
Broadcast- and Power-aware Wireless NoC for
Barrier Synchronization in Parallel Computing

Hemanta Kumar Mondal1, Rodrigo Cadore Cataldo1, Cesar Augusto Missio Marcon2, Kevin Martin1, Sujay Deb3, Jean-Philippe Diguet1
1University of Southern Brittany (UBS), Lab-STICC, Lorient, France, 2Pontifical University of Rio Grande do Sul, Brazil, 3IIIT Delhi, India

Email: 1hemantam@iiitd.ac.in, 1rodrigo.cataldo@acad.pucrs.br, 2cesar.marcon@pucrs.br,
1{kevin.martin, jean-philippe.diguet}@univ-ubs.fr, 3sdeb@iiitd.ac.in

Abstract—Efficient synchronization is one of the basic
requirements of effective parallel computing. A key operation of
the POSIX Thread standard (PThread) is barrier
synchronization, where multiple threads block on a user-
specified point of execution until all of them have reached it.
Conventional architectures for broadcast operations limit the
achievable performance benefits as synchronization is
significantly affected due to critical path communications. This
increases the network latency and degrades the performance
dramatically. A Wireless Network-on-Chip (WiNoC) offers a
promising solution to reduce the long distance/critical path
communication bottlenecks of conventional architectures by
augmenting them with single hop, long-range wireless links. In
this paper, we propose a power-aware broadcast enabled WiNoC
architecture to reduce the cost of broadcast operations for
barrier-based applications. The proposed architecture reduces
the barrier synchronization cost up to 43.97% regarding network
latency under the PARSEC benchmarks. It also saves up to
80.49% idle-state power consumption in WIs for a 64-core
system compared with the conventional WiNoC architecture
without incurring significant overhead.

Keywords—Broadcast operation, wireless network-on-chip,
parallel computing, barrier synchronization, low power

I. INTRODUCTION

Parallel computing is currently being explored for High-
Performance Computing (HPC) platforms for scientific
research, automobile, cloud computing and data center
applications. Network-on-Chip (NoC) architecture can be
employed as a communication infrastructure in parallel
applications, and it improves the performance of the system
significantly [1]. One of the primary components of parallel
applications is synchronization, a necessity for sharing
information. Out of all the synchronization primitives, barrier
synchronization faces significant challenges during broadcast
operations due to critical path communications. Conventional
NoC architectures support broadcast operations in the form of
multiple unicast transmissions, which results in significant
system performance penalties concerning network latency and
energy consumption overhead.

The hardware-level barrier synchronization for NoC-based
systems has already been explored for sending broadcast
messages to all involved cores. A transmission-line based
hardware barrier implementation is proposed in [2] to allow a
single chip-spanning transmission line network to support
many barriers simultaneously. However, this kind of
architecture adds significant routing overhead throughout the
network. Apart from this, there is also a fanout constraint. It

increases with system size, which is not a feasible solution for
scalable barrier synchronization. Many authors [3][4][5][6][7]
have proposed a hybrid tree-based all-to-all barrier for NoC-
based system, which improves the performance by avoiding
the off-centered barrier core when compared to a master-slave
and tree barrier. The number of processing elements in a
system is increasing rapidly, and this trend will undoubtedly
continue into the future. Therefore, the distance between core-
to-core and length of the critical path is increasing rapidly. One
of the promising and CMOS-compatible solutions for heavy
broadcast traffic is the single hop, long-range wireless links
based NoC architecture. WiNoC with omnidirectional setup
plays a vital role in providing efficient broadcasting
capabilities for parallel computing on HPC platforms.

Most existing WiNoC architectures use omnidirectional
antennas along with token passing protocol to access wireless
medium, where only a single wireless pair can communicate at
a time. The primary component of WiNoC is the wireless
interface (WI) responsible for handling the wireless
communication. The major components of a WI are Mixers
(modulator and demodulator), Low Noise Amplifier (LNA)
and Power Amplifier (PA). The power consumption by these
components is shown in Fig. 1 [8]. Recently, the number of
broadcast and unicast messages in a cache coherence protocol
are explored in [9]. The percentage of broadcast messages
found is very small in case of cache coherence protocol (~5%)
[9]. Similarly, for barrier synchronization, large portion of
communications is based on unicast. Therefore, it is essential
to reduce the static/idle-state power consumption of the WIs.
As the number of WIs increases with system size, the idle-state
power consumption is a major factor in highly parallel
architectures.

To provide efficient barrier synchronization for effective
parallel computing, we propose a power-aware broadcast

63%19%

9%
9%

PA + LNA

Modulator +
Demodulation

Baseband Amplifier

Phase-locked Loop (PLL)
or Voltage-Controlled
Oscillator (VCO)

Fig. 1. Power budget of a WI. Specifications: Distance- 20mm, Data
rate- 16Gbps, Modulation- OOK, Technology node- 65nm, Total
power- 32mW [8].

296

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:25:46 UTC from IEEE Xplore. Restrictions apply.

enabled WiNoC architecture to reduce the cost of broadcast
operations significantly. Fig. 2 shows that, at time T4, messages
releasing threads on a barrier are broadcasted to all involved
cores using wireless links to improve the network latency. To
make a more power-efficient wireless interface, we also
explore the power gating technique with WIs to reduce idle-
state power. Although our architecture must be efficient for
barrier synchronization, these events occur far between, as they
demand milliseconds of application computation. From the
hardware perspective, delays of milliseconds can result in
millions of inactive cycles, which can be timely exploited by
power gating the WIs. We demonstrate the proposed work
under real applications and show the benefits over existing.

The major contributions of this work are as follows:

1. The proposal of a power-aware broadcast enabled
WiNoC architecture to improve the performance
and power saving of WIs for parallel applications.

2. The implementation and discussion of the
scalability of a partial power gated WI. To the best
of our knowledge, none of the existing works
explore power gated WI for parallel computing
running wireless/ wired based NoC.

3. The validation of our architecture under the
PARSEC benchmarks [10] and comparison with
existing architectures. To evaluate the wireless
interconnect-based proposed architecture, we have
modified the existing Noxim simulator [11] to
handle broadcast traffic.

 The remainder of this paper is organized into the following
sections. Section II briefly describes related works. The
proposed architecture including synchronization, broadcast and
power-aware WI is discussed in section III. Section IV presents
the results of performance evaluation and section V concludes
this work.

II. RELATED WORKS
Many research works have investigated the barrier

synchronization in parallel computing using NoC-based
architecture. Software-based barrier synchronization
implementations increase the latency significantly with system
size due to serialization of the barrier operation. To overcome
this, a hardware-based barrier synchronization is implemented

to support the multiple thread groups, where each has its
barrier. The proposed method reduces the latency for
serialization compared with the traditional planner wired.
However, transmission-line based approach faces several
challenges in manycore system [2]. To communicate with
every core, transmission line needs to spread the entire chip
area and require excessive branching points to connecting
cores. It is not an efficient solution due to cross-talk, inter-
channel interference for long transmission lines problems,
large fanout and then power consumption for large-size
systems. A hardware-based barrier synchronization is
implemented using G-line based network to allow for efficient
signaling of barrier arrival and departure [3]. A hybrid tree-
based all-to-all barrier for NoC-based manycore system
processors is explored in [5] to improve the performance by
avoiding the off-centered barrier core. However, they are all
based on multiple unicast packets, which is not efficient in
parallel computing. The latency is also destination-dependent,
so the message delivery time is unbalanced. The WiNoC
architecture is one of the potential solutions to handle
efficiently long-distance packets. The WiNoC architecture has
been explored to incorporate multicast support for cache
coherency protocols [12]. Recently, multiple WiNoC
architectures have been explored for efficient on-chip
communications. In directional wireless NoC, multiple
wireless links can operate at the same time without interference
[13]. A hierarchical NoC architecture with zigzag antennas and
millimeter wave transceivers are proposed to design an mm-
wave wireless NoC in [14]. The transceiver is an integral part
of WIs for WiNoC architectures, and power optimized designs
are required for achieving energy-efficient systems. Power
gating is an effective technique to save idle-state power and has
been explored for NoC infrastructures. Different distributed
controller implementations for power gating operating at
various granularity levels are introduced to save leakage/static
power [15][16].

In this work, we propose a power-efficient WiNoC
architecture to reduce the cost of broadcast operations for
barrier synchronization. We present a detailed performance
evaluation of the proposed WiNoC architecture and explore
the performance overheads and associated trade-offs for
realizing the proposed WiNoC architecture.

III. PROPOSED ARCHITECTURE
The WiNoC consists of a large number of tiles. The

0

1

2

3

At T1
0

1

2

3

At T2
0

1

2

3

At T3
0

1

2

3

At T4

Barrier

Broadcast enabled WiNoC

BarrierBarrierBarrier

Barrier Releasing Messages to all

0 1 2 N-2 N-1 N

N Processors Wireless links

0

1

2

3

At T1
0

1

2

3

At T2
0

1

2

3

At T3
0

1

2

3

At T4

Barrier

Broadcast enabled WiNoC

BarrierBarrierBarrier

Barrier Releasing Messages to all

0 1 2 N-2 N-1 N

N Processors Wireless links
Fig. 2. Representation of broadcast enabled parallel computing with
barrier synchronization.

Regular Links

Core

L1D$ L1D$

L2$

L3$

Router

Network
Interface

(NIC)

Tile Wireless Links for
broadcast operations

Base router Hybrid router

Broadcast: 1 to ALL

Regular Links

Core

L1D$ L1D$

L2$

L3$

Router

Network
Interface

(NIC)

Tile Wireless Links for
broadcast operations

Base router Hybrid router

Broadcast: 1 to ALL

Fig. 3. Broadcast enabled WiNoC architecture.

297

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:25:46 UTC from IEEE Xplore. Restrictions apply.

contents of the tile are a router, a core, caches (L1, L2, and L3),
a network interface controller and links (hops). A conventional
NoC architecture consists of routers attached to message
source/sink components; with all routers interconnected by
wires in a specific topology. WiNoC architectures rely on
strategically and optimally placed WIs at some routers,
providing long-distance wireless communication to improve
NoC performance [14]. A broadcast enabled WiNoC
architecture is shown in Fig. 3. The WiNoC topology, with
Base Routers (BRs) and Hybrid Routers (HRs), is shown in
Fig. 3. The hybrid routers are combinations of BRs and WI.
The number of WIs can be varied with system size. In our
topology, the optimal number of WIs are placed based on
simulated annealing algorithm, which is discussed in [14]. In a
conventional NoC, a dedicated synchronization controller is
usually integrated with each core to control barrier messages
[5]. The barrier control registers in a synchronization controller
handle barrier arriving and releasing messages between
involved cores. They record the number of cores that have
arrived at the barrier and activate the barrier releasing flag to
all involved cores when all the cores have reached the barrier.
Multiple types of message delivery (e.g., all-to-all, master-
slave, butterfly and tree) can be implemented. However, the
performance of the network is dramatically affected using
these conventional approaches. It is due firstly to longest core-
to core path/critical path, and secondly to the unicast
implementation of broadcast messages. To minimize these, we
explore the WiNoC architecture for efficient broadcast
communications.

A. Barrier Synchronization
The PThread standard is one of the most well-known

interfaces used for parallel computing. For developers, it offers
multiple procedures to synchronize data between application
threads or the threads themselves. For this work, we chose to
improve the barrier synchronization procedure because it has
the most to benefit for our architecture, as it releases threads by
sending the same message to multiple, up to all, destinations.
Barriers are responsible for synchronizing threads to a user-
specified location in the application. When all participating
threads reach the specified location, they can continue to
execute; otherwise, they are blocked. Therefore, we have
changed the releasing procedure to generate a single broadcast
message instead of multiple unicast ones.

The use of synchronization procedures provided by
PThread is contingent on the design of the application. The
PARSEC benchmark [10] is a collection of applications
intended for next-generation shared-memory architectures that
employ the PThread standard. For the twelve applications
available, we analyze two of them as a representative of the
PARSEC workload: Bodytrack, for a small number of
broadcast messages, and Streamcluster, for a large number of
broadcast messages. Bodytrack is a computer-vision
application that tracks a 3D pose of a mark-less body.
Streamcluster is a data-mining application that solves the
online clustering problem for a stream of input points. Both of
these applications use multiple synchronization procedures;
however, as can be seen from Table I, the barrier procedure has
the most requests. Therefore, we are able to exploit the
broadcast enabled network for a 64-core system. When
considering all data traffic generated by the application,
Streamcluster requires more than 5% of the overall traffic for
broadcast messages, as shown by Karkar et al. [9].
Performance is affected by these messages dramatically. It
increases the congestion and provides poor quality of service.
It also increases the power consumption due to the
retransmission of the same packet. CMOS compatible wireless
emerging interconnect offers many significant advantages to
overcome these drawbacks of conventional NoCs. Hence, we
consider the WiNoC architecture to reduce the number of hops
required for communication and to implement broadcast by
means of simultaneous receptions. Once the packet arrives at
the WI, the packet is then transmitted to neighboring cores by
tree-based load-balanced paths using the protocol described in
Section III.B.c. Experimentally, we found that the proposed
architecture reduces the network latency significantly during
broadcasting for barrier synchronization. On the other hand, to
reduce power consumption, we employ our power gating
scheme with unused WIs.

B. Power-aware WI
In this section, we discuss the partially power gated WI to

reduce the idle-state power consumption. This section consists
of the communication infrastructure and protocol, the
controller and the power gating scheme used on WIs. The
WiNoC architecture is explored for manycore systems
[13][14].

a) Communication Infrastructure

 The primary components of the communication
infrastructure are on-chip antenna and transceiver. A metal
zigzag antenna is adopted from [17]. In this work, we employ a

TABLE I. NUMBER OF SYNCHRONIZATION PROCEDURE CALLS
DURING THE EXECUTION OF BODYTRACK AND STREAMCLUSTER

APPLICATIONS FOR A NOC-BASED CMPS

Application

Type
Events per number of Threads

16-core
System

32-core
system

64-core
System

Bodytrack

Barrier 2,112 4,288 17,788

Condition 447 750 4,264

Mutex 9,000 10,472 37,818

Streamcluster

Barrier 208,064 364,480 728,960

Condition 381 802 1,274

Mutex 510 1,054 2,142

CTRL

WI components

LNA

Down-conversion
Mixer

Deserializer
(Buffer)

Data flit
received

RX

PA

Up-conversion
Mixer

Serializer
(Buffer)

Data to be
transmitted

TX

Pattern
matching
Decoder

PGS_signals

N-bit

Comparator

CTRL

WI components

LNA

Down-conversion
Mixer

Deserializer
(Buffer)

Data flit
received

RX

PA

Up-conversion
Mixer

Serializer
(Buffer)

Data to be
transmitted

TX

Pattern
matching
Decoder

PGS_signals

N-bit

Comparator

Fig. 4. Power gated LNA, PA and Mixers with controller.

298

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:25:46 UTC from IEEE Xplore. Restrictions apply.

non-coherent On-Off keying (OOK) modulation scheme based
transceiver for WiNoC from [14]. The wireless channel is
shared between all WIs and token passing mechanism with
round robin arbitration is used to provide the access to the
shared wireless medium. Hence, only a single broadcast
operation is possible at the same time. As illustrated in Fig. 4,
the transmitter (TX) circuitry consists of an up-conversion
mixer and a power amplifier (PA). On the receiver (RX) side,
direct-conversion topology is adopted, consisting of a low
noise amplifier (LNA), a down-conversion mixer and a
baseband amplifier. The OOK transceiver design keeps the
additional overhead added by WIs in WiNoC architecture to a
minimum. However, of all the components in WI, Mixers, PA
and LNA consume more than 80% of total WI power. Power
gating is employed with each WI to reduce the idle-state/static
power consumption.

b) Controller and Power Gating Operation

 When WIs are not in used, the controller sends them into
sleep mode to reduce the power consumption using power
gating switches as illustrated in Fig. 4. These switches are
controlled by a distributed light-weight controller (CTRL)
based on valid signals from a comparator [18]. The associated
comparator at all WI detects a valid received signal. Then
pattern matching decoder process the WI address bits. For
broadcast, the header flits employ a unique address pattern.
The controller controls the broadcast and unicast operations
based on communication traces from cores.

The proposed method works when WIs are not active. As seen
in the previous section, the percentage of broadcast messages
(~5%) is very small in case of cache coherence protocol [9].
Similarly, for barrier synchronization, the percentage of
broadcast operations is also small. Hence, the significant
amount of (~95%) communications is based on unicast. During
unicast, only a single frequency channel can communicate
based on the token passing protocol. Therefore, there is a huge
scope to reduce the idle-state power consumption at WIs.
Applying this proposed method saves significant amount of
power consumption. This WiNoC architecture can be used in
manycore architectures for scalable and efficient on-chip
communications.

c) Communication Protocol

 For deadlock-free seamless communications in WiNoC
architecture, we have adopted the routing algorithm from [19],
which is a combination of South-Last routing [19] and XY
routing to achieve an efficient deadlock-free routing for
wireless links. In [19], the South-Last routing algorithm has
been proposed for long-range single hop wired links

communication in the network. The concept of wireless links is
similar to that of long-range links, which is used to replace the
multi-hop communications in large-scale networks. The South-
Last/North-Last algorithm is a turn model routing strategy that
avoids cyclic dependencies as discussed in [19]. In a
conventional NoC, we have implemented a broadcast
mechanism in the form of tree-based load-balanced paths
inspired by the Whirl method [20]. The route for a packet is
decided by the source node and destination wireless interface.
This scheme balances the link loads for broadcast and ensures
non-duplicate packet reception.

The traditional implementation of a barrier scheme selects a
master node for collecting barrier arriving messages from all
other cores and for broadcasting barrier releasing messages to
them. This master node transmits broadcast messages to the
nearest WI and its neighbors using South-Last routing.
Otherwise, XY routing is used as a default for conventional
routing. The nearest WI broadcasts barrier releasing messages
to all nearest destination WIs using an omnidirectional setup.
Fig. 5 demonstrates how our proposed routing algorithm avoids
the deadlock and livelock situations. Fig. 5 also presents an
example of a 4×4 mesh NoC system augmented with wireless
link, which is connected between two routers with the NE-SW
direction. The routing strategy follows traditional XY routing
at all basic routers without a wireless link. XY routing avoids
S-to-E and S-to-W turns to ensure that routing is deadlock free.
However, the wireless link may take a turn from one of the
middle directions NE, NW, SE, or SW to one of the main
directions N, S, E, and W and hence may introduce 180° turns.
Hence, we need to forbid extra turns to prevent deadlock cycles
caused by the wireless links. In our routing, we forbid all turns
from the south direction along with the ones forbidden by XY
routing. To avoid such cycles, 180° turns from the south to
west directions (180° turns from negative directions) are also
prohibited, thereby providing deadlock-free routing with
wireless links.

IV. PERFORMANCE EVALUATION
 In this section, we explore the performance benefits of
parallel applications that employ barrier synchronization. We
discuss the implementation of a power-aware WiNoC
architecture along with power gated WIs in detail.

(0,3) (1,3) (2,3) (3,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

Wireless Link

(x,x) EW

N

S SE

NENW

SW

(0,3) (1,3) (2,3) (3,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

Wireless Link

(x,x) EW

N

S SE

NENW

SW

Fig. 5. Example of a 4×4 mesh NoC system augmented with wireless link
with NE-SW direction.

TABLE II. SIMULATION SETUP

Setup Components Configuration

Details of
system

architecture

CPU ALPHA ISA cores, Out-of-
order cores, 2.5GHz

L1 Cache 64KB, 4-way, LRU policy,
64B line, 1 cycle latency

L2 Cache 256KB, 8-way, LRU policy,
64B line, 10 cycle latency

Cache Coherence
Protocol

MESI

Details of
network

architecture

Topology 8×8 Mesh NoC, 8×8 Mesh
WiNoC

Routing XY for baseline, South-Last
for hybrid router node

Pipeline 4 stages
Flit size and packet size 32 bits and 64 flits

Workload PARSEC: Bodytrack and
Streamcluster

299

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:25:46 UTC from IEEE Xplore. Restrictions apply.

A. Simulation Setup
To bring out characteristics of the proposed WiNoC

architecture in the presence of real workloads, we have
considered the PARSEC Benchmarks [10]. The workloads are
simulated using Gem5 [21] and our internal simulation tool for
parallel applications for collecting traces for broadcast based
communication in the former and fast trace-based simulation in
the latter. The traces are executed on a modified version of the
Noxim simulator [11]. We consider a system size of 64 cores
for our experiments, which is representative of current
manycore technology trends. The width of all wired links is the
same as the flit size (i.e., 32 bits). The NoC switches are driven
with a clock of frequency 2.5GHz. The power gated
components are implemented using Cadence tools at 65nm
technology node. The controller is synthesized from RTL level
design with Synopsys Design Compiler using 28nm
technology node. To obtain area, power, and delay of sleep
transistors, we use Cadence tools. The summary of simulation
setup is presented in Table II.

B. Network Latency Reduction
Fig. 6 summarizes performance regarding network latency

under two PARSEC benchmarks: Bodytrack and Streamcluster
[10]. In this work, we have considered these two applications
to validate our proposed architecture, as Bodytrack uses a
smaller percentage of broadcast messages, and Streamcluster
uses a higher percentage of broadcast messages over the total
communication messages (Streamcluster has the highest
barrier usage on the PARSEC benchmarks [10]). In case of
Bodytrack, communication traces are extracted for two
different inputs such as medium and large. It employs 4
barriers for the application implementation, so 4 sources, and
uses 3 types of threads to sort inputs of threads. Streamcluster
employs a single barrier for the application implementation,
hence, only a single source. For both applications, only when
63 cores have reached the barrier it can be released. The release
procedure is done with broadcast. Hence, every 64th barrier
event is a broadcast. Therefore, the total number of broadcast
messages is 210, 267 and 11390 for Bodytrack_medium,
Bodytrack_large and Streamcluster_medium, respectively.
From the figure, it can be observed that WiNoCs have lower
network latency as compared with conventional mesh wired
NoC architectures. It can be seen that latency for Bodytrack
and Streamcluster is high for mesh architectures for 64-core
system. The proposed architecture reduces the network latency

up to 31.28% for Bodytrack with medium inputs, 36.92% for
Bodytrack with large inputs and 43.97% for Streamcluster
benchmarks. From these results, it is clear that WiNoC
architecture achieves significant performance improvements
over conventional mesh wired NoC.

C. Implementation Cost of Power-aware WI
Power saving is an essential feature of our implementation;

thus, we discuss its overheads in WiNoC architecture. WI uses
a power gating switch to keep idle-state power to a minimum.
Each power gating switch consumes 3.16μW of power. The
power consumption of additional components (i.e., comparator,
controller and power gating switch) is 0.30mW. In case of a
hybrid router, mixers, LNA, and PA consume 26mW of the
total 32mW of the transceiver power [8]. The total power
consumption by the transceiver components along with
additional components during active mode is 32.30mW.
During sleep mode, power consumption in WI comes down to
6.30mW. The proposed scheme saves up to 80.49% of the
power for each WI in sleep mode. Usually, total power
consumption by conventional WiNoC architecture or non-
power gated WIs is 320mW during active mode as shown in
Fig. 7. However, in case of barrier synchronization, the
percentage of broadcast messages is ~5% (utilized all the WIs),
and the rest ~95% is based on unicast (i.e., only a single WI
pair can communicate), which is discussed in Subsection III.A.
The proposed architecture consumes around 67mW of power
including controller overheads for ~95% of the total simulation
cycles, whereas non-power gated WIs consume 320mW of
power for throughout the application. In case of our proposed
architecture, all WIs utilize only ~5% for the total simulation
cycles and consume 323mW power including the controller
overheads. As can be seen in Fig. 7, the proposed architecture

0
20
40
60
80

100

Bodytrack
(Medium

inputs)

Bodytrack
(Large Inputs)

Streamcluster
(Medium)

Pe
ak

 la
te

nc
y

(C
yc

le
s)

Conventional NoC Proposed

Fig. 6. Peak packet latency over real benchmarks of NoC
architectures.

Fig. 8. Gain and noise figure analysis for power gated LNA and
non-power gated LNA.

Time

Unicast operations 95%

Broadcast operations 5%

Time

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

320

323

67

Non-power gated WIs

Power gated WIs

Ti
m

el
in

e

Power during Broadcasting

Power during Unicasting

Conventional Architecture

Proposed Architecture

Time

Unicast operations 95%

Broadcast operations 5%

Time

Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

320

323

67

Non-power gated WIs

Power gated WIs

Ti
m

el
in

e

Power during Broadcasting

Power during Unicasting

Conventional Architecture

Proposed Architecture

Fig. 7. Power gated WIs vs. non-power gated WIs.

300

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:25:46 UTC from IEEE Xplore. Restrictions apply.

saves a significant amount of power consumption in WIs as
compared with the conventional WiNoC. In addition, the
controller unit occupies 1.72×10-3mm2. The area overhead of
the comparator circuit is 0.46×10-3mm2.

In the last paragraph, we discussed the implementation of
power gated LNA only. We follow the exact same steps for the
power gated PA and mixer. All components are designed to
operate at a frequency of 58 GHz. The gain and noise figure
performance of power gated LNA and non-power gated LNA
are illustrated in Fig. 8. The peak gain of power gated LNA
remains the same. Performance deviations of all the power
gated components are dependent on the size of the PMOS
switch. For this experiment, the size of the PMOS transistor is
10 times larger than NMOS’ size for LNA/PA/Mixers design.
With proper sizing, performance deviations are minimized with
the cost of area penalty.

D. Summary of Proposed and Existing Works
In this section, we present a summary of proposed and

recently proposed barrier synchronization for NoC-based
systems in Table III. Our proposed method saves the cost of
broadcast operation in barrier synchronization up to 43.97%
using wireless interconnects, reducing significantly the latency
as compared with the conventional interconnect architectures.
Our proposed architecture reduces idle-state power
consumption in WIs up to 80.49%, which is compared with the
results in [18].

V. CONCLUSION
In this paper, we propose a power-aware WiNoC

architecture to maintain the parallelization gains in parallel
applications by reducing barrier synchronization latency
significantly. As can be observed from the results, the small
percentage of broadcast messages has great impact on system
performance regarding network latency. In addition, we also
employed the power gating method with WIs to reduce the
idle-state power consumption. The proposed architecture is
validated under the PARSEC benchmarks. We observed that
the proposed WiNoC architecture reduces network latency up
to 43.97% over conventional architectures. The proposed
method also saves the power consumption in WIs up to
80.49% per WI compared with the conventional WiNoCs.

REFERENCES
[1] Abadal, S., et al., “Broadcast-enabled massive multicore architectures: A

wireless RF approach.” IEEE micro, 35(5), 52-61, 2015.
[2] Oh, J., et al., “TLSync: support for multiple fast barriers using on-chip

transmission lines.” In 38th Annual International Symposium on
Computer Architecture (ISCA), 105-115, 2011.

[3] Abellán, J.L., et al., “Efficient hardware barrier synchronization in
many-core cmps.” IEEE Transactions on Parallel and Distributed
Systems, 23(8), 1453-1466, 2012.

[4] Villa, O., et al., “Efficiency and scalability of barrier synchronization on
noc based many-core architectures.” In conference on Compilers,
architectures and synthesis for embedded systems, 81-90, 2008.

[5] Wei, Z., et al., TAB barrier: Hybrid barrier synchronization for NoC-
based processors. In IEEE International Symposium on Circuits and
Systems, 409-412, 2015.

[6] Yang,J.-S., et al. “Designing tree-based barrier synchronization on 2D
mesh networks. IEEE TPDS, vol. 9, no. 6, 526-534, 1998.

[7] Abadal, S., et al. “OrthoNoC: A Broadcast-Oriented Dual-Plane
Wireless Network-on-Chip Architecture.” IEEE Transactions on Parallel
and Distributed Systems, 2017.

[8] Yu, X., et al., “Architecture and design of multichannel millimeter-wave
wireless NoC.” IEEE Design & Test, 31(6), pp.19-28, 2014.

[9] Karkar, A., et al. “A survey of emerging interconnects for on-chip
efficient multicast and broadcast in many-cores. IEEE Circuits and
Systems Magazine, vol. 16, 58–72, 2016.

[10] Bienia, C. et al. “The PARSEC Benchmark Suite: Characterization and
Architectural Implications”. PACT, 72-81, 2008.

[11] Catania, V., et al., “Cycle-Accurate Network on Chip Simulation with
Noxim.” ACM Transactions on Modeling and Computer Simulation
(TOMACS), 27(1), p.4, 2016.

[12] Duraisamy, K., et al. “Multicast-aware high-performance wireless
network-on-chip architectures.” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(3), pp.1126-1139, 2017

[13] Mondal, H.K., et al., "Interference-Aware Wireless Network-on-Chip
Architecture Using Directional Antennas," in IEEE Transactions on
Multi-Scale Computing Systems, vol. 3, no. 3, pp. 193-205, 2017.

[14] Deb, S., at el., “Design of an energy efficient CMOS compatible NoC
architecture with millimeter-wave wireless interconnects.” IEEE
Transactions on Computers, 99(1), p.1, 2012.

[15] Mondal, H. K. et al., "Adaptive multi-voltage scaling in wireless NoC
for high performance low power applications," Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1315-1320, 2016.

[16] Mondal, H.K. et al., "An energy efficient wireless Network-on-Chip
using power-gated transceivers," 2014 27th IEEE International System-
on-Chip Conference (SOCC), pp. 243-248, 2014

[17] Chen, L., D. et al., “Power punch: Towards non-blocking power-gating
of NoC routers," IEEE International Symposium on High-Performance
Computer Architecture, 378,389, 2015.

[18] Parikh, R., et al. Power-aware NoCs through routing and topology
reconfiguration," ACM/EDAC/IEEE Design Automation Conference
(DAC), 1-6, 2014.

[19] Floyd, B.A. et al.., “Intra-chip wireless interconnect for clock
distribution implemented with integrated antennas, receivers, and
transmitters.” IEEE Journal of Solid-State Circuits, 543-552, 2002.

[20] Mondal, H.K., et al., “Adaptive Multi-Voltage Scaling with Utilization
Prediction for Energy-efficient Wireless NoC.” in IEEE Transactions on
Sustainable Computing (TSUSC), vol. 2, 382-395, 2017.

[21] Ogras, U.Y. et al., “It's a small world after all": NoC performance
optimization via long-range link insertion. IEEE Transactions on very
large scale integration (VLSI) systems, 14(7), 693-706, 2006.

[22] Krishna, T., et al. “Towards the ideal on-chip fabric for 1-to-many and
many-to-1 communication.” In 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 71-82, 2011.

[23] Nathan B., et al. “The Gem5 Simulator” ACM SIGARCH Computer
Architecture News, 2011.

TABLE III. SUMMARY OF PROPOSED AND EXISTING WORKS

Ref. Approaches Saving Penalty

[2]

Transmission-
line based
broadcast
network

Worst-case
latency: 4ns to

10ns

0.07% of total
metal area
overhead

[5]
Tree-based all-

to-all barrier
synchronization

Saved 20% during
off-centered

0.2% area and
1.3% power
overheads

[7] OrthoNoC/
WiSync

Latency
improvement: 30%

Less than 5% area
overhead

This
Broadcast
enabled
WiNoC

Latency reduction:
43.97%; Idle-state

power per WI:
80.49%

Less than 1% area
overhead; only 10
WIs for 64-core

system

301

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 20:25:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

