
An Extensible Code for Correcting Multiple Cell Upset in Memory Arrays

Felipe Silva1 & Jardel Silveira1 & Jarbas Silveira1 & César Marcon2
& Fabian Vargas2 & Otávio Lima Jr3

Received: 27 February 2018 /Accepted: 21 June 2018 /Published online: 6 July 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
As the microelectronics technology continuously advances to deep submicron scales, the occurrence of Multiple Cell Upset
(MCU) induced by radiation in memory devices becomes more likely to happen. The implementation of a robust Error
Correction Code (ECC) is a suitable solution. However, the more complex an ECC, the more delay, area usage and energy
consumption. An ECC with an appropriate balance between error coverage and computational cost is essential for applications
where fault tolerance is heavily needed, and the energy resources are scarce. This paper describes the conception, implementa-
tion, and evaluation of Column-Line-Code (CLC), a novel algorithm for the detection and correction of MCU in memory
devices, which combines extended Hamming code and parity bits. Besides, this paper evaluates the variation of the 2D CLC
schemes and proposes an additional operation to correct more MCU patterns called extended mode. We compared the imple-
mentation cost, reliability level, detection/correction rate and the mean time to failure among the CLC versions and other
correction codes, proving the CLCs have high MCU correction efficacy with reduced area, power and delay costs.

Keywords Error correction code (ECC) .MCU .Memories

1 Introduction

The increasing scaling of microelectronics technology
boosts the design of high performance integrated circuits

Responsible Editor: M. Goessel

* Felipe Silva
gaspar@lesc.ufc.br

Jardel Silveira
jardel@lesc.ufc.br

Jarbas Silveira
jarbas@lesc.ufc.br

César Marcon
cesar.marcon@pucrs.br

Fabian Vargas
vargas@computer.org

Otávio Lima, Jr
otavio@ifce.edu.br

1 Laboratório de Engenharia e Sistemas de Computação (LESC/DETI)
/Federal University of Ceará (UFC), Fortaleza, Brazil

2 Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto
Alegre, Brazil

3 Laboratório de Sistemas Digitais (LSD) /Federal Institute of Ceará
(IFCE), Maracanaú, Maracanaú, Brazil

Journal of Electronic Testing (2018) 34:417–433
https://doi.org/10.1007/s10836-018-5738-5

characterized by having high operating frequencies and
low voltage levels. These circuits are susceptible to tran-
sient errors due to ionizing radiation arising from
high-energy particles, such as alpha particles and neutrons
[8]. Radiation can cause soft errors in memory arrays
changing their content and causing errors, which in turn,
can be disseminated through the entire system producing
severe failures. This concern is even more severe for crit-
ical applications such as space systems, where the conse-
quences may be disastrous [13].

Single Error Correction, Double Error Detection
(SEC-DED) codes are heavily used to avoid data corruption
caused by soft errors [5, 6], whereby their use keeps the mem-
ories protected against single errors. As the integration tech-
nology scales down, the soft error rate increases and the prob-
ability of Multiple Cell Upset (MCU) also increases [4, 18].
MCU may happen, for example, when a highly charged par-
ticle strikes on memory, disturbing several cells [16].

Several sources can induce an MCU as direct ioniza-
tion or nuclear recoil after the passage of a high-energy
ion [9]. MCU cannot be avoided by using packaging and
shielding solution as proved by [8], and its occurrence
increases with the size of the memory device [12]. The
interleaving of memory cells belonging to the same word
is one of the most used techniques that allows correcting
MCUs using simple SEC-DED codes because frequently
the affected cells are physically close [2].

http://crossmark.crossref.org/dialog/?doi=10.1007/s10836-018-5738-5&domain=pdf
http://orcid.org/0000-0003-2590-9520
mailto:gaspar@lesc.ufc.br

418 J Electron Test (2018) 34:417–433

One of the used protection techniques is the addition of
built-in current sensors, which detect faults by surveilling un-
expected variations in the electrical current that supplies the
memory blocks [11, 24]. This technique can be improved by
using a robust Error Correction Code (ECC), which is the
principal objective of this paper.

Hamming is a base code for a series of ECCs that can
correct and detect one error. The Hamming code can be ex-
tended to detect double errors, increasing its reliability.
Extended Hamming is a type of SEC-DED that adds one
parity bit in the codified word for detecting two errors.

MCU cannot be corrected using standard SEC-DED
codes, demanding more efficient codes capable of fixing
several patterns of upsets on multiple bits. Aligning cor-
rection and implementation efficiency is a crucial factor to
protect memory devices against MCUs. Therefore, it is
expected those codes have area and energy efficient imple-
mentation and high error correction rates for protecting
memory arrays.

Column-Line-Code (CLC) [3] is an ECC with a
2-Dimensional (2D) format that distributes data and redun-
dancy bits in lines (horizontal rows) and columns (vertical
rows). CLC combines Extended Hamming and parity bits
homogeneously distributed in the 2D matrix scheme.

A 2D scheme with more redundant bits could correct and
detect more error patterns, but with a substantial increase in
the implementation cost. For instance, a 16-bit data word re-
quires 24 bits of redundancy using CLC. A lighter 2D scheme
reduces the implementation cost in detriment of slightly small-
er MCU error coverage.

To improve CLC, we explored some modifications on
the 2D scheme used to distribute parity and data bits. As
main contribution of this work, we proposed two new ver-
sions of CLC; the first one has lower implementation cost
targeting lesser demanding applications, the other one pre-
sents more redundant bits for more complex applications.
We also proposed a new correction step for CLC called
extended mode, which enhances the correction of CLC
significantly.

Following we present the methodology used in CLC
schemes, their algorithms, the encoder and decoder architec-
ture as well as the strategies used for error detection and cor-
rection. In sequence, experimental results verify the efficiency
of the CLC types for detecting and correcting errors when
compared to other codes - Reed-Muller(2,5) [3] and Matrix
[26]. We estimate error detection and correction capability,
reliability and Mean Time To Failure (MTTF) for the pro-
posed approaches. This work also analyses area and energy
consumpt ion of the CLC decode r and encoder
implementations. The metric Total Cost per Coverage (TCC)
presented in [3] was applied to evaluate the tradeoff between
error coverage and implementation cost of each code. At the
end of this work, we presented the main conclusion.

2 Related Work

Vargas and Nicolaidis [25] described in 1994 the first ap-
proach combining current checking with error detection codes
in a 2D structure to handle MCUs. They proposed a technique
aiming to improve SRAM reliability against Single Event
Upsets (SEUs) using the Built-In Current Sensor (BICS). By
combining current checking per column with single parity bit
per row of an SRAM, the code corrects multiple upsets. From
that time on, several other 2D error correction codes to deal
with MCUs were proposed with different techniques and ef-
fectiveness. This section describes the most relevant related
works using 2D structures for detecting and correcting error
found in the last 10 years and compares them with our
approach.

Reed-Muller is a family of complex and robust ECCswide-
ly used in critical systems. Reed-Muller(2,5) is an ECC used
for correcting MCUs in flash-based FPGAs [26], where B2^
and B5^ are the order and length of the code, respectively,
forming a codified word of 32-bits for a 16-bits input.
Depending on the order, Reed-Muller codes can correct many
patterns of MCUs. However, the bigger the order applied, the
higher the implementation cost.

Sánchez-Macián et al. [22] developed SEC-DAED and
SEC-DED-TAED, which are methods for performing
SEC-DED and Triple Adjacent Error Detection (TAED) using
a matrix of bits codified with Hamming code. SEC-DAED
can detect patterns of adjacent errors rearranging specific col-
umns of the encoded matrix. Moreover, SEC-DED-TAED
provides the matrix analysis to avoid miscorrection of triple
errors.

Argyrides et al. [1] proposed the Matrix code, which orga-
nizes bits in a matrix format to correct MCUs in a 32-bits
codeword. The code is composed of four rows of Hamming
codified bits plus an additional row with parity bits to detect
adjacent bit errors. The Matrix code focuses on systems sub-
jected to DEC-DED, and its decoding consists of syndrome
verification and parity bits. The Matrix code has low correc-
tion efficiency when compared to a more robust code like
Reed-Muller, but with the advantage of consuming less area
and energy.

Reviriego et al. [19] proposed a technique that uses
SEC-DED code and parity, forming a 2D structure, which
allows detecting double errors employing parity bits. The
structure of this code is similar to the Matrix code [1];
however, using more redundant bits. Their work does not
provide further analysis regarding the insertion of MCUs.
In another approach for 2D codes, Reviriego et al. [20]
developed a technique, which combines Hamming code
with parity bits for data error detection/correction. A parity
bit per row was added to minimize the SEC cost, and the
check bits are read and stored only when the parity bits
detect a single error.

Guo et al. [7] proposed the Decimal Matrix Code (DMC),
which uses decimal sum with parity to create an algorithm
capable of detecting and correcting errors. DMC can correct
some specific MCU patterns with low implementation cost.

Hsiao et al. [10] proposed the Orthogonal Latin Square
(OLS) codes, which assume the number of data bits applied
must perform a perfect square (i.e., m ×m bits). Liu et al. [14]
extended OLS modifying the parity check bit matrix for
supporting 32-bit data. This extension offers two code struc-
tures: one with less redundancy bits, lower cost, and lower
error correction capability; and one with higher overall cost,
but also higher error coverage.

CLC [3] is an ECC based on extendedHamming and parity
bits with low area and power overheads that provide high
detection and correction rates for protecting memory arrays
from MCUs. CLC can be used not only to protect stored
information in memory but also to protect information in a
communication channel. In this paper, we explore two varia-
tions of the 2D structure applied in CLC [3] and the effects of
error coverage and implementation cost.

Table 1 compares the ECC techniques presented in this
section, regarding the error correction effectiveness and main
features of the techniques. A common characteristic of many
ECCs described in this work is the usage of a 2D structure for
detecting and correcting errors.

3 CLC - Error Correction and Detection Code

CLC(16,40) codifiedword comprises of 40 bits: 16 data bits (D),
12 check bits (C), 8 column-parity bits (Pc), and 4 row-parity
bits (Pr). Figure 1 shows CLC divides the 16 bits word into four
words of 4 bits codified in extended Hamming, whereby the bits
are relocated on four rows. CLC’s structure is like the one pre-
sented by Reviriego et al. [19]; however, the CLC’s algorithm
aims at correcting and detecting several patterns of MCUs.

The information encoded in rows enables SEC-DED; CLC
uses the parity information of each column to correct double
and evenmore errors. Column-parity bits Pc0,…, Pc3 are used

to detect errors in the data bits columns, whereas Pc4, …, Pc7
are used to detect errors in the check bits and row-parity bits.
The combination of the extended Hamming in each row with
the parity bits allows correcting MCUs in the data word as
well as in both check and parity bits. Equations 1 to 3 describe
how to calculate Cq, performed by XOR operations (⊕),
where q is the index of the check bit.

Cq ¼ D4q=3þ1⊕D4q=3þ2⊕D4q=3þ3 ∀q∈ 0; 3; 6; 9f g ð1Þ
Cqþ1 ¼ D4q=3⊕D4q=3þ2⊕D4q=3þ3 ∀q∈ 0; 3; 6; 9f g ð2Þ
Cqþ2 ¼ D4q=3⊕D4q=3þ1⊕D4q=3þ4 ∀q∈ 0; 3; 6; 9f g ð3Þ

According to the extended Hamming, Eq. 4 displays all Pr
bits that are calculated as follows:

Prq ¼ D4q⊕D4qþ1⊕D4qþ2⊕D4qþ3⊕C3q⊕C3qþ1⊕C3qþ2∀0≤q≤3

ð4Þ

Equations from 5 to 7 show how to calculate the Pc bits,
where q is the column index of Pc.

Pcq ¼ Dq⊕Dqþ4⊕Dqþ8⊕Dqþ12 ∀0≤q≤3 ð5Þ
Pcq ¼ Cq−4⊕Cq−1⊕Cqþ2⊕Cqþ5 ∀4≤q≤6 ð6Þ
Pc7 ¼ Pr0⊕Pr1⊕Pr2⊕Pr3 ð7Þ

CLC checks each row and column to verify the codeword
consistency. The first step of CLC algorithm generates the
Syndrome column-parity (SPc) and Syndrome Check bits
(SC). This step is performed in two parts: (i) the first one
recalculates C using the D bits of the data word, thereby
forming a new value of C called Recalculated Check bit
(RC); (ii) the second one makes XOR operations with the C
bits stored at the codified word, whereby Eq. 8 defines SC.

SCq ¼ Cq⊕RCq ∀0≤q≤11 ð8Þ

Similarly, Eq. 9 shows the computation of SPc using
Recalculated column-parity (RPc) bits.

SPcq ¼ Pcq⊕RPcq ∀0≤q≤7 ð9Þ

Table 1 Related work
comparison ECC proposed Effectiveness Technique

Vargas et al. [25] Correction of MCUs Current checking + parity

Reed-Muller [26] Correction of MCUs Majority logic

SEC-DAED, SEC-DED-TAED [22] SEC +DED + TAED Hamming code + parity

Matrix code [1] Correction of MCUs Hamming code + parity

Reviriego et al. [19] Double error correction SEC-DED code + parity

Reviriego et al. [20] Single error correction Hamming code + parity

DMC [7] Specific error patterns Decimal sum + parity

Liu et al. [14] Correction of MCUs Extension of OLS codes

CLC [3] Correction of MCUs Extended Hamming+parity

J Electron Test (2018) 34:417–433 419

Error detection in codified words is highlighted when the
SPc and SC bits generated in rows and columns, respectively,
are not zero. Besides, the Pr bits are also recalculated (RPr)
for each row to cover triple errors in the same row, enabling
generating a Syndrome row-parity (SPr) word, which is cal-
culated according to Eq. 10.

SPrq ¼ Prq⊕RPrq ∀0≤q≤3 ð10Þ

CLC operates in standard or extended modes allowing
correcting MCUs based on parity bits and the extended
Hamming (8,4), where B8^ is the length of the encoded word
and B4^ is the number of data bits.

Standard CLC mode (CLC-S) targets low overhead of area
and energy. The correction procedure of CLC-S includes the
generation of syndrome bits, analysis of the correction table,
and rows correction procedure, which is performed once.

Extended CLCmode (CLC-E) executes the correction pro-
cedures two times for some cases where more than one row in
the CLC encoded data were affected. The double correction is
always performed by CLC-E, presenting better coverage of
multiple-error patterns but consuming more area and energy
than CLC-S. The SPr bits allow both CLC modes to correct
adjacent triple errors in one row of the data matrix if in each
affected column there is no more than one bit-flip. CLC-E
corrects any triple error recalculating the syndrome bits. We
implemented the scheme of multiple-error patterns by adding
only extra logic, without redundancy increase, and without
generating extra storage costs, nor increasing the probability
of errors resulting from the increase of redundancy bits.

This work explores the efficacy and efficiency of both CLC
modes comparing them to Matrix and Reed-Muller(2,5) ap-
proaches. Figures 2 and 3 show the encoding and decoding
algorithms of CLC for a 16-bit data word. Henceforth, we
explain the correction process using CLC-S, which corrects

single errors using the extended Hamming decoders, and mul-
tiple errors using parity.

Equation 11 computes SCrq, which is a reduction in one bit
of the error detection of all SC bits of each row; where q ∈ {0,
1, 2, 3} represents the rows of each set of data bits.

SCrq ¼ SC3q⊕SC3qþ1⊕SC3qþ2 ∀0≤q≤3 ð11Þ

Table 2 describes how the syndromes are used to correct
errors as well as the correction method; i.e., parity or
Hamming means the correction method uses SPc bits or
Hamming algorithm to correct the detected error, respectively.

Syndromes are analyzed for each data row of the encoded
word. When all the syndromes are zero, there is no error in the
decoded word. Otherwise, the error bits are corrected using
extended Hamming algorithm and parity bits. The first meth-
od employs classical extended Hamming decoding through-
out SC and SPr. The second method flips the bits according to
the error positions indicated by the SPc bits. The last syn-
drome pattern (SCr = 1, SPr = 1, SPc = 1) uses both methods
regarding the number of errors in the columns and rows.
Extended Hamming is employed when SPc bits contain less
than three errors. If there is only one rowwith SCr = 1, the SPc
bits are used; otherwise, extended Hamming is used.

Figure 4 depicts the first example, in which the data word is
organized as a matrix, and the values of the calculated syn-
dromes are shown in a table (value one indicates the syndrome
is not zero; otherwise, the syndrome bits are zero). Figure 4
exemplifies a codified word where only D0 has an error
corrected by extended Hamming.

Figure 5 illustrates a triple error on bits D0, D1 and D2 as
well as the associated syndromes. In this case, the

CLC Encoder

16
 b

its
 (d

at
a

in
)

Data
division

Line 1 4 bits
Line 2 4 bits
Line 3 4 bits
Line 4 4 bits

Extended
Hamming(8,4)

40
 b

its
 (d

at
a

ou
t)

Data coding

Parity genera�on
Line 5 8 bits

Line 1 8 bits
Line 2 8 bits
Line 3 8 bits
Line 4 8 bits

40 bits16 bits

Fig. 2 Organization of the main blocks of the CLC(16,40) encoder

CLC Decoder

16 bits

Step 2 Step 3

16
 b

its
 (d

at
a

ou
t)

40
 b

its
 (d

at
a

in
)

Step 1
Genera�on of
syndrome bits
(SC, SPc, SPr)

Correc�on
table analisys

Lines
correc�on

process

CLC-E (else)
or

CLC-S

CLC-E (1st �me)

CLC
method40 bits

Fig. 3 Organization of the main blocks of the CLC(16,40) decoder

Table 2 Correction table based on syndrome bits

SCr SPr SPc Status Method

0 0 0 No error –

0 0 1 Error detected –

0 1 0 Error detected –

0 1 1 Triple error corrected Parity

1 0 0 Error detected –

1 0 1 Even errors corrected Parity

1 1 0 Odd errors corrected Hamming

1 1 1 Odd errors corrected Hamming and Parity

Fig. 1 CLC codeword format

420 J Electron Test (2018) 34:417–433

combination of the SPr0, SPc0, SPc1, and SPc0, bits indicates
there are errors on the first three columns of the first row.

Figure 6 exemplifies an error pattern with CLC-E execut-
ing a double error checking. In the first error verification,
CLC-E corrects D1 using extended Hamming and D4 using
the combination of the SCr and SPc bits. However, D0 is still
in error. Then, CLC carried out a second error verification step
to correct bits through extended Hamming.

Note the correction of D0 is perceived only after the first
step since at the first moment SPc0 = 0 and SPr0 = 0; however,
when correcting D1 and D4, both SPc0 and SPr1 change to 1.

4 Variation of CLC 2D Structure

Section 3 shows the CLC encoder, decoder, correction algo-
rithm and extended mode along with examples of code cor-
rection. That CLC divides the 16-bit of data in four rows and
applies extended Hamming with 4 bits producing the format
CLC(16,40). This section explores two other formats of CLC
dividing the same 16 data bits into two and eight rows to
explore the effect of code size and format variations: (i)
CLC(16,39), which splits the data bits into two rows with 23
bits of redundancy; and (ii) CLC(16,54), which divides the
data bits into eight rows and has 38 bits of redundancy. Note
that not only the quantity of bits change but also the number of
bits used as parity and Hamming.

Figure 7 shows the CLC(16,39) structure, which divides
the 16 data bits into two rows applying a code with the
Extended Hamming(8,13). The 39 bits of the codeword are
divided in the following four fields: 16 Data bits (D), 10
Check bits (C), 13 column-parity bits (Pc) and 2 raw-parity
bits (Pr).

Equations 12 to 15 describe how to calculate Cq, where q is
the check bit index.

Cq ¼ D8q⊕D8qþ1⊕D8qþ3⊕D8qþ4⊕D8qþ6 ∀q∈ 0; 4f g ð12Þ
Cq ¼ D8q⊕D8qþ2⊕D8qþ3⊕D8qþ5⊕D8qþ6 ∀q∈ 1; 5f g ð13Þ
Cq ¼ D8qþ1⊕D8qþ2⊕D8qþ3⊕D8qþ7 ∀q∈ 2; 6f g ð14Þ
Cq ¼ D8qþ4⊕D8qþ5⊕D8qþ6⊕D8qþ7 ∀q∈ 3; 7f g ð15Þ

Equation 16 displays all Pr bits are calculated according to
the extended Hamming.

Prq ¼ D8q⊕…⊕D8qþ7⊕C4q⊕…⊕C4qþ3 ∀q∈ 0; 1f g ð16Þ

Equations from 17 to 19 show how to calculate the Pc bits,
where q is the column index of Pc.

Pcq ¼ Dq⊕Dqþ8 ∀0≤q≤7 ð17Þ
Pcqþ8 ¼ Dq⊕Dqþ4 ∀0≤q≤3 ð18Þ
Pc12 ¼ Pr0⊕Pr1 ð19Þ

Figure 8 illustrates the CLC(16,54) format with 16 data bits
organized in 8 pairs of bits, Extended Hamming(2,6) and 14
columns/rows parity bits.

CLC(16,54) has 38 bits of redundancy, which is a vast
quantity proportionally to the data bits, the main reason for
this impact is because Extended Hamming for 2 and 4 bits
requires the same amount of redundancy bits. Equations 20 to
22 describe how to calculate Cq - q is the check bit index.

C3q ¼ D2q⊕D2qþ1 ∀0≤q≤7 ð20Þ
C3qþ1 ¼ D2q ∀0≤q≤7 ð21Þ
C3qþ2 ¼ D2qþ1 ∀0≤q≤7 ð22Þ

Fig. 4 Single error corrected by
CLC

Fig. 5 Triple error corrected by
CLC

J Electron Test (2018) 34:417–433 421

Equation 23 computes the row-parity bits, and Equations
from 24 to 27 calculate the column-parity bit, all equations,
except Eq. 27, using q as index.

Prq ¼ D2q⊕D2qþ1⊕C3q⊕C3qþ1⊕C3qþ2 ∀0≤q≤7 ð23Þ
Pcq ¼ Dq⊕D2þq⊕D4þq⊕D6þq⊕D8þq⊕D10þq⊕

D12þq⊕D14þq ∀q∈ 0; 1f g
ð24Þ

Pcqþ2 ¼ Cq⊕C3þq⊕C6þq⊕C9þq⊕C12þq⊕C15þq⊕

C18þq⊕C21þq ∀q∈ 0; 1; 2f g
ð25Þ

Pc5 ¼ Pr0⊕Pr1⊕Pr2⊕Pr3⊕Pr4⊕Pr5⊕Pr6⊕Pr7 ð26Þ

All formats of CLC apply the same algorithm to detect and
correct bit flips, which consists in the analysis of each row of
the codeword and the application of the correction of Table 2.

5 Redundancy Analysis

Previous sections described CLC(16,40), CLC(16,39) and
CLC(16,54), which are three CLC formats using 16 data bits
words, employing Extended Hamming(4,8), Extended
Hamming(8,13) and Extended Hamming(2,6), respectively.
These codes add a considerably quantity of redundancy bits;
i.e., 150%, 143.75 and 237.5% in the formats CLC(16,40),
CLC(16,39) and CLC(16,54), respectively. However, this sec-
tion shows that as the number of data bits increases, the per-
centage of redundancy is reduced.

LetDr be the number of data bits and Rr be the redundancy
bits, both in a single row, than Table 3 provides the Dr and Rr
of the Extended Hammings applied in this paper.

Let DT be the total number of data bits codified by CLC
than Eq. 27 provides the calculation ofDRT, meaning the sum
of all data and redundancy bits of a CLC codeword.

DRT ¼ DT

Dr
þ 1

� �
� Dr þ Rrð Þ ð27Þ

Where DT
Dr

þ 1
� �

is the number of rows the CLC 2D

scheme have (note that B+1^ represents the addition of the
parity bits row). Besides, the total number of redundancy bits
(RT) isDRT -DT; therefore, the percentage of redundancy over
data bits (RA) is computed with Eq. 28.

RA ¼ RT

DT
� 100 ð28Þ

Table 4 shows the results RA regarding the data bits inserted
for each CLC scheme.

All CLC structures present redundancy reduction with the
increase of data bits; however, CLC with 13 bits per row,

Fig. 6 Triple error corrected by
CLC-E

Fig. 7 CLC(16,39) codeword format Fig. 8 CLC(16,54) codeword format

422 J Electron Test (2018) 34:417–433

which applies ExtendedHamming(8,13), presented the lowest
redundancy and the largest cutback in RA rate from all CLCs
proposed. For instance, CLC with 128 data bits has an RA rate
with almost half value of the 16 data bits version. Meanwhile,
CLC with 6 bits per row is both the code with more redun-
dancy bits and with lower RA reduction. These results are
explained by the fact that the Extended Hamming (8,13) pre-
sents from all applied the lowest redundancy addition rate,
while it is quite the opposite for Extended Hamming (2,6).

Table 3 Bits distribution of the
Extended Hamming used on CLC
formats

Redundancy type Dr (bits) Rr (bits) Redundancy addition (%)

Extended Hamming (2,6) 2 4 200.0

Extended Hamming (4,8) 4 4 100.0

Extended Hamming (8,13) 8 5 62.5

Table 4 CLC’s 2D features for multiple sizes of data bits

DT RT Dr Rr Rows Columns RA (%)

16 38 2 4 9 6 237.50

24 4 4 5 8 150.00

23 8 5 3 13 143.75

32 70 2 4 17 6 218.50

40 4 4 9 8 125.00

33 8 5 5 13 103.10

64 134 2 4 33 6 209.40

72 4 4 17 8 112.50

53 8 5 9 13 82.80

128 262 2 4 65 6 204.70

136 4 4 33 8 106.30

93 8 5 17 13 72.60

J Electron Test (2018) 34:417–433 423

6 Failure Injection Experiments

This section describes experiments comparing the CLC
(16,39), CLC(16,40), CLC(16,54), Matrix and Reed-Muller
(2,5) codes regarding correction and detection error estima-
tion. Besides, the three CLC versions regard both correcting
modes (i.e., CLC-E and CLC-S).

The experiments were made using a testbench in Matlab
that pseudo-randomly inserts from 1 to 8 errors in adjacent
memory cells to mimic the structure of MCUs, which tend to
be physically close [23]. The testbench inserts errors in both
data and redundant bits. Due to the number of code variations,
we split the results into 2 groups comparison - Figs. 9 and 10
show the experimental results and correction analysis regard-
ing the number of errors with standard CLCs and extended
CLCs. Figures 9 and 10 demonstrate all methods are 100%
effective for scenarios with a single error. When the errors

increase, Matrix loses efficacy fast due to its lower number
of redundancy bits. Reed-Muller loses efficacy abruptly for
more aggressive error scenarios (i.e., 4 or more errors), which
is explained by the majority logic applied in the Reed-Muller
has a distance of eight [3], implying a sharp correction rate for
only three errors. We emphasize as much more complex the
Reed-Muller is applied, the more area and power requirements
are necessary.

Figure 9 depicts all CLCs correct single and double errors
and achieve better overall results than Matrix in both modes.
All CLC-S cannot deal with all patterns of 3 errors, as ex-
plained in Section 3. Nonetheless, for more aggressive error
patterns CLC codes present better results than Reed-Muller
(2,5), especially, for CLC-S(16,54), which achieves more than
50% of efficacy from 1 to 5 errors since more than 70% of its
codeword is composed by redundant bits. The correction effi-
cacy of CLC-S(16,39) and CLC-S(16,40) are right behind the
correction efficacy of CLC-S(16,54), presenting very close
results.

Figure 10 shows the extended CLCs correct all 3-error
patterns; also, the extended mode allows all CLCs boost their
correction efficacy in most of the error patterns analyzed.
CLC-E(16,54) achieved the best overall results, mainly be-
cause its higher quantity of redundancy bits compared to the
other CLC versions, although its results for 7 and 8 errors were
similar to the standard mode versions. Besides, the extended
mode is the only code mode allowed the correction of some
patterns with 8 errors.

Analyzing the correction error results regarding the 2D
structure of CLCs, we infer from Fig. 7 CLC(16,39) allowed
the fewer occurrence of MCUs affecting the same columns in
the region of data bits, which means more errors occurred in
the region of redundant bits. The more aggressive the error
patterns are, the more columns are affected, making it more
difficult to detect these errors by Pr bits, this allowed that both
CLC(16,39) modes outperformed both CLC(16,40) modes for
6, 7 and 8 errors.

The 2D structure of CLC(16,59), shown in Fig. 8, has 8
rows with data bits, increasing the chances to have errors in
the same columns and consequently the number of complex
errors. Therefore, although CLC(16,59) has a higher quantity
of redundant bits than CLC(16,39), the correction results for
6, 7 and 8 errors are very close.

Comparing Figs. 1, 2, 3, 4, 5, 6, 7, and 8, we notice only
CLC(16,40) has a square 2D structure (i.e., a 4 × 4 matrix).
Thus, as the complexity of the error patterns grows, more data

bits of CLC(16,40) are affected, reducing the code correction
efficacy in comparison to the others.

Figure 11 shows all CLC versions reach better detection
results than Matrix and Reed-Muller(2,5). Besides, both
CLC modes have the same detection rates (so, the figure
uses only CLC, instead of CLC-E or CLC-S), since the
standard and extended modes only influence the correction
performance.

One striking result is the increase in the CLC error detec-
tion rate when the injection of error rises from 5 to 6. This

phenomenon is explained by the fact that CLC’s algorithm
applies extended Hamming for each row, allowing the detec-
tion of double errors meanwhile the code cannot differ an odd
number of errors (i.e., 1, 3, 5).

Note that no code detected 8 errors; but, all CLCs in
both modes, except CLC-S(16,40), correct some patterns
of 8 errors. Our experiments considered a CRC only
detected an error if the number of syndromes equivalent
to this error was detected. An 8-bit error pattern is a very
complex type, most of this errors in CLC’s structures

85.7

33.6

5.2 2.7
2.2

100.0

19.7

8.6
4.2

62.88

44.25

23.2
20.07

11.54
13.93

69.7

49.8

24.7

12.0

2.5

81.0

64.1

45.2

40.1

17.5

26.1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Co
rr

ec
�o

n
(%

)

Number of errors

Matrix
Reed-Muller(2,5)
CLC-S(16,39)
CLC-S(16,40)
CLC-S(16,54)

Fig. 9 Error correction rates
comparison with standard CLCs

85.7

33.6

5.2 2.7
2.2

100

19.74

8.62
4.21 2.2

48.69

33.58

22.58

14.78

22.36

62.1

35.6

18.4

10.1 16.9

75.5

54.7

40.5

19.4

29.5

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Co
rr

ec
�o

n
(%

)

Number of errors

Matrix
Reed-Muller(2,5)
CLC-E(16,39)
CLC-E(16,40)
CLC-E(16,54)

Fig. 10 Error correction rates
comparison with extended CLCs

424 J Electron Test (2018) 34:417–433

affected more redundant bits than data bits, this helps the
correction of data bits, but not the detection, that de-
pends on the redundant bits reliability. In situations of
accumulated errors, the appliance of memory refresh
techniques it is also required to correct transient and
accumulated faults; however, this procedure increases
the energy consumption [15]. Nonetheless, as presented
in the faults experiments, the high correction rates of
CLC-S and CLC-E diminish the necessity of memory
refresh.

7 Reliability Estimation

This section shows a series of experiments using Matlab to
evaluate the reliability of the proposed techniques.

7.1 Detection and Correction Capabilities

Similarly to the works [17, 21], this one assumes transient
errors occur with a Poisson distribution and bit errors are
statistically independent. Equation 29, which is based on
Argyrides et al. [2], depicts the error detection (EDetection) at
each time (t) as a function of the probability of detecting errors
(ED) in a possible faulty memory (MF) regarding Me.

EDetection tð Þ ¼ ∑
Me

i¼1
P ED=MFð Þ ¼ ∑

Me

i¼1
P ED=iEð Þ � P iF=MFð Þ ð29Þ

WhereMe is the maximum number of errors that can arise
during t, and iE is the probability of occurring errors in anMF.

Equation 30 depicts the probability of occurring errors (iE)
in an MF, whereas, Eq. 31 provides the probability of occur-
ring i errors in a word with (d + p) bits.

P iE=MFð Þ ¼ P iEð Þ
P MFð Þ ð30Þ

P iEð Þ ¼ d þ p
i

� �
� 1−e−λt
� �� e−λ dþp−ið Þt ð31Þ

Where the number of data bits is d, p denotes the protection
bits, λ is the upset occurrence rate, and t is the time. Equation
32 gives the probability of the memory is faulty.

P MFð Þ ¼ 1−e−λ dþpð Þt ð32Þ

Placing Eqs. 30–32 in Eq. 29, the error detection at each
time is computed according to Eq. 33. The detection cov-
erage considers the occurrence from one to eight flip bits.
Also, P(ED/iE) is obtained on Section 6 through statistical
analysis regarding several error injections presented in
Figs. 9, 10 and 11.

EDetection tð Þ ¼ ∑
Me

i¼1
P ED=iEð Þ �

d þ p
i

� �
� 1−e−λt
� �� e−λ dþp−ið Þt

1−e−λ dþpð Þt ð33Þ

Figures 12 and 13 compare the correction coverage of
Matrix, Reed-Muller(2,5), and the three formats of CLC-S
and CLC-E, respectively. As the time rises, the probability
of multiple errors occurrence also rises as well; thus, the
curves of correction capability of all methods decrease.

91.7

65.7

36.9

15.9

2.3

39.53

29.15

39.1

57.68

12.96

56.98
68.6

100.0

66.3
73.1

13.9

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

De
te

c�
on

 (%
)

Number of errors

Matrix

Reed-Muller(2,5)

CLC(16,39)

CLC(16,40)

CLC(16,54)

Fig. 11 Detection rates
comparison with extended and
standard CLCs

J Electron Test (2018) 34:417–433 425

Figure 12 shows that despite the higher correction rates for
all formats of CLC-S, for the majority of scenarios,Matrix and
Reed-Muller(2,5) have the higher and lower execution time
for error correction, respectively. Although more redundant
bits allow dealing with more MCU patterns, a large number
of these bits also impacts the error correction capability, rais-
ing the probability of bit-flips.

The formats of CLC-E improve the error correction signif-
icantly, allowing CLC-E(16,39) to have similar results in the
early days and outperform Reed-Muller(2,5) from day 13,125
until the end of the experiment as is depicted in Fig. 13.
However, the high redundancy downgraded the CLC(16,59)
performance, being only ahead of Matrix code.

0

10

20

30

40

50

60

70

80

90

100

1
12

51
25

01
37

51
50

01
62

51
75

01
87

51
10

00
1

11
25

1
12

50
1

13
75

1
15

00
1

16
25

1
17

50
1

18
75

1
20

00
1

21
25

0
22

50
0

23
75

0
25

00
0

26
25

0
27

50
0

28
75

0
30

00
0

31
25

0
32

50
0

33
75

0
35

00
0

36
25

0
37

50
0

38
75

0
40

00
0

Er
ro

rc
or

re
c�

on
(%

)

Time (Days)

Matrix
Reed-Muller(2,5)
CLC-E(16,39)
CLC-E(16,40)
CLC-E(16,54)

Fig. 13 The same of Fig. 12,
exchanging CLC-S by CLC-E

0

10

20

30

40

50

60

70

80

90

100

1
12

51
25

01
37

51
50

01
62

51
75

01
87

51
10

00
1

11
25

1
12

50
1

13
75

1
15

00
1

16
25

1
17

50
1

18
75

1
20

00
1

21
25

0
22

50
0

23
75

0
25

00
0

26
25

0
27

50
0

28
75

0
30

00
0

31
25

0
32

50
0

33
75

0
35

00
0

36
25

0
37

50
0

38
75

0
40

00
0

Er
ro

rc
or

re
c�

on
(%

)

Time (Days)

Matrix

Reed-Muller(2,5)

CLC-S(16,39)

CLC-S(16,40)

CLC-S(16,54)

Fig. 12 Error correction for the
three standard formats of CLC,
Matrix and Reed-Muller(2,5)
(λ = 10−5 upsets/bit per and day
16-bit word size)

426 J Electron Test (2018) 34:417–433

Figure 14 shows that even for detection analysis,
Reed-Muller(2,5) achieved better results than the other codes.
CLC(16,40) presents marginally better results than the other
CLC versions; however, the difference increases from 1%
(day 5000) to 72% (day 40,000). Again, the high redundancy
of CLC(16,54) impacts in the experimental results, which
allowed it to be surpassed by the Matrix code in day 12,501.

7.2 Reliability and MTTF Estimation

This section evaluates the reliability and MTTF of the ECCs
regarding a memory containing 16 registers, each one with 16
data bits. Equation 34 computes the reliability of a register

over time. Where 1 – P(MF) is the probability of non-errors
occurrence, iCI denotes i correctable errors, and P(iCI) the

probability of iCI occurrence. Thus, ∑Me
i¼1P iFð Þ�P iCIð Þ

Me defines
the probability of occurrence of errors that can be corrected
by the code to be evaluated.

r tð Þ ¼ 1−P MFð Þ þ ∑Me
i¼1P iEð Þ � P iCIð Þ

Me
ð34Þ

LetM be the number of registers, then the memory reliabil-
ity R(t) over time is calculated through the product of reliabil-
ities of all registers. Subsequently, considering the reliabilities

of registers having the same values, Eq. 35 calculates the
reliability of a memory device.

R tð Þ ¼ r tð ÞM ð35Þ

Equation 36 illustrates that MTTF of the memory device
protected by the ECC is obtained through the integration of
the reliability function.

MTTF ¼ ∫∞0 R tð Þ dt ð36Þ

Figure 15 shows the reliability over time of a word with 16
bits for Matrix and Reed-Muller(2,5) codes and all formats of

0

10

20

30

40

50

60

70

80

90

100

1
12

51
25

01
37

51
50

01
62

51
75

01
87

51
10

00
1

11
25

1
12

50
1

13
75

1
15

00
1

16
25

1
17

50
1

18
75

1
20

00
1

21
25

0
22

50
0

23
75

0
25

00
0

26
25

0
27

50
0

28
75

0
30

00
0

31
25

0
32

50
0

33
75

0
35

00
0

36
25

0
37

50
0

38
75

0
40

00
0

Re
lia

bi
lit

y
of

w
or

d

Time (Days)

Matrix

Reed-Muller(2,5)

CLC-S(16,39)

CLC-S(16,40)

CLC-S(16,54)

Fig. 15 Effect of time on the
reliability of a 16-bit word for all
formats of CLC-S, Matrix, and
Reed-Muller(2,5) codes (λ = 10−5

upsets/bit/day)

0

10

20

30

40

50

60

70

80

90

100

1
12

51
25

01
37

51
50

01
62

51
75

01
87

51
10

00
1

11
25

1
12

50
1

13
75

1
15

00
1

16
25

1
17

50
1

18
75

1
20

00
1

21
25

0
22

50
0

23
75

0
25

00
0

26
25

0
27

50
0

28
75

0
30

00
0

31
25

0
32

50
0

33
75

0
35

00
0

36
25

0
37

50
0

38
75

0
40

00
0

Er
ro

rd
et

ec
�o

n(
%

)

Time (Days)

Matrix

Reed-Muller(2,5)

CLC(16,39)

CLC(16,40)

CLC(16,54)

Fig. 14 Error detection capability
for all codes according to the
execution time (λ = 10−5 upsets/
bit per day, 16-bit word size)

J Electron Test (2018) 34:417–433 427

0

10

20

30

40

50

60

70

80

90

100

1 626 1251 1876 2501 3126 3751 4376 5001 5626 6251 6876 7501 8126 8751 9376 10001

Re
lia

bi
lit

yo
fm

em
or

y

Time (Days)

Matrix

Reed-Muller(2,5)

CLC-S(16,39)

CLC-S(16,40)

CLC-S(16,54)

Fig. 17 Effect of time on the
reliability of a 16-word memory
(λ = 10−5 upsets/bit/day, 16-bit
word size)

0

10

20

30

40

50

60

70

80

90

100

1
12

51
25

01
37

51
50

01
62

51
75

01
87

51
10

00
1

11
25

1
12

50
1

13
75

1
15

00
1

16
25

1
17

50
1

18
75

1
20

00
1

21
25

0
22

50
0

23
75

0
25

00
0

26
25

0
27

50
0

28
75

0
30

00
0

31
25

0
32

50
0

33
75

0
35

00
0

36
25

0
37

50
0

38
75

0
40

00
0

Re
lia

bi
lit

y
of

w
or

d

Time (Days)

Matrix

Reed-Muller(2,5)

CLC-E(16,39)

CLC-E(16,40)

CLC-E(16,54)

Fig. 16 Effect of time on the
reliability of a 16-bit word for all
formats of CLC-E, Matrix, and
Reed-Muller(2,5) codes (λ = 10−5

upsets/bit/day)

428 J Electron Test (2018) 34:417–433

CLC-S, with an upset occurrence rate of 10−5 bits per day.
This experiment proves that Reed-Muller(2,5) achieved the
best results, followed by all CLC-S formats.

Figure 16 shows the same type of results of Fig. 15, but
with all formats of CLC-E instead of CLC-S. These results
show a reliability increase; with CLC-E(16,39) and CLC-E
(16,40) very competitive compared to Reed-Muller(2,5). In
fact, CLC-E(16,39) surpasses Reed-Muller(2,5) after
13,751 days, and the reliability difference between
Reed-Muller(2,5) and CLC-E(16,40) is meaningless before
13,751 days.

Figure 17 compares the reliability of all formats of CLC-S,
Matrix, and Reed-Muller(2,5) codes for a memory of 16
words. The rate of upsets occurrence (λ) is 10−5 bits per day.

Though Reed-Muller(2,5) stands out relatively, the reliability
of all codes drops highly through the days since the results
reflect the composed reliability of all registers.

Figure 18 shows the same type of results of Fig. 17, but
employing all formats of CLC-E instead of CLC-S. Despite
the significant difference between CLC-E(16,40) and
Reed-Muller(2,5) redundancies, the variation on reliabilities
is less than 5%. The increase of correction capacity, provided
by the extended CLCs, is the main reason for these results,
although the vast redundancy of both modes of CLC(16,54)
reduces the reliability of the memory meaningfully.

Table 5 shows the results of MTTF for memory devices
protected by the Matrix, Reed-Muller(2,5) codes and both
modes of CLC. The MTTFs of all formats and modes of

0

10

20

30

40

50

60

70

80

90

100

1 626 1251 1876 2501 3126 3751 4376 5001 5626 6251 6876 7501 8126 8751 9376 10001

Re
lia

bi
lit

yo
fm

em
or

y

Time (Days)

Matrix

Reed-Muller(2,5)

CLC-E(16,39)

CLC-E(16,40)

CLC-E(16,54)

Fig. 18 Effect of time on the
reliability of a 16-word memory
(λ = 10−5 upsets/bit per day, 16-
bit word size)

J Electron Test (2018) 34:417–433 429

CLC have an intermediate value between the Matrix and
Reed-Muller(2,5) codes. Besides, the MTTF of Reed-Muller
(2,5) is only 3.2 and 6.5% greater than the MTTF of CLC-E
(16,40) and CLC-E(16,39).

8 Synthesis Results

This section presents and discusses the synthesis results of the
implementations of all modes and formats of CLC,
Reed-Muller(2,5) and Matrix. Tables 6 and 7 show the area
consumption, power dissipation, and maximum delay, for the
encoder and decoder implementation, respectively, which
were obtained with Cadence’s Encounter RTL Compiler for
a 65 nm CMOS technology. Note that standard and extended
CLC modes use the same encoders; thus, only the decoder of
the extended mode has an additional synthesis cost. The CLC
codes proposed, as well the other ECC used in this paper, are
entirely combinational, being suitable for applications that
require a low delay.

Table 6 displays Reed-Muller(2,5) and Matrix have the
highest and lowest power dissipation and delay, respectively.
CLC(16,54) achieved lower overall results in area and power

consumption, even when comparing to CLC(16,39) and CLC
(16,54) due to the extended Hamming applied in this code
being less complex than the other two CLCs. Matrix applies
4-bits Hamming, implying a small difference (near to 8%
higher) in comparison to CLC(16,54). CLC(16,39) and CLC
(16,40) presented quite similar results, despite the Hamming
applied in first required using less area than the second, reduc-
ing the power dissipation. The maximum delay was close in
all formats of CLC, the extended Hamming complexity and
number of data bits divisions are the main reasons for affect-
ing the delay in each code.

Table 7 illustrates the Matrix code has the lowest of all
costs because this code has a simpler algorithm in compar-
ison to Reed-Muller(2,5), while when compared to CLCs,
the appliance of extended Hamming in CLC’s algorithm
increases its redundancy, raising the overall cost. Both
CLC-E(16,54) and Reed-Muller(2,5) decoders are highly
area consumers, whereas CLC-S(16,39) and Matrix are the
most economical ones. The power dissipation is one of the
higher bottleneck of the Reed-Muller(2,5) decoder since it
consumes more than 30% than CLC-E(16,54) and twelve

Table 5 MTTF of memory devices - 16-word memory, 16-bit word
size, λ = 10−5 upsets/bit/day

Code Error rate Code Error rate

Matrix 261.18 CLC-S(16,40) 314.64

Reed-Muller(2,5) 461.87 CLC-E(16,40) 446.87

CLC-S(16,39) 303.66 CLC-S(16,54) 275.79

CLC-E(16,39) 431.93 CLC-E(16,54) 373.09

Table 6 Synthesis results of the encoders – absolute and normalized
values – concerning Reed-Muller(2,5)

Method Area Power Delay

(μm2) (%) (mW) (%) (ns) (%)

Reed-Muller
(2,5)

504 100.0 0.037 100.0 0.74 100.0

Matrix 298 59.1 0.010 27.0 0.15 20.2

CLC(16,39) 402 79.7 0.023 62.1 0.39 52.7

CLC(16,40) 435 86.3 0.024 64.8 0.35 47.3

CLC(16,54) 258 51.2 0.011 29.7 0.41 55.4

9 Detection, Correction and Costs Analysis

Correlating high error correction rates with low overhead of
silicon implementation allow choosing an efficient ECC for
memory devices. Argyrides et al. [2] proposed Correction
Coverage per Cost (CCC) and Detection Coverage per Cost
(DCC) metrics to cover these combined requirements.
However, by splitting up the total coverage into two metrics,
one misses the overall efficiency picture of a given code.
Therefore, a more appropriate metric should consider the
two-coverage metrics together, because both detection and
correction are critical phases for codes applied for fault toler-
ance reasons.

We propose in Eq. 37 the Total Coverage per Cost
(TCC), which is a design metric that covers the ECC im-
plementation cost (area consumption, power dissipation
and maximum delay for the decoder modules). TCC high-
lights the importance of the primary design metric, which
is error detection/correction performance, particularly for
MCU errors. TCC is directly proportional to the fault tol-
erance coverage, which encompasses both error detection
and recovery simultaneously. Additionally, TCC is

inversely proportional to the costs for data word coding/
decoding process, which covers area consumption, power
dissipation, and delay. Thus, the higher TCC is, the better
the method is.

TCC ¼ Detection rate� Correction rate
Area� Power � Delay

ð37Þ

For each coding method, the parameters of Eq. 37 are obtain-
ed with the following rules: (i) Correction rate and Detection
rate are the same values shown in Figs. 9, 10 and 11, which
were extracted from the experiments described in Section 4; (ii)
Area, Power, and Delay are the ones described in Table 7.
Figure 19 shows the TCC produced by Eq. 37. Note that rising
Area, Power, and Delay, minimizes TCC, and the opposite oc-
curs with the increase of the Correction rate andDetection rate.

Figure 19 shows a tendency of reducing TCC with the
increase of errors, which is a consequence of the correction
and detection rates reduction. Additionally, Reed-Muller(2,5)
and all formats of the extended CLC have insignificant TCCs
due to their high combined synthesis costs. Finally, TCCs of
all codes are 0 for eight errors because no ECC could detect
errors in such scenarios.

Although works like [2, 7] use a similar method to com-
pare ECCs, we comprehend that it is a qualitative metric
without physical meaning. Consequently, we decide to nor-
malize each parameter of Eq. 37 by its maximum value
regarding all codes. Additionally, one can notice that cor-
rection and detection rates reduce drastically with the errors
increase, but the synthesis values remain the same, and the
designer can be interested in evaluating the best code for
each error scenarios.

Figure 20 shows a new proposal of TCC that normalizes
the values according to the most efficient code for each error
scenario. This perspective of TCC highlights that although a
code could have a low absolute TCC, comparatively it is the
best one for dealing with MCUs for that error scenario; be-
sides, in the case of the newest CMOS technologies employed
in critical applications, the designers are interested in codes for
dealing MCUs with several errors.

Table 7 Synthesis results of the decoders – absolute and normalized values – according to Reed-Muller(2,5)

Method
Area Power Delay

(μm²) (%) (mW) (%) (ns) (%)
Reed-Muller(2,5) 4312 100.0 0.737 100.0 2.12 100.0
Matrix 1090 25.2 0.050 6.7 1.01 59.5
CLC-S(16,39) 1194 27.7 0.085 11.5 1.30 61.3
CLC-E(16,39) 2612 60.5 0.268 36.3 2.55 120.2
CLC-S(16,40) 1351 31.3 0.076 10.3 1.33 62.7
CLC-E(16,40) 3360 77.9 0.331 44.9 2.50 118.0
CLC-S(16,54) 1665 38.6 0.096 13.0 1.35 63.6
CLC-E(16,54) 4418 102.4 0.490 66.4 2.53 119.3

Legend: cells marked in blue and red have the best and worst results, respectively

430 J Electron Test (2018) 34:417–433

times more than Matrix, which is the most power-efficient
code followed by CLC-S(16,40) and CLC-S(16,39). To
implement the syndrome calculation to correct more ag-
gressive error scenarios with substantial redundancy, the
CLC-E(16,54) decoder has more than 2 times the delay
of CLC-S(16,39). The analysis of these results shows that
although Reed-Muller(2,5) and CLC-E(16,54) are the most
efficient codes for error correction, CLC-S(16,39) and
Matrix are the most efficient codes regarding area con-
sumption, power dissipation, and delay. Finally, as a gen-
eral conclusion regarding the CLC codes, the increase of
rows of data bits impacts the synthesis cost for the de-
coders, since the error correction algorithm of standard
and extended CLC modes verifies all rows to correct
bit-flips.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8

TC
C

(r
el

a�
ve

 to
 th

e
nu

m
be

r o
f e

rr
or

s)

Number of errors

Matrix

Reed-Muller(2,5)

CLC-S(16,39)

CLC-E(16,39)

CLC-S(16,40)

CLC-E(16,40)

CLC-S(16,54)

CLC-E(16,54)

Fig. 20 TCC normalized for each
error scenario

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

1 2 3 4 5 6 7 8

TC
C

Number of errors

Matrix

Reed-Muller(2,5)

CLC-S(16,39)

CLC-E(16,39)

CLC-S(16,40)

CLC-E(16,40)

CLC-S(16,54)

CLC-E(16,54)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

TC
C

Number of errors

Fig. 19 TCC of all coding methods produced by Eq. 37

J Electron Test (2018) 34:417–433 431

References

1. Argyrides C, Zarandi H, Pradhan D (2007) Matrix codes: multiple
bit upsets tolerant method for SRAMmemories. In: Proceedings of
IEEE international symposium on defect and fault-tolerance in
VLSI systems (DFT), pp 340–348

2. Argyrides C, Pradhan D, Kocak T (2011) Matrix codes for reliable
and cost efficient memory chips. IEEE Trans Very Large Scale
Integr VLSI Syst 19(3):420–428

3. Castro H, Silveira J, Coelho A, Silva F, Magalhães P, de Lima Jr O
(2016) A correction code for multiple cells upsets in memory de-
vices for space applications. In: Proceedings of IEEENEWCAS, pp
1–6

4. ChuggA,MoutrieM, Jones R (2004) Broadening of the variance of
the number of upsets in a read-cycle by MBUs. IEEE Trans Nucl
Sci 51(6):3701–3707

5. Ferreyra P, Marques C, Ferreyra R, Gaspar J (2005) Failure map
functions and accelerated mean time to failure tests: new ap-
proaches for improving the reliability estimation in systems ex-
posed to single event upsets. IEEE Trans Nucl Sci 52(1):494–500

6. Gherman V, Evain S, Auzanneau F, Bonhomme Y (2011)
Programmable extended SEC-DED codes for memory errors. In:
Proceedings of IEEE VLSI test symposium (VTS), pp 140–145

7. Guo J, Xiao L,Mao Z, Zhao Q (2014) Enhanced memory reliability
against multiple cells upsets using decimal matrix code. IEEE Trans
Very Large Scale Integr VLSI Syst 22(1):127–135

8. Hazucha P, Svensson C (2000) Impact of CMOS technology scal-
ing on the atmospheric neutron soft error rate. IEEE Trans Nucl Sci
47(6):2586–2594

9. Hentschke R, Marques F, Lima F, Carro L, Susin A, Reis R (2002)
Analyzing area and performance penalty of protecting different

432 J Electron Test (2018) 34:417–433

Regarding scenarios with a single error, all codes achieve
100% of error detection and correction; consequently, the
TCC metric of all codes differs only on the combined synthe-
sis cost, whose lowest value is achieved by the Matrix code
implementation. Nevertheless, both CLC-S(16,39) and
CLC-S(16,40) have low combined synthesis cost attributing
them the second and third position.

Similar TCC results are obtained with two-error scenarios;
however, the Matrix code does not reach 100% of error detec-
tion and correction; consequently, all other codes performs
proportionally much better. The inefficacy ofMatrix in detect-
ing and correcting more than three errors reduces its TCC
significantly. Besides, Reed-Muller(2,5) and the extended
CLCs, which are the most efficacious correcting and detecting
codes, reach very insignificant TCC results due to their high
combined synthesis costs.

The high redundancy of CLC-S(16,54) makes increasing
its TCC (proportionally to the other codes) with the increase of
errors until reaching seven errors; then, its efficacy is
exceeded by CLC-S(16,39), which is a lightweight code.

CLC-S(16,39) is more efficient than CLC-S(16,40) for the
first two scenarios, due to the overall cost of the first is smaller
than the second. CLC-S(16,39) is also more effective from six
and seven errors scenario, these cases are justified by the cor-
rection and detection rates being better for such scenarios.
These results indicate the benefits of modifying the format
of the code to explore more parity bits instead of check bits.
TCC of the CLC-E formats surpassed Reed-Muller(2,5) in all
scenarios, due to the higher error coverage achieved by the
CLC-E algorithm with lower cost. However, when compared
to Matrix, the extended formats only exceeds it from five to
seven errors. In all scenarios, CLC-S formats achieved better
results than the CLC-E formats. Finally, except for single and
double error scenarios (and in triple error scenario for CLC-S
(16,54)), the CLC-S formats surpass all other codes.

10 Conclusion

This paper proposes a broader study of the CLC [3], an
error detection/correction code for memory arrays subject-
ed to MCUs. CLC can operate in standard (CLC-S) or
extended (CLC-E) mode using parity and extended
Hamming code to improve the detection and correction
of various MCU patterns. CLC-E differs from CLC-S by
applying twice the correction procedure to handle complex
patterns of MCUs.

We evaluated in standard and extended modes the CLC
(16,40) proposed in [3] with two other 2D schemes - CLC
(16,39) and CLC(16,54). The first divides a 16-bit word into
2 rows of 8 bits, and the second divides the same word into 8
rows of 2 bits. The CLC codes presents scalability for different
data bits sizes, diminishing the redundancy addition rate as

well as the data bits applied grows. For instance, for a
128-bit data, the redundancy addition is near to 72.6%.

All CLC versions surpassed Matrix and Reed-Muller(2,5)
codes in most of the error scenarios evaluated for correction
and detection analysis. The experimental results show the ex-
tended modes of CLC correct more than 20% of errors com-
pared to the standard mode for scenarios from 3 to 5 errors, in
average. Although Reed-Muller(2,5) and all CLC formats
have achieved 100% of error detection for 1 to 4 error scenar-
ios, the Reed-Muller(2,5) error correction capability drops
dramatically compared to the CLC codes. This conclusion is
crucial to deal with MCUs, which are very likely to occur as
technology dramatically scales down.

We also performed an MTTF analysis to evaluate the im-
pact of each code in being susceptible to errors during the
memory lifetime.

Finally, we proposed TCC, a new design metric employed
to all ECCs to evaluate the tradeoff of high detection and
correction error efficacy versus the decoder implementation
costs (area consumption, power dissipation, and delay). TCC
allows us concluding CLC is a well suitable option for em-
bedded systems designed to operate in harsh environments,
where MCUs are strongly expected to occur, allied with an
excellent balance between error coverage and synthesis cost.

Felipe Gaspar Alan e Silva is a master’s student at Federal University of
Ceará since 2016. He achieved his bachelor degree in Teleinformatics
Engineering in 2016 at Federal University of Ceará. His research interests
are in Fault Tolerance, Error Correction Codes, Embedded Systems,
Networks on Chip, Software & Hardware Testing, Real Time Systems.
Currently, he works as a researcher at the Computer Systems Engineering
Laboratory (LESC).

Ricardo Jardel Nunes da Silveira is an Assistant Professor at
Teleinformatics Department (DETI), Federal University of Ceará
(UFC), Brazil, since 2011. He received a Master degree in
Teleinformatics Engineering from Federal University of Ceará, Brazil,
in 2008. His research interests are in the areas of embedded systems on
digital circuits, computer architecture, security, fault tolerance, and real-
time systems. Currently, he is a doctorate student in DETI/UFC and
participates in two research projects and he works as a researcher at the
Computer Systems Engineering Laboratory (LESC).

Jarbas Aryel Nunes Silveira is an Adjunct Professor at Teleinformatics
Department (DETI), Federal University of Ceará (UFC), Brazil, since
2009. He received his Ph.D. in Teleinformatics Engineering from
Federal University of Ceará, Brazil, in 2015. His research interests are
in the areas of embedded systems on digital circuits, computer architec-
ture, on-chip communication architectures, fault tolerance, and real-time
systems. Currently, he participates in three research projects and he works
as a researcher at the Engineering Laboratory Computer Systems (LESC).

César Augusto Missio Marcon is professor at Graduate Program in
Computer Science of Pontifical Catholic University of Rio Grande do
Sul, Brazil, since 1995. He received his Ph.D. in Computer Science from
Federal University of Rio Grande do Sul, Brazil, in 2005. Professor
Marcon is member of IEEE. He has more than 100 papers published in
prestigious journals and conference proceedings. Since 2005, prof.
Marcon coordinated nine research projects in areas of telecom, and tele-
medicine. He is advisor of MsC. and Ph.D. graduate students in areas of
NoC based MPSoC and Wireless Sensor Networks.

Fabian Vargas obtained his Ph.D. Degree in Microelectronics from the
Institut National Polytechnique de Grenoble (INPG), France, in 1995. At
present, he is Full Professor at the Catholic University (PUCRS) in Porto
Alegre, Brazil. He holds 6 BR and international patents and published over
200 refereed papers. Prof. Vargas is associate researcher of the BRNational
Science Foundation since 1996. F. Vargas has experience in Computer
Science, focusing on Computer Systems Architecture, acting on the follow-
ing topics: fault-tolerant systems design for critical applications, design of
on-chip sensors for reliability insurance, design for electromagnetic
compatibility/ionizing radiation tolerance and on-line testing. Prof. Vargas
is a Golden Core Member of the IEEE Computer Society and Senior
Member of the IEEE.

Otávio Alcântara de Lima Jr. is an assistant professor at the Federal
Institute of Technology of Ceara, Brazil. He received a Ph.D. in
Microelectronics in 2015 from Jean Monnet University - France. He
received his M.Sc. degree in Teleinformatics Engineering in 2012 from
Federal University of Ceara, Brazil. His research interest includes embed-
ded systems, MPSoCs and NoCs.

J Electron Test (2018) 34:417–433 433

digital modules with hamming code and triple modular redundancy.
In: Proceedings of symposium on integrated circuits and systems
design (SBCCI), pp 95–100

10. Hsiao M, Bossen D, Chien R (1970) Orthogonal Latin Square
codes. IBM J Res Dev 4(4):390–394

11. Hsu C-L, Ho M-H, Lin C-F (2009) Novel built-in current-sensor-
based testing scheme for CMOS integrated circuits. IEEE Trans
Instrum Meas 58(7):2196–2208

12. Ibe E, Taniguchi H, Yahagi Y, Shimbo K, Toba T (2010) Impact of
scaling on neutron-induced soft error in SRAMs from a 250 nm to a
22 nm design rule. IEEE Trans Electron Devices 57(7):1527–1538

13. LaBel K, Barnes C, Marshall C, Johnston A, Reed R, Barth J,
Seidleck C, Kayali S, O’Bryan M (2000) A roadmap for NASA’s
radiation effects research in emerging microelectronics and photon-
ics. In: Proceedings of IEEE aerospace conference, pp 535–545

14. Liu S, Xiao Y,MaoG (2016) Extend orthogonal Latin Square codes
for 32 bit data protection in memory applications. Microelectron
Reliab 63:278–283

15. Lue S, Huang H (2017) Adaptive block-based refresh techniques
for mitigation of data retention faults and reduction of refresh pow-
er. In: Proceedings of Test Conference in Asia (ITC-Asia), pp 101–
106

16. Maestro J, Reviriego P (2008) Study of the effects of MBUs on the
reliability of a 150 nm SRAM device. In: Proceedings of ACM/
IEEE design automation conference (DAC), pp 930–935

17. Miremadi S, Zarandi H (2005) Reliability of protected techniques
used in fault-tolerant cache memories. In: Proceedings of IEEE
annual Canadian conference on electrical and computer engineering
(CCECE), pp 776–779

18. Radaelli D, Puchner H, Wong S, Daniel S (2005) Investigation of
multibit upsets in a 150 nm technology SRAM device. IEEE Trans
Nucl Sci 52(6):2433–2437

19. Reviriego P, Argyrides C, Maestro J, Pradhan D (2011) Improving
memory reliability against soft errors using block parity. IEEE
Trans Nucl Sci 58(3):981–986

20. Reviriego P, Pontarelli S, Maestro J, Ottavi M (2013) Reducing the
cost of single error correction with parity sharing. IEEE Trans
Device Mater Reliab 13(3):420–422

21. Saleh A, Serrano J, Patel J (1990) Reliability of scrubbing recovery
techniques for memory systems. IEEE Trans Reliab 39(1):114–122

22. Sanchez-Macian A, Reviriego P, Maestro J (2014) Hamming SEC-
DAED and extended hamming SEC-DED-TAED codes through
selective shortening and bit placement. IEEE Trans Device Mater
Reliab 14(1):574–576

23. Satoh S, Tosaka Y, Wender A (2000) Geometric effect of multiple-
bit soft errors induced by cosmic ray neutrons on DRAM’s. IEEE
Electron Device Lett 21(6):310–312

24. Toro D, Arzel M, Seguin F, Jezequel M (2014) Soft error detection
and correction technique for radiation hardening based on C-
element and BICS. IEEE Trans Circuits Syst Express Briefs 61
(12):952–956

25. Vargas F, Nicolaidis M (1994) SEU-tolerant SRAM design based
on current monitoring. In: Proceedings of IEEE international sym-
posium on fault tolerant computing, pp 106–115

26. Varghese B, Sreelal S, Vinod P, Krishnan A (2013) Multiple bit
error correction for high data rate aerospace applications. In:
Proceedings of IEEE conference on information communication
technologies (ICT), pp 1086–1090

	An Extensible Code for Correcting Multiple Cell Upset in Memory Arrays
	Abstract
	Introduction
	Related Work
	CLC - Error Correction and Detection Code
	Variation of CLC 2D Structure
	Redundancy Analysis
	Failure Injection Experiments
	Reliability Estimation
	Detection and Correction Capabilities
	Reliability and MTTF Estimation

	Synthesis Results
	Detection, Correction and Costs Analysis
	Conclusion
	References

