the so-called starvation phenomenon.

packet|header control|signals

INPUT BUFFERS

CROSSBAR SWITCH

h 4

155 EAST P
~ -
>[I - [-—>

P WEST d P
NORTH 1l g

A
7'y

A
A

Femmmmmm—— e

A

— wm

gl |8

2 1S

— I

% %
v v

A

packetfheader

h 4

HwPhoenix

<
FAULT TABLE » ROUTING TABLE ‘—

Figure 2 - The Phoenix router architecture.

The HwPhoenix module basically includes two parts: (i)
the Fault Control Machine, which searches for control packets
in all input ports, and takes decisions according to the
command code (for details refer to Section I1.D) and (ii) the
Fault Monitor, which detects faulty output links and sets the
links’ status on the Fault Table, which is a 4-field vector. Each
field stores the operation status of the NORTH, SOUTH, EAST and
WEST output links, containing two bits to inform, weather the
link is (i) not verified, (ii) faulty or (iii) operating properly.

C. Fault Tolerant Routing Algorithm

Phoenix is a source routing NoC, where routes are
computed according to the Routing Table, which is initialized
by XY routing. Nonetheless, depending on the occurrence of
faults, this table of OsPhoenix can modify the Routing Table
by adding new deadlock-free routes. OsPhoenix presents a
routing algorithm that is similar to Region Based Routing [9],
which groups target addresses into regions in order to reduce
the Routing table size. In addition, the Routing Table provides
several paths, even in the presence of faults, with a minimum
of four regions. If the Routing Table size increases, Phoenix
may provide an alternative for the minimum path using e.g.
heuristic algorithms, which are not the focus of this work.

D. Packet Format

Each field of a Phoenix packet has a length of exactly 1 flit
and the number of flits in a packet is limited to 2™t in bit9),

8

Phoenix employs two types of packets: (i) the Data Packet,
which carries the PE messages; and (ii) the Control Packet,
which is employed by the router control mechanisms.

Figure 3 illustrates Phoenix’s packets format. The header
encloses flag address and size fields. The flag address is the
first flit of the header, composed of (i) a 1-bit flag to define the
packet type. A flag set to zero defines Data Packets, whereas
in Control Packets the flag is set to one; and (ii) the XY target
address, whose addressing capacity depends on the flit size.
Moreover, Phoenix operation requires minimum flit length of
8-bits for supporting the flag address field, the control flag
and 64 PE addresses. The size field is the second flit of the
header, containing the quantity of flits that compose the packet
payload. Whereas data packet payload is entirely transparent to
NoC operation, the first flit of the control packet payload is a
command code used to control the routers’ operation.

Control packet:
— Header) = CO @) ¢ Code Compl t »
=12 flit==x==2" flit=—=X=—=3" flit=X=—4" flit=> {=(size+2) flit=>
Iflag_addressl size | code | auxiliary I . I auxiliary
[%o X] s Xe[Yol Ya Y2 Y5 i s ¥

e target address ——)

unused
Data packet:
— Header | — Payload | —
=1% flit==x=2" flit==x=3" flit=0=—=4" flit=) d=(size+2) flit=>
data | data I .. I data

DN A ATARAD

—)
unused

target address

Figure 3 — Packets of Phoenix NoC considering flits of 16-bits length.

Phoenix fault tolerance mechanism implements the next
commands: TEST LINKS, TR ROUT TAB, RD FAULT TAB,
WR_FAULT_TAB, RD_ROUT_TAB, WR_ROUT TAB,
RST FAULT TAB, TR _FAULT TABand RST ALL FAULTS, which
are detailed in Section III.

II1.

This section describes the joint operation of OsPhoenix and
HwPhoenix performing Phoenix fault tolerance mechanisms.

FAULT TOLERANCE MECHANISMS

A. OsPhoenix Description

OsPhoenix is a small software layer placed into the PE’s
Operating System, which contains drivers for high-level
operation and routines, which implement the distributed fault
tolerant mechanisms.

OsPhoenix comprises a Global Fault Table, which stores
the status of all NoC links, informing if a given link was or
was not tested and, once tested, if it is operating properly.
Employing command, OsPhoenix makes four fault tolerant
mechanisms possible, all four, being: (i) Fault Detection; (ii)
Fault Notification; (iil) Fault Re-evaluation; and (iv) Packet
Drop, are described in detailed below.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:16:08 UTC from IEEE Xplore. Restrictions apply.

B. Fault Detection Mechanism

The Phoenix fault model considers only faults on output
ports of inter router links, which encompasses links on ports
NORTH, SOUTH, EAST and WEST. Figure 4 shows a diagram for
the flow of the Fault Detection Mechanism, starting with
OsPhoenix sending the TEST LINKS command to HwPhoenix.

\ TEST LINKS

‘ TEST _NORTH_LINK

| TEST SOUTH_LINK
S ——
I TEST WEST_LINK

ITEST EAST LINK
]

‘ SET_NORTH_STATUS

ISET_SOUTH_STATUS
AV N
ISET WEST STATUS

ISET_EAST_STATUS
LINKS_TESTED |

TR _FAULT TAB i
Flgure 4 — Flow Dlagram of the Fault Detection Mechanisms.

The Fault Control Machine interprets the TEST LINKS
command sending a predefined test packet to each output port.
At same time, the Fault Control Machine sends an internal
command (e.g. TEST EAST LINK) to the Fault Monitor
informing that it has to analyze the link’s quality. When the
neighbour router receives a test packet, it loops back a packet
with the same information. Consequently, the Fault Monitor
detects faulty links in the case that one of the following
conditions occurs: (i) the low level control protocol fails; (ii)
the test packet is not replied; or (iii) the test packet is replied
but with altered content. Otherwise, the link is considered
tested and operating properly.

When the Fault Monitor finishes testing all link, it sends
the internal LINKS TESTED command to the Fault Control
Machine, which itself sends the TR FAULT TAB command to
the OsPhoenix containing the Faulty Table enclosed in the
Code Complement packet field (as seen in Figure 3).

C. Fault Notification Mechanism

The fault notification is a distributed mechanism, which
provides the status of all NoC links to OsPhoenix. This
mechanism starts whenever an OsPhoenix receives a Fault
Table whose values differ from the ones previously stored in
the Global Fault Table. In a next step, the OsPhoenix performs
its Fault Notification Mechanism propagating fault information
to all the OsPhoenix of its neighbour routers until it does reach
the stabilization condition. Normally, the Fault Notification
Mechanism starts after the execution of the Fault Detection
Mechanism, due to the need of the information from the
completed Fault Table.

Figure 5 illustrates the Notification Mechanism, which
comprehends the following steps:

1. Whenever OsPhoenix receives a control packet with the
Fault Table’s content (i.e. throughout the TR FAULT TAB
command), it verifies its contents against the previous
Fault Table stored in the Global Fault Table. If at least one
value presents alterations, OsPhoenix updates the Global
Fault Table and sends new packets with the same content
to all other neighbour PEs, otherwise OsPhoenix discards
the received packet.

9

2. At the beginning of Fault Notification Mechanism’s
operation, the OsPhoenix starts a timer, which operates in
the same clock cycle as the NoC. The timer is used to
check the Maximum Stabilization Time Period (MSTP),
which is the condition of the fault notification’s
stabilization mechanism. When the timer reaches the value
of MSTP, the OsPhoenix considers that all the faults were
passed to all the other OsPhoenix in order to compute the
routing algorithm.

3. When the distributed notification mechanism finishes, the
OsPhoenix sends the command WR ROUT TAB, which
contains the Routing Table enclosed in the Code
Complement field (as depicted in Figure 3) to the Fault
Control Machine.

: | Other neigbour PE[X, Y]
PE2, 2] il North PE[2,3]
: South PE[2,1]
East[3,2]
West PE[1,2]

Routing table 0

TR_FAULT_TAB

1: Fault table PE[2.2]
2: 1o all neigbour PEs

|TR_FAULT_TAB

|

]

|

} 11 Fault table PE[2.2]
| 12: to all neigbour PEs
I

|

|

|

|
|
|
|
T
|
i
TR_FAULT_TAB

1: Fault table PE[2.4]
2: from north neigbour PE

I TR_FAULT_TAB

I 1: Fault table PE[2,4]
| 2: from north neigbour PE

|

|

I

i

|

1

|
Fault table PE[2,4] |
different from |
?ye\ ious value on |
lobal fault table |
|

1

1

1

|

1

|

1

|

|

MSTP

ITR_FAULT TAB

11: Fault table PE[2,4]
12: to all neigbour PEs

e = ___Y___]

} 1: Fault table PE[2.4]
| 2: to all neigbour PEs
|

I |WR_ROUT TAB

| I: Routing table

i
I
|
|
|
|
|
|
|
|

TR_FAULT_TAB }
|
I
|
|
|
|
I

12: to local router ‘

IWR ROUT TAB

1: Routing table
2: to local router

Legend:
command
1: packet content
2: from soruce PE / to target PEs
Figure 5 — Exemplified partial operation of the Fault Notification Mechanism
/ PE placed on coordinates X=2, Y=2).

Figure 6 shows an example of fault notification

propagation in a 6x5 Mesh NoC.
7 e
6

5 pes4] 6

PE[4,4]

PE[0,0]

Figure 6 — Example of fault notification propagation in a 6 x5 NoC mesh.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:16:08 UTC from IEEE Xplore. Restrictions apply.

The algorithm propagates fault notifications from the
center to the borders in a wave format. MSTP is proportional
to the maximum NoC length, which is dependent on the NoC
size and on the quantity and positioning of faulty links. Since
these faults are not known during design, we use here MSTP
as the maximum NoC length delay, which is a worst-case
condition achieved by a packet passing through all routers.

D. Fault Re-Evaluation Mechanism

The Fault Notification Mechanism support only permanent
faults. This approach facilitates the notification mechanism to
stabilize quickly. However, the NoC supports reassessment of
the faulty status of all NoC links, which is required by any
OsPhoenix in a distributed way using the RST ALL FAULTS
command. Figure 7 illustrates this mechanism, which
guarantees that the fault tolerance mechanism of Phoenix does
not accidentally detect a transient fault as a permanent one.

Other neigbour PE[X, Y]

North PE[2,3]
South PE[2,1]
East[3,2]

.
.
.
e West PE[1,2]

_ FAULTS_! !
|RST_ALL_FAULTS |
[l
|
|

\ 4

I(to all neigbour PEs)
RST FAULT TAB !
- _ »

IRST FAULT TAB, |
_ _TAB

IRESET
—

eee | eee
RST_ALL_FAULTS!

(f(om a neigbour PE) }

|

MSTP

RST ALL FAULTS
" _ -

|
Command I
discarded while |
|

|

|

|
|
|
T
|
|
|
|
|
MSTP >0 !
|

Figure 7 — Fault re-evaluation mechanism.

The reset command is sent to all neighbouring PEs that
upon receiving the command: (i) reset their Global Fault
Table; (i1) request to their local routers to reset the Fault Table
using the RST FAULT TAB command; and (iii) retransmit the
command RST ALL FAULTS to their respective PE neighbours.
During MSTP, when the NoC stops running, occurs the
propagation of system’s reboot message. After, the operation
returns to normal as in the start-up, running a Fault Detection
Mechanism followed by the Fault Notification Mechanism.

E. Packet Drop Mechanism

Some NoC links may fail during Phoenix’s operation as
described in the previous two sections. These faults are taken
into account similarly to the initial NoC operation. However,
routers, which have not been updated with this fault
information, consider that the fault does not exist and the
router may consider transmitting packets along the failed path.

In order to avoid packets trapped inside the NoC due to a
faulty link, a Packet Drop Mechanism has been implemented.
The flits that already passed through the faulty link compose
an incomplete packet, which is propagated through all routers
until it reaches the targeted PE. Therefore, OsPhoenix discards
the flits, since they compose an invalid packet. Additionally,
when packet size does not match the quantity of flits, the
output port recognizes it as a faulty packet. Thus, the internal
control registers are updated to enable the transmission of
further packets. The router eliminates the remaining flits, one
flit per clock cycle. When a packet is dropped, its content is
lost and it has to be sent again at a higher software levels.

10

F. Debugging Commands

For debugging reasons, the fault tolerance mechanism of
Phoenix encompasses the commands of Table I, enabling the
Faulty Table and the Routing Table.

TABLE I — DEBUGGING COMMANDS OF PHOENIX.

Command Description

OsPhoenix employs command RD_FAULT TAB in order to
read the content of the Fault Table. When the Fault
Control Machine receives this command, it replies with
the command TR_FAULT TAB, containing the Fault Table
codified into the 2™ flit of the Code Complement field
OsPhoenix uses the command WR_FAULT TAB in order to
set the status of the links NORTH, SOUTH, EAST and WEST,
inside the Fault Table of the local router

OsPhoenix sends the command RD ROUT TAB to the
Fault Control Machine in order to read the Routing Table
The Fault Control Machine replies the command
RD_ROUT TAB by inserting the Routing Table into the
Code Complement field. Notice that the Routing Table
size, and consequently the packet size, depend on the
number of regions defined by the Routing Mechanism

RD_FAULT_TAB

WR_FAULT_TAB

RD_ROUT_TAB

TR ROUT TAB

IV. RELATED WORKS

NoC-based MPSoCs present superior performance in terms
of bandwidth and scalability. Their use provides a great
opportunity for the research on fault tolerance methods, mainly
because they may be implemented in hardware, software or a
combination of both.

In literature different fault tolerance methods based on
redundancy are described as being applied to NoCs. Among
these are: ECC, spare wires, spare routers and backup NoC
paths [2], which all apply extra redundancy to the NoC.
Similarly, methods that exploit the natural path redundancy
existent in a variety of network topologies may possibly
reduce the hardware overhead. The importance of the latter
approaches is that multiple paths are still not sufficient to build
resilient systems. For instance, a NoC will typically have
multiple possible routes between end-to-end communications.
However, a single fault is sufficient to disturb the entire
system, if no proper methods for NoC fault detection,
diagnose, and recover are used. In the following works related
to this topic are summarized and compared in Table II.

Vicis NoC [3] is able to preserve the functionality of the
system based on the inherent redundancy found in most
networks and even reducing the hardware overhead. The
authors compare this approach with implementations based on
Triple Modular Redundancy (TMR). Each router has a built-in
Self-Test to diagnose faults and reconfigure the hardware in
order to bypass faulty regions. The method is implemented in
hardware with 42% of area overhead and a greater fault
tolerance when compared to TMR methods.

Most fault-tolerant routing algorithms avoid faulty regions
but apply restrictions that may reduce the NoC performance.
Moreover, most works require virtual channels used only for
fault tolerance, then increasing the silicon area. Fick et al. [4]
present a routing algorithm to configure the NoC in order to
maintain functionality with faulty components. The proposed
method, based on routing tables and without any virtual
channel, requires about 300 logic gates for each router
regardless NoC size and can support 10% of faulty links.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:16:08 UTC from IEEE Xplore. Restrictions apply.

TABLE II - RELATED WORK SUMMARY.

Work |Fault location| Implementation Base approach Fault duration Means to dependability scggab?lity Quantity of faults | Area overhead
[3] [router hardware bypass, BIST, ECC permanent diagnose, reconfiguration - 50% of routers 42% of router
. .) .) 300
0,
[4] |link hardware routing table permanent reconfiguration yes 10% of links gates/router
[5] |router, region|hardware turn-based routing algorithm |permanent reconfiguration yes 1 faulty router 8% of router
0,

[6] router hardware routing table permanent reconfiguration no - :oute:OOA’ of
[7] |message hardware heartbeat messages permanent, transient |detection yes - small
[8] |link, router |hardware hierarchical routing algorithm |permanent, transient |detection, reconfiguration |yes 10% (links, routers)|< 3% of router
This |link hardware/software |routing table permanent, transient |detection, reconfiguration |yes large > 35% of router

Zhang et al. [5] propose a method to avoid deadlock. This synthesized to a 65 nm gate length of STMicroelectronics

approach adopts a turn-based fault tolerant approach to avoid
routing cycles. It has been proven that the approach is
deadlock free for any one-faulty-router and the silicon cost is
8% compared to the base router. It is using two NoCs with
each node connected to two routers; case a single link is
recognized as faulty, the adjacent routers are entirely disabled.

Feng et al. [6] proposes a fault-tolerant solution for a
bufferless NoC including the detection of both transient and
permanent faults. This paper proposes the reconfiguration of a
routing table during packet transmission through the
Reconfigurable Fault-Tolerant Deflection Routing (FTDR)
algorithm in order to tolerate permanent faults without
deadlock and livelock. In addition, the work presents a
hierarchical FTDR (FTDR-H) algorithm, in order to reduce the
area overhead of the FTDR router. The experimental results
show that FTDR and FTDR-H are implemented with reliable
bufferless routers, which can protect against any fault
distribution pattern considering that the NoC is not split into
two or more disconnected sub-networks.

Garbade et al. [7] investigate the message overhead for
fault detection monitoring with decentralized fault detection
units considering unified 2D mesh NoCs. Here, timed fault
detection messages called heartbeats to continuously monitor
the health state of several cores on the chip, each one
executing instances of this software-based unit is used.
Moreover, the approach investigates routing algorithms for
different message types and demonstrates the reduction of the
impact of fault detection messages on application messages.

Neishaburi and Zilic [8] present a fault-tolerant NoC
router, which proposes no-deadlock interconnection of subnets
in hierarchical architectures. The work presents an enhanced
flow control mechanism which purpose is to mitigate the
effects of both transient and permanent errors. Experimental
results show improvements on the operation of NoC
applications as well as the decrease in the average latency and
energy consumption.

V.

This section analyses and compares the area occupation of
a Phoenix router compared to different other NoC routers. In
addition, the efficiency of the distributed fault notification
mechanism is demonstrated.

EXPERIMENTAL RESULTS

A. Area of a Central Router

The Phoenix NoC was implemented based on a Hermes
NoC and by adding the fault tolerance mechanisms to the
hardware. In order to evaluate the impact of these mechanisms,
the routers of both communication architectures were

11

CMOS process using a Cadence RTL-Compiler. Since the size
of Phoenix NoC is depending on the Routing Table, three
different table sizes are explored during the comparison. It is
important to remark that, as Phoenix is a region-based routing
NoC [9], the Routing Table grows linearly proportional to the
number of regions.

TABLE III - ROUTER’S AREA COMPARISON.

Router Cells (um?)|Area increase|Net (um?) |Area increase
Hermes 78,6| (reference) 69,5| (reference)

4 regions 104,9 33,3 %) 102,5 47,5 %

Phoenix| 8 regions 115,7 46,7 % 102,460} 50,4 %

16 regions 124,6 58,4 % 102,460 53,7%

The results described on Table III demonstrate that the
presented fault tolerance approach does not significantly
increase the router area. Additionally, both cell and net area
grow linearly with Routing Table size, which emphasizes that
most optimized routing paths may be explored without
significant costs.

B. Stabilization Time of Fault Notification Mechanism

This section demonstrates the stabilization time of the
Fault Notification Mechanism. Figure 8 shows the setup of
experimental results that were conducted running 48
simulations, representing scenarios of four NoC sizes (4x4,
5x5, 8x8, 10x10) versus 12 faulty link configurations, which
totalizes 48 simulations. The faulty link configurations are: (i)
four quantities of simultaneous faulty links (1, 4, 8, 16), and
(1) the method to place faulty links onto the NoCs (random,
region and long path). While in the random method, the faulty
link’s positions are arbitrarily chosen, in the region method,
scenarios where faults are concentrated in a given NoC region
are explored. In the Jlong path method the faulty links are
placed in such a way that their placement increases the
quantity of hops of an arbitrarily but distant communication.

—»/ 48 simulation scenarios

RTL Simulation

(NoC Sizes ‘
\ (4x4, 5%5, 8x8, 10x10)

12 faulty links configurations

——,

In-house analysis tool
Quantity of faulty links Faulty Links placement m
(1,4, 8, 16)

(random, region, long path)
Figure 8 — Setup of experimental results.

All scenarios were simulated with a clock cycle accurate
simulator, generating a set of results stored into output

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:16:08 UTC from IEEE Xplore. Restrictions apply.

simulation files. Following, an in-house tool that correlates
some parameters (e.g. abstracting the average of all results of
the same NoC size, and with the same quantity of faults, but
different method of links placement) timing results are
extracted. The regarding results are following presented.

Figure 9 illustrates the total stabilization time, in clock
cycles, for a quantity of faults and NoCs of different sizes. The
results point out that the number of faults typically has a small
effect on the stabilization time. The exception is when the
number of faults is so large that most of the NoC links are
faulty. For instance, in a 4x4 NoC, which has 24 inter-router
links, 16 faulty links represent 67% of the total quantity of
links. In this situation the stabilization time decreases since the
propagation process has to evaluate fewer links.

6500
G000

——
NoC Size: ¢-4x4 -B-5k5 -4—8x8 —%-10x10

Stakilization Time (clock cycles)

— e

n

Faults

0 Fi 4 6 3 10 1‘2 14 16
Figure 9 — Stabilization time with respect to the quantity of faulty links taking
into account four NoC sizes.

Figure 10 highlights the previous mentioned effect since, in
this chart, the number of NoC routers normalizes the
stabilization time. For instance, if the total stabilization time is
of 700 clock cycles on a 4x4 NoC, then 700/16 is the
normalized value. This chart shows that the proposed method
is more efficient with more faults and the stabilization time per
router is about 60 clock cycles for NoCs of different sizes.

o
]

u
«

wn
b

&
o

3

NoCSize: —-4x4 -B-5x5 —A-2x8 --10x10

Stabilization Time/# Routers (clock cycles)

w
©

w
-4

Faults
25 ' '

o 2 4 ; B8 10 12 1a 16
Figure 10 — Stabilization time normalized according to the quantity of NoC

routers w.r.t. the quantity of faulty links.
6500

6000
5500

#of faults: -0 -8-1 x4 -8-8 16

Stabilization Time {clock cycles)

NoC links

0
249 180

112

Figure 11 — Stabilization time versus the quantity of NoC links.

12

Figure 11 illustrates the scalability of the proposed
approach. It shows that the stabilization time is linearly
proportional to the amount of NoC links, and the variation of
the faults quantity has small effect.

VL

Fault diagnosis represents a crucial tool for MPSoCs
architectures based on NoCs, mainly to guarantee system
recovery and minimized latency in case of faults. Moreover,
more and more applications present several requirements at
runtime besides large MPSoCs. Fault tolerant mechanisms
can be also applied to discover alternative routes to overcome
delays caused by faulty links. Phoenix, which is a fault
tolerant 2D mesh NoC that enables properly communication
in case of fault discovery during execution as well as in the
case of manufacturing faults. The proposed mechanism is
based on fault propagations from the NoC center to its borders
in a distributed process. Each adjacent router relays the fault
notification to other routers until reaching the maximum
period stabilization time, which is proportional to the
maximum NoC length. By doing so, the presented approach
copes satisfactorily with runtime faults, since it even allows
the MPSoC operation in the presence of several faults. In
addition, experimental results show that Phoenix is scalable in
terms of silicon area.

CONCLUSION

ACKNOWLEDGMENT

This work is funded by FAPERGS PqG 12/1777-4 and
Docfix SPI n. 2843-25.51/12-3. Additional financial support
also granted by CNPQ/FAPESP to the INCT-SEC (National
Institute of Science and Technology Embedded Critical
Systems Brazil), processes 573963/2008-8 and 08/57870-9.

REFERENCES

A. Jantsch and H. Tenhunen. Network on Chip. Kluwer Academic
Publishers, 312p., Jan. 2003.

E. Cota, A. Amory and M. Lubaszewski. Reliability, Availability and
Serviceability of Networks-on-Chip. Springer, 209p., 2012.

D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw and D. Sylvester.
Vicis: a reliable network for unreliable silicon. Design Automation
Conference, pp.812-817, 2009.

D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw.
A highly resilient routing algorithm for fault-tolerant NoCs. Design,
Automation, and Test in Europe, pp.21-26, 2009.

Z. Zhang, A. Greiner and S. Taktak, A reconfigurable routing
algorithm for a fault-tolerant 2D-Mesh Network-on-Chip. Design
Automation Conference, pp.441-446, 2008

C. Feng, Z. Lu, A. Jantsch, M. Zhang and Z. Xing. Addressing
Transient and Permanent Faults in NoC With Efficient Fault-
Tolerant Deflection Router. /EEE Transactions on Very Large Scale
Integration (VLSI) Systems, v.21,1n.6, p.1053-1066, Jun. 2013.

Garbade, S. Weis, S. Schlingmann, B. Fechner and T. Ungerer. Impact
of Message Based Fault Detectors on Applications Messages in a
Network on Chip. Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), p.470-477,2013.

M. H. Neishaburi and Z. Zilic. NISHA: A fault-tolerant NoC router
enabling deadlock-free Interconnection of Subnets in Hierarchical
Architectures. Journal of Systems Architecture, v.59, n.7, p.551-569,
Aug. 2013.

A. Mejia, M. Palesi, J. Flich, S. Kumar, P. Lopez, R. Holsmark and J.
Duato, Region-Based Routing: A Mechanism to Support Efficient
Routing Algorithms in NoCs. /EEE Transactions on Very Large Scale
Integration (VLSI) Systems, v.17,n.3, pp.356-369, Mar. 2009.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:16:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

