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ABSTRACT
Tip decomposition is a crucial kernel for mining dense subgraphs

in bipartite networks, with applications in spam detection, analysis

of affiliation networks etc. It creates a hierarchy of vertex-induced

subgraphs with varying densities determined by the participation

of vertices in butterflies (2, 2−bicliques). To build the hierarchy,

existing algorithms iteratively follow a delete-update(peeling) pro-
cess: deleting vertices with the minimum number of butterflies

and correspondingly updating the butterfly count of their 2-hop

neighbors. The need to explore 2-hop neighborhood renders tip-

decomposition computationally very expensive. Furthermore, the

inherent sequentiality in peeling only minimum butterfly vertices

makes derived parallel algorithms prone to heavy synchronization.

In this paper, we propose a novel parallel tip-decomposition al-

gorithm – REfine CoarsE-grained Independent Tasks (RECEIPT)

that relaxes the peeling order restrictions by partitioning the ver-

tices into multiple independent subsets that can be concurrently

peeled. This enables RECEIPT to simultaneously achieve a high

degree of parallelism and dramatic reduction in synchronizations.

Further, RECEIPT employs a hybrid peeling strategy along with

other optimizations that drastically reduce the amount of wedge

exploration and execution time.

We perform detailed experimental evaluation of RECEIPT on a

shared-memory multicore server. It can process some of the largest

publicly available bipartite datasets orders of magnitude faster than
the state-of-the-art algorithms – achieving up to 1100× and 64×
reduction in the number of thread synchronizations and traversed

wedges, respectively. Using 36 threads, RECEIPT can provide up to

17.1× self-relative speedup.
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1 INTRODUCTION
Dense subgraph mining is a fundamental problem used for anomaly

detection, spam filtering, social network analysis, trend summariz-

ing and several other real-world applications [9, 14, 20, 44, 56, 68].

Many of these modern day applications use bipartite graphs to effec-

tively represent two-way relationship structures, such as consumer-

product purchase history [26], user-group memberships in social

networks [38], author-paper networks [41], etc. Consequently, min-

ing cohesive structures in bipartite graphs has gained tremendous

interest in recent years [51, 54, 63, 64, 69].

Many techniques have been developed to uncover hierarchical

dense structures in unipartite graphs, such as truss and core decom-

position [7, 20, 27, 36, 45, 49, 60, 67]. Such off-the-shelf analytics can

be conveniently utilized for discovering dense parts in projections

of bipartite graphs as well [42]. However, this approach results in

a loss of information and a blowup in the size of the projection

graphs [51]. To prevent these issues, researchers have explored the

role of butterflies (2, 2−bicliques) to mine dense subgraphs directly

in bipartite networks [51, 69]. A butterfly is the most basic unit of

cohesion in bipartite graphs. Recently, Sariyuce et al. conceptual-

ized 𝑘−tip as a vertex-induced subgraph with at least 𝑘 butterflies

incident on every vertex in one of the bipartite vertex sets (fig.1).

They show that 𝑘−tips can unveil hierarchical dense regions in

bipartite graphs more effectively than unipartite approaches ap-

plied on projection graphs. As a space-efficient representation for

the 𝑘−tip hierarchy, Sariyuce et al. further define the notion of tip
number of a vertex 𝑢 as the largest 𝑘 for which a 𝑘−tip contains

𝑢. In this paper, we study the problem of finding tip numbers of

vertices in a bipartite graph, also known as tip decomposition.
Tip decomposition can be employed in several real-world ap-

plications that utilize dense subgraphs. It can find (hierarchical)

groups of researchers with common affiliations from author-paper

networks [51]. It can be used to detect communities of spam review-

ers from user-rating graphs in databases of e-commerce companies;

such reviewers collaboratively rate selected products, appearing in

close-knit structures [17, 39] that tip decomposition can unveil. It

can be used for document clustering, graph summarization and link
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Figure 1: Tip decomposition of vertex set𝑈 in a bipartite graph. 𝑢4
and 𝑢1 participate in 1 and 2 butterflies, respectively. Although 𝑢3

participates in 5 butterflies in original graph, only 3 of them are
with 𝑢2 with which it creates a 3-tip.

prediction as dense 𝑘-tips unveil groups of nodes with connections

to common and similar sets of neighbors [12, 14, 32, 40].

Existing sequential and tip decomposition algorithms [51, 54]

employ a bottom-up peeling approach. Vertices with the minimum

butterfly count are peeled (deleted), the count of their 2-hop neigh-

bors with shared butterflies is decremented, and the process is then

iterated. However, exploring 2−hop neighborhood for every ver-

tex requires traversing a large number of wedges, rendering tip

decomposition computationally intensive. For example, the 𝑇𝑟𝑈

dataset has 140 million edges but peeling it requires traversing 211

trillion wedges, which is intractable for a sequential algorithm. For

such high complexity analytics, parallel computing is often used

to scale to large datasets [33, 43, 55]. In case of tip decomposition,

the bottom-up peeling approach used by the existing parallel algo-

rithms severely restricts their scalability. It mandates constructing

levels of the 𝑘−tip hierarchy in non-decreasing order of tip num-

bers, thus imposing sequential restrictions on the order of vertex

peeling. Note that the parallel threads need to synchronize at the

end of every peeling iteration. Further note that the range of tip

numbers can be quite large and the number of iterations required

to peel all vertices with a given tip number is variable. Taken to-

gether, the conventional approach of parallelizing the workload

within each iteration requires major synchronization, rendering it

ineffective. For example, ParButterfly experiences ≈ 1.5 million

synchronization rounds for peeling 𝑇𝑟𝑈 [54]. These observations

motivate the need for an algorithm that exploits the parallelism

available across multiple levels of a 𝑘−tip hierarchy to reduce the

amount of synchronizations.

In this paper, we propose the REfine CoarsE-grained IndePendent

Tasks (RECEIPT) algorithm, that adopts a novel two-step approach

to drastically reduce the amount of parallel peeling iterations and

in turn, the amount of synchronization. The key insight that drives

the development of RECEIPT is that the tip-number 𝜃𝑢 of a vertex𝑢

only depends on the butterflies shared between𝑢 and other vertices

with tip numbers greater than or equal to 𝜃𝑢 . Thus, vertices with
smaller tip numbers can be peeled in any order without affecting the

correctness of 𝜃𝑢 computation. To this purpose, RECEIPT divides

tip decomposition into a two-step computation where each step

exposes parallelism across a different dimension.

In the first step, it creates few non-overlapping ranges that rep-

resent lower and upper bounds on the vertices’ tip numbers. To

find vertices with a lower bound 𝜃 , all vertices with upper bound

smaller than 𝜃 can be peeled simultaneously, providing sufficient
vertex-workload per parallel peeling iteration. The small number

of ranges ensures little synchronization in this step. In the second

step, RECEIPT concurrently processes vertex subsets corresponding
to different ranges to compute the exact tip numbers

1
. The absence

of overlap between tip number ranges enables each of these subsets

to be peeled independently of other vertices in the graph.

RECEIPT’s two-step approach further enables development of

novel optimizations that radically decrease the amount of wedge

exploration. Thus, RECEIPT combines both computational efficiency
and parallel performance for fast decomposition of large bipartite

graphs. Overall, our contributions can be summarized as follows:

(1) We propose a novel RefinE CoarsE-grained Independent Tasks

(RECEIPT) algorithm for tip decomposition in bipartite graphs.

RECEIPT is the first algorithm that parallelizes workload across

the levels of subgraph hierarchy created by tip decomposition.

(2) We show that RECEIPT is theoretically work efficient and dra-

matically reduces thread synchronization. As an example, it

incurs only 1335 synchronization rounds while processing𝑇𝑟𝑈 ,

which is 1105× less than the existing parallel algorithms.

(3) We develop novel optimizations enabled by the two-step ap-

proach of RECEIPT. These optimizations drastically reduce the

amount of wedge exploration and improve computational effi-

ciency of RECEIPT. For instance, we traverse 3297B wedges to

tip decompose 𝑇𝑟𝑈 , which is 64× less than the state-of-the-art.

We conduct detailed experiments using some of the largest public

real-world bipartite graphs. RECEIPT extends the limits of current

practice by feasibly computing tip decomposition for these datasets.

For example, it can process the 𝑇𝑟𝑈 graph in 46 minutes whereas

the state-of-the-art does not finish in 10 days. Using 36 threads, we

achieve up to 17.1× parallel speedup.

2 BACKGROUND
In this section, we will discuss state-of-the-art algorithms for count-

ing per-vertex butterflies (sec.2.1). Counting is used to initialize

the support (running count of incident butterflies) of each vertex

during tip-decomposition, and also constitutes a crucial optimiza-

tion in RECEIPT. Hence, it is imperative to analyze counting algo-

rithms. We will also discuss the bottom-up peeling approach for

tip-decomposition used by the existing algorithms (sec.2.2).

Table 1 lists the notations used in this paper. Note that we decom-

pose either 𝑈 or 𝑉 vertex set at a time. For clarity of description,

we assume that𝑈 is the primary set to process and use the word

"wedge" to imply a wedge with endpoints in𝑈 . However, for empiri-

cal analysis, we will individually decompose both sets in each graph.

2.1 Per-vertex butterfly counting
Abutterfly (2,2-bicliques/quadrangle) is a combination of twowedges

with common endpoints. A simple way to count butterflies is to

explore all wedges and combine the ones with common end points.

However, counting per-vertex butterflies using this procedure is

1
A vertex subset for a given range is peeled by a single thread in the second step.

2
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Table 1: Frequently used notations

𝐺 (𝑊 = (𝑈 ,𝑉 ), 𝐸) bipartite graph 𝐺 with vertices𝑊 and edges 𝐸

𝑈 and 𝑉 are two disjoint vertex sets in 𝐺

𝑛,𝑚 no. of vertices and edges in G; 𝑛 = |𝑊 |,𝑚 = |𝐸 |
𝛼 arboricity of 𝐺 [10]

𝑁𝑢 neighboring vertices of 𝑢

𝑑𝑢 degree of vertex 𝑢; 𝑑𝑢 = |𝑁𝑢 |
⊲⊳𝑢 / ⊲⊳𝑈 support (# butterflies) of 𝑢 / vertices in set𝑈

⊲⊳𝑢1,𝑢2
= ⊲⊳𝑢2,𝑢1

# butterflies shared between 𝑢1 and 𝑢2

∧𝑈 # wedges with endpoints in set𝑈

𝜃𝑢 tip number of vertex 𝑢

𝜃𝑚𝑎𝑥
maximum tip number for a vertex

𝑃 number of vertex subsets created by RECEIPT

𝑇 number of threads

extremely expensive with O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣

)
complexity (if we

use vertices in𝑈 as end points).

Chiba and Nishizeki [10] proposed a vertex-priority quadrangle

counting algorithm which traverses O
(∑
(𝑢,𝑣) ∈𝐸 min (𝑑𝑢 , 𝑑𝑣)

)
=

O (𝛼 ·𝑚) wedges with O(1) work per wedge. This is the most

efficient butterfly counting approach in terms of computational

complexity. Wang et al.[63] further propose a cache efficient ver-

sion of the vertex-priority algorithm that reorders the vertices in

decreasing order of degree. Their algorithm only traverses wedges

where degree of the last vertex is greater than the degree of the start

and middle vertices. It can be easily parallelized by concurrently

processing multiple start vertices [54, 63], as shown in alg.1. In

RECEIPT, we adopt this parallel variant for per-vertex counting

by adding the contributions from traversed wedges to start, mid

and end-points. Each thread is provided a 𝜃 ( |𝑊 |) array for wedge

aggregation (line 5, alg.1). This is similar to the best performing

batch aggregation mode in the ParButterfly framework [54].

Algorithm 1 Counting per-vertex butterflies (pvBcnt)

Input: Bipartite Graph 𝐺 (𝑊 = (𝑈 ,𝑉 ), 𝐸)
Output: Butterfly counts ⊲⊳𝑢 ∀𝑢 ∈𝑊

1: Relabel vertices in 𝐺 in descending order of degree

2: for each 𝑢 ∈ 𝑈 ∪𝑉 do in parallel
3: Sort 𝑁𝑢 in ascending order of new labels

4: ⊲⊳𝑤← 0

5: for each 𝑠𝑝 ∈ 𝑈 ∪𝑉 do in parallel
6: Initialize𝑤𝑑𝑔_𝑎𝑟𝑟 array to all zeros

7: 𝑛𝑧𝑒 ← {𝜙}, 𝑛𝑧𝑤 ← {𝜙}
8: for each𝑚𝑝 ∈ 𝑁𝑠𝑝

9: for each 𝑒𝑝 ∈ 𝑁𝑚𝑝

10: if (𝑒𝑝 ≥ 𝑚𝑝) or (𝑒𝑝 ≥ 𝑠𝑝) then break

11: 𝑤𝑑𝑔_𝑎𝑟𝑟 [𝑒𝑝] ← 𝑤𝑑𝑔_𝑎𝑟𝑟 [𝑒𝑝] + 1
12: 𝑛𝑧𝑒 ← 𝑛𝑧𝑒 ∪ {𝑒𝑝}, 𝑛𝑧𝑤 ← 𝑛𝑧𝑤 ∪ {(𝑚𝑝, 𝑒𝑝)}
13: for each 𝑢 ∈ 𝑛𝑧𝑒 ⊲ same side contribution
14: 𝑏𝑐𝑛𝑡 ←

(𝑤𝑑𝑔_𝑎𝑟𝑟 [𝑢 ]
2

)
15: Atomically add 𝑏𝑐𝑛𝑡 to ⊲⊳𝑢 and ⊲⊳𝑠𝑝

16: for each (𝑢, 𝑣) ∈ 𝑛𝑧𝑤 ⊲ opp. side contribution
17: 𝑏𝑐𝑛𝑡 ← 𝑤𝑑𝑔_𝑎𝑟𝑟 [𝑣] − 1
18: Atomically add 𝑏𝑐𝑛𝑡 to ⊲⊳𝑢

2.2 Tip Decomposition
Sariyuce et al.[51] introduced 𝑘−tips as vertex-induced subgraphs

with large number of butterflies. They formally define it as follows:

Definition 1. A bipartite subgraph 𝐻 = (𝑈 ′,𝑉 , 𝐸) ⊆ 𝐺 , induced
on𝑈 , is a k-tip iff
• each vertex 𝑢 ∈ 𝑈 ′ participates in at least k butterflies,
• each vertex-pair (𝑢,𝑢 ′) ∈ 𝑈 ′ is connected by a series of butterflies,
• H is maximal i.e. no other k-tip subsumes H.

𝑘−tips are hierarchical – a 𝑘−tip overlaps with 𝑘 ′−tips for all
𝑘 ′ <= 𝑘 . Therefore, storing all 𝑘−tips is inefficient and often, infea-

sible. Tip number 𝜃𝑢 is defined as the maximum 𝑘 for which 𝑢 is

present in a 𝑘−tip. Tip numbers provide a space-efficient representa-

tion of 𝑘−tip hierarchy with quick retrieval. In this paper, we study

the problem of finding tip numbers, known as tip decomposition.
Algorithms in current practice use Bottom-Up Peeling (BUP) for

tip-decomposition, as shown in alg.2. It initializes vertex support

using per-vertex butterfly counting, and then iteratively peels the

vertices with minimum support until no vertex remains. When

a vertex 𝑢 ∈ 𝑈 is peeled, its support at that instant is recorded

as its tip number 𝜃𝑢 . Further, for every vertex 𝑢 ′ with ⊲⊳𝑢,𝑢′> 0

shared butterflies, the support of 𝑢 ′ is decreased by ⊲⊳𝑢,𝑢′ (capped

at 𝜃𝑢 ). Thus, tip numbers are assigned in a non-decreasing order.

The complexity of bottom-up peeling (alg.2), dominated by wedge

traversal (lines 8-10), is O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣

)
.

Algorithm 2 Tip decomposition using bottom-up peeling (BUP)

Input: Bipartite graph 𝐺 (𝑊 = (𝑈 ,𝑉 ), 𝐸)
Output: Tip numbers 𝜃𝑢 ∀ 𝑢 ∈ 𝑈

1: {⊲⊳𝑈 , ⊲⊳𝑉 } ← pvBcnt(𝐺) ⊲ Initial count
2: while𝑈 ≠ {𝜙} do ⊲ Peel
3: let 𝑢 ∈ 𝑈 be the vertex with minimum support ⊲⊳𝑢
4: 𝜃𝑢 ← ⊲⊳𝑢 , 𝑈 ← 𝑈 \ {𝑢}
5: update(𝑢, 𝜃𝑢 , ⊲⊳𝑈 ,𝐺)

6: function update(𝑢, 𝜃𝑢 , ⊲⊳𝑈 ,𝐺)
7: Initialize hashmap𝑤𝑑𝑔_𝑎𝑟𝑟 to all zeros

8: for each 𝑣 ∈ 𝑁𝑢

9: for each 𝑢 ′ ∈ 𝑁𝑣 \ {𝑢}
10: 𝑤𝑑𝑔_𝑎𝑟𝑟 [𝑢 ′] ← 𝑤𝑑𝑔_𝑎𝑟𝑟 [𝑢 ′] + 1
11: for each 𝑢 ′ ∈ 𝑤𝑑𝑔_𝑎𝑟𝑟 ⊲ Update Support
12: ⊲⊳𝑢,𝑢′←

(𝑤𝑑𝑔_𝑎𝑟𝑟 [𝑢′ ]
2

)
⊲ shared butterflies

13: ⊲⊳𝑢′← max{𝜃𝑢 , ⊲⊳𝑢′ − ⊲⊳𝑢,𝑢′}

2.2.1 Challenges. Tip decomposition is computationally very ex-

pensive and parallel computing is widely used to accelerate such

workloads. However, the state-of-the-art parallel tip decomposition

framework ParButterfly [13, 54] only utilizes parallelism within

each peeling iteration by concurrently peeling all vertices with min-

imum support value. This restrictive approach is adopted due to

the following sequential dependency between iterations – support
updates computed in an iteration guide the choice of vertices to peel in
the subsequent iterations. As shown in [54], ParButterfly is work-

efficient with a complexity of O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣 + 𝜌𝑣 log2𝑚

)
, wh-

-ere 𝜌𝑣 is the number of peeling iterations. However, its scalability

is limited in practice due to the following drawbacks:

3
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(1) Alg. 2 incurs large number of iterations and lowworkload per in-

dividual iteration. The resulting synchronization and load imbal-

ance render simple parallelization ineffective for acceleration.

Objective 1 – Design an efficient parallel algorithm for tip

decomposition that reduces thread synchronizations.

(2) Alg. 2 explores all wedges with end-points in 𝑈 . This is com-

putationally expensive and can make it infeasible even for a

scalable parallel algorithm, to execute in reasonable time.

Objective 2 – Reduce the amount of wedge traversal.

3 REFINE COARSE-GRAINED INDEPENDENT
TASKS ALGORITHM

In this section, we present a novel shared-memory parallel algo-

rithm for tip decomposition – REfine CoarsE-grained IndePendent

Tasks (RECEIPT), that drastically reduces the number of parallel

peeling iterations (objective 1, sec.2.2.1). The fundamental insight

underlying RECEIPT is that 𝜃𝑢 only depends on the number of

butterflies that 𝑢 shares with vertices having tip numbers no less
than 𝜃𝑢 . Therefore, if we initialize the support ⊲⊳𝑢 to total butterflies

of 𝑢 in 𝐺 , only the following are required to compute 𝜃𝑢 :

• The aggregate effect of peeling all vertices 𝑣 with 𝜃𝑣 < 𝜃𝑢
on ⊲⊳𝑢 : ⊲⊳𝑢 would be ≥ 𝜃𝑢 after such deletion.

• The effect of deleting vertices 𝑣 with 𝜃𝑣 = 𝜃𝑢 on ⊲⊳𝑢 : ⊲⊳𝑢
would be ≤ 𝜃𝑢 after such deletion.

This insight allows us to eliminate the major bottleneck for par-

allel tip decomposition i.e. the constraint of deleting only minimum

support vertices in any peeling iteration. In order to find vertices

with tip number greater than or equal to 𝜃 , all vertices with tip

numbers less than 𝜃 can be peeled simultaneously, providing suffi-

cient parallelism. However, for every 𝜃 ∈ {0, 1 . . . 𝜃𝑚𝑎𝑥 }, peeling all
the vertices 𝑣 with 𝜃𝑣 < 𝜃 and computing corresponding support

updates will make the algorithm extremely inefficient. To avoid this

inefficiency, RECEIPT follows a 2-step approach as shown in fig.2.

In the first step, it divides the spectrum
2
of tip numbers [0, 𝜃𝑚𝑎𝑥 ]

into 𝑃 smaller ranges 𝑅1, 𝑅2 . . . 𝑅𝑃 , where 𝑃 is a user-defined param-

eter. A range 𝑅𝑖 is defined by the set of integers in [𝜃 (𝑖), 𝜃 (𝑖 + 1))
with boundary conditions 𝜃 (1) = 0 and 𝜃 (𝑃 + 1) > 𝜃𝑚𝑎𝑥

. Note

that the ranges have no overlap i.e. for any pair (𝑖, 𝑗), 𝑖 ≠ 𝑗 im-

plies 𝑅𝑖 ∩ 𝑅 𝑗 = {𝜙}. Corresponding to each range 𝑅𝑖 , RECEIPT

CD also finds the subset of vertices 𝑈𝑖 whose tip-numbers belong

to that range i.e. 𝑈𝑖 = ∪𝑢∈𝑈 {𝑢 | 𝜃𝑢 ∈ 𝑅𝑖 }. In other words, instead

of finding the exact tip number 𝜃𝑢 of a vertex 𝑢, the first step in

RECEIPT computes bounds on 𝜃𝑢 , by finding its range affiliation

using peeling. Therefore, this step is named Coarse-grained De-
composition (RECEIPT CD). The absence of overlap between

the ranges allows each subset to be peeled independently of others

for exact tip number computation in a later step.

RECEIPT CD has a stark difference from conventional bottom-up

approach: instead of peeling vertices with minimum support, every

iteration concurrently peels all verticeswith support value in a broad
range. Setting 𝑃 ≪ 𝜃𝑚𝑎𝑥

ensures a large amount of vertices peeled

per iteration (sufficient parallel workload) and significantly less

number of iterations (dramatically less synchronization) compared

to parallel variants of bottom-up peeling (alg.2).

2
RECEIPT does not assume prior knowledge of maximum tip number value and

computes an upper bound during the execution.

The next step finds the exact tip numbers of vertices and is

termed Fine-grained Decomposition (RECEIPT FD). The key
idea behind RECEIPT FD is as follows – for each vertex𝑢, if we know

the number of butterflies it shares with vertices in its own subset

𝑈𝑖 and in subsets with higher tip number ranges (∪𝑗>𝑖 {𝑈 𝑗 }), then
every subset can be peeled independently of others. RECEIPT FD

exploits this independence to concurrently process multiple vertex

subsets by simultaneously employing sequential bottom up peeling

on the subgraphs induced by these subsets. Setting 𝑃 ≫ 𝑇 ensures

that RECEIPT FD can be efficiently parallelized. Thus, RECEIPT

avoids strict sequential dependencies across peeling iterations and

systematically parallelizes tip decomposition.

Since each butterfly has two vertices in 𝑈 , butterflies with ver-

tices in different subsets are not preserved in the induced subgraphs.

Hence, butterfly counting on a subgraph induced on 𝑈𝑖 will not

account for butterflies shared between 𝑢 ∈ 𝑈𝑖 and vertices in sub-

sets with higher tip number ranges. However, we note that when

𝑈𝑖−1 is completely peeled in RECEIPT CD, the support of a vertex

𝑢 ∈ 𝑈 reflects the number of butterflies it shares with remaining

vertices i.e. ∪𝑗≥𝑖 {𝑈 𝑗 }. This is precisely the initial butterfly count for
𝑢 as required in RECEIPT FD. Hence, we store these values during

RECEIPT CD (in ⊲⊳𝑖𝑛𝑖𝑡 vector as shown in fig.2) and use them for

support initialization in RECEIPT FD.

RECEIPT’s two-step approach can potentially double the work-

load as each wedge may get traversed in both steps. However, we

note that since each subset is processed independently of others,

support updates are not communicated between the subsets. Hence,
when peeling a subset 𝑈𝑖 , we only need to traverse wedges with

both endpoints in 𝑈𝑖 . Therefore, RECEIPT FD first creates an in-
duced subgraph on𝑈𝑖 and only explores thewedges in that subgraph.

This dramatically reduces the amount of work done in RECEIPT

FD. For example, in fig.2, the original graph 𝐺 has 38 wedges with

endpoints in𝑈 , whereas the three subgraphs collectively have only

11 such wedges which will be traversed during RECEIPT FD.

3.1 Coarse-grained Decomposition
Alg.3 depicts the pseudocode for Coarse-grained Decomposition

(RECEIPT CD). It takes a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸) as input and
partitions the vertex set𝑈 into 𝑃 subsets with different tip number

ranges. Prior to creating vertex subsets, RECEIPT CD uses per-

vertex counting (alg.1) to initialize the support of vertices in𝑈 .

The first step in computing a subset 𝑈𝑖 is to find the tip number

range 𝑅𝑖 = [𝜃 (𝑖), 𝜃 (𝑖 + 1)). Ideally, the ranges should be computed

such that the number of wedges in the induced subgraphs are

uniform for all 𝑃 subsets (to ensure load balance during RECEIPT

FD). However, induced subgraphs are not known prior to actual

partitioning. Secondly, exact tip numbers are not known either and

hence, vertices in𝑈𝑖 cannot be determined prior to partitioning, for

different values of 𝜃 (𝑖 + 1). Considering these challenges, RECEIPT
CD uses two proxies for range determination (lines 16-21): (1) the

number of wedges in the original graph as a proxy for the wedges

in induced subgraphs, and (2) current support of vertices as a proxy

for tip numbers. Now, to balance the wedge counts across subsets,

RECEIPT CD aggregates the wedge count (in 𝐺) of vertices in bins

corresponding to their current support and computes a prefix sum

over the bins (Ref: proof of theorem 3). For any unique support

4
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𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 𝑢7 𝑢8𝑢1

𝑣2 𝑣3 𝑣4 𝑣5 𝑣6𝑣1 𝑣7

𝑢3 𝑢5

𝑣2𝑣3𝑣4 𝑣5𝑣6

𝑢4 𝑢6

𝑣7𝑣5𝑣4 𝑣6𝑣2

𝑢2 𝑢7 𝑢8𝑢1

𝑣2 𝑣3 𝑣4𝑣6𝑣1

𝑅1 = {0,1,2}

𝑈1 = {𝑢1, 𝑢2, 𝑢7, 𝑢8} 𝑅2 = {3,4} 𝑈2 = {𝑢3, 𝑢5}

𝑅3 = {5,6}

𝑈3 = {𝑢4, 𝑢6}

𝑼

𝒖 ⋈𝒊𝒏𝒊𝒕

𝑢1 1
𝑢2 2
𝑢7 2
𝑢8 1

𝒖 ⋈𝒊𝒏𝒊𝒕

𝑢3 5
𝑢5 3

𝒖 ⋈𝒊𝒏𝒊𝒕

𝑢4 6
𝑢6 6

𝒖 𝜽𝒖
𝑢1 1
𝑢2 1
𝑢7 2
𝑢8 1

𝒖 𝜽𝒖
𝑢3 4
𝑢5 3

𝒖 𝜽𝒖
𝑢4 6
𝑢6 6

Coarse-grained
Decomposition

Induced
Subgraphs

Fine-grained
Decomposition

Graph
𝑮(𝑼, 𝑽, 𝑬)

𝑉

Figure 2: Graphical illustration of tip decomposition using RECEIPT. Coarse-grained Decomposition partitions 𝑈 into three vertex-subsets
𝑈1,𝑈2 and 𝑈3 whose tip numbers belonging to ranges 𝑅1, 𝑅2 and 𝑅3, respectively. It processes each peeling iteration in parallel. Fine-grained
decomposition creates subgraphs induced on 𝑈1,𝑈2 and 𝑈3, initializes vertex support using ⊲⊳𝑖𝑛𝑖𝑡 and peels each of them sequentially. It
processes multiple subgraphs concurrently. Note that𝐺 has 38 wedges whereas the induced subgraphs collectively have only 11 wedges.

value 𝜃 , the prefix output now represents the total wedge count

of vertices with support ≤ 𝜃 (line 19). The upper bound 𝜃 (𝑖 + 1) is
then chosen such that the prefix output for 𝜃 (𝑖 + 1) is close to (but

no less than) the average wedges per subset (line 20).

After finding the range, RECEIPT CD iteratively peels the ver-

tices and adds them to subset 𝑈𝑖 (lines 9-14). In each iteration, it

peels 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 – the set of all vertices with support in the entire

range 𝑅𝑖 . This is unlike bottom-up peeling where vertices with a

single (minimum) support value are peeled in an iteration. Thus,

RECEIPT CD enjoys higher workload per iteration which enables ef-

ficient parallelization. For the first peeling iteration of every subset

𝑈𝑖 , RECEIPT CD scans all vertices in𝑈 to initialize 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 (line

9). In subsequent iterations, 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 is constructed by tracking

only those vertices whose support has been updated. For correct-

ness of parallel algorithm, the update routine used in RECEIPT CD

(line 13) uses atomic operations to decrease vertex supports.

Apart from tip number ranges and partitions of𝑈 , RECEIPT CD

also outputs an array ⊲⊳𝑖𝑛𝑖𝑡
𝑈

, which is used to initialize support in

RECEIPT FD (sec.3). Before peeling for a subset begins, it copies the

current support of remaining vertices into ⊲⊳𝑖𝑛𝑖𝑡
𝑈

(line 7). Thus, for a

vertex 𝑢 ∈ 𝑈𝑖 , ⊲⊳
𝑖𝑛𝑖𝑡
𝑢 indicates the support of 𝑢 (a) after all vertices

in𝑈𝑖−1 are peeled, and (b) before any vertex in𝑈𝑖 is peeled.

3.1.1 Adaptive Range Determination. Since range determination

uses current support of vertices as a proxy for tip numbers, 𝑡𝑔𝑡– the

target wedge count for a subset𝑈𝑖 , is covered by the vertices added

to𝑈𝑖 in the very first peeling iteration. Hence,

∑
𝑢∈𝑈𝑖

𝑤 [𝑢] ≥ 𝑡𝑔𝑡 ,

where𝑤 [𝑢] is the wedge count of 𝑢 in 𝐺 . Note that as the support

of other vertices decreases after this iteration, more vertices may

get added to𝑈𝑖 and total wedge count of vertices in the final subset

Algorithm 3 Coarse-grained Decomposition (RECEIPT CD)

Input: Bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸), # partitions 𝑃
Output: Ranges {𝜃 (1), 𝜃 (2) . . . 𝜃 (𝑃 + 1)}, Vertex Subsets

{𝑈1,𝑈2 . . .𝑈𝑃 }, Support initialization vector ⊲⊳𝑖𝑛𝑖𝑡
𝑈

𝑤 [𝑢] ← number of wedges in 𝐺 with endpoint 𝑢

1: 𝑈𝑖 ← {𝜙} ∀ 𝑖 ∈ {1, 2 . . . 𝑃}
2: {⊲⊳𝑈 , ⊲⊳𝑉 } ← pvBcnt(𝐺)
3: 𝜃 (1) ← 0, 𝑖 ← 1

4: 𝑡𝑔𝑡 ←
∑

𝑢∈𝑈 𝑤 [𝑢 ]
𝑃

⊲ average wedges per subset
5: while𝑈 ≠ {𝜙} and 𝑖 ≤ 𝑃 do
6: for each 𝑢 ∈ 𝑈 do in parallel ⊲ Support Init
7: ⊲⊳𝑖𝑛𝑖𝑡𝑢 ← ⊲⊳𝑢

8: 𝜃 (𝑖 + 1) ← findHi(𝑈 , ⊲⊳𝑈 ,𝑤, 𝑡𝑔𝑡) ⊲ Upper Bound
9: 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 ←vertices with support in

[
𝜃 (𝑖), 𝜃 (𝑖 + 1)

)
10: while 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 ≠ {𝜙} do ⊲ Peel Range
11: 𝑈𝑖 ← 𝑈𝑖 ∪ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 , 𝑈 ← 𝑈 \ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡
12: for each 𝑢 ∈ 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 do in parallel
13: update(𝑢, 𝜃 (𝑖), ⊲⊳𝑈 ,𝐺) ⊲ Ref: alg.2

14: 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 ←vertices with support in

[
𝜃 (𝑖), 𝜃 (𝑖 + 1)

)
15: 𝑖 ← 𝑖 + 1
16: function findHi(𝑈 , ⊲⊳𝑈 ,𝑤, 𝑡𝑔𝑡 )

17: Initialize hashmap𝑤𝑜𝑟𝑘 to all zeros

18: for each ⊲⊳ ∈ ⊲⊳𝑈
19: 𝑤𝑜𝑟𝑘 [⊲⊳] ← ∑

𝑢∈𝑈
(
𝑤 [𝑢] · 1(⊲⊳𝑢≤ ⊲⊳)

)
20: 𝜃 ← argmin (⊲⊳) such that𝑤𝑜𝑟𝑘 [⊲⊳] ≥ 𝑡𝑔𝑡

21: return 𝜃 + 1
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𝑈𝑖 can be significantly higher than 𝑡𝑔𝑡 . This could result in some

subsets having very high workload. Moreover, it is possible that

𝑈 gets completely deleted in ≪ 𝑃 subsets, thus restricting the

parallelism available during RECEIPT FD. To avoid this scenario,

we implement two-way adaptive range determination:

(1) Instead of statically computing an averge target 𝑡𝑔𝑡 , we dynam-

ically update 𝑡𝑔𝑡 for every subset based on the wedge count of

remaining vertices in𝑈 and the remaining number of subsets to

create. If some subsets cover a large number of wedges, the target
for future subsets is automatically reduced, thereby preventing a
situation where all vertices get peeled in much less than 𝑃 subsets.

(2) A subset 𝑈𝑖 can cover significantly larger number of wedges

than the target 𝑡𝑔𝑡 . RECEIPT CD assumes predictive local behav-

ior i.e. subset𝑈𝑖+1 will exhibit similar behavior to𝑈𝑖 . Therefore,

to balance the wedge counts of subsets, RECEIPT dynamically

scales the target wedge count for 𝑈𝑖+1 with a scaling factor

𝑠𝑖 =
𝑡𝑔𝑡∑

𝑢∈𝑈𝑖
𝑤 [𝑢 ] ≤ 1. Note that 𝑠𝑖 quantifies the overshooting

of target wedges in𝑈𝑖 .

After 𝑃 partitions, if some vertices still remain in 𝑈 , RECEIPT

CD puts all of them in a single subset𝑈𝑃+1 and increments 𝑃 .

3.2 Fine-grained Decomposition
Alg.4 presents the pseudocode for Fine-grained Decomposition

(RECEIPT FD), which takes as input the vertex subsets and the

tip number ranges created by RECEIPT CD, and computes the

exact tip numbers. It creates a task queue of subset IDs from which

threads are exclusively allocated vertex subsets to peel (line 4).

Before peeling 𝑈𝑖 , a thread initializes the support of vertices in 𝑈𝑖

from the ⊲⊳𝑖𝑛𝑖𝑡
𝑈

vector and induces a subgraph 𝐺𝑖 on𝑊𝑖 = (𝑈𝑖 ,𝑉 )
(lines 5-6). Thereafter, sequential bottom-up peeling is applied on

𝐺𝑖 for tip decomposition of𝑈𝑖 (lines 7-10).

Algorithm 4 Fine-grained Decomposition (RECEIPT FD)

Input:Bipartite graph𝐺 (𝑈 ,𝑉 , 𝐸), # partitions 𝑃 , Vertex Subsets
{𝑈1,𝑈2 . . .𝑈𝑃 }, Support initialization vector ⊲⊳𝑖𝑛𝑖𝑡

𝑈
, # threads 𝑇

Output: Tip number 𝜃𝑢 for each 𝑢 ∈ 𝑈
1: Insert the integers 𝑖 ∈ {1, 2 . . . 𝑃} in a queue 𝑄

2: for 𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑 = 1, 2 . . .𝑇 do in parallel
3: while 𝑄 is not empty do
4: Atomically pop 𝑖 from 𝑄

5: 𝐺𝑖 ← subgraph induced by𝑊𝑖 = (𝑈𝑖 ,𝑉 )
6: ⊲⊳𝑈𝑖

← ⊲⊳𝑖𝑛𝑖𝑡
𝑈𝑖

⊲ Initialize Support
7: while𝑈𝑖 ≠ {𝜙} do ⊲ Peel
8: 𝑢 ← argmin𝑢∈𝑈𝑖

{⊲⊳𝑢 }
9: 𝜃𝑢 ← ⊲⊳𝑢 , 𝑈𝑖 ← 𝑈𝑖 \ {𝑢}
10: update(𝑢, 𝜃𝑢 , ⊲⊳𝑈𝑖

,𝐺𝑖)

3.2.1 Parallelization Strategy. While adaptive range determina-

tion(sec.3.1.1) tries to create subsets with uniform wedges in𝐺 , the

actual work per subset in FD depends on the wedges in induced

subgraphs 𝐺𝑖 (𝑈𝑖 ,𝑉 , 𝐸𝑖 ) that can be non-uniform. Therefore, to im-
prove load balance across threads, we use parallelization strategies

inspired from Longest Processing Time scheduling rule which is a

known
4

3
-approximation algorithm [22]. However, exact processing

time for peeling an induced subgraph 𝐺𝑖 is unknown. Instead, we

use the number of wedges with endpoints in 𝑈𝑖 as a proxy along

with runtime task scheduling as given below: :

• Dynamic task allocation→ Threads atomically pop unique subset

IDs from the task queue when they become idle during runtime

(line 4). Thus, all threads are busy until every subset is scheduled.

• Workload-aware Scheduling→ We sort the subset IDs in task

queue in decreasing order of their wedge counts. Thus, the sub-

sets with highest workload (wedges) get scheduled first and the

threads processing them naturally receive fewer tasks in the

future. Fig.3 shows how workload-aware scheduling can tremen-

dously improve the efficiency of dynamic allocation.
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Figure 3: Benefits of Workload-aware Scheduling (WaS) in a 2-
thread (𝑇1 and 𝑇2) system. Top row shows vertex subsets with time
required to peel them. Dynamic allocation without WaS finishes in
33 units of time compared to 25 units with WaS.

3.3 Analysis
In this section, we will prove the correctness of tip numbers com-

puted by RECEIPT. We will also analyze its computational com-

plexity and show that RECEIPT is work-efficient. We will exploit

comparisons with sequential BUP (alg.2) and hence, first establish

the follwing lemma:

Lemma 1. In BUP, the support ⊲⊳𝑢 of a vertex 𝑢 at any time 𝑡
before the first vertex with tip number 𝜃𝑢 is peeled, depends on the
cumulative effect of all vertices peeled till 𝑡 and is independent of the
order in which they are peeled.

Proof. Let ⊲⊳𝐺𝑢 be the initial support of 𝑢 (butterflies of 𝑢 in 𝐺),

𝑆 be the set of vertices peeled till 𝑡 and 𝑢 ′ ∈ 𝑆 be the most recently

peeled vertex. Since BUP assigns tip numbers in a non-decreasing

order, no vertex with tip number ≥ 𝜃𝑢 would be peeled till 𝑡 . Hence,

𝜃𝑢′ < 𝜃𝑢 ≤⊲⊳𝑢 . Since 𝜃𝑢′ was the minimum support in the latest

peeling iteration, ⊲⊳𝑢= ⊲⊳𝐺𝑢 +
∑

𝑣∈𝑆
(
− ⊲⊳𝑣,𝑢

)
. By commutativity of

addition, this term is independent of the order in which − ⊲⊳𝑣,𝑢 are

added i.e. the order in which vertices in 𝑆 are peeled. □

Lemma 1 highlights that whether BUP peels a set of vertices

𝑆 ⊆ 𝑈 in its original order or in the same order as RECEIPT CD, the

support of vertices with tip numbers higher than that of 𝑆 would

be the same. Next we show that parallel processing does not affect

the correctness of support updates.

Lemma 2. Given a set 𝑆 of vertices to be peeled in an iteration, the
parallel peeling in RECEIPT CD (line 12-13, alg.3) correctly updates
the support of vertices.
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Proof. Let 𝑆 be peeled in 𝑗𝑡ℎ iteration which is a part of peeling

iterations for subset𝑈𝑖 . Parallel updates are correct if for any vertex

𝑢 not yet assigned to any subset, support of 𝑢 decreases by exactly∑
𝑢′∈𝑆 ⊲⊳𝑢′,𝑢 in the 𝑗𝑡ℎ iteration. Since at most two vertices of a

butterfly can be in 𝑆 (two vertices of a butterfly are in 𝑉 ), for any

vertex pair (𝑢1, 𝑢2), either of the following is true in 𝑗𝑡ℎ iteration:

• No vertex in the pair is peeled – no updates are propagated from

𝑢1 to 𝑢2 and vice-versa.

• Exactly one vertex in the pair is peeled – without loss of generality,

let 𝑢1 ∈ 𝑆 . Peeling 𝑢1 deletes exactly ⊲⊳𝑢1,𝑢2
unique butterflies

incident on𝑢2 because they share ⊲⊳𝑢1,𝑢2
butterflies and no vertex

in 𝑈 \ {𝑢1, 𝑢2} (and hence in 𝑆) participates in these butterflies.

The update routine called for 𝑢1 (line 13, alg.3) also decreases

support of 𝑢2 by exactly ⊲⊳𝑢1,𝑢2
, until ⊲⊳𝑢2

> 𝜃 (𝑖). Since atomics

are used to apply support updates, concurrent updates to same

vertex do not conflict (sec.3.1). Thus, update routine calls for all

vertices in 𝑆 cumulatively decrease ⊲⊳𝑢2
by exactly

∑
𝑢′∈𝑆 ⊲⊳𝑢′,𝑢2

,

as long as ⊲⊳𝑢2
> 𝜃 (𝑖). If ⊲⊳𝑢2

≤ 𝜃 (𝑖) < 𝜃 (𝑖 + 1), vertex subset for
𝑢2 is already determined and any updates to ⊲⊳𝑢2

have no impact.

• Both 𝑢1 and 𝑢2 are peeled – vertex subset for 𝑢1 and 𝑢2 is deter-

mined. Any update to ⊲⊳𝑢1
or ⊲⊳𝑢2

has no effect.

□

Now, we will show that RECEIPT CD correctly computes the tip

number range for every vertex. Finally, we will show that RECEIPT

accurately computes the exact tip numbers for all vertices. For

clarity of explanation, we use ⊲⊳𝑢 ( 𝑗) to denote the support of a

vertex 𝑢 after 𝑗𝑡ℎ peeling iteration in RECEIPT CD.

Lemma 3. There cannot exist a vertex 𝑢 such that 𝑢 ∈ 𝑈𝑖 and
𝜃𝑢 ≥ 𝜃 (𝑖 + 1).

Proof. Let 𝑗 be the first iteration in RECEIPT CD that wrongly

peels a set of vertices 𝑆𝑤 , and assigns them to subset𝑈𝑖 even though

𝜃𝑢 ≥ 𝜃 (𝑖 + 1) ∀ 𝑢 ∈ 𝑆𝑤 . Let 𝑆ℎ𝑖 ⊇ 𝑆𝑤 be the set of all vertices with

tip numbers ≥ 𝜃 (𝑖 + 1) and 𝑆𝑟 be the set of vertices peeled up

to iteration 𝑗 − 1. Since all vertices till 𝑗 − 1 iterations have been
correctly peeled, 𝜃𝑢 < 𝜃 (𝑖 + 1) ∀ 𝑢 ∈ 𝑆𝑟 . Hence, 𝑆ℎ𝑖 ⊆ 𝑈 \ 𝑆𝑟 .

Consider a vertex 𝑢 ∈ 𝑆𝑤 . Since 𝑢 is peeled in iteration 𝑗 ,

⊲⊳𝑢 ( 𝑗 − 1) < 𝜃 (𝑖 + 1). From lemma 2, ⊲⊳𝑢 ( 𝑗 − 1) correctly rep-

resents the number of butterflies shared between 𝑢 and 𝑈 \ 𝑆𝑟
(vertices remaining after 𝑗 − 1 iterations). Since 𝑆ℎ𝑖 ⊆ 𝑈 \ 𝑆𝑟 , 𝑢
participates in at most ⊲⊳𝑢 ( 𝑗 − 1) butterflies with vertices in 𝑆ℎ𝑖 .

By definition of tip-number (sec.2.2), 𝜃𝑢 ≤⊲⊳𝑢 ( 𝑗 − 1) < 𝜃 (𝑖 + 1),
which is a contradiction. Thus, no such 𝑢 exists, 𝑆𝑤 = {𝜙} and all

vertices in𝑈𝑖 have tip numbers less than 𝜃 (𝑖 + 1). □

Lemma 4. There cannot exist a vertex 𝑢 such that 𝑢 ∈ 𝑈𝑖 and
𝜃𝑢 < 𝜃 (𝑖).

Proof. Let 𝑖 be the smallest integer for which there exists a set

𝑆𝑤 ≠ {𝜙} such that 𝜃 (𝑖) ≤ 𝜃𝑢 < 𝜃 (𝑖 + 1) ∀ 𝑢 ∈ 𝑆𝑤 , but 𝑢 ∈ 𝑈𝑝 ,

where 𝑝 > 𝑖 . Let 𝑗 be the last iteration that peels vertices in 𝑈𝑖 .

Clearly, ⊲⊳𝑢 ( 𝑗) ≥ 𝜃 (𝑖 + 1) ∀ 𝑢 ∈ 𝑆𝑤 otherwise 𝑢 would be peeled

in or before iteration 𝑗 , and will not be added to𝑈𝑝 .

From lemma 2, ⊲⊳𝑢 ( 𝑗) correctly represents the butterfly count of
𝑢 after vertices in𝑈1∪𝑈2 · · · ∪𝑈𝑖 are deleted. In other words, every

vertex in 𝑆𝑤 participates in at least 𝜃 (𝑖 + 1) butterflies with vertices

in 𝑈𝑖+1 ∪𝑈𝑖+2 · · · ∪𝑈𝑃 and hence, is a part of 𝜃 (𝑖 + 1)-tip (def.1).

Therefore, by the definition of tip number, 𝜃𝑢 ≥ 𝜃 (𝑖 + 1) ∀ 𝑢 ∈ 𝑆𝑤
which is a contradiction. □

Theorem 1. RECEIPT CD (alg.3) correctly computes the vertex-
subsets corresponding to every tip number range.

Proof. Follows directly from lemmas 3 and 4. □

Theorem 2. RECEIPT correctly computes the tip numbers for all
𝑢 ∈ 𝑈 .

Proof. Consider an arbitrary vertex 𝑢 ∈ 𝑈𝑖 . From theorem 1,

𝜃 (𝑖) ≤ 𝜃𝑢 < 𝜃 (𝑖 + 1). Let 𝑆 = 𝑈1 ∪ 𝑈2 . . .𝑈𝑖−1 denote the set of

vertices peeled before 𝑈𝑖 in RECEIPT CD. For all vertices 𝑢 ′ ∈ 𝑆 ,
𝜃𝑢′ < 𝜃𝑢 and hence, 𝑆 will be completely peeled before 𝑢 in BUP
as well. We now compare peeling 𝑈𝑖 in RECEIPT FD (alg.4) to

peeling 𝑈𝑖 in sequential algorithm BUP, and show that the two

output identical tip numbers. It is well known that BUP correctly

computes tip numbers [50].

Note that initial support of 𝑢 in RECEIPT FD i.e. ⊲⊳𝑖𝑛𝑖𝑡𝑢 is the

support of 𝑢 in RECEIPT CD after 𝑆 is peeled (sec.3.1, lines 6-7

of alg.3). From lemmas 1 and 2. this is equal to the support of

𝑢 in BUP after 𝑆 is peeled. Further, by theorem 1, any vertex in

𝑈𝑖+1 ∪𝑈𝑖+2 · · · ∪𝑈𝑃 has tip number strictly greater than all vertices

in𝑈𝑖 , and will be peeled after𝑈𝑖 in BUP. Next, we note that subgraph
𝐺𝑖 is induced on subset𝑈𝑖 and entire set 𝑉 . Thus, every butterfly

shared between any two vertices in𝑈𝑖 is present in𝐺𝑖 . Therefore,

for any vertex 𝑢 ′ ∈ 𝑈𝑖 peeled before 𝑢, the update ⊲⊳𝑢′,𝑢 computed

by BUP and RECEIPT FD will be same. Hence, BUP and sequential

peeling of 𝑈𝑖 in RECEIPT FD apply the same support updates to

vertices in𝑈𝑖 and therefore, follow the same order of vertex peeling.

Thus, the final tip number 𝜃𝑢 computed by RECEIPT FD will be the

same as that computed by BUP. □

It is important for a parallel algorithm to be not only scalable,

but also computationally efficient. The following theorem shows

that for a reasonable upper bound
3
on 𝑃 , RECEIPT is at least as

efficient as the best sequential tip decomposition algorithm BUP.

Theorem 3. For 𝑃 = O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣

𝑛 log𝑛

)
vertex subsets, RECEIPT

is work-efficient with computational complexity ofO
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣

)
.

Proof. RECEIPT CD – It initializes the vertex support using

O
(∑
(𝑢,𝑣) ∈𝐸 min (𝑑𝑢 , 𝑑𝑣)

)
complexity per-vertex butterfly count-

ing. Range computation for each subset requires constructing a

O(|𝑈 |) size hashmap (𝑤𝑜𝑟𝑘) whose keys are the unique support

values in ⊲⊳𝑈 . In this hashmap, wedge counts of all vertices with

support ⊲⊳ are accumulated in value𝑤𝑜𝑟𝑘 [⊲⊳]. Next,𝑤𝑜𝑟𝑘 is sorted

on the keys and a parallel prefix sum is computed over the values

so that the final value𝑤𝑜𝑟𝑘 [⊲⊳] represents cumulative wedge count

of all vertices with support less than or equal to ⊲⊳. Parallel imple-

mentations of hashmap generation, sorting and prefix scan perform

O
(
|𝑈 | log|𝑈 |

)
= O

(
𝑛 log𝑛

)
work. Computing scaling factor 𝑠𝑖 for

adaptive range determination requires aggregating wedge count of

vertices in𝑈𝑖 , contributing O
(
|𝑈 |

)
= O (𝑛) work over all subsets.

3
In practice, we use 𝑃 ≪

∑
𝑢∈𝑈

∑
𝑣∈𝑁𝑢

𝑑𝑣

𝑛 log𝑛
for large graphs.
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Constructing 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 for first peeling iteration of each subset

requires an O(𝑛) complexity parallel filtering on ⊲⊳𝑈 . Subsequent

iterations construct 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 by tracking support updates doing

O(1) work per update. For every vertex 𝑢 ∈ 𝑈 , the update routine

is called once when 𝑢 is peeled, and it traverses at most

∑
𝑣∈𝑁𝑢

𝑑𝑣
wedges. At most one support update is generated per wedge, re-

sulting in O(1) work per wedge (RECEIPT CD stores vertex sup-

ports in an array ⊲⊳𝑈 ). Thus, the complexity of RECEIPT CD is

O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣 + 𝑃𝑛 log𝑛

)
.

RECEIPT FD – For every subset 𝑈𝑖 , alg.4 creates an induced sub-

graph 𝐺𝑖 (𝑈𝑖 ,𝑉𝑖 , 𝐸𝑖 ) in parallel. This requires O
(
𝑛 +|𝐸𝑖 |

)
work for

subset𝑈𝑖 and O (𝑃𝑛 +𝑚) work over all 𝑃 subsets. When 𝑢 ∈ 𝑈𝑖 is

peeled, the corresponding call to update explores wedges in the

induced subgraph 𝐺𝑖 and generates support updates to other ver-

tices in 𝑈𝑖 . These are a subset of the wedges and support updates

generated when 𝑢 was peeled in RECEIPT CD. A fibonacci heap

can be used to extract minimum support vertex (O
(
log𝑛

)
work per

vertex), and enable constant complexity updates (O
(∑

𝑣∈𝑁𝑢
𝑑𝑣

)
work in update call for 𝑢). Thus, the complexity of RECEIPT FD is

O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣 + 𝑃𝑛 + 𝑛 log𝑛

)
.

Combining both the steps, the total work done by RECEIPT

is O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣 + 𝑃𝑛 log𝑛

)
= O

(∑
𝑢∈𝑈

∑
𝑣∈𝑁𝑢

𝑑𝑣

)
, if 𝑃 =

O
(∑

𝑢∈𝑈
∑

𝑣∈𝑁𝑢
𝑑𝑣

𝑛 log𝑛

)
. This is the same as sequential BUP and hence,

RECEIPT is work-efficient. □

4 OPTIMIZATIONS
Despite the parallelism potential, RECEIPT may take hours or days

to process large graphs such as TrU, that contain hundreds of tril-

lions of wedges (sec.1). To this purpose, we develop novel opti-

mizations that exploit the properties of RECEIPT to dramatically
improve its computational efficiency in practice, making it feasible

to decompose graphs like TrU in minutes (objective 2, sec.2.2.1).

4.1 Hybrid Update Computation (HUC)
The complexity of RECEIPT is dominated by wedge traversal done

during peeling in RECEIPT CD. In order to reduce this traversal,

we exploit the following insights about the behavior of counting

and peeling algorithms:

• Butterfly counting is computationally efficient (low complex-

ity) and easily parallelizable (sec.2.1).

• Some peeling iterations in RECEIPT CD may peel a large

number of vertices.

Given a vertex set (𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 ) to peel, we compute the cost of

peeling 𝐶𝑝𝑒𝑒𝑙 as
∑
𝑢∈𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡

∑
𝑣∈𝑁𝑢

𝑑𝑣 , which is the total wedge

count of vertices in 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 . However, the cost of re-counting

butterflies 𝐶𝑟𝑐𝑛𝑡 , is computed as

∑
(𝑢,𝑣) ∈𝐸 min (𝑑𝑢 , 𝑑𝑣) which rep-

resents the bound on wedge traversal of counting (sec.2). Thus,

if 𝐶𝑝𝑒𝑒𝑙 exceeds 𝐶𝑟𝑐𝑛𝑡 , we re-compute butterflies for all remain-

ing vertices in 𝑈 instead of computing support updates obtained

by peeling 𝑎𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑡 . This optimization is denoted Hybrid Update

Computation (HUC).

We note that compared to RECEIPT CD, HUC is relatively less

beneficial for RECEIPT FD because: (a) the induced subgraphs have

significantly less wedges than the original graph, and (b) few ver-

tices are typically deleted per peeling iteration in RECEIPT FD.

Further, re-counting for subset𝑈𝑖 in RECEIPT FD must account for

butterflies with vertices in ∪𝑗>𝑖 {𝑈 𝑗 }. This external contribution
for a vertex 𝑢 can be computed by deducting the butterfly count of

𝑢 within 𝐺𝑖 , from ⊲⊳𝑖𝑛𝑖𝑡𝑢 .

4.2 Dynamic Graph Maintenance (DGM)
We note that after a vertex 𝑢 is peeled in RECEIPT CD or RE-

CEIPT FD, it is excluded from future computation in the respective

step. However, the graph data structure (adjacency list/Compressed

Sparse Row) still contains edges to 𝑢 interleaved with other edges.

Consequently, wedges incident on 𝑢 are still explored after 𝑢 is

peeled. To prevent such wasteful exploration, we periodically update
the data structures to remove edges incident on peeled vertices. We

denote this optimization as Dynamic Graph Maintenance (DGM).

The cost of DGM is determined by the work done in parallel

compaction of all adjacency lists, which grows linearly with the

number of edges in the graph. Therefore, if the adjacency lists are

updated only after𝑚 wedges have been traversed since previous

update, DGM will not alter the theoretical complexity of RECEIPT

and pose negligible practical overhead.

5 EXPERIMENTS
5.1 Setup
We conduct the experiments on a 36 core dual-socket linux server

with two Intel Xeon E5-2695 v4 processors@ 2.1GHz and 1TB

DRAM. All algorithms are implemented in C++-14 and are compiled

using G++ 9.1.0 with the -O3 optimization flag. We use OpenMP

v4.5 for multithreading.

Baselines: We compare RECEIPT against the sequential BUP al-

gorithm (alg.2) and its parallel variant ParB [54]. ParB resembles

ParButterfly with BATCH mode peeling
4
. ParB uses the bucket-

ing structure of Julienne [13] with 128 buckets as given in [54].

Datasets: We use six unweighted bipartite graphs obtained from

the KOBLENZ collection [28]. To the best of our knowledge, these

are some of the largest publicly available bipartite datasets. Within

each graph, number of wedges with endpoints in one vertex set can

be significantly different than the other, as can be seen from ∧𝐵𝑈𝑃

in table 3. We label the vertex set with higher number of wedges

as 𝑈 and the other as 𝑉 , and accordingly suffix "U" or "V" to the

dataset name to identify which vertex set is decomposed.
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Figure 4: Tip number distribution in Trackers graph – y-axis shows
percentage vertices with tip number less than abscissa.

4
We were unable to verify the correctness of tip numbers generated by public code for

ParButterfly and hence, implemented it ourselves for comparison.
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Table 2: Bipartite Datasets for evaluation with the corresponding number of butterflies (⊲⊳𝐺 ) and wedges (∧𝐺 ) in billions, and maximum tip
numbers for𝑈 (𝜃𝑚𝑎𝑥

𝑈
) and𝑉 (𝜃𝑚𝑎𝑥

𝑉
). 𝑑𝑈 and 𝑑𝑉 denote the average degree of vertices in𝑈 and𝑉 , respectively.

Dataset Description |U| |V| |E| dU / dV ⊲⊳G(in B) ∧G(in B) 𝜽max
U 𝜽max

V
ItU, ItV Pages and editors from Italian Wikipedia 2,255,875 137,693 12,644,802 5.6 / 91.8 298 361 1,555,462 5,328,302,365

DeU, DeV Users and tags from www.delicious.com 4,512,099 833,081 81,989,133 18.2 / 98.4 26,683 1,446 936,468,800 91,968,444,615

OrU, OrV Users’ group memberships in Orkut 2,783,196 8,730,857 327,037,487 117.5 / 37.5 22,131 2,528 88,812,453 29,285,249,823

LjU, LjV Users’ group memberships in Livejournal 3,201,203 7,489,073 112,307,385 35.1 / 15 3,297 2,703 4,670,317 82,785,273,931

EnU, EnV Pages and editors from English Wikipedia 21,504,191 3,819,691 122,075,170 5.7 / 32 2,036 6,299 37,217,466 96,241,348,356

TrU, TrV Internet domains and trackers in them 27,665,730 12,756,244 140,613,762 5.1 / 11 20,068 106,441 18,667,660,476 3,030,765,085,153

Note that the maximum tip numbers are extremely high because

of few high degree vertices sharing a large number of common

neighbors. However, most of the vertex’ tip numbers lie in a much

smaller range as shown in fig.4. For example, 99.98% vertices in

𝑇𝑟𝑈 have tip number < 5M (0.027% of maximum).

Implementation Details: Unless otherwise mentioned, the par-

allel algorithms use all 36 threads for execution
5
and RECEIPT

includes all workload optimizations discussed in sec.4. In RECEIPT

FD and sequential BUP, we use a 𝑘-way min-heap for efficient re-

trieval of minimum support vertices. We found it to be faster in

practice than the bucketing structure of [51] or fibonacci heaps.

To analyze the impact of number of vertex subsets on RECEIPT’s

performance, we vary 𝑃 from 50 to 500. Fig.5 reports the effect

of 𝑃 on some large datasets that showed significant performance

variation. Typically, RECEIPT CD dominates the overall execution

time because of the larger number of wedges traversed compared

to RECEIPT FD. The performance of RECEIPT CD improves with

a decrease in 𝑃 because of reduced synchronizations. However, a

small value of 𝑃 reduces parallelism in RECEIPT FD and makes the

induced subgraphs larger. Consequently, for 𝑃 ≤ 100, we observed

that RECEIPT FD became the bottleneck for some large graphs such

as𝑇𝑟𝑈 and 𝐿𝑗𝑈 . For all the datasets shown in fig.5, execution slows

down when 𝑃 is increased beyond 150. Based on these observations,

we use 𝑃 = 150 for all datasets, in rest of the experiments.
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Figure 5: Execution time of RECEIPT vs 𝑃 .

5.2 Results
5.2.1 Comparison with Baselines. Table 3 shows a detailed compar-

ison of various tip decomposition algorithms. Note that 𝜌 represents

the number of synchronization rounds. Each round consists of one

iteration of peeling all vertices with minimum support (or support

in minimum range for RECEIPT)
6
. Each round involves multiple

5
We did not observe any benefits from enabling the 2-way hyperthreading.

6
Wedge traversal by BUP can be computed without executing alg.2, by simply aggregat-

ing the 2-hop neighborhood size of vertices in𝑈 or𝑉 . A given wedge can be traversed

(but constant) thread synchronizations, for example, once after com-

puting the list of vertices to peel, once after computing the updates

etc. RECEIPT FD does not incur any synchronization as the threads

in alg.4 only synchronize once at the end of computation. For the

rest of this section, we will use the term large datasets to refer to a

graph having large number of wedges with endpoints on the vertex

set being peeled such as ItU, OrU etc.

Execution Time (t): With up to 80.8× and 64.7× speedup over BUP
and ParB, respectively, RECEIPT is radically faster than both base-

lines, for all datasets. The speedups are typically higher for large

datasets that offer large amount of computation to parallelize and

bigger benefits from workload optimizations(sec.4). Only RECEIPT

is able to successfully tip decompose TrU. Contrarily, ParB achieves
a maximum 1.6× speedup compared to sequential BUP for TrV.

Wedges Traversed (

∧
): For all datasets, RECEIPT traverses fewer

wedges than the existing baselines. RECEIPT’s built-in optimiza-

tions achieve up to 64× reduction in wedges traversed. This enables

RECEIPT to decompose large datasets EnU and TrU in few minutes,

unlike baselines that take few days for the same.

Synchronization (𝜌): In comparison with ParB, RECEIPT reduces

the amount of thread synchronization by up to 1105×. This is

primarily because RECEIPT CD peels vertices with a broad range of

support in every iteration. This drastic reduction in 𝜌 is the primary

contributor to RECEIPT’s parallel efficiency.

5.2.2 Effect of Workload Optimizations. Fig.6 and 7 show the effect

of HUC and DGM optimizations (sec.4.1 and 4.2) on the perfor-

mance of RECEIPT. The execution time closely follows the trend

in wedge workload.
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Figure 6: Effect of workload optimizations on wedge traversal (nor-
malized with respect to RECEIPT--). RECEIPT- is RECEIPT without
DGM. RECEIPT-- is RECEIPT without DGM and HUC.

twice. Similarly, 𝜌 for ParB can be computed from a modified version of RECEIPT FD

where we retrieve all vertices with minimum support in a single iteration.
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Table 3: Comparing execution time (𝑡 ), # wedges traversed (
∧
) and # synchronization rounds (𝜌) of RECEIPT and baseline algorithms. ParB

traverses the same # wedges as BUP and has missing entries due to out-of-memory error. pvBcnt denotes per-vertex butterfly counting and
𝑡 = ∞ denotes execution did not finish in 10 days.

ItU ItV DeU DeV OrU OrV LjU LjV EnU EnV TrU TrV
pvBcnt 0.3 0.3 8.3 8.3 45.6 45.6 5.1 5.1 6.9 6.9 7.8 7.8

BUP 3,849 8.4 12,260 428 39,079 2,297 67,588 200 111,777 281 ∞ 5,711

ParB 3,677 8.1 - 377.7 - 1,510 - 132.5 - 198 - 3,524

t(s)

RECEIPT 56.8 3.1 402.4 32.4 1,865 136 911.1 23.7 1,383 31.1 2,784 530.6
pvBcnt 0.19 0.19 20.3 20.3 74.8 74.8 4.7 4.7 6.3 6.3 6.3 6.3

BUP 723 0.57 2,861 70.1 4,975 231.4 5,403 14.3 12,583 29.6 211,156 1,740

∧

(billions)

RECEIPT 71 0.56 1,503 51.3 2,728 170.4 1,003 11.7 2,414 22.2 3,298 658.1
ParB 377,904 10,054 670,189 127,328 1,136,129 334,064 1,479,495 83,423 1,512,922 83,800 1,476,015 342,672

𝝆
RECEIPT 967 280 1113 406 1,160 639 1,477 456 1,724 453 1,335 1,381
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Figure 7: Effect of workload optimizations on execution time (nor-
malized with respect to RECEIPT--). RECEIPT- is RECEIPT without
DGM. RECEIPT-- is RECEIPT without DGM and HUC.

HUC reduces wedge traversal by opting to re-count butterflies

instead of peeling, in selective iterations. A comparison of the

the work required for peeling vertices in 𝑈 versus counting all

butterflies can be an indicator of the benefits of HUC. Therefore,

we define a ratio 𝑟 = ∧𝑝𝑒𝑒𝑙
∧𝑐𝑛𝑡 , where ∧

𝑝𝑒𝑒𝑙
and ∧𝑐𝑛𝑡 denote the

number of wedges traversed for peeling all vertices in𝑈 (∧𝐵𝑈𝑃 −
∧𝑝𝑣𝐵𝑐𝑛𝑡 in table 3) and for butterfly counting (∧𝑝𝑣𝐵𝑐𝑛𝑡 in table 3),

respectively. Datasets with large value of 𝑟 (for example ItU, LjU,
EnU and TrU with 𝑟 > 1000) benefit heavily fromHUCoptimization,

since peeling in high workload iterations is replaced by re-counting,

which dramatically reduces wedge traversal. Especially for TrU (𝑟 >

33, 500), HUC enables 57× and 42× reduction in wedge traversal and
execution time, respectively. Contrarily, in datasets with small value

of 𝑟 (ItV, DeV, OrV, LjV and EnV with 𝑟 < 5 due to low ∧𝑝𝑒𝑒𝑙 ), none
of the iterations utilize re-counting. Consequently, performance of

RECEIPT- and RECEIPT-- is similar for these datasets.

DGM can potentially half the wedge workload since each wedge

has two endpoints, but needs to be traversed only by the vertex that

gets peeled first. However, the reduction is less than 2× in practice,

because for many wedges, both endpoints get peeled between con-

secutive DGM data structure updates. It achieves 1.41× and 1.29×
average reduction in wedges and execution time, respectively.

5.2.3 RECEIPT Breakup. In this section, we analyze the work and

execution time contribution of each step of RECEIPT individually.

We further split RECEIPT CD (alg.2) into a peeling step (denoted

as RECEIPT CD), and a per-vertex butterfly counting (pvBcnt) step
used for support initialization.
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Figure 8: Breakup of wedges traversed in RECEIPT

Fig.8 shows a breakdown of thewedges traversed during different

steps as a percentage of total wedges traversed by RECEIPT. As

discussed in sec.3, RECEIPT CD traverses significantly more wedges

than RECEIPT FD. For all the datasets, RECEIPT FD incurs < 15% of

the total wedge traversal. Note that for a given graph, the number of

wedges explored by pvBcnt is independent of the vertex set being

peeled. For example, ItU and ItV both traverse 188 million wedges

during pvBcnt. However, it’s percentage contribution depends on

the total wedges explored during the entire tip decomposition,

which can vary significantly between𝑈 and 𝑉 vertex sets (table 3).

0

20

40

60

80

100

ItU ItV DeU DeV OrU OrV LjU LjV EnU EnV TrU TrV

Pe
rc

en
ta

ge
 o

f 
Ex

ec
. T

im
e

RECEIPT_CD RECEIPT_FD pvBcnt

Figure 9: Breakup of execution time of RECEIPT

Fig.9 shows a breakdown of the execution time of different steps

as a percentage of the total execution time of RECEIPT. Intuitively,

the step with most workload i.e. RECEIPT CD, has the largest

contribution (> 50% of the total execution time for all datasets). In

most datasets with a small value of 𝑟 = ∧
𝑝𝑒𝑒𝑙

∧𝑐𝑛𝑡 (ItV, DeV, OrV, LjV
and EnV ), even pvBcnt has a significant share of the execution
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time. Note that for some datasets, contribution of RECEIPT FD

to the execution time is more than its contribution to the wedge

traversal. This is due to the following reasons: (a) RECEIPT FD

has computational overheads other than wedge exploration, such

as creating induced subgraphs and applying support updates to a

heap, and (b) Lower parallel scalability compared to counting and

RECEIPT CD (sec.5.2.4). Still, RECEIPT FD consumes < 25% of the

overall execution time for almost all datasets.
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Figure 10: Parallel Speedup of RECEIPT when peeling set𝑈
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Figure 11: Parallel Speedup of RECEIPT when peeling set𝑉

5.2.4 Parallel Scalability. We measure RECEIPT’s performance

with 1, 2, 4, 9, 18 and 36 threads. Fig.10 and 11 show the parallel

speedup obtained by RECEIPT over single-threaded execution
7
.

For most of the datasets, RECEIPT exhibits almost linear scala-

bility. With 36 threads, RECEIPT achieves up to 17.1× self-relative

speedup. In comparison, we observed that ParB exhibits at most

2.3× parallel speedup (self-relative) with 36 threads. RECEIPT’s

speedup is poor for ItV because it is a very small dataset that gets

peeled in < 4s. It requires very little computation (0.56B wedges)

and hence, employing a large number of threads is not useful.

Typically, datasets with small amount of wedges (ItV, LjV, EnV )
exhibit lower scalability, because compared to larger datasets, they

experience lower workload per synchronization round on aver-

age. For example, LjV traverses 86× fewer wedges than LjU but

incurs only 3.2× fewer synchronizations. This increases the relative
overheads of parallelization and restricts the parallel scalability of

7
We also developed a sequential version of RECEIPT with no synchronization primi-

tives (atomics) and sequential implementations of basic kernels such as prefix scan,

scatter etc. However, the observed performance difference between sequential imple-

mentation and single-threaded execution of parallel implementation was negligible.

RECEIPT CD, which is the highest workload step in RECEIPT (fig.8).

For example, parallel speedup of RECEIPT CD with 36 threads is

15.1× for LjU but only 7.1× for LjV.
In RECEIPT FD, parallel speedup is restricted by workload imbal-

ance across the subgraphs. This is because RECEIPT CD tries to bal-

ance total wedge counts of vertex subsets as seen in original graph,

whereas work done in RECEIPT FD is determined by wedges in in-

duced subgraphs. Consequently, we observed that for some datasets,

parallel scalability of RECEIPT FD is poorer than RECEIPT CD. For

example, for TrU with 36 threads, parallel speedup of RECEIPT

FD was only 5.3× compared to 13.1× of RECEIPT CD , 12.5× of

counting (pvBcnt) and 10.7× of RECEIPT overall. Note that even se-

quential RECEIPT is much faster than BUP because of the following:

(1) Fewer support updates – updates to ⊲⊳𝑢 from all vertices in a

peeling iteration are aggregated into a single update.

(2) Lesser work – reduced wedge traversal due to HUC and DGM

optimizations (sec.4).

We also observe that slope of the speedup curve decreases from

18 to 36 threads. This could potentially be due to the NUMA effects

as RECEIPT does not currently have NUMA specific optimizations.

Up to 18 threads, the execution is limited to single socket but 36

threads are spawned across two different sockets.

6 RELATEDWORK
Dense subgraph discovery is a widely used analytic in several ap-

plications [9, 14, 15, 20, 44, 56]. Researchers have developed many

techniques for mining dense regions in unipartite graphs [4, 16, 21,

27, 31, 36, 49, 52, 60, 62]. Particularly, motif-based techniques have

gained tremendous interest [3, 19, 51, 57, 58, 60, 65]. Motifs like tri-

angles represent a quantum of cohesion in graphs. Hence, the num-

ber of motifs incident on a vertex or an edge is an indicator of their

involvement in dense subgraphs. Several recent works are focused

on efficiently finding such motifs in the graphs [1, 18, 25, 35, 54, 63].

Nucleus decomposition is a popular motif-based dense graph

mining technique. It considers the distribution of motifs across ver-

tices or edges within a subgraph as an indicator of its density [2],

resulting in denser subgraphs compared to counting [2, 53]. For

example, truss decomposition mines subgraphs called 𝑘-trusses,

where every edge participates in at least 𝑘 − 2 triangles within

the subgraph. Truss decomposition is one of the three tasks in the

popular GraphChallenge [46], that has resulted in highly efficient

parallel solutions scalable to billion edge graphs [11, 23, 55, 59].

However, such solutions cannot be directly applied on bipartite

graphs due to the absence of triangles. Chakravarthy et al.[8] pro-

pose a distributed truss decomposition algorithm that trades off

computational efficiency to reduce synchronization. This approach

requires triangle enumeration and cannot be adopted for tip decom-

position due to prohibitive space and computational requirements.

The simplest non-trivial motif in a bipartite graph is a Butter-

fly (2,2-biclique, quadrangle). Several algorithms covering various

aspects of butterfly counting have been developed: in-memory or

external memory [61, 63], exact or approximate counting [47, 48]

and parallel counting on various platforms [54, 61, 63]. Particu-

larly, the in-memory algorithms for exact counting are relevant

to our work. Wang et al.[61] count rectangles in bipartite graphs

by traversing wedges with O
(∑

𝑢∈𝑊 𝑑2𝑢

)
complexity. Sanei-Mehri
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et al.[47] reduce this complexity to O
(
min

∑
𝑢∈𝑈 𝑑2𝑢 ,

∑
𝑣∈𝑉 𝑑2𝑣

)
by

choosing the vertex set where fewer wedges have end points.

Before the aforementioned works, Chiba and Nishizeki [10] had

proposed an O (𝛼 ·𝑚) complexity vertex-priority based quadran-

gle counting algorithm for generic graphs. Wang et al.[63] further

propose a cache optimized variant of this algorithm and use shared-

memory parallelism for acceleration. Independently, Shi et al.[54]

develop provably efficient shared-memory parallel implementa-

tions of vertex-priority based counting. All of these approaches are

amenable for per-vertex or per-edge counting.

Butterfly based decomposition, albeit highly effective in find-

ing quality dense regions in bipartite graphs, is computationally

much more expensive than counting. Sariyuce et al.[51] defined

𝑘-tips and 𝑘-wings as subgraphs with minimum 𝑘 butterflies in-

cident on every vertex and edge, respectively. Correspondingly,

they defined the problems of Tip decomposition and Wing decom-

position. Their algorithms use bottom-up peeling with respective

complexities of O
(∑

𝑣∈𝑉 𝑑2𝑣

)
and O

(∑
(𝑢,𝑣) ∈𝐸

∑
𝑤∈𝑁𝑣

(𝑑𝑢 + 𝑑𝑤)
)
.

Independently, Zou [69] defined the notion of bitruss similar to

𝑘-wing and showed its utility for bipartite network analysis. Shi

et al.[54] propose parallel bottom-up peeling used as a baseline in

our evaluation. Their wing decomposition uses hash tables to store

edges and has a complexity of O
(∑
(𝑢,𝑣) ∈𝐸

∑
𝑤∈𝑁𝑣

min (𝑑𝑢 , 𝑑𝑤)
)
.

In their seminal paper, Chiba and Nishizeki [10] had remarked

that butterflies can be represented by storing the O(𝛼 ·𝑚) triples
traversed during counting. In a very recent work, Wang et al.[64]

store these triples in the form of maximal blooms (bicliques), that
enables quick retrieval of butterflies shared between edges. Using

this structure, authors develop the Bit-BU algorithm for peeling

bipartite networks. To the best of our knowledge, it is the most

efficient sequential algorithm that can computewing decomposition

in O (⊲⊳𝐺 ) time. Yet, it takes more than 15 hours to process the

Livejournal (Lj) dataset, whereas RECEIPT can tip decompose both

LjU and LjV in less than 16 minutes. Moreover, Bit-BU has a non-

trivial O (𝛼 ·𝑚) space requirement, which in practice, amounts to

hundreds of gigabytes for datasets like Orkut(Or). Comparatively,

RECEIPT has a space-complexity of O (𝑛 ·𝑇 +𝑚) (same as parallel

counting [63]) and consumes only few gigabytes for all the datasets

used in sec.5. Further, the fundamental ideas employed in RECEIPT

and Bit-BU are complimentary. While RECEIPT attempts to exploit

parallelism across 𝑘-tip hierarchy, Bit-BU tries to make peeling

every edge more efficient. We believe that an amalgamation of our

ideas with [64] can produce highly scalable parallel solutions for

peeling large bipartite graphs.

7 EXTENSIONS
In this section, we list some directions for future research in the

context of our work:

• Parallel Edge peeling: RECEIPT can be adapted for parallel wing

decomposition (edge peeling) in bipartite graphs [51, 64]. It’s

workload optimizations can have a large impact on edge peeling

due to the higher complexity and smaller range of wing numbers.

Parallel edge peeling may incur conflicts if multiple edges in a

butterfly get deleted in the same iteration. However, such conflicts

can be resolved by imposing a priority ordering of edges.

• Distributed Tip Decomposition: Distributed-memory systems (like

multi-node clusters) offer large amount of extendable compu-

tational resources and are widely used to scale high complex-

ity graph analytics [6, 8, 29]. We believe that the fundamental

concept of creating independent tip number ranges and vertex

subsets can be very useful in exposing parallelism for distributed-

memory algorithms. In the past as well, distributed graph pro-

cessing algorithms have achieved high scalability by creating

independent parallel tasks [5, 29].

However, support updates generated from peeling may need to

be communicated on the network. This can affect scalability of

the algorithm because of high communication cost in clusters [34,

37]. Further, execution on distributed systems may exhibit load

imbalance due to large number of threads and limitations of

dynamic task scheduling across processes.

• System Optimizations: Memory access optimizations [30, 66] and

SIMD parallelism [24] have significant impact on graph analytics.

Enhancing memory access locality can also mitigate the NUMA

effects that limit parallel speedup (sec.5.2.4).

RECEIPT CD and RECEIPT FD exploit parallelism at vertex and

subgraph granularity, respectively. Using fine-grained parallelism

at edge or wedge granularity can further improve load balance.

8 CONCLUSION
In this paper, we proposed RECEIPT – a novel shared-memory par-

allel algorithm for tip decomposition. RECEIPT is the first algorithm

that exploits the massive parallelism across different levels of 𝑘-tip

hierarchy. Further, we also developed pragmatic optimizations to

drastically improve the computational efficiency of RECEIPT.

We empirically evaluated our approach on a shared-memory

multicore server, and showed that it can process some of the largest

publicly available bipartite datasets orders of magnitude faster than

the state-of-the-art algorithms, with dramatic reduction in syn-

chronization and wedge traversal. Using 36 threads, RECEIPT can

provide up to 17.1× self-relative speedup, being much more scalable

then the best available parallel algorithms for tip decomposition.

We also explored the generalizability of RECEIPT for wing de-

composition (edge peeling) and several interesting avenues for

future work in this direction. We believe that scalable algorithms

for parallel systems such as many-core CPUs, GPU or HPC clusters,

can enhance the applicability of tip or wing decomposition, and

our work is a step in that direction.
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