
Task Partitioning Optimization Algorithm for Energy Saving and Load Balance on 
NoC-based MPSoCs 

Marco P. Stefani, Thais Webber, Ramon Fernandes, Rodrigo Cataldo, Letícia B. Poehls, César Marcon 
PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil – 90619-900 

e-mail: marco.stefani@acad.pucrs.br, cesar.marcon@pucrs.br 

Abstract 
Multiprocessor System-on-Chip (MPSoC) based on 

Network-on-Chip (NoC) integrates a large amount of 
Processor Elements (PEs) to fulfill the performance 
requirements of several applications. These applications are 
composed of a set of intercommunicating tasks, which are 
dynamically mapped onto PEs of the target architecture. 
However, the efficient task-mapping requires some previous 
steps, among them partitioning, which organizes tasks 
considering their interaction before applying a mapping 
process. This paper introduces Partition Reduce (PR) - a task 
partitioning approach based on the MapReduce algorithm 
targeting homogeneous NoC based MPSoCs. We analyze the 
efficiency of PR for energy consumption (EC) minimization 
and load balance (LB). The results obtained from a set of 
experiments, with large number of tasks, demonstrate that PR 
is more effective on processing time and result quality when 
compared to the classic Simulated Annealing (SA). In 
addition, PR produces partitions with low energy consumption 
and rigorous load balance. 

Keywords 
Partitioning algorithm; homogeneous MPSoC; NoC; 

performance evaluation; energy efficiency; load balance. 

1. Introduction 
The International Technology Roadmap for 

Semiconductors (ITRS) [1] foresees that in the next decade a 
single silicon wafer will comprise several billions of transistors 
and hundreds of Processor Elements (PEs). This integration 
enables to implement complex applications into a single chip. 
However, it raises some research challenges, amongst them the 
design of efficient communication architectures and 
mechanisms able to map application tasks into PEs. 

Network-on-Chip (NoC) is a communication structure 
composed of routers connecting other routers and PEs in 
2D/3D silicon planes. NoC is a communication architecture 
that fulfills the parallelism and scalability required by 
Multiprocessors System-on-Chip (MPSoCs) containing several 
PEs [2]. A natural architectural evolution of 2D NoCs is three 
layered (3D) NoCs, since it reduces overall distances, 
minimizing latency and energy consumption while enhancing 
throughput and processing power with the larger number of 
PEs [3]. 

MPSoC architecture also introduces new challenges in 
application mapping design. Applications may be composed of 
a set of joint or disjoint tasks, each one performing instructions 
over a private or shared amount of data. These characteristics, 

combined with the distributed nature of PEs in NoCs, require 
techniques to map application and data dependencies over PEs, 
identifying situations where memory is shared between tasks, 
or where message exchanging becomes necessary. Grouping 
these tasks in an adequate manner is denominated partitioning. 

Partitioning problems are NP-complete, which precludes 
exhaustive search for solutions. Thus, algorithms with 
different exploratory characteristics mostly require heuristics 
such as Simulated Annealing (SA) [4]. Nevertheless, data 
input has been increasing; thereby reducing the amount of 
testing that heuristics can perform in a timely manner, 
consequently, reducing the quality of the result. Therefore, 
optimized MPSoCs implementation requires the development 
of efficient partitioning approaches. The application 
partitioning and task mapping on NoC-based architectures has 
been addressed by several researchers [5]-[9]. Their researches 
contain algorithms for tasks partitioning onto groups of tasks, 
task mapping on PEs as well as PEs mapping on tiles, all 
targeting NoC-based architectures. 

MapReduce [10] is widely used in distributed applications 
and it refers to the execution of two distinct tasks. The first 
task is mapping, which takes a set of data and converts it into a 
new representation, where individual elements are split into 
tuples (key/value pairs). The second task is reduction, which 
takes the mapping output (tuples) and combines them into a 
smaller set of tuples. Our paper proposes the Partition Reduce 
(PR) algorithm that explores the principles of MapReduce in 
the context of task partitioning targeting NoC-based MPSoC. 
The paper compares SA with PR using energy consumption 
and load balance as cost functions. 

The remaining of this paper is organized as follows. 
Section 2 presents the problem formulation of tasks 
partitioning. Section 3 details the PR algorithm, while Section 
4 shows experimental setup and results. Finally, Section 5 
contributes with conclusions and further discussions. 

2. Problem Formulation 
We assume partition as the activity of grouping elements of 

a set A, generating a new set B, where each element of B is a 
set composed of one or more elements of A (such that |A| ≥ 
|B|). The partitioning follows a set of rules that define the cost 
function, which normally implies to fulfill some design 
requirement, e.g. energy minimization. An application can be 
described as a set of tasks and their interrelations. Therefore, 
the partitioning of an application generates a new description 
composed of groups of tasks. This paper exploits static 
partitioning to reduce mapping complexity on NoC-based 
MPSoCs containing homogeneous PEs. 

978-1-4799-7581-5/15/$31.00 ©2015 IEEE                                 130                    16th Int'l Symposium on Quality Electronic Design



Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:02:01 UTC from IEEE Xplore.  Restrictions apply. 



The mapping process is defined as the activity that 
associates elements of the source group A to elements of the 
target group B. Each element of group B is associated with one 
or more elements of group A, but an element of A may not be 
associated with more than one element of B. We consider three 
types of mapping: (i) the mapping of tasks into PEs; (ii) the 
groups of tasks being mapped into PEs; and (iii) the mapping 
of PEs into the tiles of the target architecture. 

Research Focus
Task‐groups

t1,t3 t2,t4,t6...
Tasks

tnt1 t2 ...
Partition

(pre‐mapping)

Requirement and 
constrains

NoC based MPSoC
architecture

Mapping

Tasks/groups mapping on NoC based MPSoC

... ...CPU CPU

CPU CPU

tn

t1 t2,t4,t6

t1,t3

 
Figure 1: Application partitioning/mapping schemes. 

Figure 1 illustrates the partitioning and mapping with 
application requirements and constraints (e.g. energy 
consumption, load balance) as well as MPSoC architecture 
(e.g. number of PEs, NoC topology). 

3. Partition Reduce (PR) Algorithm 
The proposed Partition Reduce (PR) algorithm is based on 

MapReduce [10], which has proven to be an efficient 
programming model for processing and generating large data 
sets. MapReduce is largely employed in distributed systems, 
since it deals with huge data sets such as distributed sort, 
inverted index construction, statistical machine translation, and 
machine learning, just to name a few. 

A. Application Graphs Definition 
Communication Weight Graph (CWG) models an 

application considering the communication amount occurring 
between each pair of tasks, which is given by the sum of all 
bits of all packets transmitted through the communication 
architecture. The CWG = <T, W> is a directed graph, where 
T = {t1, t2, …, tn} is the set of application tasks and W = 
{(ta, tb, wab) | ta, tb ∈ T, wab ≠ 0} is the set of all bits transmitted 
from one task to another. CWG describes the application by 
tasks on vertices and the amount of communication between 
them being represented by edges. 

The PR algorithm uses an internal graph IG that represents 
the application during the partitioning activity. Let TC = {tC1, 
tC2, …, tCn} be the set of all application tasks characterized 
according to the target PE, such that tCi = {ti, li, ei, di, ci | 
ti ∈ T}, and li is the processing load needed for ti operation. 
Then ei, is the energy consumed by ti running on the target PE, 
di is the ti data size and ci is the ti code size, when the task ti is 
compiled to the target PE. IG = {G, Z} is a tuple, where: (i) G 

set represents all groups of tasks. Initially, every task tCi is 
assigned to a single group gi, and |G| = |TC|. During PR 
execution, the tasks are grouped, therefore, reducing |G|; (ii) Z 
is a graph containing the grouping of tasks performed by PR. It 
has the same structure of CWG; however, each vertex of Z 
contains a group of tasks, and the edges are the set of 
communications between these groups. 

B. Partitioning Algorithm 
The MapReduce algorithm is a procedure of two distinct 

steps. Firstly, the mapping step: a set of elements are grouped 
in tuples generating a new set. Secondly, the reduce step: all 
generated tuples are processed to create a new and smaller set 
of groups of tasks. These two steps are performed repeatedly 
until the produced set fulfills the design constraints. The output 
of the reduce step is the input for the next mapping step. 
MapReduce reduces the amount of elements at each cycle due 
to its characteristic of grouping. PR algorithm employs similar 
approach, taking into account that the mapping step is actually 
a partitioning step with some differences following discussed. 

Figure 2 describes the flow of PR partitioning with 
required inputs: (i) the application description (i.e. the CWG 
representing the application as a set of communicating tasks); 
(ii) the characterization of each task on the target PE (i.e. 
power consumption by task execution, code and data size, 
required processing load); (iii) the NoC topology with quantity 
of PEs; (iv) the constraints and the partitioning requirement. 

 
Figure 2: Activities flow of PR partitioning. 

Differently from the original MapReduce algorithm, PR is 
not executed in a distributed manner. It uses the concept of 
search and generates task associations (i.e. map step) and 
thereby reduces the original set of tasks (i.e. reduce step). It is 
relevant to note that, statistically, every new cycle of IG 
computation tends to be faster than the previous one, since |G| 
is reduced when tasks are grouped. 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:02:01 UTC from IEEE Xplore.  Restrictions apply. 



Energy Consumption Requirement 
The partitioning aiming reduced energy consumption sorts 

the group of tasks according to the energy spent on the 
communication between two groups of tasks. 

The communication power consumption is carried out with 
the EBit model [11] to estimate the dynamic energy 
consumption for each bit. 

EBitij = η × ERbit + (η - 1) × ELbit                   (1) 
Equation (1) describes the power consumption model, 

where ERbit is the energy dissipated at the router (router wires, 
buffers and logic gates); ELbit is the dynamic energy 
dissipation on links between tiles and considering regular mesh 
NoCs with square tiles to compute the dynamic energy 
consumed by a single bit traversing the NoC, from tile τi to tile 
τj and to tile τz, where η corresponds to the number of routers 
through which the bit passes. Let (xi, yi, zi) and (xj, yj, zj) be 
the coordinates of tiles τI,τj and τz, respectively, then η = (|xj - 
xi| + |yj - yi| + |zj - zi| + 1) is the number of routers on a given 
communication. 

The two most energy demanding groups are gathered 
together and processed by the reduce method, which checks if 
the constraints determined by the project are respected, thus 
the association is established; otherwise, the association is 
marked as processed and ignored. These two methods are 
executed repeatedly until only one group of tasks remains or 
there is no more group of tasks to be processed. 
Load Balance Requirement 

The partitioning aiming load balance sorts the group of 
tasks according to higher values of processing load. The most 
demanding group of tasks is gathered together with the least 
demanding group. The partitioning and reduce methods are 
executed repeatedly until only one group of tasks remains or 
there is no more group of tasks to be clustered. 

C. Synthetic Example of PR Execution 
Figure 3 illustrates a synthetic application composed of 12 

tasks, where edges represent the number of bits transmitted 
from a task to another and the vertices contain the task 
identifier and the processing load (in percentage). 

 
Figure 3: Example of a synthetic application representation. 

The partitioning algorithm aims at the reduction of energy 
consumption, and considers 100% of processing load as the 
design constraint. Consequently, PR will produce groups of 
tasks with less than 100% of processing load aiming to reduce 
the total communication volume. 

 
Figure 4: Flow of data at every step of the partitioning. 

Figure 4 shows the output of each cycle executed in the 
partitioning. The tasks are chosen according to their 
communication volume. The most communicating demanding 
task is grouped with its receiving task in the communication 
tuple, and so on. If all of those groups respect the processing 
load constraint, the first cycle of the partitioning is done. 
Otherwise, the first and most demanding task is grouped with 
the receiving task, and so on. Note that, as the partitioning is 
repeatedly refined, the representation of tasks can change from 
a unique task (e.g. T6) to multiple tasks (e.g. T9, T6). Figure 5 
illustrates the output according to partitioning process rules. 

 
Figure 5: Partitioning graph generated by PR algorithm. 

The partitioning output is a new CWG derived from the 
processing of input information, containing the partitioned 
application. The task group values are calculated in the 
partitioning through cost function minimization. 

4. Experimental Results 
This section presents the evaluation of the proposed PR 

algorithm compared with SA [4]. In the first scenario, the 
partitioning aims to balance processing load, while the second 
scenario aims to minimize energy consumption. The following 
criteria are used for comparison: (i) algorithm execution time 
(in seconds); (ii) amount of PEs required by partitioning; (iii) 
load balance through Mean Square Error (MSE); and (iv) 
energy consumption (in millijoule - mJ). 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:02:01 UTC from IEEE Xplore.  Restrictions apply. 



Experimental results consist of two task sets: the ‘Equal 
Tasks’ set assumes that all tasks are identical, i.e. with the 
same code and data size, consuming the same amount of 
energy when running on the target PE, and requiring 20% of 
the overall processing load. Tasks communicate with up to ten 
other tasks, and each communication has up to 500 bits of 
data. The ‘Random Tasks’ set creates random tasks, where the 
code has 50 to 500 bits, data size between 300 and 1000 bits, 
energy consumption between 10 and 100 phits, and processing 
load between 5 and 80%. A task communicates with up to 13 
other tasks, and each communication has between 5 and 100 
bits of data. All variables quantities in both sets are randomly 
generated by an in-house tool. Additionally, all groups of tasks 
are limited to 100% of processing load. The experiments 
contain from 8 up to 16,384 tasks. Results are shown in Table I 
and Table II, containing the evaluation of SA versus PR with 
respect to energy consumption and load balance. 

Table I shows that energy consumption in both algorithms 
is similar for most cases. Initially, for 8 tasks, PR consumes 
approximately 28% more energy and the peak of difference is 
reached with 64 tasks, with approximately 31% of increase in 
energy consumption by PR in comparison with SA, for the 
same task set. However, this difference is reduced as the 
number of tasks increases, and from 128 tasks on, PR saves 
more energy than SA. These differences occur because PR 
searches by local minima, whereas SA tries n-steps searching 
for an optimal solution. PR readily converges to a good 
solution, but not to the best one, while SA loses quality as the 
number of tasks grows, consequently increasing execution 
time. Although energy saving is similar for most results, the 
execution times are expressively different. 

Table I: Evaluation SA versus PR for energy consumption. 
 Equal Tasks Random Tasks 

#Tasks Alg. Time (sec) EC (mJ) Time (sec) EC (mJ) 
16,384 SA n/a n/a n/a n/a

PR 262.76 199,436.2 296.40 559,741.4
8,192 SA n/a n/a n/a n/a

PR 61,25 99760.2 68,47 281,283.9
4,096 SA n/a n/a n/a n/a

PR 10.94 49,746.1 15.82 139,624.8
2,048 SA n/a n/a n/a n/a

PR 2.44 24871.8 3.04 69,864.0
1,024 SA 6,132.32 12,931.0 7,879.4 38,441.1

PR 0.70 12,406.5 0.62 34,226.8
512 SA 1259.5 6397.9 1731.33 18,925.0

PR 0.22 6160.5 0.19 17,035.5
256 SA 307.07 3,132.6 429.38 9,539.5

PR 0.16 3,038.2 0.08 8,587.9
128 SA 71.35 1470.0 112.47 4,598.4

PR 0.09 1443.2 0.07 4240.2
64 SA 18.25 667.3 28.64 2,266.9

PR 0.05 696.7 0.03 2,105.7
32 SA 5.04 268.0 8.02 975.5

PR 0.03 311.3 0.02 958.8
16 SA 1.63 88.0 3.25 330.8

PR 0.02 123.8 0.02 349.8
8 SA 1.04 19.1 1.74 89.6

PR 0.01 26.8 0.01 99.9
 

The execution time of SA increases much faster than PR. 
When comparing both approaches, it is evident that SA 
becomes unfeasible for larger number of tasks, since for 1,024 

tasks it already takes around two hours of processing time to 
achieve a result, making results for more tasks non available. 
In contrast, PR converges with less than a second for an 
experiment with 1,024 tasks, and only around four minutes for 
16,384 tasks, which noticeably demonstrates the advantage of 
using PR for larger applications in such settings, as Figure 6 
further illustrates. 

0.01 0.02 0.03 0.05 0.09
0.16 0.22 0.70 2.44 10.94 61.25

262.76
1.04 1.63 5.04 18.25 71.35

307.07

1259.46

6132.32

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Ex
ec

ut
io

n 
ti

m
e 

(s
ec

)

Amount of tasks

PR SA

 
Figure 6: Comparison of execution time of SA versus RP taking into 
account energy consumption requirement. 

According to Table II, the load balancing partitioning aims 
to achieve the least quantity of task groups with minimum 
MSE (Minimum Square Error). The partitioning considers 
100% of processing load as the constraint to limit task 
grouping. Additionally, when the processing load is fairly 
distributed among the groups, MSE is minimized (e.g. MSE is 
zero when all groups have the same processing load). 

Table II: Evaluation SA versus PR for load balance. 
 Equal Tasks Random Tasks 

#Tasks Alg. Time (Sec) #PEs LB (MSE) Time (Sec) #PEs LB (MSE)

16,384 SA 471.29 4,048 541.8 1,108.57 11,898 537.1
PR 12.63 3,277 0.1 16.60 7,723 5.5

8,192 SA 186.27 2,025 529.35 451.71 5953 531.2
PR 2.65 1,639 2.2 3.76 3,889 5.8

4,096 SA 40.91 1,012 492.4 105.90 2,980 534.9
PR 0.58 820 7.8 0.50 1,927 6.6

2,048 SA 16.83 504 447.5 32.27 1507 543.6
PR 0.20 410 3.9 0.13 956 7.9

1,024 SA 8.03 253 375.4 15.05 741 513.0
PR 0.16 205 1.9 0.05 481 19.5

512 SA 3.87 127 213.8 7.16 386 455.5
PR 0.11 103 34.6 0.04 244 7.4

256 SA 2.41 64 62.5 3.79 191 428.7
PR 0.08 52 120.7 0.03 120 9.9

128 SA 1.92 32 0.0 2.56 107 354.4
PR 0.07 26 59.2 0.03 61 5.867

64 SA 1.52 16 0.0 2.00 51 294.0
PR 0.02 12 28.4 0.02 30 71.7

32 SA 1.25 8 0.0 1.73 25 154.3
PR 0.03 7 440.82 0.01 16 109.7

16 SA 1.15 4 0.0 1.4 12 215.3
PR 0.01 4 1200.00 0.00 9 302.2

8 SA 1.07 2 0.0 2.15 6 108.5
PR 0.01 2 400.0 0.01 4 462.0

 
As illustrated in Figure 7, the PR algorithm is inefficient to 

produce load-balanced partitions for small applications (i.e. 
applications with less than 64 tasks). This behavior occurs 
because PR locally optimizes the groups of tasks, and the 
remaining groups are usually less load balanced compared to 
the previous ones, since there are fewer tasks to group and 
therefore less diversity of processing load. However, when the 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:02:01 UTC from IEEE Xplore.  Restrictions apply. 



quantity of tasks increases, the global approach of SA cannot 
capture adequate partitions due to the increasing complexity; 
note that the partition problem grows exponentially according 
to the quantity of tasks. 

 
Figure 7: Comparison of load balancing requirements by the number 
of PEs for an equal set of tasks. 

Figure 8 shows that random set of tasks presents a similar 
behavior than the one illustrated in Figure 7. 

 
Figure 8: Comparison of load balancing requirements by the number 
of PEs for a random set of tasks. 

One of the most important benefits of PR is the reduction 
of generated task groups, which may improve the quantity of 
target PEs in the target architecture. The SA algorithm presents 
an exponential evolution of execution time without making 
testing unfeasible. However, PR may be considered 
instantaneous in comparison with SA from any amount of 
tasks. Seeing the result in Table II, it is evident that PR 
produces less and better balanced groups with a very low cost 
of time while energy saving is maintained according to the 
target architecture. 

5. Conclusion 
This paper explores the effect on energy consumption and 

load balance when applying task partitioning for applications 
targeting NoC-based MPSoCs. Results show that task 
partitioning using load balance as the primary constraint 
demonstrates that SA algorithm performs very poorly 
compared to PR, which is more effective for large amounts of 
tasks. PR algorithm presents less complexity, brings 
satisfactory results in less time than SA, and has the additional 
advantage of reducing the number of PEs required for 
mapping. Furthermore, PR promises to be a great alternative 
compared to heuristic algorithms, since it is capable of finding 
satisfying results in an acceptable time, while including the 
extra advantage of being a deterministic algorithm. 

References 
[1] ITRS. www.itrs.net/Links/2011ITRS/2011SysDrivers.pdf, 

pp. 6-7, 2011. 
[2] R. Patti. Impact of Wafer-Level 3D Stacking on the Yield of 

ICs. Future Lab Intl., issue 23, Jul. 2007. 
[3] B. Feero, P. Pande. “Networks-on-Chip in a Three-Dimensional 

Environment: A Performance Evaluation”, IEEE Transactions 
on Computers, v. 58, n. 1, pp. 32-45, Jan. 2009. 

[4] H. Faragardi et al., “Reliability-Aware Task Allocation in 
Distributed Computing Systems using Hybrid Simulated 
Annealing and Tabu Search”,  HPCC-ICESS, pp. 1088–1095, 
2012. 

[5] K. Siozios, I. Anagnostopoulos, D. Soudris. “A High-Level 
Mapping Algorithm Targeting 3D NoC Architectures with 
Multiple Vdd”, ISVLSI, pp. 444-445, 2010. 

[6] R. Chen, H. Chen, B. Zang. “Tiled-MapReduce: optimizing 
resource usages of data-parallel applications on multicore with 
tiling”, PACT, pp. 523-534, 2010. 

[7] Y. Tei, M. Marsono, N. Shaikh-Husin, Y. Hau. “Network 
partitioning and GA heuristic crossover for NoC application 
mapping”, ISCAS, pp. 1228-1231, 2013. 

[8] C. Marcon et al. “Pre-mapping Algorithm for Heterogeneous 
MPSoCs”, VLSI Design, pp. 252-257, 2014. 

[9] X. Zhang, B. Hu, J. Jiang. “An Optimized Algorithm for 
Reduce Task Scheduling”, Journal of Computers, v. 9, n. 4, 
pp. 794-801, Apr. 2014. 

[10] J. Dean, S. Ghemawat, “MapReduce: Simplified Data 
Processing on Large Clusters”, Communications of the ACM, 
v.51, n.1, pp. 107-113, Jan. 2008. 

[11] C. Marcon et al. “Time and Energy Efficient Mapping of 
Embedded Applications onto NoCs”, Design Automation 
Conference, pp. 33-38, Jan. 2005. 

 
 

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:02:01 UTC from IEEE Xplore.  Restrictions apply. 


