
Modeling Particle Systems Animations for Heterogeneous Clusters

Caroline Bellan Oliva, César A. F. De Rose
Pontifı́cia Universidade Católica do Rio Grande do Sul

Faculdade de Informática
Porto Alegre, Brazil

carolineoliva@gmail.com, derose@inf.pucrs.br

Abstract

Parallel processing may help obtaining animations in
shorter time or achieving better quality of the images gen-
erated through the simulation of particles systems, due to
the parallel nature of particles. This work presents a model
that aims to assist users on the use of clusters, especially
heterogeneous ones, on the creation process of simulations
with several particle systems. The model is destined to the
animation of independent particles and provides a dynamic
load balancing mechanism. The model is validated through
the comparison of results (time taken to obtain the images)
extracted from sequential and parallel executions of the li-
brary whose implementation was based on the model.

1. Introduction

Phenomena such as smoke, steam, fog, dust and wind
are part of our daily visual perception and thus can signifi-
cantly increase the realism of artificial renderings. As sim-
ple and ordinary as these phenomena may seem, as complex
and difficult it is to simulate them [10].

Stochastic particle systems may be considered a general
technique in the field of computer graphics, capable of cre-
ating a wide variety of effects and fuzzy objects such as
water, smoke, grass, clouds, among others [14]. These ef-
fects happen in consequence of a series of physical aspects
that may demand high computing power if applied all to-
gether.

Due to the growth in the availability of high speed net-
works and the parallel nature of the particles, it becomes
possible to distribute the amount of data among several ma-
chines and achieve better performance of the applications
[13]. The exploitation of parallel computing and character-
istics of 64-bit architectures allow the reduction of the time
necessary to obtain the images in particle systems anima-
tions. However, parallel programs are characterized by dif-
ferent concurrent activities, communication and synchro-

nization between the processes executed on several ma-
chines, making the parallel programming a hard task [5].

In the recent past, clusters of off-the-shelf components
gained importance in the field of computer graphics. As
these machines become more available, the formulation of
models to help users on the process of parallelizing their ap-
plications becomes interesting [12].

In this paper, we present a model for stochastic particle
systems animations for heterogeneous clusters. The model
deals with domain decomposition allowing the user to in-
troduce efficient particle collision detection procedures and
offers load balancing mechanism to compensate the differ-
ent processing power of the cluster’s machines.

The rest of the paper is organized as follows. The next
section looks at related work. In Section 3 we describe our
model. In Section 4 we present the validation of the model
and some experimental results. In Section 5 we summarize
and present some avenues of future research.

2. Related Work

The first parallel solution for particle systems simula-
tion was conceived of by Karl Sims [13]. It was devel-
oped specifically for the Connection Machine CM-2. Each
one of the processors receives a set of particles, indepen-
dently of their localization in space. The application offers
a small number of effects and the processes only communi-
cate to decide the color of each pixel of the image.

In [16], the authors describe a process to perform cloth
simulation on clusters using the parallel programming inter-
face Athapascan. Their strategy splits the particles in parti-
cle blocks, which can be dynamically assigned to proces-
sors by Athapascan. The experiment was validated only on
a multiprocessors machine so far, although the application
was meant for clusters. The results show that the execution
time depends both on the number of processors and on the
size of the blocks.

Rodrigues et al. present a mechanism for parallel inter-
active graphical simulations of Molecular Dynamics [11].

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

It uses MPI (Message Passing Interface) for communication
between the processes and the interaction with the user hap-
pens through the master process. The mechanism uses spa-
tial decomposition of the particles and the processes com-
municate only with their immediate neighbors. The experi-
ment was run on two different clusters and the results show
the importance of high speed networks on these simulations,
since the experiments achieved better performance in the
slower cluster connected with gigabit Ethernet.

Henty in [7] presents a hybrid solution for the simula-
tion of discrete elements such as sand grains that uses both
message passing and shared memory. Again, the space is di-
vided into blocks and to each processor it is assigned a set
of blocks. The shared memory parallelization occurs lower
down at the level of loops over particles within each block,
so MPI communications never take place within a parallel
region. Global quantities such as the energy are reduced in
parallel within a block through the shared memory, summed
over blocks by the MPI process and then accumulated over
processes by an MPI collective call. The results show that
the pure MPI code is always more efficient.

Particle systems are also used in Monte Carlo simula-
tions. In [2], the authors present the parallelization of the
package PENELOPE used in medical applications. The new
package uses MPI for communication among the several
processes and the results show a speed-up of 240.25 for 256
processors.

In [6] and [3], the authors present dynamic load bal-
ancing techniques for applications where it is necessary to
preserve the locality of the objects (i.e. neighbors should
remain close to each other). The first one divides the data
along the molecular chain, assigning work proportional to
the processing power of the processor responsible for the
subspace. The experiments on a Cray T3D resulted in a
speed-up of 1.38 in comparison to the unbalanced applica-
tion. The second one breaks the space in blocks in one or
more dimensions, in equal sizes. This kind of division leads
to unbalanced data among processors. In order to equili-
brate the load, particles are exchanged between neighbors
during the simulation. When one particle leaves or enters
a process, it is necessary to redefine the block’s dimensions
of both processes. The major problem of this solution lies in
the restriction of acceptable dimensions when the space is
broken in more than one dimension, leading to unbalanced
states. The results of the experiments on an IBM SP2 pre-
sented speed-up between 1.6 and 4.4.

In [9], McAllister presents the Particle System API, a li-
brary for the simulation of dynamic particle systems. The
API has been implemented both on the parallel geometry
processors of PixelFlow and on UNIX and Win32 systems.
In the PixelFlow implementation, the API assigns a set of
particles to each one of the processors and the rendering is
done directly by the processors. The UNIX/Win32 imple-

mentation works on both uniprocessor and multiprocessor
shared memory systems through the use of threads.

The solutions above show a lack of generic applications
that can take advantage of the processing power offered by
clusters, whether they are homogenous or heterogeneous.
This deficiency led to the development of a parallel model
for the simulation of independent particles on clusters. The
new model uses massage passing for communication be-
tween processes and load dynamic balancing mechanisms
based on some of the solutions above. The model is de-
scribed in the next section.

3. The Model

The developed model is meant for the simulation of
stochastic particle systems where one particle is totally
independent of the others. The only foreseen interaction
among particles is the possibility of collision detection be-
tween them.

The model was built using the parallel phases program-
ming paradigm. According to this paradigm, an application
consists of a certain number of steps, each step divided in
two phases: one computing phase, when the processes pro-
cess their local data independently, followed by an interac-
tion phase, when the processes execute one or more syn-
chronization operations such as barriers or blocking opera-
tions [15].

To maintain the work equilibrium among the processes
during the simulation, the model uses local dynamic load
balancing with a centralized manager, since one process can
exchange particles with its neighbors during the balancing
procedure. This restriction is due to the need of data local-
ity preservation, because in case the user decides to include
collision detection methods it is better to keep the particles
close to their neighbors to reduce communication between
processes.

The following items describe each one of the compo-
nents of the model and the procedure used to simulating
the particle systems.

3.1. Components of the Model

The model is composed by processes, particles, particle
systems, domains and actions over particles. Each one of
these components is described in the following items.

3.1.1. Processes The model has three kinds of processes,
the calculators, the image generator and the manager. The
manager is responsible for creating the particles and man-
aging the load balance between the calculators. The image
generator collects the particles sent by the calculators and
renders each one of the frames of the animation. The calcu-
lators are responsible for applying the actions over the par-
ticles, moving them and detecting collision (according to

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

the procedure chosen by the user). All the processes in the
model know the global information needed for the simula-
tion. The particles are the only exclusive set of data of the
process; however, all particle systems exist in all processes.

3.1.2. Particles There are four basic particle properties
that are always needed, independently of the kind of ani-
mation we want to create. The properties are:

• Position in the space or on the plane (x, y or x, y, z);

• Orientation (x, y or x, y, z);

• Age;

• Velocity.

It is important to highlight that the model does not re-
quire each particle of a system to have a unique identifier,
as long as particles of different systems are stored in differ-
ent data structures.

3.1.3. Particle Systems The particle systems have the
same properties of their particles except for the age. These
properties do not change the state of the system; they are
used to determine the initial values for the particle’s prop-
erties. According to the structures used to store the sys-
tems, it may be necessary to give an identifier to each one
of the systems to guarantee that the particles exchanged be-
tween processes remain in the original system. In case
the systems are stored in a vector, the position in the vec-
tor can be used as the identifier, because the creation
of the systems happens in the same order for all pro-
cesses.

3.1.4. Domains Given the possibility of collision detec-
tion among particles and aiming at the reduction of amount
of tests, the simulated space is divided into domains, along
one of the axis of the plane or space. Each particle system
has its own domains, i.e., each system is divided in n slices,
with n the number of calculator processes. Figure 1 shows a
possible division of the space in four domains (four calcu-
lator processes, P1, P2, P3 and P4).

-10 -5 0 5 10

P 1 P 2 P 3 P 4

Figure 1. Example of domains, initially with
the same size.

As seen in Figure 1, each domain is associated to one cal-
culator process, sequentially, i.e., the first process is respon-
sible for the first domain, the second for the second and so
on. This process is repeated for each one of the particle sys-
tems.

All the processes know the dimensions of all the do-
mains, so they know which process to send a particle to
when it needs to detect collision. If the space was not di-
vided into domains, it would be necessary to test collision
with all the particles of all the processes, because there
would be no guarantee that close particles would remain
in the same process during the simulation. Another reason
for global knowledge of the domains is the fact that parti-
cles may change domains during simulation, allowing the
particle to be sent only to its new process instead of broad-
casting the particles to all processes.

The dimensions of the domains may be altered dur-
ing simulation, due to the load balance between processes.
Since it may be necessary to move particles from one pro-
cess to another, it becomes necessary to change the do-
main’s dimension, because a process can only hold the par-
ticles that belong to its domain.

3.1.5. Actions over Particles The model stipulates rules
of behavior only for actions that create and move particles,
since these actions change the spatial distribution of the par-
ticles. The actions that modify the properties of the parti-
cles without changing its positioning may be applied on the
particles at any time during the simulation, because these
changes do not need to be informed to the other processes.

All the particles are created by the same process and sent
to the others according to their domains, as described be-
fore.

At the end of each frame of the animation, it is neces-
sary to verify if the particles associated with a process re-
main within the process’ domain, otherwise they must be
sent to their new process.

Depending on the collision detection mechanisms cho-
sen by the user, the particles that change domains may be
exchanged between processes during the computation and
validation of their new position. In this case, it is not neces-
sary to exchange particles between processes at the end of
each frame, because all the particles are already within the
correct domain.

3.2. Simulation Procedure of One Particle System

The model allows the simulation of several particle sys-
tems simultaneously. For each one of the systems, the model
keeps information about domains, amount of particles and
time taken to process all the actions over the particles. Fig-
ure 2 shows the simulation procedure for one particle sys-
tem.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

Particle
Creation

Load Balancing
Evaluation

Definition of
Local Domains

Definition of
Local Domains

Definition of
Local Domains

Definition of
Local Domains

Definition of
Local Domains

Addition to
Local Set

Calculus

Particle Exchange
Between

Calculators

Preparation of
the Structures

Preparation of
the Structures

Preparation of
the Structures

Preparation of
the Structures

Particle Exchange
Between

Calculators

Particle Exchange
Between

Calculators

Particle Exchange
Between

Calculators

Calculus Calculus Calculus

Addition to
Local Set

Addition to
Local Set

Addition to
Local Set

Image
Generation

...

...

...

...

...

...Manager Calculator 0

Particles

Load Balancing Orders

Particles
Load

Information

New Dimensions
and Domains

New Dimensions and Domains

Calculator 1 Calculator 2 Calculator n Image
Generator

Load Balance
Between

Calculators

Load Balance
Between

Calculators

Load Balance
Between

Calculators

Load Balance
Between

Calculators

...

Figure 2. Simulation of one particle system.

The processes are launched and the particle system is
created. During its creation, the space is divided in n do-
mains, as described before. After the creation, the process-
ing loop starts. Algorithm 1 exemplifies this loop.

Algorithm 1 Simulation of one particle system.
Do {

Configure particle system
Create n particles
Simulate gravity over the particles
Remove particles under the position (x, y, z)
Simulate collision with object obj
Move particles
Generate the image
frames = frames + 1

} While frames < maximum_amount

The external framework is the same for all the processes
in order to facilitate the development of the animation, but
the action is treated differently by the processes. The sys-
tem configuration, that does not need to be necessarily in-
side of the loop, is an example of action that is not processed
by the image generator.

If the user had chosen not to use the load balancing
mechanism, it would have been necessary to include a syn-
chronization step between the processes. When the balanc-
ing is activated, the synchronization happens through the
exchange of information about domains. If the mechanism
is deactivated, the image could be incomplete, because there
would be no guarantee that the image generator would re-
ceive particles from all the processes. If one of the processes
was faster, it could send the particles twice to the generator,
ending the frame before the slower process started sending
particles.

3.2.1. Actions that Create Particles During the particle
creation step, the manager generates the amount of parti-
cles determined in the action, positioning the particles ac-
cording to the behavior stipulated for the particle system.
After the creation of each particle, it is stored in the struc-
ture corresponding to its domain. By the end of the creation
action, the manager sends the particles to the processes, ac-
cording to their domains, informing the end of transmission
to each one of the calculator processes.

The calculators wait for the particles to start processing
the following actions. It is mandatory that these processes
receive notification about the end of transmission; other-
wise they will remain blocked inside the creation action and
will not allow the processing of the next frame of the ani-
mation.

3.2.2. Actions that Change Properties of Particles Ac-
tions that simulate gravity, eliminate or bounce particles that
collided with external objects do not change the positioning
of the particles. These actions can take place at any moment
of the simulation, since there is no need of interaction be-
tween processes.

3.2.3. Actions that Change Positioning of Particles
During the actions that alter the positioning of the par-
ticles, there is no need of communication between the
processes. However, when moving a particle, the pro-
cess must verify whether the particle left its domain. When
it happens, the process must store the particle in a differ-
ent structure for future exchange of particles with other
processes.

3.2.4. Actions that Generate the Animation Frame
During the execution of this action, processes exchange
particles due to domains changes, balance their load and
generate the frame of the animation.

Initially, particles which changed domains are ex-
changed between processes, so that from this point on the
processes only manage their own particles. Once again, it
is important to all the processes to be notified about the end
of transmission, otherwise they will remain blocked wait-
ing for particles.

After finishing the exchange of particles, the calculators
must inform the manager about their load (amount of parti-
cles under control of the process) and time taken to process
the particles.

The time is measured from the beginning of the first ac-
tion to the end of the last one, but since it is not possible to
determine which one is the last action, the time is updated
in all of the actions. After retrieving the amount of time,
the process must recalculate it, since the amount of parti-
cles of the process changed due to the exchange of parti-
cles between processes. The new time must be proportional
to the new amount of particles held by the process.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

While the manager evaluates the load balancing, the cal-
culators send the particles to the image generator. Upon par-
ticles reception, the image generator applies the necessary
actions to obtain the image. It is also its responsibility to
render external objects that exist in the simulation.

3.2.5. Load Balancing Evaluation After receiving the in-
formation about the load of each calculator process, the
manager evaluates the load balancing for each pair of neigh-
bors, i.e., the manager evaluate the equilibrium of load be-
tween x and x+1, x+1 and x+2, x+2 and x+3, and so on. For
some frame of the animation, with the need to balance the
load between the pair x and x+1, the pair x+1 and x+2 will
not be evaluated. The next pair to be evaluated will be x+2
and x+3. This happens due to the following rules:

• The load balancing only takes place between neigh-
bors due to the domains;

• Each process only sends or receives particles, but never
both operations to avoid alignment of processes;

• The load balancing happens only between two pro-
cesses, i.e., the process x, for example, cannot receive
particles from both processes x-1 and x+1, once again
to avoid alignment.

To avoid performing balancing always between the same
pair of processes, at every execution of the load balancing
evaluation, the manager alternate the identifier of the first
process to be evaluated (1 or 2).

For each pair, if the difference between their processing
times is bigger than a certain value, the manager will re-
distribute their particles. The new load will be proportional
to the processing power of the processes. Depending on the
amount of particles to be moved from one process to an-
other, it may not be interesting to perform the transmission
of the particles.

After finalizing the evaluation, the manager sends
the load balancing orders to the calculators, inform-
ing the amount of particles to be moved, the neighbor
with whom the balancing will take place and the opera-
tion to be performed by the calculator (sending or receiving
of particles).

Upon reception of the orders, the process responsible for
sending particles during the load balancing must select the
particles to be donated. The process cannot simply remove
the specified amount of particles because the new redistri-
bution must keep obeying the domains. The particles must
be ordered in accordance to the axis chosen for the division
of the domains. If the particles are to be send to the left pro-
cess, the particles with lower x values are the ones to be do-
nated; otherwise the particles with higher x values are the
ones to be transferred. Based on the ordering and selection
of the particles, it is possible to define the new dimensions
of the domains.

After the definition of the new dimensions, the calculator
processes send the new values to the manager, which will
update its local information and send the dimensions back
to all the calculators. Only after receiving the new domains
the calculators effectively start the donation and reception
of particles.

3.3. Simulation Procedure of Two or More Parti-
cle Systems

The simulation process of two or more particle systems
follows the same steps previously presented, when analyz-
ing the systems individually. The difference exists when the
simulation is seen as a whole, because there are different
ways to combine the processing of more than one system.
Depending on the form used, the processing may be more
or less efficient.

4. Validation of the Model

The model was validated using David McAllister’s [9]
library as base for the development of a new parallel library,
because it offers a wide variety of effects and can process
more than one particle system.

The original library was completely rewritten to make it
easier to include the new functions of the model. Still, the
major modifications to the original code are related to the
storage structures and inclusion of the communication op-
erations.

All the particle systems are created by all process in the
same order. It allows us to use the position in the particle
systems vector as the identifier of the system. This identi-
fier is used to define the current particle system and is also
necessary for particle exchanges between processes.

Instead of storing all the particles of a system within a
domain (region of the space that belongs to the process) in
the same vector, we now break the domain in sub domains
and store each one in a separate vector. We chose this ap-
proach to accelerate the load balancing process and particle
exchanges between processes. If we kept storing all the par-
ticles in the same vector, it would be necessary to compare
the particles’ position to the domain’s edges by the end of
each frame in order to discover which ones should be sent
to other processes. During the load balancing procedure, the
division of the domains reduces the amount of particles that
must be ordered because the process must discover the new
dimensions of the domain, since data locality must be pre-
served.

The modifications were applied accordingly to the
model. We used the sequential execution time as the com-
parison measure of processing power of the different ma-
chines of the cluster to perform load balance.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

5. Experimental Results

The parallel version of the library was tested on a hetero-
geneous cluster composed of the following machines:

• 8 HP NetServer E60 (Dual Pentium III 550 MHz, 256
Mbytes of RAM) nodes (type A node);

• 8 HP NetServer E800 (Dual Pentium III 1 GHz, 256
Mbytes of RAM) nodes (type B node);

• 2 HP Workstation zx2000 (Itanium II 900 MHz, 1
Gbyte of RAM) nodes (type C node).

The Pentium III nodes are connected by two networks,
Myrinet [1] and Fast-Ethernet, while the Itanium nodes are
only connected by Fast-Ethernet.

We developed two experiments, both with the same
amount of particle systems and particles per system but with
different behavior. The first one simulates snow while the
second simulates water fountains. The results from each one
of the experiments are presented in the following items. By
the end of this section we present some comparisons be-
tween the results.

5.1. Snow Simulation

For each frame of this simulation, we create new parti-
cles, apply a random acceleration on the particles, simulate
collision, eliminate old particles and finally move the parti-
cles through the space. The particles tend to remain in their
original domain since their movement is mainly vertical.

We simulated eight particles systems with 400.000 parti-
cles in each one of them. We chose to use eight particle sys-
tems because we simulate eight fountains in the other ex-
periment, so we can have an equal comparison of the exper-
iments.

During the simulation, at the end of each frame, each
process has approximately 560 particles that belong to an-
other calculator. For the total amount of process, it means
613 Kbytes of data to be exchanged.

Table 1 shows some of the results obtained through the
execution of this experiment using Myrinet and GNU/GCC
Compiler on eight E800 nodes. The speed-up is calculated
using the time of the sequential execution on the same type
of node using the same compiler, since the E800 nodes pre-
sented the best performance for this compiler.

When using infinite space (IS) together with static load
balancing (SLB), depending on the size of the simulated
space only a few processors might actually be given work.
This factor can be seen in the results presented in the second
column of Table 1. When we use odd numbers of proces-
sors, only the process responsible for the central domain re-
ceives particles during the simulation. If we use finite space,
we increase the chances of load distribution among pro-
cesses.

Nodes vs. Speed-Up
Processes IS-SLB FS-SLB IS-DLB FS-DLB
4*B /4 P. 1.74 1.74 1.73 1.75
5*B /5 P. 0.82 2.49 2.9 2.5
6*B /6 P. 1.74 3.12 2.99 3.11
7*B /7 P. 0.92 3.63 3.15 3.65
8*B /8 P. 1.74 4.14 3.37 4.14

8*B /16 P. 1.73 6.47 3.75 6.37

Table 1. Snow Simulation using Myrinet and
GNU/GCC Compiler.

When using static load balancing with restriction of the
simulated space (FS, i.e finite space), the experiment pre-
sented speed-up of 6.47 for the same machines as above.
The use of sixteen processes allowed better performance be-
cause each E800 node has two processors. This speed-up
is better than the one obtained through the use of dynamic
load balancing (DLB) with finite space, because of the ex-
tra communication costs, since the distribution of the parti-
cles through the space is homogenous and there is no need
to balance the load between neighbors.

However, we cannot always restrict the size of the simu-
lated space to fit exactly the portion that we are using, mak-
ing the use of dynamic load balancing necessary. This factor
can be viewed by the increase in performance when com-
paring the results from the experiments using infinite simu-
lated space.

In our tests, the use of eight E60 nodes (sixteen pro-
cesses) was only justified when the amount of E800 nodes
was lower than seven. Testes executed using four nodes of
each type resulted in speed-up of 2.76 and 2.93, for eight
and sixteen processes respectively.

The executions using Fast-Ethernet and ICC Intel Com-
piler on eight E800 nodes (sixteen processes) presented
speed-up of 2.56 in comparison to the sequential execution
on the Itanium machine using the same compiler.

Once again, when using static load balancing with re-
striction of the simulated space, the experiment presented
speed-up of 2.65 for the same machines and processes as
above.

Table 2 shows the results of heterogeneous experiments
using dynamic load balancing and finite space. The speed-
up for the heterogeneous environment is calculated using
the time of the sequential execution on the Itanium proces-
sor together with the ICC Intel Compiler, since this combi-
nation presented the best performance.

The highest speed-up, 3.15, was achieved when using
dynamic load balancing with restriction of the simulated
space on two E800 nodes together with two Itanium nodes.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

Nodes vs. Processes Speed-Up
4*B (4 P.) + 4*A (4 P.) = 8 P. 1.36

4*B (8 P.) + 4*A (8 P.) = 16 P. 1.5
8*B (8 P.) + 8*A (8 P.) = 16 P. 2.4

8*B(16 P.) + 8*A (16 P.) = 32 P. 2.02
2*B (2 P.) + 2*C (2 P.) = 4 P. 2.67
2*B (4 P.) + 2*C (2 P.) = 6 P. 3.15
4*B (4 P.) + 2*C (2 P.) = 6 P. 2.84
4*B (8 P.) + 2*C (2 P.) = 10 P. 2.61

Table 2. Snow Simulation using Fast-Ethernet
and ICC Intel Compiler.

5.2. Fountain Simulation

For each frame of this simulation, we create new parti-
cles, apply gravity and acceleration on the particles, simu-
late collision, eliminate old particles and finally move the
particles through the space. Differently to the previous ex-
periment, the particles tend to change domains during the
simulation since their movement is both horizontal and ver-
tical.

Once again, we simulated eight particles systems with
400.000 particles in each of them. The particle systems
were distributed through the simulated space, so it becomes
harder to restrict the space.

At the end of each frame, each process has approxi-
mately 4000 particles that belong to another calculator. For
the total amount of process, it means 4375 Kbytes of data
to be exchanged.

Table 3 shows some of the results obtained through the
execution of this experiment using Myrinet and GNU/GCC
Compiler on eight E800 nodes. The speed-up is calculated
using the time of the sequential execution on the same type
of node using the same compiler.

Nodes vs. Speed-Up
Processes IS-SLB FS-SLB IS-DLB FS-DLB
4*B /4 P. 0.98 1.09 1.49 1.49
5*B /5 P. 0.92 1.19 1.76 1.76
6*B /6 P. 0.98 1.31 2.02 2.05
7*B /7 P. 0.92 1.54 2.34 2.36
8*B /8 P. 0.98 1.86 2.66 2.67

8*B /16 P. 0.98 2.66 3.74 3.82

Table 3. Fountain Simulation using Myrinet
and GNU/GCC Compiler.

The use of dynamic load balancing in this kind of simu-

lation always resulted in better speed-up when comparing to
the static load balancing strategy. This is due to the non uni-
form distribution of particles through the space.

Opposing to the previous experiment, the use of 16 nodes
(eight E800 and eight E60) resulted in a speed-up of 4.28.
The increase in availability of processing power compen-
sates the loss of performance in function of the increase of
communication between the processes.

The executions using Fast-Ethernet and C Intel Compiler
did not result in gain of performance. The highest speed-
up, 1.26, was achieved when using dynamic load balancing
with restriction of the simulated space on two E800 nodes
together with two Itanium nodes.

5.3. Comparison between the Simulations

The results from both simulations lead to the following
considerations:

• When the load is uniform and the user is capable of re-
stricting the simulated space, the use of dynamic load
balancing mechanism is only necessary in heteroge-
neous clusters. In homogeneous clusters, if the simu-
lated space has the same dimensions of the particle sys-
tem, the equilibrium of the load happens naturally, be-
cause each process will be given a domain with the ap-
proximate same amount of particles of its neighbors;

• When the load is irregular, the use of dynamic load bal-
ancing becomes necessary also in homogeneous clus-
ters, because there is no guarantee that the particles
given to a process will remain inside of its original
domain during the simulation. However, in order to
gain performance, it is necessary to use high speed net-
works or machines which processing power can com-
pensate the loss by the intense communication among
the processes.

The use of dynamic load balancing and Fast-Ethernet
was not satisfactory, possibly due to the amount of data ex-
changed between processes at the end of each frame. For
the rest of the simulations, the gain of performance justifies
the use of clusters. The time to simulate snow with Myrinet
was reduced by 84% and with Fast-Ethernet by 68%. The
second simulation’s time was reduced by 66% when using
Myrinet.

6. Conclusions and Future Work

This work presented a model to generate particle systems
animations on heterogeneous clusters, although it may also
be used on homogeneous ones without modifications. The
model allows the user to include collision detection mech-
anisms since it preserves data locality. Due to the spatial

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

domain decomposition, the model uses dynamic load bal-
ancing mechanisms that maintain the particles close to their
neighbors.

The experiments with the library whose implementation
was based on the model allow a gain of performance even
for applications with irregular data distribution, as long as
high speed networks or machines whose processing power
can compensate the costs of communication are available.

The performance of the Itanium nodes was not satisfac-
tory, but it is important to notice that the workstations used
in the simulations are no longer manufactured. We hope that
new machines, such as HP Integrity rx2600 (Dual Itanium
II 1.5 GHz) allow more satisfactory gain of performance.

As future work, we intend to use remote image genera-
tion mechanisms such as WireGL [8] or Pomegranate [4],
to include ways of interconnecting particles to allow the
simulation of fabric, for example and to decentralize the
load balancing management.

Acknowledgments

This work was done in collaboration with HP-Brazil.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: a gigabit-
per-second local-area network. IEEE Micro, 15(1):29–36,
February 1995.

[2] R. B. Cruise, R. W. Sheppard, and V. P. Moskvin. Paral-
lelization of the penelope monte carlo particle transport sim-
ulation package. Nuclear Mathematical and Computational
Sciences: A Century in Review, A Century in Anew, 2003.
[CDROM]. 11p.

[3] E. Deelman and B. K. Szymanski. Dynamic load balanc-
ing in parallel discrete event simulation for spatially explicit
problems. Proceedings of the 20th Workshop on Parallel and
Distributed Simulation, pages 46–53, 1998.

[4] M. Eldridge, H. Igehy, and P. Hanraham. Pomegranate: A
fully scalable graphics architecture. Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive
Techniques, pages 443–454, 2000.

[5] I. Foster. Compositional parallel programming language.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 18(4):454–476, July 1996.

[6] D. F. Hegarty and M. T. Kechadi. Topology preserving
dynamic load balancing for parallel molecular simulations.
Proceedings of the 1997 ACM/IEEE conference on Super-
computing, 1997. [CDROM]. 20p.

[7] D. S. Henty. Performance of hybrid message-passing and
shared-memory parallelism for discrete element modeling.
Proceedings of the 2000 ACM/IEEE conference on Super-
computing, 2000. [CDROM]. 10p.

[8] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanraham. Wiregl: A scalable graphics system for

clusters. Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, pages 129–
140, 2001.

[9] D. K. Mcallister. The design of and api for particle systems.
University of North Carolina, Chapel Hill, NC, Tech Rep.
UNC-CH TR 00-007, 2000, 8p.

[10] M. Müller, D. Charypar, and M. Gross. Particle-based fluid
simulation for interactive applications. Proceedings of the
2003 ACM SIGGRAPH Eurographics Symposium on Com-
puter Animation, pages 154–159, 2003.

[11] E. R. Rodrigues, A. J. Preto, and S. Stephany. A parallel
engine for graphical interactive molecular dynamics simula-
tions. 16th Symposium on Computer Architecture and High
Performance Computing, pages 150–157, 2004.

[12] J. P. Schulze and U. Lang. The parallelization of the perspec-
tive shear-warp volume rendering algorithm. 4th Eurograph-
ics Workshop on Parallel Graphics and Visualization, pages
61–69, 2002.

[13] K. Sims. Particle animation and rendering using data par-
allel computations. Proceedings of the 17th Annual Con-
ference on Computer Graphics and Interactive Techniques,
pages 405–413, 1990.

[14] D. Tonnessen. Particles systems for artistic expression. 4th
Annual Subtle Technologies Conference, pages 17–20, 2001.

[15] B. Wilkinson and M. Allen. Parallel Programming: Tech-
niques and Applications Using Networked Workstations and
Parallel Computers. Prentice-Hall, 1999.

[16] F. Zara, F. Faure, and J.-M. Vincent. Physical cloth simula-
tion on a pc cluster. 4th Eurographics Workshop on Parallel
Graphics and Visualization, pages 105–112, 2002.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 18:22:19 UTC from IEEE Xplore. Restrictions apply.

