
Employing a Timed Colored Petri Net to Accomplish an Accurate
Model for Network-on-Chip Performance Evaluation

Jarbas Silveira1, Paulo Cesar Cortez1, Giovani Cordeiro Barroso2, César Marcon3
1LESC-DETI / Federal University of Ceará - Fortaleza, Ceará, Brazil - 90455-970

2Department of Physics / Federal University of Ceará - Fortaleza, Ceará, Brazil - 90455-970
3PPGCC / PUCRS - Porto Alegre, Brazil – 90619-900

1E-mail: jarbas@lesc.ufc.br

Abstract
Network-on-Chip (NoC) is the most promising

communication architecture for modern System-on-Chip
(SoC). A system level analysis with a sound NoC model may
provide an efficient NoC implementation. In this paper, we
propose an accurate NoC model for performance evaluation
based on Timed and Colored Petri Net (TCPN). The TCPN
provides a detailed modeling of discrete event systems,
enabling further evaluation of logical and temporal aspects
with great precision. Experimental results with a 5×5 mesh
NoC under synthetic and real traffic situations demonstrate
the TCPN model efficiency in the latency predictability with
low errors when compared with VHDL/SystemC simulation.
Additionally, this work shows the ability of the model to
allow fast building of different models and changes upon
NoC architectural features such as routing algorithm and
buffer length.

Keywords
Petri Net Modeling, NoC, latency evaluation

1. INTRODUCTION
Several designers propose Network-on-Chip (NoC) as a

scalable solution for on-chip communication for modern
System-on-Chip (SoC) [1]. Due to the tight time-to-market
constraints, the success of a SoC design flow relies on its
ability to perform fast validation and requirements’ evaluation
of the system. The NoC performance is highly dependent on
the dynamics of the traffic patterns, packet injection rate,
routing protocols and amount of buffering resources.
Consequently, accurate NoC and traffic modeling is of crucial
importance for performance analysis and platform
optimization.

Among NoC models, we can highlight three ruling
features: implementation effort, accuracy and simulation time.
In addition, we can classify models for the performance
analysis of NoCs in two groups: (i) the models that are clock-
cycle accurate, normally implemented into event-oriented
languages, such as VHDL, imply high accuracy, but great
implementation effort and long simulation time; (ii) the
analytic models, in general originated from system’s
functionality mapping or mathematical analysis. The rewards
of using these models are mainly the low implementation
effort and the low analysis time, since results are achieved
only by the numerical resolution of equations.

A Timed and Colored Petri Net (TCPN) is an analytic
formalism that enables powerful modeling of Discrete Event
(DE) systems. TCPN have been used for systems modeling
with low effort [2], since it uses the structure of Petri Nets

associated to a high-level programming language. In addition,
the possibility of adding time restrictions to the events allows
the analysis of temporal aspects.

The paper is organized as follows. Section 2 provides a
brief overview of TCPN modeling, and Section 3 details how
TCPN models a NoC. Section 4 summarizes some related
work. Section 5 explains how we generate and analyze data
traffic. Section 6 describes the NoC model validation. Section
7 explores the proposed NoC model under synthetic traffic
situations, whereas Section 8 explores a real traffic situation.
Section 0 shows the influence of router service time in the
packets latency, and finally Section 10 concludes this work.

2. TIMED AND COLORED PETRI NET MODELING
A Colored Petri Net (CPN) is a graphical language for

model’s construction and DE systems analysis, which mixes
the capabilities of both Petri Net and a high-level
programming language. CPNs are aimed at practical use,
because they allow constructing compact and parametric
models to describe complex systems at high-level of
abstraction [3].

The concurrent systems operation depends crucially on
the time taken by certain activities, and different design
decisions may have a significant impact on the performance
of a system. Timed CPN (TCPN) enables to capture the time
taken by events enabling the designer to use TCPN to
investigate metrics such as delays, throughput, and queue
lengths, and for modeling and validation of real-time systems.
Moreover, TCPN is suitable for NoC system modeling as it
provides important features such as modularity,
maintainability and expandability enabling to add new
functions or new processes on the system. A hierarchical
structuring mechanism underlies the TCPN modules concept,
allowing a module to have sub-modules.

The structure of a TCPN is composed of two disjoint sets:
places (represented by ellipses) and transitions (represented
by rectangles), with direct arcs connecting places and
transitions. Each place can be marked with one or more
tokens, and each token has a data value (i.e. color). The
number of tokens and their colors on the individual places
represent the system state. A transition represents a DE, and
its occurrence removes tokens from the places that have an
arc leading to the transition and adds tokens to the places that
have an arc coming from the transition. These tokens are
determined by means of the arc expressions, which are the
labels situated next to the individual arcs. A transition may
have a guard, which is a Boolean expression that controls the
transition binding.

978-1-4799-3946-6/14/$31.00 ©2014 IEEE 55 15th Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:03:40 UTC from IEEE Xplore. Restrictions apply.

The TCPN model encompasses a global clock
representing time and a token can carry a timestamp together
with its color, which specifies the time at which the token is
ready to be used or removed by an occurring transition. Even
in a hierarchical TCPN model, there is a single global clock.

3. TCPN APPLIED TO NOC MODELING
We propose the TCPN applied to Network-on-Chip model

(CPNoC), which is a NoC model based on hierarchical
TCPN. The hierarchy on CPNoC is implemented with
substitution transition that enables to connect levels of
abstraction. CPNoC is flit accurate enabling to evaluate
packet latency per flow and average packet latency.

The modelling presented can be used in a wide range of
topologies. However, we modeled a mesh NoC with circular
FIFO buffers at the input channels, decentralized arbitration
with round-robin priority, XY routing algorithm and
wormhole switching. Figure 1 shows an example of a 2×2
NoC modeled in CPNoC using CPN Tools [9], which enables
to use graphical representation of CPN data types and
complex data manipulation for state space and performance
analyses.

Figure 1. Top module of the CPNoC for a 2×2 mesh NoC.

Each substitution transition models a router associated to a
subnet containing its internal model (e.g., the substitution
transition R11 is associated with the subnet ROUTER 11).
We modeled each router based on its physical structure,
containing buffers, the Routing and Arbitration module
(R&A) and the priority control.

The routers’ interconnections are entirely modeled by
input and output places of the substitution transitions (e.g., the
place L11E represents the output east channel of the router
R11 and the input west channel of router R21). Places model
Processing Elements (PEs), e.g., the place PE11 models the
source of flits of PE 11, and PE11_S represents the
destination flits of PE 11.

TABLE I. DESCRIPTION OF THE N-TUPLE PARAMETERS.

Parameter Description Parameter Description

nPac Packet order Or Place origin of flit

nF Flit order tC
Creation time of the
packet

t Type of flit tD Arrival time of the packet

payload Packet data oL Offered load of the packet

Rot Routing parameter ox, oy X and Y origin coordinates

aux1, aux2 Auxiliary variables dx, dy X and Y target coordinates

 lx, ly X and Y local coordinates

Tokens represent the flits. Several information, such as
origin and destination coordinates constitute an n-tuple Flit.
Table I summarizes the variables carried out by each flit.

Each router has an input buffer for each one of the
following channels: Local, North, South, East and West. The
flits in each buffer are carried out by a guard function
associated with the input transition of the buffer’s place. The
Figure 2 models a simplified R&A module containing two
input channels (i.e. South and North) and two output channels
(i.e. West and East).

Figure 2. Simplified CPNoC of the routing and arbitration (R&A) of the
flits (input channels North and South and output channels East and West).

In Figure 2, the arc that connects the TNW (i.e.
Transmission from North to West) to the place ARB W (i.e.
ARBitration on West) is associated with the function
outRouter(…) @+TimeArb(t) that performs the routing
algorithm. This function defines where each flit will be
directed, obeying the route defined by the routing algorithm.
In our model, we implement the XY routing, but we can
explore several other algorithm by rewriting the outRouter
function. The function TimeArb(t) temporizes the flit
according to the type of flit (i.e. a header or payload).
Additionally, the guard function guardaArb(…) verifies if the
target channel is free.

The tokens in the place Priority implements an arbiter
with round-robin priority. The flit is put in the place ARB E or
ARB W, which represent the input buffer of the adjacent
router. The subnets of adjacent routers use the hierarchical
resources of the CPN Tools to shares places by the Port Type
function.

In order to guarantee the temporal characteristics of the
NoC modeling, the time of events associated to arcs functions
and tokens were adjusted in accordance with VHDL
simulation. Each flit takes 1 clock cycle to enter into the
buffer. The header flit takes 4 clock cycles for routing and
arbitration, while the remaining flits of the packet spends 1
clock cycle. These values are defined at the beginning of the
simulation, and can be easily changed, enabling to model
routers with varied service times.

We use the monitoring resource of CPN Tools to obtain
the end-to-end latency of the packet and other measurements
of the model. A monitor checks the time when the terminator
flit arrives at its destination. Each flit terminator has its stored
creation time inserted in the n-tuple variable tC (see Table I).
The latency of the packet is calculated by the subtraction of

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:03:40 UTC from IEEE Xplore. Restrictions apply.

the destination time from the creation time of the packet, thus
obtaining the total end-to-end latency of the packet.

4. RELATED WORK AND MAIN CONTRIBUTIONS
The analytical modeling theory underlies several works on

NoC. The main objective of all these works is to achieve fast
results with low precision loss if compared with clock-cycle
accurate simulators. Table II summarizes the main features of
some of these works relating them with our paper.

We proposed a NoC model to enable latency analysis with
accuracy and low implementation effort. CPNoC allows fully
visualizations of all states of the NoC and systematic
execution of the model. Furthermore, the hierarchical model
building enables better abstraction level, which allows easily
exploring several variations of the model, like new routing
algorithm, buffers depth and topologies. In addition, CPNoC
accepts workload as trace files making the use of real traffic
traces easy. To the best of our knowledge, CPNoC is the first
model based on TCPN that presents analysis of real traffic
and average packet latency on network and average packet
latency per flow.

TABLE II. RELATED WORK SUMMARY.

Ref Model Analysis error Remarks

[2] TCPN latency < 5%
Model is accurate only with less than 20% of
traffic injection rate

[4]
Markov
chain

latency < 15%

Avoid state‐space explosion using one Markov
chain for each message flow. It is difficult to
reuse the same model for other NoCs
modeling

[5]
Markov
chain

latency < 5%

Avoid state‐space explosion using one Markov
chain for each PE of the message flow and
recursively use the local mean latencies to
obtain the mean latency of the complete path

[6] QN
throughput
and latency

VR
Model is only sound for low data traffic
evaluation (i.e. less than 0.2 packets/cycle)

[7] QN
latency and
occupancy

< 3%
Performance analysis based on the channel
service time and the channel waiting time, as
well as channel occupation and contention

Our CPNoC latency < 5% Avoid state‐space explosion using hierarchy

Legend:
 QN ‐ specific analytical models based on the M/G/1 queuing model [8].
 VR ‐ < 5% for low injection rate (i.e. < 0.2 packets/cycle) else high errors

5. DATA TRAFFIC GENERATION AND ANALYSIS
In our model, the place representing a PE receives tokens

through an input text file. These tokens are grouped into
packets that can contain different sizes and destinations. A
special module, connected to the top hierarchy throughout a
fusion place, controls the packet injection rate, which varies
from 10% to 100%, in incremental steps of 10%.

The traffic analysis is performed through measurements
and statistics of the packets delay. The CPNoC carries out this
analysis using monitor resources, which is an inherent tool of
CPN Tools. This analysis enables to identify the origin of
each packet that arrives at a given target PE, allowing the
analysis of individual packet flows. In addition, the CPNoC
enables the use of monitors in any place or transitions,
allowing internal evaluations of several NoC parameters to
collect data statistics such as confidence intervals, number of
observations, standard deviation, average, minimum and
maximum values, and variance.

6. VALIDATION/CALIBRATION OF CPNOC
We calibrated and validated CPNoC comparing with a

VHDL NoC implementation, whose traffic generation and
analysis was performed with SystemC simulation. The first
set of experiments explores non-concurrent communications
performed with non-blocking flows, crossing the NoC
between pairs of PEs connected through varied quantity of
hops. The second set of experiments, exploring concurrent
flows, adopted three approaches: external concurrence,
internal concurrence and simultaneous internal and external
concurrence. All of these experiments contain 100 packets of
30 flits with load injection rate varying from 10% to 100%.
The latencies were calculated as the average time from the
packet creation until the last flit reaches the target PE.

Figure 3 illustrates the average latencies, where the
CPNoC presents a negligible error (i.e. less than 1%) when
compared with the VHDL/SystemC simulation.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 la
te
n
cy
 (
cl
o
ck
 c
yc
le
s)

Injection rate (%)

VHDL
CPNoC

0,0%
0,2%
0,4%
0,6%
0,8%
1,0%

0 10 20 30 40 50 60 70 80 90 100

e
rr
o
r
(%

)

Injection rate (%)
Figure 3. Average latencies and error with CPNoC and VHDL simulations.

7. MODEL ANALYSIS UNDER SYNTHETIC TRAFFIC
We applied uniform and hotspot traffics to analyze the

average latency of a 5×5 mesh NoC. In the hotspot workload,
all the packets of all PEs target the central PE. PEs send 100
packets of 20 flits, resulting 48,000 flits.

0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000
26000
28000

0 5 10 15 20 25 30 35 40

A
ve
ra
ge
 la
te
n
cy
 (
cl
o
ck
 c
yc
le
s)

Injection rate (%)

VHDL
CPNoC

0,0%
0,2%
0,4%
0,6%
0,8%
1,0%

0 5 10 15 20 25 30 35 40

e
rr
o
r
(%

)

Injection rate (%)
Figure 4. End-to-end average latency for Hotspot traffic.

Figure 4 illustrates the experimental results where the
traffic saturation point occurred before 4% of injection rate,

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:03:40 UTC from IEEE Xplore. Restrictions apply.

which is an expected behavior for hotspot traffic, because all
communication channels converge to the central PE,
consequently the NoC is rapidly congested.

For the uniform random traffic, the source PEs send 100
packets of 20 flits, resulting 50,000 flits. The destinations of
the packets have equal probability of distribution between
PEs, obeying the uniform random standard (all-to-all).

Figure 5 presents the end-to-end average latencies per
packet, in which the traffic saturation point is between 24%
and 26% of the traffic injection rate.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

A
ve
ra
ge
 la
te
n
cy
 (
cl
o
ck
 c
yc
le
s)

Injection rate (%)

VHDL
CPNoC

0%
10%
20%
30%
40%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

e
rr
o
r
(%

)

Injection rate (%)
Figure 5. End-to-end average latency for all-to-all traffic distribution.

8. MODEL ANALYSIS UNDER REAL TRAFFIC

CONDITIONS
Figure 6 shows the multimedia application described in

[10] mapped into a 4×4 NoC in order to evidence the ability
of the model in capture the NoC behavior under real traffic
conditions. The numbers in the arcs represent the volume of
communication in multiples of 10 Kbits.

Figure 6. Multimedia application mapped in a 4×4 NoC.

Figure 7 presents the average latencies according to the
traffic injection rates for CPNoC and VHDL/SystemC
simulations.

0

50

100

150

200

250

300

350

400

450

500

550

0 2 4 6 8 10 12 14 16 18 20 22 24

A
ve
ra
ge
 la
te
n
cy
 (
cl
o
ck
 c
yc
le
s)

Injection rate (%)

VHDL
CPNoC

0,0%
0,2%
0,4%
0,6%
0,8%

0 2 4 6 8 10 12 14 16 18 20 22 24

e
rr
o
r
(%

)

Injection rate (%)
Figure 7. Average latency for a multimedia application mapped in a 4×4

NoC.

CPNoC produces estimation latencies of high precision in
all simulated situations showing the model soundness, even in
critical workload conditions, which is the case of the traffic
saturation point. In [6], the authors analyze the same
multimedia application through an analytical model, whose
latency estimations follow the simulation results closely, but
for packet injection rates above 20% (i.e. the traffic saturation
point), their latency estimations produce significant errors,
revealing that our model is much more appropriate to this
kind of application’s analysis under critical traffic load.

9. ANALYSIS OF ROUTER SERVICE TIME
The service time of a router is the time that the router

takes to arbitrate the header flit of a packet in the absence of
congestion [6]. This time is frequently greater than the time of
remaining packet flits, once the router is required to establish
a route and to arbitrate the packet to the respective output
channel. It is common for NoC designers to optimize the state
machines of the router in order to minimize this service time,
once this is able to improve the performance of the NoC [11].
In the application example, we explore 3, 5 and 7 clock cycles
for the Router Service Time (RST).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

20 22 24 26 28 30 32 34 36 38 40

A
ve
ra
ge
 la
te
n
cy
 p
e
r
p
ac
ke
t
(c
lo
ck
 c
yc
le
s)

Injection rate (%)

RST=7

RST=5

RST=3

Figure 8. Latencies for 3, 5 and 7 clocks of Router Service Time (RST).

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:03:40 UTC from IEEE Xplore. Restrictions apply.

Figure 8 shows that less RST produces later saturation
point, ensuring less average time of the packets. This can
represent, for example, greater data flow on the NoC or an
application with better performance. This information can
help the designer to decide whether to utilize a router with
less service time, once these routers commonly represent a
greater area and consumption and great efforts
implementation.

This application example shows the versatility of CPNoC,
whereby a router with less service time would be of great
effort in a VHDL/SystemC description. In this case, it would
be necessary to design a state machine with minimum routing
time and arbitration, which is an arduous task to be carried
out with a hardware description language.

10. CONCLUSION
In this paper, we propose the CPNoC, which is a nearly

clock-cycle accurate model of NoC based on Timed Colored
Petri Net (TCPN). Experimental results of average packet
latency for some traffic loads enabled to compare CPNoC
with a VHDL/SystemC implementation. According to the
results, CPNoC simulation presented excellent precision with
deviations in order of no more than 1%. We provide
performance evaluation for synthetic and real workloads. In
the real traffic workload, the model presents the same
precision before and after the saturation point of the network,
revealing the power of model analysis for intense traffic
situations.

In addition, CPNoC enables rapid performance analysis of
a NoC with different router service times. In the
VHDL/SystemC description, the same analysis would be of a
great implementation effort. These results provide system
level insights that can help designers to design NoCs
efficiently.

11. REFERENCES
[1] R. Marculescu et al. “Outstanding Research Problems

in NoC Design: System, Microarchitecture, and Circuit
Perspectives,”, IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, vol. 28, no. 1, pp.
3–21, Jan. 2009.

[2] H. Blume, T. von Sydow, J. Schleifer, and T. G. Noll,
Petri Net Based Modelling of Communication in
Systems on Chip, Petri Net, Theory and Applications,
V. Kordic, Ed. InTech, 2008.

[3] K. Jensen and L. Kristensen, Coloured Petri Nets:
Modelling and Validation of Concurrent Systems.
Springer Berlin Heidelberg, 2009.

[4] E. Krimer, I. Keslassy, A. Kolodny, I. Walter, and
M. Erez, “Static timing analysis for modeling QoS in
networks-on-chip,” J. Parallel Distrib. Comput.,
vol. 71, no. 5, pp. 687–699, May 2011.

[5] S. Foroutan et al. “A Markov Chain Based Method for
NoC End-to-End Latency Evaluation,” Symposium on
in Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), pp. 1–8, Apr. 2010.

[6] U. Ogras, P. Bogdan, and R. Marculescu, “An
Analytical Approach for Network-on-Chip Performance
Analysis,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29,
no. 12, pp. 2001–2013, Dec. 2010.

[7] S. Gajin, Z. Jovanovic. “An Accurate Performance
Model for Network-on-Chip and Multicomputer
Interconnection Networks”. J. Parallel Distrib.
Comput., vol. 72, no. 10, pp. 1280–1294, Oct. 2012.

[8] L. Kleinrock, “Queuing Systems: Theory”, Wiley,
vol. 1, 1975.

[9] “CPN Tools” http://cpntools.org, 2013.

[10] J. Hu and R. Marculescu, “Energy- and performance-
aware mapping for regular noc architectures,” IEEE
Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 4, pp. 551–562, Apr.
2005.

[11] Y. Chen, Z. Lu, L. Xie, J. Li, and M. Zhang, “A single-
cycle output buffered router with layered switching for
networks-on-chips,” Computers and Electrical
Engineering, 2012.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:03:40 UTC from IEEE Xplore. Restrictions apply.

