
Partitioning Algorithms Analysis for Heterogeneous NoC based MPSoC

Igor K. Pinotti, Thais Webber*, Natanael Ribeiro, Carlos N. Fraga*, Rubem D. R. Fagundes*, César Marcon

PPGCC –Programa de Pós-Graduação em Ciência da Computação

*PPGEE –Programa de Pós-Graduação em Engenharia Elétrica

PUCRS – Pontifícia Universidade Católica do Rio Grande do Sul

Avenida Ipiranga, 6681 – Porto Alegre, Brazil – 90619-900

{igor.pinotti, thais.webber}@acad.pucrs.br, cesar.marcon@pucrs.br

Abstract - Several new applications have high complexity degree,
requiring high processing rate and memory usage. Multiprocessor
System-on-Chip (MPSoC) is a promising architecture to fulfill
these requirements, due to its high parallelism that enables several
tasks been executed at the same time. One problem in current
heterogeneous MPSoC design is application’s tasks partitioning
aiming energy consumption minimization and load balance. In
order to optimize partition problems, many algorithms have been
applied to generate quality solutions. This work aims to analyze
and compare stochastic and heuristic partitioning algorithms for
obtaining low energy consumption and load balance when applied
to tasks partitioning onto heterogeneous MPSoC.

Keywords - MPSoC, NoC, Partitioning, Mapping.

I. INTRODUCTION
Planar network-on-chip (NoC), or 2D NoC, is an efficient

communication infrastructure for multiprocessor system-on-chip
(MPSoC) architectures. 2D NoC is typically composed by a set
of routers interconnected by communication channels. In NoC
topologies, each router connects to a module and both are placed
inside a limited region of an integrated circuit called tile. Low
energy consumption, performance, scalability, modularity, and
communication parallelism, make NoCs powerful
communication architecture for SoC [1].

In order to meet the ever-rising performance constraints,
NoCs can integrate instruction set processors (ISPs), DSPs,
FPGA fabric tiles, IPs and specialized memories on a single chip
towards MPSoC development. In this context, homogeneous
MPSoC consist of identical processing elements that can support
some applications; and heterogeneous MPSoC consists of
different types of processing elements that can support a variety
of applications, i.e., the distinct features of different processing
elements (PEs) are used to minimize the energy consumption
improving performance.

Ogras et al.[2] have proposed to divide NoC architectural
design into three dimensions, namely communication
architecture synthesis, communication paradigm selection, and
application partitioning/mapping optimization. In this paper we
are interested in the application-partitioning problem, which
consists in finding associations of tasks into groups, according to
a given criterion that is normally expressed by a cost function.
Each group of tasks is associated to a tile (a mapping) containing
a processor to minimize some given cost function, which
depends on the type of the processor. The partitioning of k tasks

in groups generates Bell (k) possible solutions, and task groups
mapping onto n processors can generate n! possible solutions.
Considering a SoC containing hundreds of tiles, the solution is
unfeasible if an exhaustive search is applied on the design space.
Therefore, better SoC implementations require the development
of efficient partitioning and mapping approaches.

In this paper we provide a comparative analysis of classical
partitioning algorithms such as Simulated Annealing (SA) [5],
Tabu Search (TS) [6], and Kernighan & Lin (KL) [8]. The main
contribution of this work is the application of these algorithms in
the context of heterogeneous MPSoC design, using energy
consumption and load balance as cost functions. Sections II and
III describe the theoretical background about application and
NoC description, as well as presenting partitioning algorithms.
Sections IV and V shows the experimental results. Finally,
Section VI presents final considerations.

II. APPLICATION AND NOC DESCRIPTIONS
This section presents a theoretical background related to

graph based representations for application’s tasks and overall
project requirements.

Definition 1: A TCG (Task Communication Graph) is a
directed graph <T, S>, where T = {t1, t2, …,tn} represents the set
of n tasks in a parallel application, i.e. the set of TCG vertices.
Assuming sab is the quantity of package bits sent from task ta to
task tb, hence the set of edges S is {(ta, tb) | ta, tb� T, sab ≠ 0},
with each edge attached to its sab value, is the total
communication amount between tasks of an application.

Definition 2: A CWG (Communication Weighted Graph) is a
directed graph <P, W>, similar to TCG, but P = {p1, p2, …, pn}
represents the set of n processors involved with an application,
also representing the number of tiles in the architecture.
Furthermore, wab is the total communication amount (in bits)
transmitted from processor pa to processor pb. The set of edges
W is {(pa, pb) | pa, pb � P, wab ≠ 0} with each edge attached to its
wab value, representing all the communication between MPSoC
processors. CWG reveals the relative communication volume of
an application.

Definition 3: A CRG (Communication Resource Graph) is a
directed graph <�, L>, where � = {�1, �2, …, �n} represent the set
of tiles, i.e., the set of CRG vertices. Also L = {(�i, �j),
��i, �j � �} corresponds to the set of CRG edges, i.e., the set of
routing paths from tile �i to tile �j. The CRG vertices and edges
represent, respectively, the routers and their physical links.

The communication behaviour of a given application in
MPSoC can be expressed using a 2D direct mesh topology as
communication infrastructure. Figure 1 illustrates an example of
descriptions using TCG, CWG and CRG graphs.

Financial support granted by CNPQ and FAPESP to the INCTSEC

(National Institute of Science and Technology Embedded Critical Systems
Brazil), processes 573963/2008-8 and 08/57870-9; CAPES-Brazilian Ministry of
Education (PNPD project 058792/2010).

2012 Brazilian Symposium on Computing System Engineering

978-0-7695-4929-3/12 $26.00 © 2012 IEEE

DOI 10.1109/SBESC.2012.42

176

2012 Brazilian Symposium on Computing System Engineering

978-0-7695-4929-3/12 $26.00 © 2012 IEEE

DOI 10.1109/SBESC.2012.42

178

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:19:54 UTC from IEEE Xplore. Restrictions apply.

a. TCG b. CWG c. CRG

Figure 1 – Example of application and NoC descriptions.

Figure 1a. shows a TCG, where T = {t1, …, t7}, and S = {(t1,
t5) | 6, (t1, t7) | 8, (t2, t1) | 4, (t2, t6) | 10, ...}. Figure 1b. shows a
CWG with P = {pA, …, pD}, and W = {(pA, pC) | 30, (pC, pD) |
25, …}. Figure 1c. shows a CRG, where T = {�1, …, �4}, and
L = {(�1, �2), (�1, �3), (�2, �4), (�3, �4)}.

A. NOC ENERGY MODEL
Processors and communication infrastructure determine the

energy consumption of a given application mapped on MPSoC.
The sum of the consumed energy, from all grouped tasks
executed in a given processor, enables to estimate individual
processor energy consumption. In a heterogeneous scenario, the
energy consumed in each processor, by a given task, could vary
e.g. according to the architecture as well as optimized
procedures considering task type in a processor. The amount of
bits communicated between groups of tasks, mapped in different
processors, provides the total energy consumption related to the
communication architecture. The energy consumption originated
by running tasks on processors, plus the energy applied to the
communication architecture, determines the choice of partitions.

The NoC energy consumption model applied in this work is
similar to [4]. The dynamic energy consumption is related to the
packages exchange through the NoC, dissipating energy inside
each router and on the links where the package passes by. Ebit is
an estimation of the dynamic energy consumption for each bit,
when the bit changes its value (i.e. polarity). Ebit is divided in
three components: (i) ERbit - dynamic energy consumed on the
routers (e.g. wires, buffers and logic gates); (ii) ELHbit and ELVbit
(ELbit) – dynamic energy consumed on horizontal and vertical
links between tiles, respectively; and (iii) ECbit – dynamic
energy consumed on links between each router and its local
processor. For regular 2D mesh NoCs with square dimension
tiles, it is reasonable to estimate that ELHbit and ELVbit have the
same value. Due to this, we assume ELbit as a simplified way to
represent ELHbit and ELVbit.

Eq. (1) computes the dynamic energy consumed by a bit
passing through the NoC from tile �i to tile �j, with � being the
number of routers that the bit passes through.

(1) Ebitij = � � ERbit + (� - 1) � ELbit + 2 � ECbit

Being �i and �j the tiles to which pa and pb are respectively
mapped, the dynamic energy consumed by all communications
traffic pa�pb is given by Ebitab = Wab � Ebitij. The total amount of
NoC energy consumption (ENoC) related to all communication
traffic between processors (|W|) is given by Eq. (2).

(2) ENoC = , �pa, pb�P

The partitioning cost functions use the NoC energy model
parameters stated by Eq. (1), only exploring the communication
needs without the exact processor position into NoC, thus the
number of hops between two communicating processors is
unknown. Due to this fact, partitioning cost function uses the
average of hops concept, which allows computing the average
energy consumption of all possible paths.

Let both X and Y be the number of tiles in horizontal and
vertical dimensions of a NoC, respectively. Therefore Eq. (4)
computes the total number of hops of paths that all processors
have regarding to XY routing algorithm. The average of hops is
computed dividing the summation of all hops, of all paths, of all
processors, by the total number of communications, which is
following stated by Eq. (3), (4), (5), and (6).

(3)

(4)

(5)

(6)

The value is applied on Eq. (1) replacing the
value �, resulting on an average value of EBitij. Thus, the energy
consumption estimation, of each communication used during the
partitioning process, is the result of a multiplication of EBitij by
the communication volume.

B. ENERGY REDUCTION MODEL
An energy reduction model was implemented to attend the

partitioning process aiming energy consumption minimization.
Figure 2 shows an algorithm developed to cope with energy
constraints. Remark that all implemented partitioning algorithms
use this model as cost function to check if the partitioning
process respects energy constraints.

1. double communicationCost � 0;
2. for(int s � 0; s < size(); s++){
3. Association as � getAssociation(s);
4. if(as.getTasksList() == null)
5. continue;
6. for(int t � 0; t < size(); t++){
7. if(t == s)
8. continue;
9. Association at � getAssociation(t);
10. if(at.getTasksList() == null)
11. continue;
12. for(Task ts: as.getTasksList()){
13. for(Task tt: at.getTasksList())
14. communicationCost � communicationCost +
 ts.communicationVolumeSentToTask(tt);
15. }
16. }
17. }

Figure 2 – Pseudo-code of energy reduction model algorithm.

The algorithm is composed by four nested loops. The outer
loop (lines 2 to 17) searches for all processor/tasks associations

	

|W|

1i
ab

(i)E
Bit

177179

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:19:54 UTC from IEEE Xplore. Restrictions apply.

related to source associations. Meanwhile, the inner loop (lines 6
to 16) searches for all processor/tasks associations related to
target associations. The communication value obtained from the
communication between source tasks associations and target
tasks associations are computed inside two nested loops (from
line 12 to 15). The computed cost value is stored in the variable
communicationCost.

C. LOAD BALANCE MODEL
A partitioning process aims to distribute application’s tasks in

a given number of groups, attending some criteria. However,
this process needs a load balance supervising to avoid tasks
concentration in just a couple of processors while other
processors are idle. To cover this problem, a load balance model
was developed to apply in this work, based on minimizing the
mean square error (MSE) as stated in Eq. (7).

(7)

The load balance algorithm (Figure 3) first computes the total
CPU usage of all processors, storing in totalCpuUse. The
average CPU usage per processor is stored in mediumValue.
The loop (lines 11 to 16) computes the absolute error (ABSE),
i.e. the difference between the average CPU usage of processors
and the CPU usage of each processor. This value is squared and
gathered in MSE, in such a way that all computed ABSE are
stored inside MSE. Finally, the MSE value is divided by the
number of involved processors, reflecting the mean square error.
This approach is a fast and simple way to detect errors, usually
leading to a good load balance on the partitioning result.

1. double totalCpuUse � 0;
2. for(Association as: associations){
3. if(as.getTasksList() == null)
4. continue;
5. procType � as.getProcessor();
6. for(Task task: as.getTasksList())
7. totalCpuUse � totalCpuUse+task.getProcessorUse();
8. }
9. double mediumValue � totalCpuUse / size();
10. double MSE � 0;
11. for(Association as: associations) {
12. if(as.getTasksList() == null)
13. continue;
14. double ABSE � mediumValue - as.getProcessorUse();
15. MSE � MSE + ABSE x ABSE;
16. }
17. MSE � MSE / size();
18. return MSE;

Figure 3 – Pseudo-code of load balance model algorithm.

III. PARTITIONING ALGORITHMS
The following algorithms are used as base for comparison for

solving the partitioning problem in heterogeneous MPSoC: two
stochastic search algorithms (SA and TS) and a heuristic graph
partitioning algorithm (KL).

A. SA ALGORITHM
Simulated Annealing (SA) algorithm [5] is a special class of

randomized local search algorithms with probabilistic
characteristics, which can be applied in various domains. The

partitioning process optimization, considering a very large
number of application tasks and selected criteria, is analogous to
the annealing process used for metals, where the value of
temperature is decreased slowly till it approaches the freezing
point. The energy within the material corresponds to the
partition placement score.

An annealing schedule specifies (i) a beginning temperature,
(ii) a temperature decrement function, (iii) an equilibrium
condition at each temperature, and (iv) a convergence (or
frozen) condition. The simulated annealing method begins with
a random initial partitioning. An altered partitioning is
generated, and the resulting change in score Δs is calculated. If
Δs < 0, (the system level went to a lower energy level), then the
move is accepted. If, Δs ≥ 0, then the move is accepted with
probability . As the simulated temperature t decreases, the
probability of accepting an increased score decreases. This
algorithm can climb out of local minima to find a global
optimum if the proper condition on the annealing schedule are
satisfied.

The SA implemented explores several partitioning solutions
by using two nested loops. The external loop (lines 3 to 27) tries
to localize well-defined partitions reaching global minimum.
The inner loop (lines 10 to 26) explores small changes inside the
obtained partition (from the external loop), aiming a global
optimum; i.e. it does a sharpening at the partitioning solution
provided by the external loop. Figure 4 shows the pseudo-code
with the detailed nested loops, illustrating SA algorithm.
1. globalMinimumCost � Maximum double value
2. interaction � Interaction parameter
3. while(interaction > 0) {
4. interaction--
5. if(randomBigMove() == false)
6. continue
7. localMinimumCost � computedCost()
8. saveComputedMoveInLocalMinimumOne()
9. temperature = Temperature parameter
10. while(temperature > 0) {
11. temperature--
12. if(randomSmallMove() == false)
13. continue
14. if(costFunctionComparison(localMinimumCost,
 computedCost())){
15. localMinimumCost � computedCost()
16. saveComputedMoveInLocalMinimumOne()
17. }
18. else {
19. if(!acceptableTreshold(temperature,
 computedCost(), localMinimumCost))
20. restoreLocalMinimumMoveToComputedOne()
21. }
22. }
23. if(costFunctionComparison(globalMinimumCost,
 localMinimumCost)){
24. globalMinimumCost = localMinimumCost
25. saveLocalMinimumMoveInGlobalOne()
26. }
27. }

Figure 4 – Pseudo-code of SA algorithm.

A random search in a wide spectrum of possibilities is the
effect of the two nested loops. These results allow SA to find
partitions that minimize the computedCost() function, the main
objective of the partitioning process. The internal loop begins
with a given random partitioning provided by the external loop,

178180

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:19:54 UTC from IEEE Xplore. Restrictions apply.

and a resultant value is stored in localMinimumCost. At each
end of the internal loop, the localMinimumCost is compared
with the previous stored. If the current value is smaller than the
stored value, the current value is stored as a new best
partitioning, and it becomes the new current partitioning. At the
same time, some worse partitioning values can be accepted as
new current partitioning due to the temperature parameter used
to control the stochastic acceptance procedure [4]. This
parameter, when loaded with higher values, implies in a greater
probability to accept worse partitioning. Conversely, lower
values applied to this parameter implies in a smaller probability
to accept worse partitioning. The temperature parameter is
decremented after each internal loop execution, and restarted in
each external loop. This procedure is done to avoid local
minimum partitioning values.

The randomBigMove() and randomSmallMove() functions,
lines 5 and 12 respectively, explore the random partitioning and
stand for returning a Boolean status if a given partitioning result
attends the current constraints configured (e.g. energy
consumption, load balance, CPU occupation). If the current
partitioning could not attend current constraints, the iteration
parameter is decremented, and a new partitioning set is explored.
The best partitioning obtained at the end of the internal loop is
compared with the best global partitioning, and the one with
smaller cost is stored as the new best global partitioning. In the
external loop, several modules are randomly swapped to produce
a widely different partitioning [4].

D. TS ALGORITHM
Tabu Search (TS) algorithm [6] is a general combinatorial

optimization search technique applied on a variety of problems.
This algorithm’s search is similar to iterative improvement in
which moves are required, transforming the current solution to
its best neighbouring solution. TS maintains a tabu list of its r
most recent moves (e.g. pairs of tasks that have been swapped
recently), with r a prescribed constant that determines the tabu
list size; and moves using elements that are part of the tabu list
cannot be performed [3].

The tabu list is the core of TS, preventing cycling near local
minimum and also enabling uphill moves. In other words, tabu
list keeps the process from cycling in one neighbourhood of the
solution space. At each iteration, solutions are checked against
the tabu list. A solution that is on the list will not be chosen for
the next iteration (unless it overrules its tabu condition by what
is called an aspiration condition). Additionally, at each iteration,
a steepest-descent solution that does not violate the tabu
condition is chosen. If no non-tabu improving solution exists,
the best non-improving solution is taken. The combination of
memory and gradient descent allows for diversification and
intensification of the search. Local minima are avoided while
good areas are well explored [6]. In contrast to SA that exploits
random moves, TS exploits data structures of the search history
as a condition for next moves. More generally, TS is a search
method designed to cross boundaries of feasibility, normally
treated as barriers, and it systematically imposes and releases
constraints to allow the exploration of forbidden regions [6][7].

Similar to SA, TS is implemented with two nested loops. The
TS internal loop (lines 7 to 13) generates at most one pair of
modules candidate to swapping. The swap is done at the external
loop (lines 2 to 23).

1. interaction � Interaction parameter
2. while(interaction > 0){
3. interaction--
4. if(randomBigMove() == false)
5. continue
6. temperature � Temperature parameter
7. while(temperature > 0){
8. temperature--
9. if(randomSmallMove() == true){
10. if(candidateIsNotOnTabuList())
11. addCandidateToCandidateList()
12. }
13. }
14. if(locateBestCandidate()){
15. if(candidateBetterThanBest(){
16. candidateIsNewBest()
17. saveComputedMoveInLocalMinimumOne()
18. }
19. addFeaturesDifferences()
20. if(tabuListIsFull())
21. expireFeaturesOfTabuList()
22. }
23. }

Figure 5 – Pseudo-code of TS algorithm.

The computation of energy consumption is incremental as in
SA. The internal loop randomly searches module pairs to swap
(randomSmallMove() function), looking for the pair that better
attends the given requirement, e.g. energy consumption
(locateBestCandidate() function). To optimize the search, there
is a swap list with all distinct pairs of ‘swappable’ modules. The
search process (addCandidateToCandidateList() function)
randomly produces indices to access the swap list. If a swap
saves more energy than a previous one, this pair is stored in the
swap list. When the internal loop ends, if a pair that saves
energy was found, it is inserted in the tabu list, removed from
the swap list (lines 14 to 21), and the current partitioning is
modified with the selected swap. If no pair exists, no action is
taken, and a new internal loop is executed.

The main TS parameters are neighborhood and iteration. The
parameter neighborhood was renamed to temperature to
maintain similarity with the SA. Thus, temperature denotes the
number of pairs evaluated at each swap step; and iteration,
which controls the external loop, denotes the number of
performed swaps.

E. KL* ALGORITHM
Kernighan & Lin (KL) [8] proposed a bisection algorithm for

a graph, starting with a random initial partition, and then using
pairwise swapping of vertices between partitions to reduce the
cutsize until no improvement is possible. Schweikert and
Kernighan [9] proposed the use of a net model in order to handle
hypergraphs. Fidducia and Mattheyses [10] reduced time
complexity of KL algorithm from O(n3) to O(n log n) with some
operational modifications.

The KL classical algorithm starts by initially partitioning the
graph into two subsets of equal sizes. Vertex pairs are
exchanged across the bisection if the exchange improves the
cutsize. The procedure is carried out iteratively until no further
improvement can be achieved. This algorithm belongs to the

179181

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:19:54 UTC from IEEE Xplore. Restrictions apply.

group migration method which uses a deterministic method that
is often trapped at a local optimum. Thus, it is avoided to
proceed further, then being one of the most successful heuristics
for partitioning problems. Moreover, the method is particularly
well suited for bisection (dividing the graph into two modules),
but can be generalized as well to partitioning into unequal
pieces, becoming the basis of a hierarchical partitioning scheme.

However, KL algorithm does not totally comply with the
application’s partitioning process. The partitioning needs to set a
group related to a given processor, for each task of all
application's tasks. Depending on the number of processors, the
number of groups will usually be higher than two. Due to the
fact that KL works with a steady initial bisection of two modules
(i.e. two groups) and requires a predefined size of partitions,
modifications are needed for applying to application’s tasks
partitioning on MPSoC. A modified KL algorithm (KL*) was
implemented (Figure 6), based on the classical KL idea with
some improvements from [9] and [10]. KL* is also implemented
with two nested loops, but includes modifications such as (i)
only a single vertex is moved across the cut in a single move,
and (ii) when no moves are possible, only those moves that give
the best cutsize are actually carried out.

1. interaction � Interaction parameter
2. while(interaction > 0){
3. interaction--
4. createInitialBipartition()
5. addListInListOfLists()
6. while(listOfListsNotFull()){
7. if(verifyBipartition()){
8. if(depth_search)
9. depth_bipartition()
10. else
11. width_bipartition()
12. copyLists()
13. while(copyListsNotEmpty){
14. tripleMovement()
15. }
16. refreshListOfLists()
17. }
18. checkListOfProcessors()
19. if(verifyPartition()){
20. partitionIsNewBest()
21. saveComputedMoveInLocalMinimumOne()
22. }
23. clearAll()
24. }
25. }

Figure 6 – Pseudo-code of KL* algorithm.

KL* external loop (lines 2 to 25) is responsible for creating a
random initial bisection/bipartition, from the set of application’s
tasks. The createInitialBipartition() function tries to attend a
bisection of equal sizes, and also controls the number of times
the algorithm tries to achieve a satisfactory partitioning result,
managed by the parameter interaction. The internal loop (line 6
to 20) verifies if the bipartition created attend the constraints
(e.g. load balance and energy consumption) related to the given
group of processors (verifyBipartition() function); if it does not
attend them, another bisection is created. At this step, two
bisection approaches have been developed to explore a better
movement. The algorithm can search for a good partition
analysing the communications edges of processors groups in two
ways: (i) depth_bipartition() function (line 9) - a node of the
current bisection performs a bisection, increasing the tree size

firstly in just one side; however, once reaching the bisection
limit, it restarts on the first remaining bisection node; (ii)
width_bipartition() function (line 11) - both nodes of the current
bisection perform a bisection, generating a binary search tree.

The bisection approach is set before partitioning in the
algorithm, as a parameter, and the chosen approach is not
changeable during the process. The bisection process goes (i.e.
limit of the bisection) until it reaches a partition to each group of
related processors, trying to allocate all tasks in those partitions.
The partitions generated after the bisection exchanges tasks
(tripleMovement() function) to attend each partition constraints
(i.e. group related to a processor). After all possible exchanges,
the better movement is carried out. If a partition attends the
constraint, it is stored as best partition (lines 20 and 21) and
moved aside from bisection. If, at the end of all possible
bisections, there is no partition for each group that attends the
constraints, new processes begin. The whole bisection process is
controlled by the interaction parameter, and auxiliary lists are
used to verify the available idle groups.

IV. EXPERIMENTAL SETUP
Two MPSoC architectures were simulated over CAFES
framework [4]. In order to evaluate SA, TS and KL* algorithms
for partitioning process over application’s tasks, two test sets are
applied over the framework. Each test set is composed by four
sets of applications, and a different architecture as follows.
(i) Test-Set 1: four synthetic applications (10, 20, 30, 40 tasks),
MPSoC with a 2x3 NoC size composed by a set of processors:
2x ARM 800Mhz, 2x PowerPC 400Mhz, 1x MIPS 200Mhz, 1x
Intel x86 1800MHz;
(ii) Test-Set 2: four synthetic applications (10, 20, 30, 40 tasks),
MPSoC with a 2x3 NoC size composed by a set of processors:
2x ARM 400Mhz, 2x ARM 800Mhz, 1x ARM1200Mhz, 1x
ARM 600Mhz.

The applications sets are composed of synthetic applications
with random characteristics, following intervals of: (i) number
of communications - from 1 to 7; (ii) communication quantity –
from 100 phits to 400 phits; (iii) power dissipation – from 5 uW
to 15 uW; (vi) processor occupation – from 8% to 20%. The
partitioning process also respects 100% CPU occupation and
maximum energy of 150 watts per processor. Parameters related
to the algorithms, such as temperature and interaction, are
configured to 500 and 1500, respectively. The partitioning
results are compared in energy consumption, computation time,
and memory consumed.

V. EXPERIMENTAL RESULTS
The experiments have evaluated quality and influence of

partitioning algorithms on energy consumption minimization.
Other constraints such as load balance (MSE), computation
time, and memory usage, are presented in the results for
providing a wide comparison among all algorithms. The results
related to energy consumption, load balance and elapsed
computation time are presented for Test-set 1 (Figure 7, Figure 8
and Figure 9) and for Test-set 2 (Figure 10, Figure 11, and
Figure 12), respectively.

180182

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:19:54 UTC from IEEE Xplore. Restrictions apply.

Figure 7 – Energy Consumption – Test-Set 1 Figure 8 – Load Balance (MSE) – Test-Set 1 Figure 9 – Computation Time – Test-Set 1

Figure 10 – Energy Consumption – Test-Set 2 Figure 11 – Load Balance (MSE) – Test-Set 2 Figure 12 – Computation Time – Test-Set 2

TS consumes more CPU time than any other method in this

comparison due to its list based method, and SA requires vastly
more CPU time than KL* (a migration method) do. However,
both KL* versions did not produce any stable partition over 40
tasks. In terms of energy consumption, TS and SA produce
better results in almost all test cases. On the other hand, both
approaches of KL* produce more load balanced partitions.

VI. CONCLUSIONS
Partitioning algorithms can be compared on their difficulty of

implementation, their performance on common partitioning
problem, and their runtimes. The partitioning methods have
become more sophisticated over time as computation time has
become more affordable. This work explores the application of a
variety of algorithms capable of performing application’s tasks
partitioning, aiming better results related to energy consumption
minimization mainly on MPSoC. KL* is a migration method
that enables to achieve good load balanced partitions with low
computation effort.

The objective of this research is to provide an evaluation of a
set of partitioning algorithms that are considered well-suited for
application’s tasks partitioning on NoC based MPSoC,
especially those with heterogeneous processing elements.

REFERENCES
[1] SINGH, A. K.; JIGANG, W.; PRAKASH, A.; SRIKANTHAN, T.:

‘Mapping Algorithms for NoC-based Heterogeneous MPSoC Platforms’,
IEEE Comput., 2009, pp. 133-140

[2] OGRAS, U.Y.; HU, J.; MARCULESCU, R.: ‘Key research problems in
NoC design: a holistic perspective’, CODES+ISSS’05, 2005, pp. 69–74

[3] ALPERT, C. J.; KAHNG, A. B.: ‘Recent directions in netlist partitioning:
a survey’, INTEGRATION, the VLSI Journal, 1995, 1-81.

[4] MARCON, C. et al. ‘Comparison of network-on-chip mapping algorithms
targeting low energy consumption’, IET Comput. Digit. Tech., 2008, Vol.
2, No. 6, pp. 471-482

[5] KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P.: ‘Optimization by
simulated annealing’, Science, 1983, 220, pp. 671–680.

[6] BEATY, S. J.: ‘Genetic Algorithms versus Tabu Search for Instruction
Scheduling’, Intern. Conference on Neural Networks and Genetic
Algorithms, 1993, pp. 496-501.

[7] WIANGTONG, T.; CHEUNG, P. Y. K.; LUK, W.; ‘Comparing Three
Heuristic Search Methods for Functional Partitioning in Hardware-
Software Codesign’, Design Automation for Embedded Systems, 2002, pp.
425-449.

[8] KERNIGHAN, B.; LIN, S. ‘An efficient heuristic procedure for
partitioning graphs’, Bell Systems Technical Journal, 1970, pp. 291–307.

[9] SCHWEIKERT, D. G.; KERNIGHAN, B.: ‘A Proper Model for the
Partitioning of Electrical Circuits’, Proceedings of the 9th Design
Automation Workshop, 1972, 57-62.

[10] FIDUCCIA, C. M.; MATTHEYSES, R. M.: ‘A Linear-Time Heuristic for
Improving Network Partitions’, Proceedings of the 19th Design
Automation Conference, 1982, pp. 175-181.

181183

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:19:54 UTC from IEEE Xplore. Restrictions apply.

