
Partitioning Algorithms Analysis for Heterogeneous NoC based MPSoC 
 

Igor K. Pinotti, Thais Webber*, Natanael Ribeiro, Carlos N. Fraga*, Rubem D. R. Fagundes*, César Marcon 

PPGCC –Programa de Pós-Graduação em Ciência da Computação 

*PPGEE –Programa de Pós-Graduação em Engenharia Elétrica 

PUCRS – Pontifícia Universidade Católica do Rio Grande do Sul 

Avenida Ipiranga, 6681 – Porto Alegre, Brazil – 90619-900 

{igor.pinotti, thais.webber}@acad.pucrs.br, cesar.marcon@pucrs.br 

 
Abstract - Several new applications have high complexity degree, 
requiring high processing rate and memory usage. Multiprocessor 
System-on-Chip (MPSoC) is a promising architecture to fulfill 
these requirements, due to its high parallelism that enables several 
tasks been executed at the same time. One problem in current 
heterogeneous MPSoC design is application’s tasks partitioning 
aiming energy consumption minimization and load balance. In 
order to optimize partition problems, many algorithms have been 
applied to generate quality solutions. This work aims to analyze 
and compare stochastic and heuristic partitioning algorithms for 
obtaining low energy consumption and load balance when applied 
to tasks partitioning onto heterogeneous MPSoC. 

Keywords - MPSoC, NoC, Partitioning, Mapping. 

I. INTRODUCTION 
Planar network-on-chip (NoC), or 2D NoC, is an efficient 

communication infrastructure for multiprocessor system-on-chip 
(MPSoC) architectures. 2D NoC is typically composed by a set 
of routers interconnected by communication channels. In NoC 
topologies, each router connects to a module and both are placed 
inside a limited region of an integrated circuit called tile. Low 
energy consumption, performance, scalability, modularity, and 
communication parallelism, make NoCs powerful 
communication architecture for SoC [1]. 

In order to meet the ever-rising performance constraints, 
NoCs can integrate instruction set processors (ISPs), DSPs, 
FPGA fabric tiles, IPs and specialized memories on a single chip 
towards MPSoC development. In this context, homogeneous 
MPSoC consist of identical processing elements that can support 
some applications; and heterogeneous MPSoC consists of 
different types of processing elements that can support a variety 
of applications, i.e., the distinct features of different processing 
elements (PEs) are used to minimize the energy consumption 
improving performance. 

Ogras et al.[2] have proposed to divide NoC architectural 
design into three dimensions, namely communication 
architecture synthesis, communication paradigm selection, and 
application partitioning/mapping optimization. In this paper we 
are interested in the application-partitioning problem, which 
consists in finding associations of tasks into groups, according to 
a given criterion that is normally expressed by a cost function. 
Each group of tasks is associated to a tile (a mapping) containing 
a processor to minimize some given cost function, which 
depends on the type of the processor. The partitioning of k tasks 

in groups generates Bell (k) possible solutions, and task groups 
mapping onto n processors can generate n! possible solutions. 
Considering a SoC containing hundreds of tiles, the solution is 
unfeasible if an exhaustive search is applied on the design space. 
Therefore, better SoC implementations require the development 
of efficient partitioning and mapping approaches. 

In this paper we provide a comparative analysis of classical 
partitioning algorithms such as Simulated Annealing (SA) [5], 
Tabu Search (TS) [6], and Kernighan & Lin (KL) [8]. The main 
contribution of this work is the application of these algorithms in 
the context of heterogeneous MPSoC design, using energy 
consumption and load balance as cost functions. Sections II and 
III describe the theoretical background about application and 
NoC description, as well as presenting partitioning algorithms. 
Sections IV and V shows the experimental results. Finally, 
Section VI presents final considerations. 

II. APPLICATION AND NOC DESCRIPTIONS 
This section presents a theoretical background related to 

graph based representations for application’s tasks and overall 
project requirements. 

Definition 1: A TCG (Task Communication Graph) is a 
directed graph <T, S>, where T = {t1, t2, …,tn} represents the set 
of n tasks in a parallel application, i.e. the set of TCG vertices. 
Assuming sab is the quantity of package bits sent from task ta to 
task tb, hence the set of edges S is {(ta, tb) | ta, tb� T, sab ≠ 0}, 
with each edge attached to its sab value, is the total 
communication amount between tasks of an application. 

Definition 2: A CWG (Communication Weighted Graph) is a 
directed graph <P, W>, similar to TCG, but P = {p1, p2, …, pn} 
represents the set of n processors involved with an application, 
also representing the number of tiles in the architecture. 
Furthermore, wab is the total communication amount (in bits) 
transmitted from processor pa to processor pb. The set of edges 
W is {(pa, pb) | pa, pb � P, wab ≠ 0} with each edge attached to its 
wab value, representing all the communication between MPSoC 
processors. CWG reveals the relative communication volume of 
an application.  

Definition 3: A CRG (Communication Resource Graph) is a 
directed graph <�, L>, where � = {�1, �2, …, �n} represent the set 
of tiles, i.e., the set of CRG vertices. Also L = {(�i, �j), 
��i, �j � �} corresponds to the set of CRG edges, i.e., the set of 
routing paths from tile �i to tile �j. The CRG vertices and edges 
represent, respectively, the routers and their physical links. 

The communication behaviour of a given application in 
MPSoC can be expressed using a 2D direct mesh topology as 
communication infrastructure. Figure 1 illustrates an example of 
descriptions using TCG, CWG and CRG graphs. 
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a. TCG b. CWG c. CRG 

Figure 1 – Example of application and NoC descriptions. 

Figure 1a. shows a TCG, where T = {t1, …, t7}, and S = {(t1, 
t5) | 6, (t1, t7) | 8, (t2, t1) | 4, (t2, t6) | 10, ...}. Figure 1b. shows a 
CWG with P = {pA, …, pD}, and W = {(pA, pC) | 30, (pC, pD) | 
25, …}. Figure 1c. shows a CRG, where T = {�1, …, �4}, and 
L = {(�1, �2), (�1, �3), (�2, �4), (�3, �4)}. 

A. NOC ENERGY MODEL 
Processors and communication infrastructure determine the 

energy consumption of a given application mapped on MPSoC. 
The sum of the consumed energy, from all grouped tasks 
executed in a given processor, enables to estimate individual 
processor energy consumption. In a heterogeneous scenario, the 
energy consumed in each processor, by a given task, could vary 
e.g. according to the architecture as well as optimized 
procedures considering task type in a processor. The amount of 
bits communicated between groups of tasks, mapped in different 
processors, provides the total energy consumption related to the 
communication architecture. The energy consumption originated 
by running tasks on processors, plus the energy applied to the 
communication architecture, determines the choice of partitions. 

The NoC energy consumption model applied in this work is 
similar to [4]. The dynamic energy consumption is related to the 
packages exchange through the NoC, dissipating energy inside 
each router and on the links where the package passes by. Ebit is 
an estimation of the dynamic energy consumption for each bit, 
when the bit changes its value (i.e. polarity). Ebit is divided in 
three components: (i) ERbit - dynamic energy consumed on the 
routers (e.g. wires, buffers and logic gates); (ii) ELHbit and ELVbit 
(ELbit) – dynamic energy consumed on horizontal and vertical 
links between tiles, respectively; and (iii) ECbit – dynamic 
energy consumed on links between each router and its local 
processor. For regular 2D mesh NoCs with square dimension 
tiles, it is reasonable to estimate that ELHbit and ELVbit have the 
same value. Due to this, we assume ELbit as a simplified way to 
represent ELHbit and ELVbit. 

Eq. (1) computes the dynamic energy consumed by a bit 
passing through the NoC from tile �i to tile �j, with � being the 
number of routers that the bit passes through. 

(1) Ebitij = � � ERbit + (� - 1) � ELbit + 2 � ECbit 

Being �i and �j the tiles to which pa and pb are respectively 
mapped, the dynamic energy consumed by all communications 
traffic pa�pb is given by Ebitab = Wab � Ebitij. The total amount of 
NoC energy consumption (ENoC) related to all communication 
traffic between processors (|W|) is given by Eq. (2). 

(2) ENoC = , �pa, pb�P 

The partitioning cost functions use the NoC energy model 
parameters stated by Eq. (1), only exploring the communication 
needs without the exact processor position into NoC, thus the 
number of hops between two communicating processors is 
unknown. Due to this fact, partitioning cost function uses the 
average of hops concept, which allows computing the average 
energy consumption of all possible paths. 

Let both X and Y be the number of tiles in horizontal and 
vertical dimensions of a NoC, respectively. Therefore Eq. (4) 
computes the total number of hops of paths that all processors 
have regarding to XY routing algorithm. The average of hops is 
computed dividing the summation of all hops, of all paths, of all 
processors, by the total number of communications, which is 
following stated by Eq. (3), (4), (5), and (6). 

(3)  

(4)  

(5)  

(6)  

The value is applied on Eq. (1) replacing the 
value �, resulting on an average value of EBitij. Thus, the energy 
consumption estimation, of each communication used during the 
partitioning process, is the result of a multiplication of EBitij by 
the communication volume. 

B. ENERGY REDUCTION MODEL 
An energy reduction model was implemented to attend the 

partitioning process aiming energy consumption minimization. 
Figure 2 shows an algorithm developed to cope with energy 
constraints. Remark that all implemented partitioning algorithms 
use this model as cost function to check if the partitioning 
process respects energy constraints. 

1. double communicationCost � 0;  
2. for(int s � 0; s < size(); s++){ 
3.  Association as � getAssociation(s); 
4.  if(as.getTasksList() == null) 
5.   continue; 
6.  for(int t � 0; t < size(); t++){ 
7.   if(t == s) 
8.    continue; 
9.   Association at � getAssociation(t); 
10.   if(at.getTasksList() == null) 
11.    continue; 
12.   for(Task ts: as.getTasksList()){ 
13.    for(Task tt: at.getTasksList()) 
14.     communicationCost � communicationCost + 
     ts.communicationVolumeSentToTask(tt); 
15.   } 
16.  } 
17. }  

Figure 2 – Pseudo-code of energy reduction model algorithm. 

The algorithm is composed by four nested loops. The outer 
loop (lines 2 to 17) searches for all processor/tasks associations 
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related to source associations. Meanwhile, the inner loop (lines 6 
to 16) searches for all processor/tasks associations related to 
target associations. The communication value obtained from the 
communication between source tasks associations and target 
tasks associations are computed inside two nested loops (from 
line 12 to 15). The computed cost value is stored in the variable 
communicationCost. 

C. LOAD BALANCE MODEL 
A partitioning process aims to distribute application’s tasks in 

a given number of groups, attending some criteria. However, 
this process needs a load balance supervising to avoid tasks 
concentration in just a couple of processors while other 
processors are idle. To cover this problem, a load balance model 
was developed to apply in this work, based on minimizing the 
mean square error (MSE) as stated in Eq. (7). 

(7)  

The load balance algorithm (Figure 3) first computes the total 
CPU usage of all processors, storing in totalCpuUse. The 
average CPU usage per processor is stored in mediumValue. 
The loop (lines 11 to 16) computes the absolute error (ABSE), 
i.e. the difference between the average CPU usage of processors 
and the CPU usage of each processor. This value is squared and 
gathered in MSE, in such a way that all computed ABSE are 
stored inside MSE. Finally, the MSE value is divided by the 
number of involved processors, reflecting the mean square error. 
This approach is a fast and simple way to detect errors, usually 
leading to a good load balance on the partitioning result. 

 

1. double totalCpuUse � 0;  
2. for(Association as: associations){ 
3.  if(as.getTasksList() == null) 
4.   continue; 
5.  procType � as.getProcessor(); 
6.  for(Task task: as.getTasksList()) 
7.   totalCpuUse � totalCpuUse+task.getProcessorUse(); 
8. } 
9. double mediumValue � totalCpuUse / size(); 
10. double MSE � 0; 
11. for(Association as: associations) { 
12.  if(as.getTasksList() == null) 
13.   continue; 
14.  double ABSE  � mediumValue - as.getProcessorUse(); 
15.  MSE � MSE + ABSE x ABSE; 
16. } 
17. MSE � MSE / size(); 
18. return MSE; 

 

Figure 3 – Pseudo-code of load balance model algorithm. 

III. PARTITIONING ALGORITHMS 
The following algorithms are used as base for comparison for 

solving the partitioning problem in heterogeneous MPSoC: two 
stochastic search algorithms (SA and TS) and a heuristic graph 
partitioning algorithm (KL). 

A. SA ALGORITHM 
Simulated Annealing (SA) algorithm [5] is a special class of 

randomized local search algorithms with probabilistic 
characteristics, which can be applied in various domains. The 

partitioning process optimization, considering a very large 
number of application tasks and selected criteria, is analogous to 
the annealing process used for metals, where the value of 
temperature is decreased slowly till it approaches the freezing 
point. The energy within the material corresponds to the 
partition placement score. 

An annealing schedule specifies (i) a beginning temperature, 
(ii) a temperature decrement function, (iii) an equilibrium 
condition at each temperature, and (iv) a convergence (or 
frozen) condition. The simulated annealing method begins with 
a random initial partitioning. An altered partitioning is 
generated, and the resulting change in score Δs is calculated. If 
Δs < 0, (the system level went to a lower energy level), then the 
move is accepted. If, Δs ≥ 0, then the move is accepted with 
probability . As the simulated temperature t decreases, the 
probability of accepting an increased score decreases. This 
algorithm can climb out of local minima to find a global 
optimum if the proper condition on the annealing schedule are 
satisfied. 

The SA implemented explores several partitioning solutions 
by using two nested loops. The external loop (lines 3 to 27) tries 
to localize well-defined partitions reaching global minimum. 
The inner loop (lines 10 to 26) explores small changes inside the 
obtained partition (from the external loop), aiming a global 
optimum; i.e. it does a sharpening at the partitioning solution 
provided by the external loop. Figure 4 shows the pseudo-code 
with the detailed nested loops, illustrating SA algorithm. 
1. globalMinimumCost � Maximum double value 
2. interaction � Interaction parameter  
3. while(interaction > 0) { 
4.  interaction-- 
5.  if(randomBigMove() == false) 
6.   continue 
7.  localMinimumCost � computedCost() 
8.  saveComputedMoveInLocalMinimumOne() 
9.  temperature = Temperature parameter 
10.  while(temperature > 0) { 
11.   temperature-- 
12.   if(randomSmallMove() == false) 
13.    continue 
14.   if(costFunctionComparison(localMinimumCost, 
     computedCost())){ 
15.    localMinimumCost � computedCost() 
16.    saveComputedMoveInLocalMinimumOne() 
17.   } 
18.   else { 
19.    if(!acceptableTreshold(temperature, 
       computedCost(), localMinimumCost)) 
20.     restoreLocalMinimumMoveToComputedOne() 
21.   } 
22.  } 
23.  if(costFunctionComparison(globalMinimumCost, 
     localMinimumCost)){ 
24.   globalMinimumCost = localMinimumCost 
25.   saveLocalMinimumMoveInGlobalOne() 
26.  } 
27. } 

 

Figure 4 – Pseudo-code of SA algorithm. 

A random search in a wide spectrum of possibilities is the 
effect of the two nested loops. These results allow SA to find 
partitions that minimize the computedCost() function, the main 
objective of the partitioning process. The internal loop begins 
with a given random partitioning provided by the external loop, 

178180

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:19:54 UTC from IEEE Xplore.  Restrictions apply. 



and a resultant value is stored in localMinimumCost. At each 
end of the internal loop, the localMinimumCost is compared 
with the previous stored.  If the current value is smaller than the 
stored value, the current value is stored as a new best 
partitioning, and it becomes the new current partitioning. At the 
same time, some worse partitioning values can be accepted as 
new current partitioning due to the temperature parameter used 
to control the stochastic acceptance procedure [4]. This 
parameter, when loaded with higher values, implies in a greater 
probability to accept worse partitioning. Conversely, lower 
values applied to this parameter implies in a smaller probability 
to accept worse partitioning.  The temperature parameter is 
decremented after each internal loop execution, and restarted in 
each external loop. This procedure is done to avoid local 
minimum partitioning values. 

The randomBigMove() and randomSmallMove() functions, 
lines 5 and 12 respectively, explore the random partitioning and 
stand for returning a Boolean status if a given partitioning result 
attends the current constraints configured (e.g. energy 
consumption, load balance, CPU occupation). If the current 
partitioning could not attend current constraints, the iteration 
parameter is decremented, and a new partitioning set is explored. 
The best partitioning obtained at the end of the internal loop is 
compared with the best global partitioning, and the one with 
smaller cost is stored as the new best global partitioning. In the 
external loop, several modules are randomly swapped to produce 
a widely different partitioning [4]. 

D. TS ALGORITHM 
Tabu Search (TS) algorithm [6] is a general combinatorial 

optimization search technique applied on a variety of problems. 
This algorithm’s search is similar to iterative improvement in 
which moves are required, transforming the current solution to 
its best neighbouring solution. TS maintains a tabu list of its r 
most recent moves (e.g. pairs of tasks that have been swapped 
recently), with r a prescribed constant that determines the tabu 
list size; and moves using elements that are part of the tabu list 
cannot be performed [3]. 

The tabu list is the core of TS, preventing cycling near local 
minimum and also enabling uphill moves. In other words, tabu 
list keeps the process from cycling in one neighbourhood of the 
solution space. At each iteration, solutions are checked against 
the tabu list. A solution that is on the list will not be chosen for 
the next iteration (unless it overrules its tabu condition by what 
is called an aspiration condition). Additionally, at each iteration, 
a steepest-descent solution that does not violate the tabu 
condition is chosen. If no non-tabu improving solution exists, 
the best non-improving solution is taken. The combination of 
memory and gradient descent allows for diversification and 
intensification of the search. Local minima are avoided while 
good areas are well explored [6]. In contrast to SA that exploits 
random moves, TS exploits data structures of the search history 
as a condition for next moves. More generally, TS is a search 
method designed to cross boundaries of feasibility, normally 
treated as barriers, and it systematically imposes and releases 
constraints to allow the exploration of forbidden regions [6][7]. 

Similar to SA, TS is implemented with two nested loops. The 
TS internal loop (lines 7 to 13) generates at most one pair of 
modules candidate to swapping. The swap is done at the external 
loop (lines 2 to 23). 

1. interaction � Interaction parameter 
2. while(interaction > 0){ 
3.  interaction-- 
4.  if(randomBigMove() == false) 
5.   continue 
6.  temperature � Temperature parameter  
7.  while(temperature > 0){ 
8.   temperature-- 
9.   if(randomSmallMove() == true){ 
10.    if(candidateIsNotOnTabuList()) 
11.      addCandidateToCandidateList() 
12.    } 
13.   } 
14.  if(locateBestCandidate()){ 
15.   if(candidateBetterThanBest(){ 
16.    candidateIsNewBest() 
17.    saveComputedMoveInLocalMinimumOne() 
18.    } 
19.    addFeaturesDifferences() 
20.    if(tabuListIsFull()) 
21.     expireFeaturesOfTabuList() 
22.   } 
23. }  

Figure 5 – Pseudo-code of TS algorithm. 

The computation of energy consumption is incremental as in 
SA. The internal loop randomly searches module pairs to swap 
(randomSmallMove() function), looking for the pair that better 
attends the given requirement, e.g. energy consumption 
(locateBestCandidate() function). To optimize the search, there 
is a swap list with all distinct pairs of ‘swappable’ modules. The 
search process (addCandidateToCandidateList() function) 
randomly produces indices to access the swap list. If a swap 
saves more energy than a previous one, this pair is stored in the 
swap list. When the internal loop ends, if a pair that saves 
energy was found, it is inserted in the tabu list, removed from 
the swap list (lines 14 to 21), and the current partitioning is 
modified with the selected swap. If no pair exists, no action is 
taken, and a new internal loop is executed. 

The main TS parameters are neighborhood and iteration. The 
parameter neighborhood was renamed to temperature to 
maintain similarity with the SA. Thus, temperature denotes the 
number of pairs evaluated at each swap step; and iteration, 
which controls the external loop, denotes the number of 
performed swaps. 

E. KL* ALGORITHM 
Kernighan & Lin (KL) [8] proposed a bisection algorithm for 

a graph, starting with a random initial partition, and then using 
pairwise swapping of vertices between partitions to reduce the 
cutsize until no improvement is possible. Schweikert and 
Kernighan [9] proposed the use of a net model in order to handle 
hypergraphs. Fidducia and Mattheyses [10] reduced time 
complexity of KL algorithm from O(n3) to O(n log n) with some 
operational modifications. 

The KL classical algorithm starts by initially partitioning the 
graph into two subsets of equal sizes. Vertex pairs are 
exchanged across the bisection if the exchange improves the 
cutsize. The procedure is carried out iteratively until no further 
improvement can be achieved. This algorithm belongs to the 
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group migration method which uses a deterministic method that 
is often trapped at a local optimum. Thus, it is avoided to 
proceed further, then being one of the most successful heuristics 
for partitioning problems. Moreover, the method is particularly 
well suited for bisection (dividing the graph into two modules), 
but can be generalized as well to partitioning into unequal 
pieces, becoming the basis of a hierarchical partitioning scheme. 

However, KL algorithm does not totally comply with the 
application’s partitioning process. The partitioning needs to set a 
group related to a given processor, for each task of all 
application's tasks. Depending on the number of processors, the 
number of groups will usually be higher than two. Due to the 
fact that KL works with a steady initial bisection of two modules 
(i.e. two groups) and requires a predefined size of partitions, 
modifications are needed for applying to application’s tasks 
partitioning on MPSoC. A modified KL algorithm (KL*) was 
implemented (Figure 6), based on the classical KL idea with 
some improvements from [9] and [10]. KL* is also implemented 
with two nested loops, but includes modifications such as (i) 
only a single vertex is moved across the cut in a single move, 
and (ii) when no moves are possible, only those moves that give 
the best cutsize are actually carried out. 

1. interaction � Interaction parameter 
2. while(interaction > 0){ 
3.  interaction-- 
4.   createInitialBipartition() 
5.  addListInListOfLists() 
6.  while(listOfListsNotFull()){ 
7.   if(verifyBipartition()){ 
8.     if(depth_search) 
9.      depth_bipartition() 
10.    else 
11.       width_bipartition() 
12.     copyLists() 
13.    while(copyListsNotEmpty){ 
14.      tripleMovement() 
15.     } 
16.     refreshListOfLists() 
17.    } 
18.    checkListOfProcessors() 
19.    if(verifyPartition()){ 
20.     partitionIsNewBest() 
21.     saveComputedMoveInLocalMinimumOne() 
22.    } 
23.     clearAll() 
24.   } 
25. } 

 
Figure 6 – Pseudo-code of KL* algorithm. 

KL* external loop (lines 2 to 25) is responsible for creating a 
random initial bisection/bipartition, from the set of application’s 
tasks. The createInitialBipartition() function tries to attend a 
bisection of equal sizes, and also controls the number of times 
the algorithm tries to achieve a satisfactory partitioning result, 
managed by the parameter interaction. The internal loop (line 6 
to 20) verifies if the bipartition created attend the constraints 
(e.g. load balance and energy consumption) related to the given 
group of processors (verifyBipartition() function); if it does not 
attend them, another bisection is created. At this step, two 
bisection approaches have been developed to explore a better 
movement. The algorithm can search for a good partition 
analysing the communications edges of processors groups in two 
ways: (i) depth_bipartition() function (line 9) - a node of the 
current bisection performs a bisection, increasing the tree size 

firstly in just one side; however, once reaching the bisection 
limit, it restarts on the first remaining bisection node; (ii) 
width_bipartition() function (line 11) - both nodes of the current 
bisection perform a bisection, generating a binary search tree. 

The bisection approach is set before partitioning in the 
algorithm, as a parameter, and the chosen approach is not 
changeable during the process. The bisection process goes (i.e. 
limit of the bisection) until it reaches a partition to each group of 
related processors, trying to allocate all tasks in those partitions. 
The partitions generated after the bisection exchanges tasks 
(tripleMovement() function) to attend each partition constraints 
(i.e. group related to a processor). After all possible exchanges, 
the better movement is carried out. If a partition attends the 
constraint, it is stored as best partition (lines 20 and 21) and 
moved aside from bisection. If, at the end of all possible 
bisections, there is no partition for each group that attends the 
constraints, new processes begin. The whole bisection process is 
controlled by the interaction parameter, and auxiliary lists are 
used to verify the available idle groups. 

IV. EXPERIMENTAL SETUP 
Two MPSoC architectures were simulated over CAFES 
framework [4]. In order to evaluate SA, TS and KL* algorithms 
for partitioning process over application’s tasks, two test sets are 
applied over the framework. Each test set is composed by four 
sets of applications, and a different architecture as follows. 
(i) Test-Set 1: four synthetic applications (10, 20, 30, 40 tasks), 
MPSoC with a 2x3 NoC size composed by a set of processors: 
2x ARM 800Mhz, 2x PowerPC 400Mhz, 1x MIPS 200Mhz, 1x 
Intel x86 1800MHz;  
(ii) Test-Set 2: four synthetic applications (10, 20, 30, 40 tasks), 
MPSoC with a 2x3 NoC size composed by a set of processors: 
2x ARM 400Mhz, 2x ARM 800Mhz, 1x ARM1200Mhz, 1x 
ARM 600Mhz. 

The applications sets are composed of synthetic applications 
with random characteristics, following intervals of: (i) number 
of communications - from 1 to 7; (ii) communication quantity – 
from 100 phits to 400 phits; (iii) power dissipation – from 5 uW 
to 15 uW; (vi) processor occupation – from 8% to 20%. The 
partitioning process also respects 100% CPU occupation and 
maximum energy of 150 watts per processor. Parameters related 
to the algorithms, such as temperature and interaction, are 
configured to 500 and 1500, respectively. The partitioning 
results are compared in energy consumption, computation time, 
and memory consumed. 

V. EXPERIMENTAL RESULTS 
The experiments have evaluated quality and influence of 

partitioning algorithms on energy consumption minimization. 
Other constraints such as load balance (MSE), computation 
time, and memory usage, are presented in the results for 
providing a wide comparison among all algorithms. The results 
related to energy consumption, load balance and elapsed 
computation time are presented for Test-set 1 (Figure 7, Figure 8 
and Figure 9) and for Test-set 2 (Figure 10, Figure 11, and 
Figure 12), respectively. 
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Figure 7 – Energy Consumption – Test-Set 1 Figure 8 – Load Balance (MSE) – Test-Set 1 Figure 9 – Computation Time – Test-Set 1 

 

   
Figure 10 – Energy Consumption – Test-Set 2 Figure 11 – Load Balance (MSE) – Test-Set 2 Figure 12 – Computation Time – Test-Set 2 

 
TS consumes more CPU time than any other method in this 

comparison due to its list based method, and SA requires vastly 
more CPU time than KL* (a migration method) do. However, 
both KL* versions did not produce any stable partition over 40 
tasks. In terms of energy consumption, TS and SA produce 
better results in almost all test cases. On the other hand, both 
approaches of KL* produce more load balanced partitions. 

VI. CONCLUSIONS 
Partitioning algorithms can be compared on their difficulty of 

implementation, their performance on common partitioning 
problem, and their runtimes. The partitioning methods have 
become more sophisticated over time as computation time has 
become more affordable. This work explores the application of a 
variety of algorithms capable of performing application’s tasks 
partitioning, aiming better results related to energy consumption 
minimization mainly on MPSoC. KL* is a migration method 
that enables to achieve good load balanced partitions with low 
computation effort. 

The objective of this research is to provide an evaluation of a 
set of partitioning algorithms that are considered well-suited for 
application’s tasks partitioning on NoC based MPSoC, 
especially those with heterogeneous processing elements. 
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