
CRONO: A Configurable Management System for Linux
Clusters

Marco Aurélio Stelmar Netto
�
, César A. F. De Rose

�

�
Research Center in High Performance Computing CPAD-PUCRS/HP,

Brazil�
Catholic University of Rio Grande do Sul, Computer Science Depart-

ment, Brazil

Abstract

There are several application fields in which parallel processing is an essential tool.
Using parallel architectures, it is possible to solve very complex problems that need
high computing power. In this context, cluster computing has become an excel-
lent alternative to mainframes, usually much more expensive. In order to exploit
all available resources and to try to achieve optimum performance, efficient cluster
management tools are needed. When looking for such a manager for the clusters of
our research lab we were not satisfied with the services and level of configuration
provided by the most popular systems like Computing Center Software, DQS, and
Portable Batch System . Although very powerful and configurable, these system are
reasonably complex to install and configure. Therefore we decided to implement our
own management system, a highly configurable one, but easier to install and to use.
CRONO is being used for the last 6 months to manage our three Linux clusters and
it is already very stable. Each cluster has its own peculiarities, having a different
number of nodes (4, 16, and 32), different interconnection networks (combinations
of SCI, Fast-Ethernet and Myrinet) and also different user profiles. Although being
simple to install and configure, CRONO is a highly configurable system, allowing the
system manager to configure the access privileges individually for each machine and
group of users.

1 Introduction

Cluster architectures [1] are becoming a very attractive alternative when high perfor-
mance is needed. With a very good cost/performance relation and good scalability
big cluster systems with hundred of nodes are becoming more popular in universi-
ties, research labs and industries. Linux is usually the operating system used in these

1

systems because it’s free, efficient and very stable. One remaining problem in such a
system is to manage all the nodes efficiently as one machine and deal with issues like
access rights, time and space sharing, reservation and jobs queuing. When looking
for such a manager for the clusters of our research lab1 we were not satisfied with the
services and level of configuration provided by the most popular systems like Com-
puting Center Software [2], DQS [3] and Portable Batch System [4]. Although very
powerful and configurable, these systems are reasonably complex to install and con-
figure. Therefore we decided to implement our own management system, a highly
configurable one, but easy to install and to use. Although being simple to install and
configure, CRONO is a highly configurable system, allowing the system manager to
configure the access privileges individually for each machine and group of users.

This paper presents the CRONO cluster management system and is organized as
follows. Section 2 presents some advantages of managing clusters on Linux. Section
3 gives an overview of the main functionalities of CRONO and section 4 describes its
architecture and main configuration files. Section 5 shows how easy is to install and
configure CRONO and section 6 discuss the use of CRONO in our lab. In section 7
our conclusions are presented.

2 Cluster Management over Linux

The CRONO system was developed to be a highly configurable manager for Linux
clusters. It has been coded using the C language and rely on several scripts and
configuration files to be adapted to specific administration needs and machine con-
figurations. The Linux operating system has several advantages for the development
of a cluster management system (CMS). Linux is an open source system and its
configuration files are very simple to read and modify, therefore the CMS can define
environment variables and access restrictions easily. Another main advantage is the
possibility to modify the kernel to provide better support to the CMS. This is very
useful when, for example, the CMS needs to manage not only nodes, but also other
resources like memory, processor and network adapters.

3 Crono Main Functionalities

CRONO provides two basic allocation modes, space-sharing and time-sharing. The
first one is used when the user needs exclusive access to allocated nodes, for ex-
ample when application performance is being measured. The second one is used
in situations where the users are only testing their programs and, therefore, do not
care about performance. Space-sharing is a very interesting alternative in teaching
environments, allowing large groups of students to use the cluster at the same time.

Another main feature of CRONO is its flexibility to define access rights. Using
configuration files the system administrator can create user categories and associate
access restrictions to these categories or to individual users. These restrictions are
defined by the maximum time and maximum amount of nodes used in allocations

1Research supported by HP Brazil

2

and reservations. There is also the possibility to define restrictions based on periods
of the day, day of the week and target machine.

To configure the execution environment for programs, CRONO supplies scripts
for pre- and post-processing of requisitions. When the user time initiates, CRONO
will use two scripts: one of them controlled by the administrator, and the other by the
user itself. This mechanism is very useful, for example, to automatically generate
MPI [5] machine files. When the time of a user is over, two post processing scripts
will be used in the same way. Users can interact to the system through a graphical
interface or using commands in the shell (bash, tcsh, etc). Several services are sup-
ported for users and the system administrator like: information about the allocation
queue and on access rights, submission of execution jobs, requests to release the
resources and configuration of the execution environment.

4 Crono’s Architecture

The CRONO’s architecture is composed by the following four modules, which will
be described in more detail in the following subsections:

� The User Interface (UI) is the main entrance to the cluster nodes and is com-
posed by several tools;

� The Access Manager (AM) is responsible for the authentication and the veri-
fication of access rights;

� The Requisition Manager (RM) does the scheduling of the user requests and
the preparation of the execution environment;

� The Node Manager (NM) is the module running on each node of the cluster
and its main function is to block the access to the nodes.

The communication between the modules is done through the sockets interface
[6], therefore allowing modules to be in different machines. Moreover, the modules
are organized like a chain, that is, if the User Interface needs to send a message
to the Node Manager, the message will pass through the Access Manager and the
Requisition Manager.

Interface
User Requisition

Manager Manager
Node

Manager
Access

Figure 1: CRONO’s architecture.

4.1 User Interface

The User Interface is responsible for providing interaction to the system, through
a graphical user interface or the UNIX shell environment (like bash, tcsh or csh).
There are seven commands available:

3

crqview for displaying information of the requisitions queue, like user names,
starting and finishing time, cluster name, number of nodes available and allo-
cation modus (space-sharing or time-sharing);

cralloc for node allocation in the case the user wants the resources as soon as
possible;

crrls for node release or cancellation of an user request;

crnodes to obtain a list of nodes which the user has access;

crinfo for displaying information about the clusters which the user has access.
These information include access rights, number of cluster nodes, special pe-
riods of use, maximum values for allocation and reservation, etc;

crnmc to execute operations directly on the nodes that are allocated. The avail-
able operations are provided by the administrator, and the users may obtain
which commands are available also with this command. An example of user
operation could be killp to kill all processes running on the nodes;

crsetdef to define and set environment variables for the most common command
parameters. In the case parameters are omitted the system will look for default
values in these variables.

4.2 Access Manager

The Access Manager is the module of CRONO responsible for receiving the user
requisitions from the User Interface and validate them, before forwarding them to
the Requisition Manager, if necessary. The Access Manager daemon can manage
many clusters and may use distinct policies for each them. CRONO allows the system
administrator to attribute access rights to individual users and groups of users. These
users groups are not the same groups used by Linux. For request validation, the
Access Manager uses three files: the groups file, the users file and the priorities file.
The groups file is used to define the groups and is shown below:

##
group <group name>
<user>
<user>
...
endgroup
...
##
group master

lisa
bart
maggie

endgroup
group jedigroup

luke
leia
yoda

endgroup
##

4

The users file contains the priorities for the CRONO users and users groups. For
users not included in this file, the system will use the default priority. An example of
users file is showed below:

##
priority <number>
<user>
<user>
...
endpriority
...
##
priority 1

master
stelmar
homer

endpriority

default 10
##

The priorities file defines the policies for cluster access control. The administra-
tor can define the maximum time and number of nodes for allocation and reservation.
Furthermore it’s possible to define special periods for using the cluster, hence each
priority can have two definitions, one for normal periods and the other one for special
periods. For example, it’s interesting to extend the time and number of nodes limits
at weekend and at night, when there are fewer users requests to the resources. The
following priorities file exemplify such a definition:

##
PN=> priority number
T=> type(normal[n],special[s])
MTA=> max time allocation
MTR=> max time reservation
MNA=> max nodes allocation
MNR=> max nodes reservation
##
special
<week day> <initial time>-<final time>
<week day> <initial time>-<final time>
...
endspecial
#
<PN>.<T>.<MTA>.<MTR>.<MNA>.<MNR>
##
Period of day and week that
has a special treatament
##
special

sun 00:00-23:59
mon 00:00-8:00
tue 00:00-8:00
wed 00:00-8:00
thu 00:00-8:00
fri 00:00-8:00
sat 00:00-23:59

endspecial
Priorities
1.s.60.180.16.8
1.n.30.0.8.0
10.s.30.0.8.0
10.n.15.0.4.0
##

After the Access Manager daemon checks these files, it forwards the request to
the Request Manager if necessary or sends a message to the user informing that the

5

user doesn’t have access to the requested cluster.

4.3 Request Manager

The Requisition Manager is the CRONO module responsible for scheduling the re-
quests authorized by the Access Manager and preparing the execution environment.
This module has two sub-modules: the scheduler, which allows space-sharing and
time-sharing, and the environment set up tool, which runs scripts before and after
the user allocation time. The next subsections describe each of the sub-modules in
detail.

4.3.1 Scheduler
There are many scheduling algorithms already available that could be used in the
CRONO scheduler, like Shortest Job First (SJF), Longest Job First (LJF) or First
In First Out (FIFO). However, these algorithms have problems to cope efficiently
with the allocation modes available in CRONO. The Request Manager tries to make
good use of available resources (time and nodes) that would be wasted using the
First In First Out algorithm, but without injure the users that are already waiting
for resources. If an user expects to be attended at a specific time, this user will be
attended in the worst case in that time. The scheduling policy implemented in the
CRONO scheduler is based on the FIFO scheduling and can be understood through
two examples. These examples are based on a requisitions sequence of eight users,
as shown in Table 1. The system administrator defines the maximum number of
users that can share the same node at the same time (time-sharing). In the following
examples, this value is set as two, and the cluster is composed by eight nodes.

User Requisition Time Requested Time(min) Nodes Access Type
U1 8:00 15 3 Exclusive
U2 8:03 10 8 Exclusive
U3 8:05 2 5 Shared
U4 8:05 5 4 Shared
U5 8:18 10 5 Exclusive
U6 8:20 5 7 Exclusive
U7 8:22 7 1 Shared
U8 8:22 10 2 Exclusive

Table 1: Example of users requisitions

Figure 2 illustrates the requests queue for Table1 using the FIFO algorithm. In
this graph we observe the resources that could be used without increase the atten-
dance time of the users who still do not own the resources. The sequence of users
and scheduler operations are shown in the Table 2.

After 55 minutes, all requests were attented and the resources were released.
With the intention to reduce the amount of wasted resources, the FIFO policy was
modified to allow some requests to overtake a waiting request only in the case that
the expected time of attendance of the blocked request will not be exceeded by this

6

1

2

3

4

5

6

7

8

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

8:528:408:00 8:25 8:278:15 8:30 8:45 8:55

�	�	�	�
�	�	�	�

	
	

	
	

���������������
������
���

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

�	�	�	�	�	�	�
�	�	�	�	�	�	�
�	�	�	�	�	�	�
�	�	�	�	�	�	�

�	�	�	�
�	�	�	�
�	�	�	�
�	�	�	�
�	�	�	�
�	�	�	�

�	�	�
�	�	�
�	�	�
�	�	�
�	�	�
�	�	�

���

��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Exclusive

Shared

U1

U2

U3

U4

U5

U6

U8

U7

Shared

Time

N
od

es

Figure 2: Queue using the FIFO scheduler.

behavior. Figure 3 shows the utilization of the resources using the CRONO scheduler,
for the same requisitions of Table 1.

In this second case, the requisitions of users U3, U4, U8 and U7 overtake the
other users, as shown in Table 3.

As we can see, the resource waste was minimized, since all the users have been
taken care of in 40 minutes instead of 55 minutes. When a requisition is ready to be
attended, the environment should be prepared to the users, as explained following.

4.3.2 Environment set up tool
It’s interesting to execute some tasks when the user time starts and when it finishes.
This sub-module of the Request Manager is responsible for doing these tasks through
four scripts:

� The master pre-processing script (MPREPS) is used by the administrator and
defines the operations that are executed when the user time starts;

� The master post-processing script (MPOSTPS) is used by the administrator
and defines the operations that are executed when the user time finishes;

� The user pre-processing script (UPREPS) is used by the user and defines the
operations that are executed when the user time starts;

� The user post-processing script (UPOSTPS) is used by the user and defines
the operations are executed when the user time finishes.

Both the users and administrator scripts are defined for each cluster managed by
the system. This is very useful, for example, when multiple clusters with different
interconnection tecnologies are managed, like Fast-Ethernet, Myrinet [7] or SCI [8].

7

OS Time Operations Attendance Time
8:00 U1 makes a request and U1 is attended 8:00
8:03 U2 makes a request and wait 8:15
8:05 U3 and U4 make a request and wait 8:25
8:15 U1 releases the resources and U2 is attended -
8:18 U5 makes a request and wait 8:30
8:20 U6 makes a request and wait 8:40
8:22 U7 and U8 make a request and wait 8:45
8:25 U2 releases the resources and U3 and U4 are attended -
8:27 U3 releases the resources -
8:30 U4 releases the resources and U5 is attended -
8:40 U5 releases the resources and U6 is attended -
8:45 U6 releases the resources and U7 and U8 are attended -
8:52 U7 releases the resources -
8:55 U8 releases the resources -

Table 2: Operation using the FIFO scheduler.

OS Time Operations Attendance Time
8:00 U1 makes a request and U1 is attended 8:00
8:03 U2 makes a request and wait 8:15
8:05 U3 and U4 make a request and overtake U2 -
8:07 U3 releases the resources -
8:10 U4 releases the resources -
8:15 U1 releases the resources and U2 is attended -
8:18 U5 makes a request and wait 8:25
8:20 U6 makes a request and wait 8:35
8:22 U7 and U8 make a request and wait 8:40
8:25 U2 releases the resources, U5 is attended, U8 and U7 overtake U6 -
8:32 U7 releases the resources -
8:30 U4 releases the resources and U5 is attended -
8:35 U5 and U8 release their resources and U6 is attended -
8:40 U6 releases the resources -

Table 3: Operation using the CRONO scheduler.

Hence, it’s necessary to create specific machine files for each environment the users
programs can use.

Besides executing the pre-processing scripts at the starting time of a allocation
request, CRONO sends a message to the users through the tty terminal informing
that the resources are available. Because users are usually accessing with more than
one terminal, CRONO uses the utmp file to discover the terminal with the least idle
time, and sends the message to that terminal. This is done because there is a greater
probability that the user is reading that terminal.

4.4 Node Manager

The Node Manager is the CRONO module executed on each node of the managed
cluster and it is responsible for the access control and the execution of some opera-

8

1

2

3

4

5

6

7

8

8:00 8:258:158:108:05 8:07 8:408:32 8:35

�������
�������
�����
�����

���������������
������
���

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

���

������
������
������
������
������
������
������
������
������
������
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

 �
 �
 �
 �
 �
 �
 �
 �
 �
 �
 �

!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!

"�"�"�"�"�"�"
"�"�"�"�"�"�"
"�"�"�"�"�"�"

Shared

Shared

Exclusive

U3

U4

U2 U8

U7

U5

U6

U1

Time

N
od

es

Figure 3: Queue using the CRONO scheduler.

tions on the node.

4.4.1 Access Control
Sometimes users are only debugging their programs and do not need the exclusive
access to the allocated nodes and sometimes they need exclusive access to make
some performance analysis. Therefore, it’s necessary to provide space-sharing and
time-sharing allocations to make a better use of the available resources. To control
the access to the nodes in both cases, CRONO modifies the login.access and
hosts.equiv files when a user allocation time starts and when it finishes. When
a login process is done on a node, the login.access file is verified to allow or to
block the user access. However, modifying the login.access is not enough to
protect the access on a node because the users can execute the Remote Shell client
(rsh) to execute commands on the nodes without the complete login process. In this
case the login.access file is ignored. To solve this problem, it’s also necessary
to modify the hosts.equiv file on the node and use the option to ignore the
.rhosts file in the home user directory when starting the Remote Shell server.

4.4.2 Execution of Operations
The administrator can define a set of operations which can be executed by the users
through the crnmc command. The user can execute the operation on all allowed
nodes or a group of define nodes. An example of such operation could be killing
the processes on the nodes, installing a kernel module, or some other operation only
done by the administrator.

9

5 Crono Installation and Configuration

When implementing a cluster management system, a difficult issue is to provide a
good level of configurability without increasing the complexity of the installation
and configuration procedures. One of the major advantages of CRONO is the sim-
plicity of these procedures maintaining a good level of configurability. To show how
simple is to install and configure CRONO, we describe in the following section these
procedures for a typical environment with two clusters (two of the three CPAD [9]
clusters from Figure 4, the 16 nodes cluster amazonia and the 4 nodes cluster pan-
tanal). The system modules for the example environment are also showed in Figure
4. For this case we will have one Access Manager running on the frontend, two
Requests Managers (one for each cluster) and one Node Manager on each node of
the clusters. The following items describe the configuration and installation steps for
this example:

1. Download the file fromhttp://www.cpad.pucrs.br/crono/crono-
vXXX.tar.gz, where XXX is the CRONO version;

2. Unpacking the tar file should produce a single directory called crono-XXX,
containing the GNU General Public Licence, Changelog, INSTALL files,
and the bin, docs, etc, sbin and src directories;

3. Before the compilation, some default configurations can be modified in the
src/misc/misc.h. Adjust them as necessary. To compile CRONO change
to the src directory, type make to build and make install to install it;

4. After that, you will have the following programs:
The User Interface programs in the bin directory. The Access Manager
(cramd), Request Manager (crrmd) and Node Manager (crnmd);

5. Assuming that CRONO was installed in the /usr/local/crono directory,
the configuration files will be in /usr/local/crono/etc/ directory, and
we’ll call it DIRCONF. The DIRCONF structure is:
<dirconf>/
amconf - this file contains the hostname and port number of the Access Man-
ager
<cluster1>/ - configuration files for cluster1
<cluster2>/ - configuration files for cluster2
...
...

For each cluster directory we have nine files, which will be explained in the
following items.

6. In the config file are defined the server ports and hostnames, the share op-
tion, which defines the number of users that can share a node at the same time,
the single option, which ignores the function calls that communicate with the

10

Node Manager (useful for test purposes, when a functional cluster is not avail-
able). File locations of queue, log and reserve must also be defined in this file.
An example of config file could be:

###
CLUSTER: amazonia
###
Server ports
amport=7001
rmport=7022
nmport=7004
Server hosts
amhost=frontend
rmhost=frontend
Share Option
share=4
Single Option
single=off
Log File
logfile=/usr/local/crono/var/log/crono_amazonia.log
Queue File
queuefile=/usr/local/crono/var/queues/crono_amazonia.queue
Reserves File
reservesfile=/usr/local/crono/var/queues/crono_amazonia.reserves
###

7. The groups, priorities and users files were described in section 4.1;

8. The nodes file has the hostnames of the cluster nodes. The login.access
andhosts.equiv files are the original files of the Linux system; The mpreps
and mposts files are the Master Pre-Processing Script and Post-Processing
Script respectivily. Our mpreps has programs to create the user machine file
for MPI environmets:

##
#!/bin/sh
Master Pre-Processing Script
$1=<user id>
$2=<cluster name>
/usr/local/crono/bin/crmachmpiether -u $1 -c $2
/usr/local/crono/bin/crmachmpigm -u $1 -c $2
##

9. Finally we have the commands file, which defines the operation that users
can execute using the crnmc command. In our environment, we have defined
only the killp operation to kill the user processes:

##
Commands file
$1=<user id>
killp: skill -KILL -u $1
/usr/local/crono/bin/crmachmpigm -u $1 -c $2
##

10. After setting up the configuration files, just start the daemons. In frontend ma-
chine start the one cramd and two crrmd:
$cramd amazonia pantanal
$crrmd amazonia

11

$crrmd pantanal
On the amazonia nodes:
$crnmd amazonia
On the pantanal nodes:
$crnmd pantanal

6 Using Crono in Production Mode

For the last 6 months CRONO is being used to manage the three Linux clusters in
our research lab. Access to the clusters is centralized trough one host machine that
runs one Access Manager and three Requisition managers, one for each of the clus-
ters. Each node of the clusters has its own Node Manager. Each cluster has its own
peculiarities, having a different number of nodes (4, 16, and 32) and different inter-
connection networks (combinations of SCI, Fast-Ethernet and Myrinet) as shown in
Figure 4.

AM

Internal
Users

2RM

3RM

1RM

NM 1

Node
1

Node
2

2NM

Node
4

4NM....

NM 1

Node
1

Node
2

2NM 16NM

Node
16

....

NM 1

Node
1

Node
2

2NM 16NM

Node
16

....
External

Users

Cluster Pantanal (Fast−Ethernet and SCI)

Cluster Ombrofila (Fast−Ethernet)

Cluster Amazonia (Fast−Ethernet and Myrinet)Frontend

Figure 4: CRONO modules on CPAD.

We also support several program environments, including different MPI imple-
mentations and some own developed execution kernels. With simple commands like
cralloc, crcomp and crrun users can choose the cluster, the number of nodes,
the target interconnection network and the programming environment they want.
CRONO will automatically generate machine files, choose the right libraries for the
compilation, load the processes and start the program. Because we have different
types of users, access rights were defined for each user depending on status, project,
target machine and day period separately. A student may have, for example, only
access to the small cluster during the peek hours and to 16 nodes of the main cluster
during the night. The system is running over the Linux Slackware 8 distribution and
is already very stable. We developed the system in a way that it can be easily con-

12

figured to work with other cluster configurations and a different set of tools. More
information about Crono can be found at www.cpad.pucrs.br/crono together
with its source code that is distributed under the GNU license.

7 Conclusion

In this paper we described the functionality and the architecture of a new open source
cluster management system called CRONO. CRONO was developed in our research
lab to be a highly configurable system that supports mid-size Linux clusters with dif-
ferent configurations and network interconnections. Being used for the last 6 months
in production mode CRONO is already very stable and is being updated constantly
with patches and new features. We believe CRONO is already a very nice alternative
to more complex systems like CCS, DQS and PBS for small research labs, like ours
particularly, when the main focus is on controlling the access privileges of different
machines and groups of users individually with a low maintenance cost.

References

[1] Buyya, R., High Performance Cluster Computing. Prentice-Hall, 1999.

[2] Keller, A. & Reinefeld, A., Anatomy of a resource management system for hpc
clusters. Annual Review of Scalable Computing, 3, 2001.

[3] T. P. Green, J.S., Dqs, a distributed queueing system. Annual Review of Scalable
Computing, 1993.

[4] OpenPBS. http://www.openpbs.com/.

[5] Gropp, W., Lusk, E., Doss, N. & Skjellum, A., A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Com-
puting, 22(6), pp. 789–828, 1996.

[6] Stevens, W.R., UNIX Network Programming Vol 1: Networking APIs - Sockets
and XTI. Prentice-Hall, 2nd edition, 1997.

[7] Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic,
J.N. & Su, W.K., Myrinet: A gigabit-per-second local area network. IEEE Micro,
15(1), pp. 29–36, 1995.

[8] IEEE standart 1596-1992, New York, IEEE: IEEE Standart for Scalable Coher-
ent Interface (SCI), 1993.

[9] CPAD - Research Center in High Performance Computing.
http://www.cpad.pucrs.br, 2001.

13

