
Optimizing the Management of a Database in a Virtual Environment

Timoteo Lange, Paolo Cemim, Miguel Xavier, Cesar De Rose
Pontifical Catholic University of Rio Grande do Sul - Porto Alegre, Brazil

timoteo.lange@acad.pucrs.br

Abstract—Recent studies have demonstrated advantages in using
Data Base Management System (DBMS) in virtual environments, like
the consolidation of several DBMS isolated by virtual machines on
a single physical machine to reduce maintenance costs and energy
consumption. Furthermore, live migration can improve database avail-
ability, allowing transparent maintenance operations on host machines.
However, there are issues that still need to be addressed, like overall
performance degradation of the DBMS when running in virtual
environments and connections instabilities during a live migration.
In this context, new virtualization techniques are emerging, like the
virtual database, which is considered a less intrusive alternative for the
traditional database virtualization over virtual machines. This paper
analyzes aspects of this new virtualization approach, like performance
and connection stability during a database migration process and its
isolation capabilities. Our evaluation shows very promising results
compared to the traditional approach over virtual machines, including
a more efficient and stable live migration, maintaining the required
isolation characteristics for a virtualized DBMS.

Keywords-Database Virtualization, Virtual Database, Live Migration,
Performance Evaluation

I. INTRODUCTION

Virtualization of computational resources has been widely used
in Information Technology (IT) in scenarios which varies, including
server virtualization, networks, applications and databases consol-
idation. Server virtualization is one of the oldest virtualization
technique that implements a logic layer over the physical layer,
in such a way that all physical devices can be accessed by the
virtualized servers transparently [1]. Such technique has brought
benefit for large data centers including isolation, security and server
consolidation, introducing better manageability through news ca-
pabilities that permits now to guarantee high availability and load
balancing in high throughput systems [2]. In this way, it is possible
to notice a trend in attempt to explore those virtualization benefits
and its techniques in database systems [2] [3] [4] [5].

Recent studies have demonstrated the advantages of using Data
Base Management System (DBMS) in virtual environments, such
works have proposed solutions in order to improve manageability
as it allows system administrators to consolidate several of DBMS
isolated by virtual machines on a single physical machine, reducing
the maintenance cost and energy consumption [2]. Furthermore, the
high availability of databases can also be addressed by using the
live migration technique provided by the virtualization technolo-
gies.

Although there are advantages in using DBMS on virtual en-
vironments, there are problems that still need to be addressed,
such as the problem of loss of client connections and performance
degradation when a live migration technique is performed [4]
[5]. Furthermore, virtualization by it’s very nature introduce a
layer which normally results in performance overheads in a whole
virtualized system, in such a way the performance of DBMS could
also be affected

In this work we conduct experiments in order to compare the
performance overheads between the DBMS migration process over
a virtual machine (DBVM), and the migration process of a virtual
database (VDB) instance. The database instances consolidation is
also evaluated through the possibility of reserving used resources
per instance, identified as isolation. These analyzes are useful for

identifying novel forms management of a database in a virtual
environment.

The rest of this paper is organized as follow: Section 2 provides
a overview of database approach use; Section 3 describes the
migration and isolation process; Section 4 discusses benchmarks,
monitoring tools, metrics and the obtained results, the Section 5
shows the related works; The conclusion and future work are show
in Section 6.

II. DATABASE APPROACHES

DBMS is a system class with very specific characteristics that
must be considered before a database server can be virtualized
[5]. This section makes an overview about databases in virtualized
environments identified in this work as DBVM (Database on
Virtual Machine) and VDB (Virtual Database).

A database system is basically composed of two components: a
set of programs responsible for managing the access to data and the
data itself [5]. The former provides interfaces for data creation and
manipulation, and other functionalities like security and integrity
control. This set of programs is known as DBMS. As mentioned
before, the second part of a database is the data itself, that, in
general, are arranged in one or more files according to a physical
structure proprietary to the DBMS [2].

One characteristic of the current DBMSs is the independency of
its logical data structures, such as tables, views and physical storage
indexes (file structure). As the physical and logical structures are
separated, the physical storage can be managed without interfering
in the access to the logical structures. For example, it is possible
to rename a physical file in the database without to need to rename
its tables that are accessed from a database instance.

The definition of instance is very important for the correct
understanding of this work. Instance is the structure used by the
programs that compose the DBMS to access the records stored in
the data files. The parameter values of an instance can be defined
at the moment of its creation. These parameters will allocate the
configured amount of memory and operating system resources and
start the processes responsible for database manipulation [3].

A. Managing Virtual Database
The virtualization of computational resources is a technique

applied in several areas of the Computer Science, such as fault
tolerance, high performance and databases [3] [4] [6]. The resource
virtualization usually adds a layer between the hardware and
applications. Traditionally, this intermediary layer is provided by
a Virtual Machine Monitor (VMM), also known as hypervisor,
which allows the execution of multiple VMs. Each VM has its
own Operational System (OS) and runs isolated from the rest of
the VMs.

In this context, the utilization of databases in virtualized environ-
ments is usually achieved by executing a DBMS on top of a VM
[3]. This technique (in this paper, identified as DBVM) imposes
a computational overhead because of the software layers used to
provide abstraction of a complete virtual machine. An alternative
to reduce the onus related to this approach may be the utilization
of virtualization at database level. Figure 1 presents the differences
between the virtualization at VM level (Figure 1(a)) and at database
level (Figure 1(b)). Instead of virtualizing an entire machine (with
its own host operational system), the virtualization at database level

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 000594

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 14:40:08 UTC from IEEE Xplore. Restrictions apply.

virtualizes only an instance of the database (in this paper, identified
as VDB).

Figure 1. System stack for VM level Virtualization and DB level
Virtualization.

The VDB technique is similar to the virtualization based in
containers, available in some modern operational systems (i.e.
Linux Containers [7], FreeBSD Jails [8] and Solaris Zones [9]). The
virtualization based in containers allows the creation of multiple
virtual environments that work isolated at user level and share the
kernel of the operational system. This type of virtualization usually
provides performance similar to native as it does not replicate the
entire stack of the operational system [6]. In an analogous manner,
virtualization at database level enables the creation of multiple
instances of the database, that are isolated from the rest, without
the need of a virtual machine that replicates the entire operational
system and the DBMS itself.

III. VIRTUAL DATABASE

A. Database Live Migration
Migration of virtual machines is one of the most important

functionalities to perform consolidation of data centers. However,
with the evolution of VM migration techniques, it is now possible
to migrate a virtual machine without shutting down. This process
is known as Live Migration [10]. This is an attractive feature for
datacenters as it is possible to consolidate servers without breaking
SLAs (i.e. high availability clauses) as the migration does not cause
downtimes.

Similarly is the case of database migration, except that the vir-
tualization technology has made it un-needed to perform physical
data migration. The steps of database migration in virtualized
environment differ in case of virtual machine running database
(DBVM) from the case of virtual database (VDB). DBVM mi-
gration can be done in the same way as the migration of a VM
running any application. These migration steps in this case can be
found in Section III-A1, and the steps of VDB migration can be
found in Section III-A2.

In the scope of databases, it is possible to virtualize it in two
different ways, as presented in Section II-A. In this section we will
present the different ways to perform virtual database migration,
which are: migration of virtual machines running databases and
virtual databases.

1) Migration of Databases on VM: VM migration, a tech-
nique to migrate tenants with minimal service interruption and
no downtime, is critical to allow lightweight elastic scaling [1].
Another definition of VM migration shows that migrating consists
basically of transferring its memory image from a source server
to a destination server [11] [10]. It is required mainly when
organizations or individuals change their computer systems or
upgrade to new systems, or when systems merge. The process
of migration demands mapping data from the old system to the
new one, this mapping relates old data formats to the new system
formats and requirements.

The process of migrating a VM running a database can be done
in the same way as the migration of a VM running any application.

The steps needed to perform the migration are: (i) copying all
memory pages from the source host to the destination host. If
during the copy a memory page is changed, it is necessary to
perform a new copy of the entire page until a threshold where the
hypervisor consider that the majority of the page has been copied
(Figure 2(a) and 2(b)). (ii) When the copy crosses the threshold
mentioned before, the hypervisor suspends the source host and
finishes the memory copy to the destination host. This suspension
and copy of the pages left in the source host is considered a
downtime and may last from milliseconds to several seconds
depending on the type of application being executed (Figure 2(c)).
(iii) After fully stopping the source host and concluding the copy
of memory pages, the destination host starts the migrated VM and
from now on it will answer the requisitions made to it (Figure
2(d)).

It is important to note that in this work we do not consider VMs
that are in different storage areas. Another important point is that
all hosts must be in the same network areas.

Figure 2. DBVM Live Migration.

2) Migration of Virtual Database: As described in Section II-A,
in this new approach, only the database instance is virtualized,
which could extend the flexibility through this architecture. Some
of the disadvantages of using a DBVM could be minimized as
performance loss, keeping the benefits that virtualization could
bring and including the consolidation of database systems and
easiness of database instances migration between hosts [12].

Differently from using DBMS in a virtual machine, a VDB could
be migrated from one ambient to another without the necessity of
service interruption and minimal performance loss. The databases
could be stored in transparent locations and be relocated to other
servers without having to modify the applications.

The migration of a Virtual Database system can be done by
the following steps: (i) initialization of a new database instance
in the new server (Figure 3(a)), (ii) migration of all the existing
connections, transactions and states of each transaction (Figure 3(b)
and 3(c)) and (iii) only after the migration of every connection and
transaction the original service is stopped (Figure 3(d)). Thus, in
this type of migration it is only required to migrate the database
instance (provided by the DBMS) and not the entire database (data
file) that will remain in the storage.

B. Virtual Database Isolation

One important characteristic of virtualization is the possibility
of having several services running on the same machine without
interfering. VDB allows the virtualization of databases without
the need of a VM layer, decreasing the virtualization overhead.
However, the usage of Virtual Database without resources control
may result in interference between instances sharing the same
hardware.

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 000595

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 14:40:08 UTC from IEEE Xplore. Restrictions apply.

Figure 3. VDB Live Migration.

On a machine running several virtualized databases instances,
a CPU-intensive instance may cause dearth in resources and,
therefore, significantly degrade the performance of other instances.
Thus, isolation solution for CPU consumption interference between
virtualized instances Virtual Database. This intervention allows the
DBA to limit CPU utilization of databases instances, avoiding one
instance to consume CPU allocated for other instances.

Isolation is a necessary resource to ensure performance and
security between instances of the virtual database. It can manage
multiple facets of session behavior on a per workload basis, such
as idle time limits, runaway queries, degree-of-parallelism, etc.

The possibility of running instances of Database Isolated form
should allow manages CPU usage by controlling the database load
in a very precise way. It does not bind processes to CPUs. Instead,
must works much like the OS scheduler, using an VDB run queue
and a quantum of time to share the resources between the processes.
In a Virtual Database environment, this manages each database
instance independently. Thus, each instance can be configured with
its own resource limits.

By default, the DBMS the workload in a way that all CPUs are
utilized. However, in virtualization is possible to use the Isolation
to limit CPU utilization in a database instance.

IV. EVALUATIONS OF DATABASE LIVE MIGRATION AND
VIRTUAL DATABASE ISOLATION

A. The Experiment Testbed

The evaluation environment comprises two DELL PowerEdge
810 servers with 2 Intel R©Xeon R©6500 series for each and a
64Gb RAM memory, interconnected to DELL EqualLogic PS400
storage with iSCSI dedicated protocol. The network is divided into
distinct sub-networks, a public one and a private one for direct
communication between storage and host, both using a GigaBit
Ethernet connection. The OS in use is OEL 5.6 (Oracle Enterprise
Linux 5 update 6) with kernel 2.6.18-238.el5. The DBMS in use
is Oracle R©11g r2. The hypervisor in use is VMware ESXi 5.

In the DBVM evaluation environment, the OS has been set up
over VM, and the DBMS has been installed directly in the OS.
The database instance has been created applying 100% of the VM
available resources. Within this environment, the VM resources are
managed by the hypervisor.

Similarly, the VDB evaluation environment worked upon a
hardware-setup OS, and the DBMS upon this OS. The instance
has been created employing 100% of the available resources, with
support to virtualization activated in the DBMS.

The isolation test environment uses the resources addressed
above, however, to test a database instance isolation, only a server
with multiple database instances running simultaneously was used.

B. Benchmarks
To evaluate the performance overhead of the database, we

use On-Line Transaction Processing (OLTP). OLTP systems are
characterized by supporting multiple concurrent users executing
transactions (e.g. select, update and delete operations). This kind
of systems allows identifying typical operations of environments
that need high availability of simultaneous access.

In order to analyze the performance of OLTP systems, we chose
the TPC-C benchmark defined by Transaction Performance Coun-
cil. TPC-C provides information regarding how many transactions
are done in a interval time. There are 5 basic transactions that
represent the behavior of an OLTP system.

The database benchmark tool used in the experiments was
Hammerora [13], which is a free load generator and benchmark
designed to perform stress tests in databases. It implements the
TPC-C benchmark [14]. The number of virtual clients to be used
and the quantity of transactions per virtual client are configurable
parameters in the Hammerora tool.
C. Workloads

The tests were made running the TPC-C benchmark. The testing
environment was setup to ensure that only the DBMS would be
executed in each test case, besides ensuring that the OS would be
always in the same initial status.

For the migration test, in every single case only one instance of
the database or VM has been in use for each test case. We have
chosen to run our tests using only one instance because running
several concomitant, concurrent instances is useful for isolation or
scalability testing, evaluated in Section IV-E5.

During migration, the volume of transactions has been deter-
mined by the execution of 10 data warehouse with 10, 50, 100
and 200 simultaneous connections. In every test the architecture
resources were fully employed. In all tests the capabilities of the
architecture were used in its entirety, i.e., considering that the tests
have been executed with one instance, this instance employed 100%
of the available resources, for example, processing and memory.

To evaluate the isolation we conducted two experiments. The
first experiment evaluated the effects by decreasing the number
of instance CPUs during the benchmark execution. Initially, the
execution starts with 16 CPU cores and during the execution the
number of CPU cores is decreasing to 8 (see Figure 8). The goal
of this experiment was to evaluate the time needed to change the
instance limit configuration during the benchmark execution and
the impact on the database and application caused by this changing.

The second experiment of isolation verified if the Isolation really
limit the CPU load. For this we performed benchmark executions,
using four instance with 4 CPU cores and during the execution, the
limit was changed from one of the instances to 16 CPU cores. The
goal of this experiment was to compare the performance between
the executions: before and after change CPU.

The test result of live migration is presented in the Section IV-E1
and isolation tests are shown in Section IV-E5.
D. Monitoring Tools and Metrics

Our evaluation of the Database Live Migration and Database
Isolation involves monitoring of system resources during the ex-
ecution. The purpose of this monitoring is to know the resource
utilization pattern for these activities.

Although Unix tools are not database aware, they are easy to use
and result in little overhead, and because this they were chosen.
Two softwares were used to monitor the resources: mpstat and
dstat. The first was used to monitor CPU usage and the second to
monitor network traffic and memory usage. The commands time
and date were used to monitor time and duration.

-In order to monitor the performance, in this case identified as
TPM (Transactions Per Minute), we have used the Hammerora tool
to extract information regarding database statistics.

The following metrics were used: process completion time,
CPU utilization, Memory utilization, Network traffic generated and
Transaction per second.

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 000596

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 14:40:08 UTC from IEEE Xplore. Restrictions apply.

E. Results
1) Performance Results During Live Migration: Our first eval-

uation is based on the TPC-C benchmark execution during the
migration process. The VDB performance is 15% greater than the
DBVM performance. Figure 4 represents a 10 warehouses charge
with 200 concurrent connections.

(a) Analyse of Performance DBVM.

(b) Analyse of Performance VDB.

Figure 4. Analyse of performance during live migration

Another possible analysis is the time spent in the live migration
process. The VDB spent an average 126 seconds (Figure 4(b))
whilst the DBVM spent an average 540 seconds (Figure 4(a)).
This behavior is expected because database applications perform
constant modifications in the server’s memory pages. This implies
the need to perform the copy of the modified memory pages several
times during the process of VM migration. On the other hand,
the VDB migrates only the session processes after the transaction
execution is over.

It is also perceivable that during the VDB migration process
the performance pattern kept stable, with no performance loss.
On the other hand, the DBVM transactions stopped responding
for a short period of 24 seconds, on average, something that has
been observed in other works [11]. However, it didn’t bring any
downtime regarding the DBMS sessions.

This initial analysis allows us to say that the VDB executions
kept the performance up during the live migration, which is not the
case in the DBVM migration, shown in Figure 4. The resources
analysis that follows is a further step towards our goal of evaluating
the migration process.

2) CPU Utilization During Live Migration: We chose the mpstat
tool in order to monitor the CPU utilization during the execution of
the tests. The mpstat is computer command-line software used in
Unix type operating systems to report processor related statistics.
It is commonly used in computer monitoring in order to diagnose
problems or to build statistics about computer CPU usage.

In accordance with other papers [6], the DBVM’s CPU usage is
as high as two percentual digits superior in comparison to that of
the VDB. This behavior may be observed in the Figure 5.

It can be observed in Figure 5(a) that the VDB environment has
an inferior CPU usage in comparison to the DBVM environment
with the same volume of transactions - Figure 5(b). The DBVM
environment, besides obtaining more processing, still keeps on the
average of its usage. It is also possible to notice that the DBVM
target host gets an increase in processing right from the start of the
migration. This behavior cannot be observed in the VDB migration.

3) Network Utilization During Live Migration: The network is
the resource that exhibits the biggest difference in usage, which can
be observed in the Figure 6. It is noticeable that the VDB network,
Figure 6(a), undergoes a small increase in usage during the whole
migration period, showing no change in terms of consumption.
An explanation for this behaviour might be, considering that the
VDB migrates sessions only after the transaction execution is over,
rendering unnecessary to copy data during the execution.

The DBVM environment (Figure 6(b)) undergoes a considerable
increase of more than 100% in usage along the whole migration
process. The data transference before and after the migration
process is similar to the network usage rate of the VDB model,
however, it is observed that the DBVM has an overload during
this period due to the VM copy which has its own OS and DBMS
installed, that are copied from a host to another. The volume of
data transferred from a host to another is related to the size of the
VM, i.e., the more resources are allocated to the VM, the longer
the period is and the higher the data rate are during the migration.

4) Memory Utilization During Live Migration: The DBVM
memory usage, in comparison to that of the VDB, is nine times
more and it can be observed in Figure 7. This is due to the fact
that the VM uses the whole memory the hypervisor made available
for it.

Considering that the VM uses 100% of the available resources
and that the guest host has 64GB of RAM, the VM occupies the
64Gb of available memory (Figure 7(b)) whilst the VDB (Figure
7(a)) has its memory used mainly by the RDBMS. We think that
this is one of the main reasons for the high flow of data transfer and
time spending, once smaller VMs demand less time and transfer
rate.

Our experiments allow us to observe that the VDB migration is
performed in a shorter period of time, with lower data flow and
memory consumption in comparison to the same execution using
the DBVM. We have also observed that a VDB does not lose
performance during this period, and that the size of the database
instance does not affect the observed parameters for the VDB. This
evaluation complements the previous works which an evaluation of
the DBVM migration was made.

5) Results for Virtual Database Isolation: As mentioned earlier,
this experiment aimed the performance effects by decreasing the
number of CPUs during the benchmark execution and the impact
on the database and application caused by this changing.

Figure 8 shows the behavior during the process of reconfigura-
tion of resource Database for a given database instance, changing
from 16 to 8 CPUs. In these graphics we can observe that the CPU
usage during the execution are stable and high with 16 CPUs. When
changed to 8, the CPU usage decrease generating a curve in the
graph.

As can be seen in the Figure 8, when using 16 CPU, the CPU
usage remains until 50% for most of the time. When changed to
8, the CPU usage decrease as expected for 25%.

The second experiment aimed to validate the isolation really limit
the CPU load. To do the experiment, we compared the execution
of it the benchmark four database using 4 CPU cores and during
the benchmark execution change the CPU usage for 16 cores for
a database.

Figure 9 shows the results of simultaneous execution for four
database instances. Initially, all instances were configured with four
CPU cores. We can consider that all the instances executed the
same number of transactions (Figure 9(a)). During the execution,
only Instance 04 had its CPUs quantity altered from 4 to 16. We can
see that after the alteration, the transactions volume of instance 04

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 000597

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 14:40:08 UTC from IEEE Xplore. Restrictions apply.

(a) CPU Utilization of VDB. (b) CPU Utilization of DBVM.

Figure 5. Utilization of CPU during live migration

(a) Throughput network of VDB. (b) Throughput network of DBVM.

Figure 6. Utilization of network during live migration

(a) Memory Utilization of VDB. (b) Memory Utilization of DBVM.

Figure 7. Utilization of memory during live migration

increased from 43532 (Figure 9(a)) to 88382 (Figure 9(b)). With
the resources increase, in this case CPUs, for instance 04 there
was a higher efficiency without interfering in the other database
instances, which continued with the same behavior (Figure 9(b)).
Thus, we can suggest that through the isolation of one instance
execution does not affect the others.

V. RELATED WORKS

The technology of virtualization adds an intermediate layer of
software between the applications and the hardware. This layer is
called hypervisor or virtual machine monitor (VMM) which maps
the virtual resources visible to applications (in the context of this
work, the DBMS) mediating the physical resources available to the
host.

The virtualization can solve many critical problems regarding
the database, such as usability, management, scalability, avail-
ability and implementation. Database applications may benefit

from this type of infrastructure through some characteristics such
as migration and consolidation that may be seen at [11] [15].
Then, depending on the demand of the database application, the
environment can be adjusted dynamically providing more or less
resources to the application.

Many papers analyze the virtualization layer overhead such as
in [3] [4] that show a loss of performance between 7% and 11%
if compared to application in a native system operation. Some
papers like [2] [6] evaluate the virtualization layer overhead with
database applications. Papers that evaluate a virtualized database
environment security and isolation are also presented [12] [15].
In some high performance applications the gain of performance is
superior to the overhead [16], what justifies its use in this type of
environment.

Other papers also present an evaluation of the migration process
of a virtual machine [10] [15] [17] [18]. The techniques presented

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 000598

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 14:40:08 UTC from IEEE Xplore. Restrictions apply.

Figure 8. Results with CPU Decrease.

(a) Before Increase. (b) After Increase.

Figure 9. Results of Performance of TPM with CPU Increase.

by these papers allow us to do the migration of a VM with a
minimum loss of performance. There are also papers that measure
the cost of migration [11] and that present an evaluation of the
performance of a DBMS on a VM during the live migration process
[3].

Our paper complements other works because this one not only
evaluates a virtual machine database migration costs, but it brings
a new database virtualization proposal in this VDB context and
evaluates the Isolation capacity that instances could offer when
sharing physical resources. Also is evaluated the live migration
capacities of a database instance without losing performance (TPM)
and lower migration time and network data flow.

VI. CONCLUSION AND FUTURE WORKS

This paper presented an evaluation of the live migration process
and performance isolation of virtualized databases, comparing
databases over virtual machines (DBVM), the traditional approach,
to a new less intrusive approach called virtual databases (VDB).

From the obtained results it was possible to conclude that VDB
has 15% more transactions per minute than a DBVM during
the live migration process, preserving its isolation capabilities.
Furthermore, we can observe that CPU and network usage during
the migration process of a VM with DBMS were greater than
VDB due to the fact that the destination host is more active during
the migration process, what will have an negative impact in the
energy consumption. It was also possible to verify that the DBVM
needs a longer time interval to perform the migration (including
some downtimes) when compared to a VDB. These results indicate
an overall greater complexity of the migration mechanism in the
DBMS approach. These experiments successfully validated the
isolation of VDB, since it was able to limit the CPU usage for
a given database instance. We also conducted an experiment to
monitor the utilization of resources when this limits were increased
during execution.

As a future work, we are planning to develop a strategy to effi-
ciently manage virtual databases consolidation taking host overload
and migration costs into consideration.

REFERENCES
[1] M. Ahmadi and D. Maleki, “Performance evaluation of server

virtualization in data center applications,” in Telecommunications
(IST), 2010 5th International Symposium on, dec. 2010, pp. 638
–644.

[2] A. Aboulnaga, C. Amza, and K. Salem, “Virtualization and
databases: state of the art and research challenges,” in Proceedings
of the 11th international conference on Extending database
technology: Advances in database technology, ser. EDBT ’08.
New York, NY, USA: ACM, 2008, pp. 746–747.

[3] U. Minhas, J. Yadav, A. Aboulnaga, and K. Salem, “Database
systems on virtual machines: How much do you lose?” in
Data Engineering Workshop, 2008. ICDEW 2008. IEEE 24th
International Conference on, april 2008, pp. 35–41.

[4] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath, “Automatic virtual machine configuration for
database workloads,” in Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, ser. SIGMOD
’08. New York, NY, USA: ACM, 2008, pp. 953–966.

[5] Y. Wada, Y. Watanabe, K. Syoubu, J. Sawamoto, and T. Katoh,
“Virtual database technology for distributed database,” Advanced
Information Networking and Applications Workshops, Interna-
tional Conference on, vol. 0, pp. 214–219, 2010.

[6] T. Lange, P. Cemim, F. Rossi, M. Xavier, R. Belle, T. Ferreto, and
C. De Rose, “Performance evaluation of virtualization technolo-
gies for databases in hpc environments,” in Computer Systems
(WSCAD-SSC), 2012 13th Symposium on, 2012, pp. 88–94.

[7] “LXC Linux Containers,” 2013, [Online; accessed 19-January-
2013]. [Online]. Available: http://lxc.sourceforge.net

[8] “FreeBSD Jails,” 2013, [Online; accessed 19-January-2013].
[Online]. Available: http://www.freebsd.org

[9] “Solaris Containers,” 2013, [Online; accessed 19-January-2013].
[Online]. Available: http://www.oracle.com/technetwork/server-
storage/solaris/containers-169727.html

[10] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of virtual
machines,” in In Proceedings of the 2nd ACM/USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI,
2005, pp. 273–286.

[11] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost
of virtual machine live migration in clouds: A performance
evaluation,” in CloudCom, 2009, pp. 254–265.

[12] F. Almari, P. Zavarsky, R. Ruhl, D. Lindskog, and A. Aljaedi,
“Performance analysis of oracle database in virtual environ-
ments.” in AINA Workshops, L. Barolli, T. Enokido, F. Xhafa,
and M. Takizawa, Eds. IEEE, 2012, pp. 1238–1245.

[13] “Hammerora,” 2013, [Online; accessed 19-January-2013].
[Online]. Available: http://hammerora.sourceforge.net

[14] “Tpc consortion,” 2013, [Online; accessed 19-January-2013].
[Online]. Available: http://www.tpc.org/tpcc/detail.asp

[15] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigumus, “Intelligent management of virtualized resources
for database systems in cloud environment,” in Proceedings
of the 2011 IEEE 27th International Conference on Data
Engineering, ser. ICDE ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 87–98. [Online]. Available:
http://dx.doi.org/10.1109/ICDE.2011.5767928

[16] W. Huang, J. Liu, B. Abali, and D. K. Panda, “A case for high
performance computing with virtual machines,” in Proceedings
of the 20th annual international conference on Supercomputing,
ser. ICS ’06. New York, NY, USA: ACM, 2006, pp. 125–134.

[17] S. Das, S. Nishimura, D. Agrawal, and A. E. Abbadi, “Live
database migration for elasticity in a multitenant database for
cloud platforms,” UCSB CS, Tech. Rep. 2010-09, 06/2010 2010.

[18] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, “Performance
and energy modeling for live migration of virtual machines,”
in Proceedings of the 20th international symposium on High
performance distributed computing, ser. HPDC ’11. New York,
NY, USA: ACM, 2011, pp. 171–182. [Online]. Available:
http://doi.acm.org/10.1145/1996130.1996154

978-1-4799-3755-4/13/$31.00 ©2013 IEEE 000599

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 28,2022 at 14:40:08 UTC from IEEE Xplore. Restrictions apply.

