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ARTICLEINFO ABSTRACT
Available online 18 April 2014 Alzheimer’s and Parkinson’s diseases are severe neurodegenerative conditions triggered by
complex biochemical routes. Many groups are currently pursuing the search for valuable
Keywords: biomarkers to either perform early diagnostic or to follow the disease’s progress. Several
Alzheimer’s studies have reported relevant findings regarding environmental issues and the progression
Parkinson’s of such diseases. Here the etiology and mechanisms of these diseases are briefly reviewed.
Biomarkers Approaches that might reveal candidate biomarkers and environmental stressors associated to
Environmental factors the diseases were analyzed under a proteomic perspective.
Neurodegenerative diseases This article is part of a Special Issue entitled: Environmental and structural proteomics.
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1. Introduction

Proteomic approaches are widely used in biology, medicine,
agriculture and many other areas. The main idea, regardless of
the biological question behind, is to understand the expression,
quantification, compartmentalization, mobilization, or modifi-
cation of proteins under a specific condition. The types and
numbers of these conditions vary extensively: development,
biotic and abiotic stress, diseases, medical treatment, and so on.
(See Figs. 1 and 2.

Reports on environmental studies using proteomic ap-
proaches have increased in the past years. In these cases,
“satellite” organisms aided to monitor different kinds of
stresses caused by environmental conditions, such as water,
air or soil pollution, intoxication by different poisons, heavy
metals, organic solvents, ionizing radiation, and electromag-
netic field [1-3].

Although there is a wide range of neurodegenerative
diseases (NDs), in this review, the neurodegenerative disor-
ders Parkinson’s (PD) and Alzheimer’s diseases (AD) were
chosen to illustrate proteomic approaches and studies focus-
ing on environmental proteomics.

2. Environmental proteomics

Environmental changes caused by different stressors can be
studied applying proteomic approaches. These strategies can
reflect the physiological response of living beings to changing
conditions or stressful environmental states [4]. Minimal alter-
ations on the environment may lead to important adaptations of
organisms to this new condition. As pointed out by Gonzélez-
Fernandes and collaborators, environmental proteomics encom-
passes studies on toxic and defense mechanisms triggered by
different pollutants, without previous knowledge about the
biological systems themselves, which is one of the advantages
of this approach [5]. Although proteomic studies can compare
dynamicresponses in several conditions, only in recent years has
this strategy gained space in environmental issues, particularly
biomarker searches for intoxication/contamination, or environ-
mental risk factors [6].

Examples of studies performed in which the “environmen-
tal problem” was addressed using proteomics, include terres-
trial ecosystems [2], semimetal intoxication [7], and exposure to
tobacco smoke [8]. In a work performed by Montes-Nieto and
collaborators using Mus pretus as a bioindicator, the protein
expression profile of animals from Domingo Rubio stream was
compared to that of animals from Dofnana Biological Reserve
(both in Spain), using 2-DE (two-dimensional electrophoresis)
and peptide mass fingerprinting by MALDI-TOF (matrix-assisted
laser-desorption ionization-time-of-flight). Relevant differences

in the animal’s proteome were identified, including proteins
with a defensive role against the toxic and polluted environment
as well as proteins that could make them more susceptible [9].

In a more recent publication also employing 2-DE as protein
fractionation method, Company and co-workers compared
subproteomes of the mussel Bathymodiolus azoricus. This animal
lives in a gradient zone at the bottom of the oceans, in which
water from the hydrothermal vents mixes with sea water,
characterized by extreme variable conditions of pH, high metals
and salt contents, and wide oscillations in temperature. Besides
these extreme conditions, several reducing chemical species
are present in this environment, which can cause severe
oxidative damages through generation of reactive oxygen
species (ROS). The authors selected mussels from different
locations, and performed an enrichment of thiol-containing
proteins, by using an activated thiol Sepharose matrix. Proteo-
mic analysis was performed by 2-DE only, without protein
identification by mass spectrometry. The authors found a
correlation between thiol direct oxidation by ROS and the site
of collection [10].

Dieldrin, a powerful organochloride pesticide which blocks
gamma-amino-butyric acid (GABA) receptors in the CNS, was
widely used in the 1960-1980s. This pesticide is very lipophilic,
and accumulates in fish fat and muscle. In a study by Martyniuk
and colleagues, gene expression analysis by microarray and
iTRAQ were combined to quantitatively evaluate proteins
differentially expressed in largemouth bass fishes fed on
subchronic dieldrin-containing diets. The applied proteomic
approach revealed decrease in the levels of seven proteins and
increase of eleven other proteins in the dieldrin-fed group.
Several of the identified proteins are known to be involved in
human NDs, such as microtubule-associated tau protein,
myelin basic protein, enolase 1, stathmin 1a, apolipoprotein
E, and parvalbumin. Martyniuk’s study has shown that
dieldrin affected “pathological pathways” shared by both AD
and PD, overlapping with proteomic signatures known for
these neurological diseases [11], which are related to energy
production, protection from oxidative damage, and synapse
integrity. The authors suggested that “common pathways
could be activated by stress or injury of the CNS and may be
the result of apoptosis, inflammation, and oxidative damage
that may precede neurotoxicity and neural damage” [12].

The effects of another important toxic agent, arsenic, was
evaluated using SELDI-TOF (surface-enhanced laser desorp-
tion/ionization). This semimetal has high affinity to sulfhy-
dryl groups in keratin, and can be detected in high amounts in
the skin, hair and nails of intoxicated individuals [7]. In the
study by Harezlak and coauthors, plasma samples from a
population in Bangladesh known to be exposed to As were
analyzed and an extensive questionnaire was applied to the
subjects in order to understand their lifestyle. Authors used a
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“unified statistical method that simultaneously takes into
account different sources of variation that are present in mass
spectrometry measurements”. The raw data was decomposed
into four different stages: baseline, signal, instrumental
noise, and random noise. The authors concluded that the 20
superproteins (protein peaks which fitted into the criteria)
detected in the population could be used as an early
diagnostic for As exposure, and that the statistical method
proposed could be expanded to LC-MS and MALDI-TOF
approaches [7].

Considering toxicants related to central nervous system, a
proteomic approach identified differential protein expression
in the cortex of rats after cocaine exposure [13]. In this case,
Guan and Guan studied the medial prefrontal cortex, which is
highly activated after cocaine exposure, which can lead to
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irreversible changes in this brain’s area. The authors used a
conditioned place preference assay in rats, as a model for
addictive drugs. Protein was extracted and analyzed by 2-DE
and MALDI-TOF/TOF. There were about 71 differentially
expressed spots between control and “addicted” groups,
belonging to different functional classes and perhaps these
proteins could serve as models or targets to understand
cocaine addiction [13].

3. Neurodegenerative diseases and proteomics

Neurodegenerative diseases (NDs) are incurable conditions
that result in progressive degeneration or loss of neurons
in the affected individuals [14]. The occurrence of NDs is
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Fig. 1 - In the figure, the formation of B-amyloid plaques is presented in the upper panel. The amyloid precursor protein (APP)
is cleaved by B- and y-secretase and produces one soluble and another insoluble fraction (AB). The AB aggregation will
produce the amyloid plaques. Lower panel: tau protein (TAU) is found in the microtubules and helps the stabilization of this
structure. However, hyperphosphorylated TAU causes destabilization of the microtubule because unbound
hyperphosphorylated tau aggregates and as result, the microfibrillary tangles are produced. Both (amyloid and tangles) will

cause severe damage to the neuron cell.
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Fig. 2 - In Alzheimer’s disease, the pathological process starts at the brain region known as substantia nigra pars compacta. It is
accepted that alpha-synuclein (a-syn) aggregation will form the Lewy bodies. The o.-syn aggregation process will produce
severe mitochondrial and proteasomal dysfunction. Reactive oxygen species (ROS) produced in and imbalanced way will
contribute to the overall process and at the end. The regular dopamine (DA) metabolism, from tyrosine, levo dopa (.-DOPA) and
finally DA will be imbalanced as a result of the entire process and the Parkinson disease will be established. The figure
presents a simple representation of a much more complex disease.

significantly increasing over the past decades, especially
because of the global increase in life expectancy. Nowadays
there is a great interest in understanding the pathogenesis
of these diseases, aiming to detect very early signs and
symptoms, discover preclinical biomarkers and to develop
new therapies for stopping and/or reverting the underlying
processes. Some of these diseases constitute a major chal-
lenge for health professionals, as very often diagnosis is given
only in advanced stages and, despite the different physio-
pathological processes underlying the diseases, usually these
conditions share several clinical symptoms [15-17]. The
development of effective diagnostic methods, which could
identify patients at risk and the early stages of these illnesses
would be of major importance. The early diagnosis of ND diseases
ideally should include central nervous system imaging and bio-
markers from different sources, such as blood and cerebrospinal
fluid (CSF), that could support the clinical diagnosis [18]. A
biomarker is defined as a ‘characteristic that is objectively
measured and evaluated as an indicator of normal biology,
pathological process, or pharmacologic responses to a thera-
peutic intervention’ [19]. According to Pal and colleagues,
presently no biomarkers exist for reliable diagnosis, tracking
of disease progression or monitoring responses to treatment
regimes [20]. Therefore, the search for valuable biomarkers
for diagnostics and prognostics of NDs are of great interest
worldwide [21].

Proteomic approaches have been extensively applied to
discover new biomarkers for early diagnostics and prognos-
tics for these diseases. The best “source” to obtain a reliable
biomarker for neurodegenerative diseases is the CSF. How-
ever, as pointed by Shi and colleagues, the biomarker might
be present in the CFS only at later stages of NDs, no longer

being useful for early diagnosis or intervention. Hence it is
desirable that a biomarker would first be detectable in the
blood and subsequently in the CSF, if possible [22].

Proteomic approaches applied in studies of the CNS per-
formed with embryonic and postnatal brain tissue, different
brain regions, CSF, neural stem cells, pre and post synaptic
proteomes and neurodegenerative diseases were extensively
reviewed by Zang [23]. One very interesting and elegant
investigation was carried out by Bernay and colleagues, aimed
to study the secretome of the CNS; in different words, the
contents of the extracellular compartment. A secretome of rat
striatum was obtained by performing microdialysis to collect
proteins and peptides that participate in the complex network
of communication within and between brain regions [24]. In
this study, the microdialysis fluid (secretome) was fractionated
into proteins of >100 kDa, >10 kDa and <100 kDa and pep-
tides around 20 kDa. Two different mass spectrometers, an
Orbitrap (Thermo) and a Q-TOF Ultima (Waters) were used
for the analysis. According to the authors, the differential
pre-fractionation methods and combination of two mass
spectrometers were essential for the success of the study, in
which they detected for the rat striatum secretome about 88
proteins and 100 peptides (derived from 29 different protein
precursors), potentially involved in signaling of the complex
brain network [24].

More than 300 proteins were found altered in brain and CFS
of ND patients or other psychiatric condition (the studies
comprised Alzheimer’s disease, Parkinson’s disease, Down's
syndrome, Pick’s disease, Creutzfeldt-Jakob disease, schizo-
phrenia, bipolar disorder, depression, hypoxia, ischemia and
neuropathic pain). This compilation, reviewed in details by
Fountoulakis, comprised mainly qualitative studies performed
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either by 2-DE followed by MALDI-TOF or LC-MS/MS analyses
[25].

Neurodegenerative diseases were also studied under redox
proteomic approaches. A comprehensive review by Butterfield
about the topic leads to similar results: proteins involved in
glucose metabolism, mitochondrial function, structural, and
protein degradation are commonly affected in some NDs
(Alzheimer’s disease, Parkinson’s disease, Huntington’s dis-
ease and amyotrophic lateral sclerosis), suggesting that there
might be a shared mechanism by which neurodegeneration
takes place in different diseases [26].

4. Environmental agents and NDs

Many metals can be found in the environment in different
forms. Some severe conditions can develop caused by the
excessive ingestion or absorption of metals, including acute
toxicity, mental retardation, antibiotic resistance and even
death. The etiology of several diseases might be related to
previous exposure to heavy metals or other intoxicant agents
[27-30].

The central nervous system is very sensitive to different
agents, and among them, copper can be cited. In the CNS, there
is a low level of important antioxidant enzymes, contrasting
with a high level of easily oxidized substrates and combined
with a high flux of ROS that are generated during neurochem-
ical reactions [31]. Despite its importance in biochemistry, Cu*?
ions may disrupt the correct conformation of some peptides
and proteins. It is known that Cu*? induces conformational
change in the normal prion protein, which modify from a
random coil into p-sheet characteristic of the PrP form of the
protein, which is associated with Prion diseases [32,33]. Cu*?
ions can contribute to the formation of the p-sheet or extended
conformation of amyloidal beta peptides, which are associated
with AD [33]. On the other hand, a-helical structures are
important for the formation of paired helical filaments. It is
assumed that in AD, Cu*? participates of the formation of this
motif in neurofibril tangles. The stoichiometry of copper
binding to peptide R2, one of the four highly conserved regions
of tau protein (R1 to R4), was studied by MALDI-TOF and the
formation of the R2-Cu*? complex was confirmed although
being less strong than the R3-Cu*? complex [32]. Copper is found
in several types of wires widely used worldwide and workers
exposed to them are susceptible to chronic intoxication.

In another case-control study, Gorell and coworkers ana-
lyzed the potential role of occupational exposure to iron, copper,
manganese, mercury, zinc, and lead as risk factors for PD, and
found a significantly increased association of the disease in
patients with more than 20 years of exposure with copper and
manganese. The author also reported a greater association of PD
with exposure to combinations of lead—copper, iron-copper and
lead-iron than with any of these metals alone [34].

High levels of some metals in the brain, including alumi-
num, zinc and iron levels may also be linked to the develop-
ment or progression of AD [35]. Zatta and colleagues reviewed
the role of these metals in neurodegenerative processes. While
aluminum is reported as a very controversial cofactor in AD and
other NDs, manganese apparently plays an important role
in causing PD, with increased environmental burden of

manganese being associated with neurodegeneration in the
basal ganglia. The author also reported no evidences associat-
ing zinc to ND [36].

Recently reviewed by Bakuslky and colleagues, lead expo-
sure can also be associated with AD. Lead can be absorbed by
the lung epithelium and gastrointestinal tract, upon binding
to heme groups and consequently can flow around the body
through the blood [37]. In short words, early episodes in
life and/or continuous exposure to lead can contribute to
amyloidogenesis in later life stages [37,38]. In the study
performed by Basha and co-workers using rodents, the
authors observed that lead exposure induced transient
suppression of the p-amyloid precursor protein in neonates,
followed by a delayed over expression 20 months after the
exposure ceased [38].

The role of environmental factors in the incidence of NDs
has been addressed by analyzing mainly pesticide exposure,
in special in relation to Parkinson and Alzheimer’s disease
[39,40]. People who live in a rural area, drinks well water, and
works in activities related to farming are more exposed to
pesticides from different sources, which may be a risk factor
for developing PD [40].

In a prospective cohort in which 1507 French elderly were
followed, Baldi and colleagues identified an increased relative
risk to develop NDs in subjects who had been occupationally
exposed to different pesticides (insecticides, herbicides, and
fungicides). However, it was not possible to correlate one
specific chemical to the development of any neurological
disorder. The focus was given to AD and PD and the “diagnostic”
was given based on a simple algorithm based on a standardized
questionnaire that classified the subjects as either suspected or
not suspected of having dementia [41].

Back in 1997, in a case-control study in Taiwan, Liou and
coworkers reported that PD risk was greater among subjects
exposed to paraquat and other herbicides/pesticides than
those not exposed. However, the author did not find signifi-
cant differences in occupational exposures to chemicals,
heavy metals, and minerals among PD patients and matched
control subjects [42].

In case of AD, the contribution of environmental factors is
controversial. Some authors report an increased risk to
develop AD associated to occupational exposure to pesticides
[43,44]. On the other hand, different authors failed to show
such risk [45]. The controversy of these studies might be
due to the fact that susceptibility to pesticides and other
neurotoxins depends on variability in xenobiotic metabolism,
possibly generated by genetic polymorphisms, aging and
degree of exposure to environmental agents [46].

There are other atypical Parkinson’s-like syndromes be-
yond PD. Multiple System Atrophy (MSA) and Progressive
Supranuclear Palsy (PSP) are neurodegenerative conditions
with clinical features similar to PD, which may be confused
considering their clinical aspects. While MSA is a disease
associated to a-synuclein accumulation [47] PSP seems to be a
tau pathology [15]. MSA incidence has been associated with
metal dusts and fumes, plastic monomers and additives,
organic solvents, and pesticides [48]. Dexter and colleagues
reported an increased concentration of iron patients with
MSA and also PSP, suggesting a possible environmental factor
in these diseases [49].
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Oxidative stress is inherent of several regular physiolog-
ical processes, in which ROS are generated. Several environ-
mental pollutants, including heavy metals and pesticides
potentially exacerbate ROS production [50]. The imbalance on
ROS production and physiological antioxidant mechanism,
caused by external agents can contribute to the etiology or
progress of several diseases, such as AD. Copper, chromium
and cadmium are known to cause protein damage through
ROS intermediates, and were studied by redox proteomic
approaches [50]. Nitrated proteins, specifically enolase,
glyceraldehyde-3-phosphate dehydrogenase, ATP synthase,
carbonic anhydrase-II and voltage-dependent anion channel
were detected by Sultana and colleagues, in frozen hippo-
campal samples from AD patients analyzed by 2-DE followed
by MALDI-TOF [51].

5. Alzheimer’s disease

The most common form of age-related neurodegenerative
disease in the world is Alzheimer’s disease (AD), the leading
cause of dementia [52]. In 2006, the worldwide prevalence
of AD was 26.6 million and estimates are that by 2050,
prevalence will quadruple [53], bringing a very high socio-
economic impact and requiring huge adjustments of govern-
ments, social agencies, health insurances and families to
deal with these patients.

In 1906 the German neurologist Alois Alzheimer (1864-1915)
first described the clinical and pathological features of an
unusual brain disease during the Tibingen Assembly of
Southwest German Psychiatry [54,55]. His presentation de-
scribed the case of Auguste Deter, who, at age 51, presented
with a rapidly progressive dementia syndrome. Post-mortem
examination revealed the presence of amyloid plaques and
neurofibrillary tangles. These findings were published by
Alzheimer in 1907, in the form of a short report. In 1910, the
psychiatrist Emil Kraepelin, a colleague of Alzheimer, intro-
duced the term Alzheimer’s disease (AD) in his Handbook of
Psychiatry.

The two core pathological hallmarks of AD are amyloid
plaques and neurofibrillary tangles. The amyloid cascade
hypothesis suggests that the deposition of amyloid ¢ (Ap)
peptide triggers neuronal dysfunction and cell death in the
brain. Tau, a microtubule-associated protein, is the major
constituent of neurofibrillary tangles. The amyloid cascade
hypothesis proposes that changes in tau and consequent
neurofibrillary tangle formation are triggered by toxic con-
centrations of Ap [56]. Due to the difficulty in the early
diagnosis of this disease, in recent years much effort has been
made in the discovery of biomarkers for AD, which could
allow the disease to be diagnosed at an early stage [57].

Previously, the AD diagnosis included exclusively patients
on the dementia stage [58], and the disease was characterized
by histology pathological features. Currently, AD is conceptu-
alized as a progressive pathophysiological process in which
the accumulation of p-amyloid (Ap) pathology is thought
to set in motion a dynamic sequential cascade of events,
including neurodegeneration, inflammatory processes, and
neurotransmitter dysfunction. Even the clinical aspects have
changed in the last clinical diagnosis consensus, including

also preclinical stages and incorporating biomarkers to support
the diagnosis [59].

With the current conceptual changes that redefined AD as
process, the physiopathological onset, duration and the under-
lying mechanisms of AD have received great attention of
specialized researchers. It is hypothesized that the pathologic
process of AD begins around two decades before cognitive
decline [60], and may vary among individuals. The most
common primary symptom of AD is a decline in cognitive
functions, known as mild cognitive impairment (MCI), with
deficits minimally interfering in activities of daily life [56,61]. At
the MCI stage, considered as an AD prodromal phase [62],
biomarkers have a crucial role, in revealing the onset of the
pathophysiological process and urging clinical interventions,
which are today still on the clinical trial phase. All identified
potential biomarkers are still in the testing stage and clinical
studies based on large population studies are needed [63].

Diverse approaches searching for AD biomarkers were
reported, including plasma proteomics, plasma lipidomics,
transcriptome, autoantibodies, microRNA, plasma Ap species,
and plasma tau differential forms [64]. Studies of plasma
lipidomics derived from findings that the deregulation of lipid
pathways could be implicated in AD [65] and transcriptome
profiling-based methods have been used in an attempt to
identify a blood-based signature (a serum biomarker) to
differentiate AD patients from asymptomatic control subjects
[66-68]. Although the presence of autoantibodies in AD has
been demonstrated, their role in the pathology of disease is
still unclear [69]. There is substantial evidence that alterations
in microRNA levels are associated with some parts of AD
pathology, however its relevance as a blood-based biomarker
requires validation [70]. Some posttranslational modifications
have been identified as potential biochemical markers to
measure the disease’s activity. Increased levels of oxidative
modification markers have been demonstrated; recently,
mitochondria isolated from lymphocytes of MCI patients
were shown to present signs of increased oxidative stress,
which may potentially reflect brain damage and serve as a
biomarker for AD [71].

Cerebrospinal fluid and positron emission tomography
(PET) are the current clinical biomarkers used to confirm AD
pathologic changes in patients diagnosed as having dementia.
The use of CSF biomarkers is widely discussed. Rosa-Neto et
al. recommended considering it at a tertiary care level to
improve diagnostic certainty, particularly in those cases present-
ing atypical clinical features [72].

CSF biomarkers such as amyloid-p1-42 (Ap42), total tau
(t-tau) and phosphorylated tau (p-tau) are ‘hallmarks’ of the
disease, reflecting axonal damage, and phosphorylated tau
(p-tau) indicating neurofibrillary tangle pathology [73-75]. CSF
tau is considered to be a strong marker of the neuronal injury
associated with AD, and the combined detection of Ap42,
t-tau and p-tau levels in CSF are considered to have a high
diagnostic accuracy even in the early stages of Alzheimer’s
disease [76]. Wang and colleagues reported that “decreased
cerebrospinal fluid Ap42 and increased CSF phosphorylated
tau;g; were independently associated with reduced default
mode network integrity with the most prominent decreases in
functional connectivity observed between the posterior cin-
gulate and medial temporal regions” [77]. The combination of
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low CSF Ap42 and elevated tau in CSF also correlates with
higher risks of progression to AD in patients with MCI [78]. CSF
biomarkers are thus thought to be useful in the very early
diagnosis of AD [75].

Albeit extremely useful, the CSF collection procedure is
very invasive, as it requires a lumbar puncture and adequate
infrastructure to perform this procedure. Because blood
sampling, in contrast to CSF, is less invasive and thus more
accepted by patients, biomarkers in blood are highly desirable
and helpful in monitoring follow up [14]. Plasma biomarkers
combined with baseline demographics have been suggested
as a potential screening tool [79]. Urine and saliva have also
been tested as possible analytes in AD research.

5.1. Proteomics in Alzheimer’s disease

Presently most of the AD proteomic data report findings on
proteins derived from CSF or blood, either using protein
arrays or mass spectrometry-based detection of blood pro-
files [80-82]. Several promising blood-based biomarkers of AD
have been proposed in studies ranging from proteomic
analysis in plasma to genetic profiling [64], among which
are apolipoprotein E (with controversies), brain natriuretic
peptide, pancreatic polypeptide and C-reactive protein [83].

Doecke and coworkers identified a panel of plasma
biomarkers that distinguish individuals with AD from cogni-
tively healthy control subjects with high sensitivity and
specificity. These include biomarkers with significantly in-
creased levels (cortisol, pancreatic polypeptide, insulin-like
growth factor binding protein 2, 32 microglobulin, vascular
cell adhesion molecule 1, carcinoembryonic antigen, matrix
metalloprotein 2, CD40, macrophage inflammatory protein 1,
superoxide dismutase, and homocysteine) and biomarkers
with significantly decreased levels (apolipoprotein E, epider-
mal growth factor receptor, hemoglobin, calcium, zinc,
interleukin 17, and albumin) in AD [84]. Others studies based
on plasma proteome evaluated apolipoprotein A-II, apolipo-
protein E (ApoE), serum glutamic oxaloacetic transaminase,
a-1-microglobulin and brain natriuretic peptide for AD diag-
nosis [85]. Apolipoprotein E, immunoglobulin M, eotaxin-3,
N-terminal prohormone of brain natriuretic peptide, matrix
metalloproteinase 1, pancreatic polypeptide and tenascin-C
were evaluated by Soares and colleagues in MCI and AD
patients. Their results confirmed studies reporting CSF
increased levels of pancreatic polypeptide, eotaxin 3, tenascin
C and NT-pro BNP in patients with AD and MCI [79]. Ray and
colleagues reported that several serum signaling proteins, as
chemokine (C-C motif) ligand-5, -7, -15, and -18; chemokine
(C-X-C motif) ligand-8; epidermal growth factor; granulocyte
colony stimulating factor; glial-derived neurotrophic factor;
intracellular adhesion molecule 1; insulin-like growth factor
binding protein 6; interleukin 1la, 3 and 11; macrophage
colony-stimulating factor; platelet derived growth factor-BB;
tumor necrosis factor « and tumor necrosis related apoptosis-
inducing ligand R4 are associated to AD and progression of MCI
to AD [86].

As mentioned previously, ApoE is a candidate for an AD
biomarker even though some discrepancies have been found
when the levels of this protein are related to AD symptoms.
Aiming to clarify this point, Simon and colleagues applied the

powerful mass spectrometry quantitative approach of select-
ed reaction monitoring (SRM) to quantify ApoE and ApoE4 in
AD patients and control subjects. By using ‘proteotypic’
peptides (cysteine 112-cysteine 158 in ApoE; cysteine 112-
arginine 158 in ApoE4) characteristic of each isoform, which
differ in only one amino acid, the authors concluded from this
target mass spectrometry approach that ApoE and ApoE4 are
not clinically significant relevant for AD diagnostics [87].

Adding to the controversy on ApoE and ApoE4 as markers
for AD, Wang and colleagues analyzed the same isoforms
under a multiple reaction monitoring approach (MRM). In this
case, the authors performed protein quantification in the
soluble and insoluble cell fractions. Their data have shown
that C and N-terminal fragments of ApoE and ApoE4
accumulate in higher amounts in AD tissues, but the full
assignment of these fragments identities has not yet be done.
The approach used in Wag’s study provided “quantitative
evidence for a preferable accumulation of apoE C-terminal
fragment in the insoluble fraction of AD frontal cortex
homogenate” [88].

Zhang and colleagues performed SRM to study histone
acetylation in human brain tissue of advanced AD patients,
using samples from individuals at different stages of the
disease [89]. A considerable lower amount of histone acetyla-
tion in AD samples was detected when compared to controls,
pointing to the need of further studies to understand the
participation of this post-translational protein modification in
AD evolution.

Domenico and colleagues performed a quantitative proteo-
mic study, by measuring the levels of phosphorylated proteins
in hippocampus of AD patients. Hyperphosphorylation of tau
proteins is considered to be a hallmark of AD [90]. According to
the authors, several other proteins could also be erroneously
phosphorylated and contribute to the evolution of AD [90]. In
this work a critical point has been identified, that the PMI period
(post modem interval) could influence the outcome of proteo-
mic studies. During the time interval or delay between “death”
and “sample” collection, several processes, i.e. proteolysis,
unrelated to any pathological process might happen. Although
control samples are used for comparison, the delay still
inevitably exists. To avoid this situation, the search for
biomarkers in alive individuals should continue. The authors
reported 17 proteins differentially phosphorylated in AD
samples as compared to control samples; nine of them
presented increased phosphorylation in AD subjects [90]. In
this study, samples were pre-fractionated by 2-DE, and ana-
lyzed in an Orbitrap. No phosphopeptide enrichment was
performed. Protein phosphorylation was estimated based on
ProQ dym staining. The altered phosphorylation patterns in AD
patients occurred in proteins involved in energy metabolism
and ATP production, signal transduction and neural structure,
all key steps for AD development and evolution [90].

The nitration of proteins in tyrosine residues potentially
interferes with phosphorylation processes which are vital for
many biological functions. Nitrated proteins detected in
Sultana’s study suggested imbalance of energy metabolism,
synaptic loss, and mitochondrial dysfunction, all phenome-
na nowadays accepted as part of mechanisms leading to AD.
Di Domenico and colleagues investigated the role of cellular
stress response on AD progression, by evaluating the levels
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of HSP 27, 32, 60, 70 and 90 and thioredoxin-1 by Western blot
[91]. The main idea of this study was to measure important
proteins related to stress response and protein folding. The
samples were autopsied from subjects belonging to the aMCI
(amnestic) stage at a maximum 3 h PMI, and three brain
regions were analyzed: hippocampus, inferior parietal lobule
and cerebellum. In general, the HSP levels were higher in AD
samples when compared to control samples, except in the
cerebellum. HSP 32 was detected at the highest amount, but
without significant difference between the groups [91].

Another interesting approach was used by Reed and
co-workers in the analysis of proteins that could bind to
4-hydroxy-2-nonenal (HNE) in the human brain. HNE has an
important role in lipid peroxidation and can cause oxidative
stress in the brain in its free form or bound to proteins [80].
The study compared subjects at two stages of the disease,
the mild cognitive impairment (MCI) phase and late-stage
Alzheimer’s disease. The analysis of HNE-bound proteins was
performed by immunohistochemistry and selected proteins
were analyzed by MALDI-TOF, after preparation by 2-DE. The
authors pointed out that lipid peroxidation seems to have an
important role in AD, even in the early stages MCI and EAD
(early Alzheimer’s disease) [80]. More recently, Hashimoto
and colleagues analyzed microdissected hippocampal neu-
rons by O'® labeling mass spectrometry. The elegant ap-
proach of laser capture microdissection (LCM) allowed the
authors to analyze specific neurons population of the brain
tissue. LCM was used to extract post mortem neurons of
the cornu ammonis 1 region from AD and control patients.
The cornu ammonis 1 is where neurofibrilar tangles are
detected even in early stages of AD. The approach allowed
detection of up- and down-regulated neuron-specific pro-
teins, when comparing AD to control samples. Through this
strategy, one very specific region of the brain could be
analyzed in a way that precluded proteins from regions, not
implicated in the pathology, to interfere in the proteomics
study [92].

6. Parkinson’s disease

The English physician James Parkinson in his article “An
Essay on the Shaking Palsy” first described the clinical
features of this condition in 1817. Parkinson’s disease (PD) is
the second major neurodegenerative disease in the world,
which affects about 0.3% of the general population including
all ethnic and socioeconomic groups, with a slight predom-
inance in males. Its incidence and prevalence increase with
age, reaching about 1% in people above 60 years and 4% in
those above 80 years [93]. Clinically, PD manifests as resting
tremor, bradykinesia (difficulty in initiating movements and
slow to run them) and muscle rigidity. These changes usually
have an asymmetrical onset. Difficulties in gait and postural
instability and autonomic dysfunction are symptoms that
may be associated with disease progression [17].

The depletion of dopamine in PD is one of the hallmarks
of the disease. The postmortem brain pathological evalua-
tion shows the degeneration of substantia nigra in the pars
compacta, leading to dopamine deficiency. Cytoplasmic eosino-
philic inclusions termed Lewy bodies (LB), composed mainly of

a-synuclein are also found in areas of neuronal degeneration in
these patients [94].

Although a definitive diagnosis is only given in the
autopsy, the syndromic diagnosis is based on clinical criteria,
being the UK Parkinson’s Disease Society Brain Bank the most
used globally [16]. The PD is not limited to motor disorders as
cognitive deficits can also be detected. Studies indicate a 30%
prevalence of dementia in individuals with PD, and it is
estimated that at least 75% of patients with more than ten
years of disease progression develop dementia [95]. PD
patients who develop dementia during the first year have
been classified as having dementia with Lewy bodies (DLB)
[96]. The risk of developing dementia in PD is particularly high
in patients older than 70 years [97,98].

In the past years there is an increasing consensus in that
exposure to toxicants such as heavy metals, pesticides and
other known neurotoxic substances can increase the risk of
developing PD [99]. The idea that neurodegeneration, such as
that observed in PD, is closely related to oxidative stress is
now accepted [99]. Symptoms similar to those of PD patients
have been detected in subjects exposed to manganese
[99-101]. The accumulation of aluminum in the brain of PD
patients was described, and increased incidence of neuro-
logical diseases, including PD, correlates to high levels of
aluminum in drinking water [102]. Several techniques are
available to quantify metals in different tissues. The laser
ablation inductively coupled plasma mass spectrometry is
one of these strategies. In a work performed by Matush and
colleagues, they analyzed MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine)-exposed mice using this technique to
analyze details of Cu, Fe, Zn and Mn mobilization in brain
tissues [103].

Exposures to pesticides have been associated with PD in
several aspects. The associations of PD with rotenone and
paraquat, two worldwide-used pesticides known to easily
cross the blood brain barrier, have been reported [104]. The
effect of some pesticides, including, paraquat, rotenone and
dieldrin over the a-synuclein were studied by Uversky and
colleagues (in vitro). The authors used atomic force micros-
copy to study the a-synuclein conformation and fibril formation,
respectively, after treatment with the pesticides. As result, a
significant conformational change in the a-synuclein structure
and formation of a-synuclein fibrils in a high rate were ob-
served, suggesting strong participation of these pesticides in the
development of Parkinson disease [105].

Rotenone inhibits the complex I of the electron transport
chain in mitochondria thus disturbing the oxidative phos-
phorylation process [30,50]. Rotenone intoxication promotes
selective degeneration of nigral dopaminergic neurons with
accumulation of cytoplasmic a-synuclein aggregates, resulting
in symptoms seen in PD, such as bradykinesia, rigidity, tremor
and nonmotor signs [30,104].

The herbicide paraquat has been pointed as a stronger
environmental factor in PD occurrence [106]. Paraquat generates
ROS through production of superoxide radicals and induces a
parkinsonian syndrome similar in many features to PD. It also
increases lipid peroxidation, decreases levels of antioxidants,
disturbs mitochondrial function, increases expression and aggre-
gation of a-synuclein and selectively kills nigral dopaminergic
neurons [30,107,108].
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Under the histopathological point of view, the tau protein,
the amyloid protein and Lewy bodies are involved in the
development of PD dementia [95,109,110]. The identification
of biomarkers that will allow an earlier and more accurate
diagnosis in PD with dementia or DLB is urgent as the popu-
lation ages globally increased [111]. Chang and coworkers
suggested that microRNA biomarkers associated with AD could
have potentials for other neurodegenerative diseases as well,
such as in Parkinson’s, Prion and Huntington’s diseases [112].
Other studies have proposed that combining clinical findings,
biochemical and imaging markers (MRI, PET and SPECT) will be
more likely to contribute to early PD diagnosis and follow up
[113,114].

6.1. Proteomics in Parkinson’s disease

Biomarkers for diagnosis and prognosis of PD are not currently
available. Actually, some putative candidates for PD biomarkers
were proposed but these still have low specificity and sensitiv-
ity [18]. Promising findings in the field showed that a-synuclein
is a major component of Lewis bodies [115]; that DJ-1 is involved
in protection against oxidative stress during ND [116] and that
levels of Ap42 correlate with cognitive impairment.

The current “omic” approaches in PD include transcripto-
mics, proteomics and metabolomics, aimed at identifying
small changes in mRNA, protein or metabolite profiles [114].
Searches for biomarkers in PD were performed in CSF
(a-synuclein, tau, p-amyloid peptides and DJ-1) and proteins
and urate in the blood [18,113,117]. Recently it has been
suggested that tau and p amyloid are critically involved in
early PD progression, probably by a mechanism different than
that in Alzheimer’s disease [118].

The rat ventral mesencephalic tissue gives rise to the
dopamine neurons within the substantia nigra, which degen-
erates in Parkinson’s disease. Using a quantitative proteomic
approach (iTRAQ), Orme and collaborators studied protein
expression in tissues in three different stages: immediately
before, during and after the dopaminergic neurogenesis. Briefly,
extracted total protein was labeled with iTRAQ reagents,
submitted to trypsin digestion followed by peptide pre-
fractionation using multidimensional chromatography (strong
cation exchange + reverse phase). Using this strategy, the
authors identified ca. 3000 proteins by MALDI-TOF/TOF and
could explore in details the proteins involved in the dopamine
neuron development [119].

Proteomics approaches have been used to understand the
role of mitochondria perturbation and oxidative stress in the
role of the PD [120]. Van Laar and collaborators analyzed by
2-DIGE (fluorescence difference gel electrophoresis) rat brain
mitochondria after exposure to dopamine-quinone (DAQ). In
a healthy brain, dopamine (DA) leads to the production of ROS
and DA which is not adequately stored in vesicles can be
oxidized to form the reactive DAQ [121]. Increased levels of
cysteinyl-DA, a covalent modification of DA triggered by DAQ,
have been detected post-mortem in substantia nigra of PD
patients. Furthermore it has been demonstrated that DAQ can
cause alteration of respiratory mechanisms in mitochondria
[121]. Proteins oxidized in the mitochondria, according to the
authors, could also be potential targets for therapeutic agents
in AD. The authors performed mitochondrial isolation from

brain tissue of rats and the extracted mitochondrial proteins
were analyzed by 2-DIGE coupled to MALDI TOF/TOF mass
spectrometry. Mitochondrial creatine kinase (MtCK), which is
associated with ADP-ATP exchange and the permeability
transition pore [122], is highly sensitive to oxidation. Their
data showed that DA-induced oxidation of MtCK affected its
enzyme activity thus, compromising the integrity and energy
metabolism of mitochondria [121].

Parkinsonism mouse models can be obtained by the use of
two neurotoxins: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) and methamphetamine (METH). MPTP seems to cause
death of dopaminergic neurons in the substantia nigra pars
compacta [123], while METH inhibits oxidative phosphorylation
in dopaminergic neurons [124,125]. Analysis of these two
systems under trancriptomic and proteomic approaches re-
vealed significant changes on the levels of 86 proteins and of
mRNA of 181 genes after toxin(s) treatment(s). The authors
concluded that there is a clear mitochondrial dysfunction in PD,
with increased oxidative stress, deregulated protein degrada-
tion, increased apoptosis and cell death, and a potential
activation of the astrocytic response. This study was performed
with °0/%0 labeling and Cys-peptide fractionation, aiming an
accurate quantification and a wide coverage of the proteome
[125].

Constantinescu and colleagues analyzed the CSF from
patients with different clinical stages of parkinsonian disor-
ders. The authors compared the protein profile of these
groups aiming to identify one or more specifics biomarkers
by mass spectrometry SELDI-TOF (using three different
surface arrays: cation and anion exchange and metal binding).
However, no specific biomarker could be detected and used to
distinguish the pathologies among the groups. The authors
pointed out that SELDI might not be a good strategy, because
the detection limit of the approach could be limiting the
detection of low abundant proteins [126].

Several studies have pointed to a-synuclein as a biomarker
candidate for PD. Even though this small protein can be
detected in the plasma, there are still many controversies
regarding its use as a biomarker [127]. Chen and colleagues
compared the plasma of healthy and PD patient groups, using
2-DE and a Q-TOF mass spectrometer. Abundant proteins
were depleted from blood samples and analyzed it separately.
A significant difference between the groups for the proteins
serum amyloid component P and IgGkL prompted the authors
to suggest these two proteins as biomarker candidates.
Although ELISA further confirmed these results, the group of
PD patients analyzed in the study was small hence more
studies are necessary to validate the data [127].

As a matter of fact, a recent systematic review of biomarkers
concluded that there is still insufficient evidence to recommend
the use of any biomarker for disease progression in PD clinical
trials [128].

7. Concluding remarks

This review has briefly highlighted some physiopathological
aspects of Parkinson’s and Alzheimer’s diseases, the most
common age-related neurodegenerative diseases in the world.
The occurrence of these diseases has significantly increased
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over the past decades, in parallel to global increase in life
expectancy. Presently no biomarkers exist for reliable diagnosis,
tracking of disease progression or monitoring therapeutic
outcomes. Here emphasis was given in reviewing proteomic
studies aiming at identification of the urgently needed bio-
marker(s) that will allow an early detection and subsequent
therapeutic intervention to deter the progress or at least
ameliorate the symptoms of these debilitating pathologies.
The role of environmental stressors in the incidence of these
neurodegenerative diseases was addressed and proteomic
studies dealing with understanding the effects and diagnosing
the exposure to different pollutants and heavy metals in
relation to Parkinson and Alzheimer’s disease were reviewed.
The controversial data on candidate biomarkers useful for
diagnostic and prognostic of these CNS diseases reveal a
field with many gaps yet to be solved, in which proteomic
approaches have ensured application.
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