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Abstract—Advances in design integration have enabled the 
integration of large Multiprocessor Systems-on-Chip (MPSoC). 
Such systems are prone to the execution of complex applications 
if high degree of parallelism is employed on the communication 
infrastructure. Network-on-Chip (NoC) has emerged as a new 
communication paradigm for large MPSoCs with advantages 
such as the increase of reliability on components interactions. 
However, device’s integration may convey few shortcomings 
during MPSoC manufacturing and operation, for instance, the 
vulnerability to faults. This paper describes Phoenix, which is a 
direct mesh NoC with fault detection scheme. The proposed 
architecture explores a fault-tolerant mechanism, which is 
implemented in a distributed manner as a fault monitor on 
processors and routers. Results demonstrate that Phoenix can be 
scalable in view of the stabilization time regarding to faults 
incidence, allowing MPSoC operation even with the occurrence 
of a large number of faults. 
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I. INTRODUCTION 
Deep submicron technologies have enabled the integration 

of billions of transistors for the construction of complete 
systems over on a single chip, called Systems-on-Chip (SoCs). 
With the advantages of these technologies, some drawbacks 
are found such as the occurrence of faults originated in the 
complex manufacturing process, or after manufacture during 
system execution. 

SoCs can be often implemented with several Processing 
Elements (PEs) operating in parallel to cope with application 
requirements and guarantee high data throughput. These SoCs 
are usually called Multiprocessor SoC (MPSoC), whose 
architecture also requires an efficient communication approach 
such as Network-on-Chip (NoC) that are typically designed to 
meet performance requirements [1]. The parallelism of NoC 
communications allows redundant communication between 
resources. In case of path failure, alternative routes can take 
place; though the consequence is a reduction on the parallelism 
with a probable latency increase despite application 
functionalities may appear normal for end-user. 

One challenge in applying fault tolerance on MPSoCs is 
the research of fault detection mechanisms for improvement in 
recovering, and sometimes, prevention from these faults. 
During MPSoC operation, several faults can occur and the 
application of a fault-tolerant NoC is indicated to reduce the 
probability of application stall. The efficient design of 
monitoring mechanisms may determine whether the system is 

able to withstand several detected faults as well as the delay 
imposed when recovering the system. 

This paper describes the design of Phoenix, a fault-tolerant 
2D mesh NoC that implements mechanisms for detecting 
faults and disseminate this information to all PEs. Phoenix 
presents source routing tables to fulfill this objective, 
supporting detection of manufacturing faults and faults 
occurred during system execution. Following sections address 
(i) the NoC architecture, (ii) the mechanism for detecting faults 
through link analysis during idle periods, and (iii) the 
distributed algorithm to report faults. The routing algorithm is 
not addressed in this work. 

The paper is organized as follows. Section II presents some 
related works. Section III describes the Phoenix architecture. 
Section IV presents the fault-tolerant mechanisms 
implemented on Phoenix. Section V discusses experimental 
results in terms of stabilization times for faults report on varied 
NoC sizes as well as the implementation of Phoenix 
mechanisms. Finally, in Section VI we conclude our 
contribution. 

II. RELATED WORKS 
Fault-tolerant methods for NoCs can be classified in two 

categories in terms of redundancy: (i) the methods based on 
extra redundancy to the NoC, which include spare wires, spare 
routers and backup NoC paths [2]; (ii) the methods where extra 
logic is not used to increase the NoC redundancy, but to 
exploit the natural path redundancy existing in most network 
topologies. For instance, for a single pair of communicating 
points, a mesh network typically have multiple possible paths 
(excluding path restrictions caused by a given routing 
algorithm). However, a single fault is sufficient to crash an 
entire system without proper methods for NoC fault detection, 
diagnose, and recover. Thus, multiple paths are still not 
sufficient to build resilient systems. In addition, NoCs are 
commonly used in MPSoCs due to their superior performance 
in terms of bandwidth and scalability. The use of NoC-based 
MPSoCs for fault-tolerant applications provides a large 
research opportunity since the fault-tolerant methods can be 
implemented in hardware, software, or a combination of both. 
Next, we present related works that are summarized and 
compared on Table I and on Table II. 

Vicis [3] uses the inherent redundancy of most networks to 
keep the system functionality with lower hardware overhead 
compared to approaches based on triple modular redundancy 
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(TMR). Each router has Built-In Self-Test to diagnose faults 
and to reconfigure the hardware bypassing defective regions. 
The method is entirely implemented in hardware, presenting 
low area overhead with greater fault tolerance than TMR 
methods. 

TABLE I - RELATED WORK SUMMARY (PART I). 

Work Fault 
location Implementation Base approach 

[3] router hardware bypass, BIST, ECC 
[4] link hardware routing table 
[5] router hardware turn-based routing algorithm 
[6] router both path search, 2 NoCs 
[7] router hardware routing table 

This link both routing table 

TABLE II - RELATED WORK SUMMARY (PART II). 

Work Fault duration Means to 
dependability Quantity of faults

[3] permanent diagnose, 
reconfiguration 50% of routers 

[4] permanent reconfiguration 10% of the links 
[5] permanent reconfiguration 1 faulty router 

[6] permanent, 
partially transient reconfiguration large 

[7] permanent reconfiguration - 

This permanent, 
partially transient 

detection, 
reconfiguration large 

 
Fick et al. [4] present a routing algorithm, which 

configures the network to avoid the fault components 
maintaining the correct functionality. Most fault-tolerant 
routing algorithms circumvent the faulty region with 
restrictions that might cause healthy router to be disabled, i.e. 
reducing the network performance. The proposed method, 
based on routing tables and no virtual channel can support 
10% of faulty links. 

Zhang et al. [5] propose a method to avoid deadlock, which 
uses two networks and each node is connected to two routers. 
When a single link is declared faulty, the adjacent routers are 
entirely disabled. The authors adopted a turn-based fault-
tolerant approach to avoid cycles. They proved that the 
approach is deadlock free for any one-faulty-router. 

Wachter et al. [6] propose the use of a second dedicated 
network to find a fault-free path between two nodes. The 
routers have a configuration register that can switch on/off 
each router port in case of faults. The faulty ports, which are 
turned-off, are not able to propagate the search for path. This 
way, just a fault-free path is able to propagate (like a 
broadcast) the searches for fault-free paths. This approach 
enables to find any path regardless the number of faulty ports, 
as long as there is at least one healthy path. The broadcast 
propagation style ensures that it can be used in any network 
topology. 

Feng et al. [7] proposed a routing algorithm to reconfigure 
the routing table in the presence of faults. An optimized 
hierarchical approach is also proposed, reducing the number of 
table entries. Still, the number of required data in the routing 
table is large. Thus, this approach is viable only for small to 
medium networks. 

III. PHOENIX ARCHITECTURE 
Figure 1 illustrates the fault-tolerant mesh NoC 

architecture of Phoenix implemented in hardware and 
software, employing routing tables for source routing decisions 
and fault-tolerant distributed mechanisms. OsPhoenix is the 
software part, which is a communication device placed inside 
each PE’s operating system. OsPhoenix performs routing 
algorithms to fill the routing table according to the PE position 
and the faulty links. 

 
Figure 1 - The Phoenix router architecture. 

A. NoC Topology 
The routers and PEs connections implemented by 

bidirectional links define NoC physical topology. Phoenix is a 
direct 2D mesh NoC topology, consisting of m×n routers 
interconnecting PEs placed along with them. 

B. Router Interface 
Figure 2 shows a bidirectional link between two routers. 

The output ports are composed of the following signals: (i) 
clockTx that synchronizes data transmission; (ii) tx that 
controls the data availability; (iii) dataOut, which is a bus 
containing data to be sent; and (iv) creditIn, which is a control 
signal that indicates the buffer availability. In addition, the 
input ports are composed of the following signals: (i) clockRx; 
(ii) rx; (iii) dataIn; and (iv) creditOut, which are the 
counterpart of the output port signals, respectively. Therefore, 
each bidirectional link has 6 control signals and 2×flit1 data 
signals. 

 
Figure 2 – Example of bidirectional link between routers. 

                                                           
1 The flit size of Phoenix is equal to the phit size. 
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C. Router Switching and Flow Control 
Phoenix NoC implements wormhole switching method, 

which implies dividing packets into flits needing small buffers 
for data storing. The flit size of Phoenix NoC is customizable, 
and the number of flits in a packet is limited to 2(flit size in bits). 
Additionally, Phoenix NoC employs credit-based flow control. 
In this mechanism, if there is an available space in the receiver 
input buffer, the receiver router informs the transmitter router 
through creditOut/creditIn (Figure 2) signal, and the 
transmitter interprets as an available credit enabling a flit 
transmission in a single clock cycle. 

D. Router Architecture 
Figure 3 shows the Phoenix router architecture that is 

logically composed of three modules: (i) communication; (ii) 
routing; and (iii) fault management. 

 
Figure 3 - The Phoenix router architecture. 

Communication module encompasses four bidirectional 
ports (i.e. NORTH, SOUTH, EAST and WEST) dedicated to 
interconnect routers, and a bidirectional port (i.e. LOCAL) that 
enables the communication between the router and its local 
PE. 

Each bidirectional port has an input and an output link, and 
the input communication is buffered with a circular FIFO with 
configurable depth for temporary data storage, which is used 
when the routing path is congested by other packets. 

Routing module is controlled by Switch control circuit that 
performs the packets routing and arbitration according to the 
packet header and the Routing table. The arbitration is a 
dynamic rotating policy implemented with Round Robin 
algorithm to ensure that all incoming requests are processed, 
i.e. preventing starvation phenomenon. 

This algorithm takes in average three clock cycles to 
address a routing request dispatched by the reading of the 
packet header. If the routing algorithm enables the 
communication, the Switch control commands the Crossbar 
switch, through the control signal, to establish the connection 
between input port and the desired output port. 

Fault management module includes the Fault control 
machine that is the main circuit for fault-tolerant operation. It 
searches for control packets in all input ports, and takes 
decisions according to the command code (refer to Section 
III.F). For instance, Fault control machine may receive a 
command from OsPhoenix to fill the Routing table. 
Additionally, the Fault monitor circuit is responsible for 
detecting defective output link, and set the links status on the 
Fault table, which is a 4-field vector. Each field is used to 
store the operation status of NORTH, SOUTH, EAST and WEST 
output links, where each field contains two bits to inform if the 
link is (i) not verified, (ii) faulty or (iii) operating properly. 

E. Routing Algorithm 
Phoenix is a source routing NoC whose path is computed 

according to the Routing table content, which starts filled with 
XY routing. However, depending on the faults occurrence, the 
OsPhoenix searches for new routing paths that are deadlock 
free, which modifies the Routing table content. OsPhoenix 
routing algorithm is based on a Region Based Routing [8], 
which is a technique that group target addresses into regions 
aiming to reduce the routing table size. With a minimum of 
four regions, the Routing table may select several paths even 
in the presence of faults. Nevertheless, increasing Routing 
table size, Phoenix may provide more optimized paths 
searching for a possible minimum path. This algorithm is not 
described here, since it is not focus of this work. 

F. Packet Format 
Each field of a Phoenix packet is exactly 1-flit length, and 

despite this length is user defined, the NoC requires a 
minimum flit of 8-bits length to support in the same flit the 
control flag and addressing of 64 PEs. Figure 4 shows that 
Phoenix employs two types of packets: (i) data packet, which 
carries the PEs messages; and (ii) control packet, which is 
used by the router control mechanisms. 

 
Figure 4 – Formats of Phoenix packets. 

Both packet types contain a header that encloses two flits: 
(i) flag_address, which is the first flit of the header composed 
of (a) 1-bit flag to define the packet type (i.e. 0 is a data packet 
and 1 is a control packet) and (b) the XY target address (e.g. , 
Figure 4 exemplifies the target address distributed on a flit of 
16-bits length); and (ii) size, which is the second flit of the 
header containing the quantity of flits that composes the packet 
payload. Whereas the data packet payload is completely 
transparent to NoC operation, the first flit of control packet 
payload is a command code used to control the routers 
status/operation. 
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The code field may carry the following commands detailed 
next in Section IV: 
• RD_FAULT_TAB - OsPhoenix uses it to read the Fault table. 
When Fault control machine receives this command, it replies 
with the FAULT_TAB command containing the Fault table in 
the second flit of the payload; 
• WR_FAULT_TAB - OsPhoenix sets the links fault status on 
the Fault table; 
• TEST_LINKS –OsPhoenix tells the Fault monitor to test all 
links and set the Fault table; 
• RST_FAULT_TAB - OsPhoenix resets the Fault table (i.e. all 
links are marked as without faults). This code is transmitted to 
all OsPhoenix running on neighbor PEs; 
• RST_ALL_FAULTS - this code is transmitted to all 
OsPhoenix running on neighbor PEs performing a distributed 
way to reevaluate the status fault of all NoC links; 
• TR_FAULT_TAB - OsPhoenix transmits the Fault table, 
enclosed into the payload, to another OsPhoenix running on a 
neighbor PE; 
• RD_ROUT_TAB - OsPhoenix reads the Routing table (these 
code is normally applied during NoC debugging); 
• ROUT_TAB - the router replies the RD_ROUT_TAB code 
inserting the Routing table in payload flits. Notice that the 
Routing table size depends on the number of regions defined 
by the routing mechanism; 
• WR_ROUT_TAB - OsPhoenix sets the Routing table with the 
values produced by the routing algorithm. The Routing table is 
enclosed on the packet payload; 
• DROP_PACKET - A router with a faulty link uses this 
command to redirect a data packet to OsPhoenix, which 
performs a packet rerouting (refer to Section IV.D). 

IV. FAULT-TOLERANT MECHANISMS 
This section describes the Phoenix fault tolerant 

mechanisms implemented in software, inside OsPhoenix, and 
in hardware, through Fault monitor and Fault control machine. 

A. OsPhoenix Description 

 
Figure 5 – Fault detection and notification mechanisms. 

OsPhoenix is a small system placed into the PE’s operating 
system that contains a Global fault table with the status of all 
NoC links, where the status informs if a given link was or not 
tested and, once tested, if it is a faulty link or not. OsPhoenix 
employs command codes to manage the Fault control machine 
and Fault monitor, performing four fault-tolerant mechanisms: 
(i) Fault Detection; (ii) Fault Notification; (iii) Fault 
Reevaluation; and (iv) Packet Rerouting and Drop. These 
mechanisms are described next. Additionally, Figure 5 details 
some steps of the two main fault mechanisms. 

B. Fault Detection Mechanism 
Phoenix fault model takes into account only faults on 

output ports of inter router links (i.e. links on ports NORTH, 
SOUTH, EAST and WEST). The fault detection mechanism starts 
with OsPhoenix sending to the local router the command 
TEST_LINKS (step 1 in Figure 5). Therefore, the Fault Monitor 
requests to the Fault Control Machine to send a predefined test 
packet to each output port. When the neighbor router receives 
a test packet, it loops back a packet with the same information. 
Therefore, the Fault Monitor is able to detect faulty links if 
one of the following conditions occurs, otherwise the link is 
considered tested and operating: (i) the low level control 
protocol fails; (ii) the test packet is not replied; or (iii) the test 
packet is replied but with different content. 

Additionally, other routers identify a faulty router as a 
router containing faults in its entire inbound links eliminating 
the router from the possible routing paths. Finally, when Fault 
Monitor finishes all link tests it sends the Faulty table to 
OsPhoenix via FAULT_TAB command (step 2 in Figure 5). 

C. Fault Notification Mechanism 
The fault notification mechanism works in distributed way. 

Each OsPhoenix performs its fault notification mechanism 
propagating faults information to a neighbor OsPhoenix until it 
does not reach the stabilization condition. 

Fault notification mechanism, which is accomplished by 
OsPhoenix, comprehends the following steps: 
1. When OsPhoenix receives a packet with the Fault table, 

which can be from the local router (i.e. a FAULT_TAB 
command) or form another OsPhoenix (i.e. a 
TR_FAULT_TAB command), it verifies if its Global fault 
table is updated with the same values. If at least one value 
changed, OsPhoenix update the Global fault table and 
sends new packets with the same content (using only 
TR_FAULT_TAB command, step 3 and 4 in Figure 5) to all 
other neighbor OsPhoenix, otherwise OsPhoenix discards 
the received packet; 

2. Since the beginning of the operation of fault notification 
mechanism, OsPhoenix starts a timer, which operates at 
same clock cycle of the NoC. This one is used to compare 
with the Maximum Stabilization Time Period (MSTP), 
which is the stabilization condition of the fault notification 
mechanism. When the timer reaches MSTP value, 
OsPhoenix considers that all faults where notified to all 
other OsPhoenix, enabling to compute the routing 
algorithm. When the algorithm finishes, OsPhoenix sends 
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the WR_ROUT_TAB command (step 5 in Figure 5) 
containing the Routing table to the Fault Control Machine. 

MSTP is proportional to the maximum NoC length, which 
is dependent on the NoC size and on the quantity and 
positioning of the faults. Since the quantity and positioning of 
the faults are not known during the design, we use here MSTP 
as the maximum NoC length delay, which is a worst case 
condition achieved by a packet passing through all routers. 

D. Packet Rerouting and Drop Mechanism 
Some NoC links may fail during Phoenix operation 

described in the previous two sections. These faults are taken 
into account similarly to the initial NoC operation. However, 
routers, which have not been updated with this fault 
information, consider that the fault does not exist and the 
router can transmit packets along the failed path. Aiming to 
avoid packets trapped inside the NoC due to a fault link, we 
implemented a Packet rerouting mechanism that runs on the 
router whose output port is defective. This mechanism 
redirects a packet, whose destination path passes through a 
fault link, to the local port, changing the data packet to a 
control packet (i.e. inserting the command DROP_PACKET). 
OsPhoenix reassemble the original data packet with a new path 
– a packet rerouting. 

Figure 6 shows an example of the rerouting mechanism 
applied to a packet, which was sent from PE_A to PE_B 
following path 1. In this example, one link fail and the packet 
is directed to the local PE (i.e. PE_C) to be rerouted to path 3. 

 
Figure 6 – Packet rerouting example. 

When a fault occurs during the packet transmission (i.e. 
only part of the packet passes through the link and then the 
link fail) the Packet rerouting mechanism does not work 
properly. In fact, it was necessary to implement another 
solution that we call Packet drop mechanism: i) the flits that 
had already passed through the fault link compose an 
incomplete packet, which is propagated through all routers 
until reach the target PE. Then, the flits are discarded by 
OsPhoenix, since they compose an invalid packet; ii) the 
remaining packet flits are eliminated into the router. When a 
packet is dropped, the packet content is lost and it has to be 
resent at higher software levels. 

E. Fault Reevaluation Mechanism 
The Fault notification mechanism was designed to support 

only permanent faults. This approach facilitates the 
notification mechanism to stabilize quickly. However, the NoC 
was designed to support that a reevaluation of the faulty status 

of all NoC links, which any OsPhoenix may require in a 
distributed manner using RST_ALL_FAULTS command. This 
procedure guarantees that transient faults are not accidentally 
detected as a permanent fault. 

The reset command is sent to all neighbor PEs, which upon 
receiving this command, they: (i) reset their Global fault table; 
(ii) request to their local router to reset the respective Fault 
table through RST_FAULT_TAB command; and (iii) retransmit 
the RST_ALL_FAULTS command to their respective neighbor 
PEs. During MSTP time the NoC stops running again, thus 
this time is used to propagate the system reboot message. After 
MSTP, the operation is exactly equal to the one performed at 
startup, i.e. a fault detection followed by a fault notification. 

V. EXPERIMENTAL RESULTS 
This section demonstrates the stabilization time of the 

distributed fault notification mechanism. 
Figure 7 illustrates the total stabilization for zero to 16 

simultaneous faults and NoCs of different sizes. The results 
demonstrate that the number of faults typically has a small 
effect on the stabilization time. The exception is when the 
number of faults is so large that most of the NoC links are 
faulty. This is the case with 16 faults on a 4×4 NoC. This NoC 
has 24 links and 16 of them are faulty. In this situation the 
stabilization time decreases since the notification process has 
to evaluate fewer links. Remark that for a square mesh NoC 
with side L the number of links (nL) is computed with equation 
nL = 2 × (L2 - L). 

 
Figure 7 – Total monitoring stabilization time per number of faults 

considering four NoC sizes. 

Figure 8 highlights the previously mentioned effect since 
in this chart the number of NoC routers normalizes the 
stabilization time. For instance, if the total stabilization time 
takes 700 clock cycles on a 4×4 NoC (i.e. 16 routers), then 
700/16 is the normalized value. 

This chart shows that the stabilization time presents low 
rate with low quantity of fault links, due to the absence of 
faults implies many paths with less hops to propagate the fault 
notification. When the quantity of faulty links increases, the 
stabilization time also increases. On the other hand, when the 
quantity of faulty links becomes large compared to the total 
quantity of links, the stabilization time decreases because 
faulty links probably split the NoC, reducing the 
communication paths. Additionally, the stabilization time per 
router is around 55 clock cycles for NoCs of different sizes. 
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Figure 8 – Stabilization time normalized by the number of routers of the NoC. 

Figure 9 and Figure 10 illustrate the scalability of the 
proposed approach for a scenario where the NoC is dedicated 
to a traffic containing only monitoring packets, i.e. it does not 
contain packets of data. 

 
Figure 9 – Monitoring stabilization time for some sizes of square NoCs. 

Figure 9 shows the stabilization time of 4 square NoCs (i.e. 
4×4, 5×5, 8×8, 10×10) considering that all links are operating 
without faults. The results state that the stabilization time of 
the proposed approach is practically linear with respect to the 
quantity of routers. 

 
Figure 10 – Monitoring stabilization time normalized by the number of NoC 

links. 

Figure 10 depicts that the stabilization time is also linear 
related to the number of NoC links (i.e. nL) and the number of 
faults does not have significant influence. 

VI. CONCLUSION 
Large MPSoCs are becoming more demanding in terms of 

architecture design to meet the ever-rising application 

requirements at runtime. Moreover, in this context, fault 
diagnosis is crucial in order to guarantee system recovery and 
reduced latency in case of faults. One alternative to overcome 
this problem is applying fault-tolerant mechanisms in order to 
recover from faults and discover alternative paths in the 
network. To address this need, this work presents Phoenix, 
which is a fault-tolerant 2D mesh NoC that enables properly 
communication in case of finding manufacturing faults, or 
most importantly, faults occurred during execution. 

The propagation of faults is an iterative process, where 
neighbors relay the fault notifications to others until reaching 
a stabilization condition. The fault notification mechanism 
uses a maximum period as stabilization condition, since it is 
proportional to the maximum NoC length and copes with 
runtime faults. Experimental results show that Phoenix is 
scalable in terms of stabilization time and allows the MPSoC 
operation even in the presence of several faults. 
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