
Using Co-ordinated Atomic Actions for Building Complex Web Applications:

A Learning Experience

A.F. Zorzo, P. Periorellis, A. Romanovsky
Faculty of Informatics

Pontifical Catholic University of RS - Brazil

zorzo@inf.pucrs.br

Centre for Software Reliability

University of Newcastle upon Tyne - UK

{panos, alexander.romanovsky}@ncl.ac.uk

Abstract
This paper discusses some of the typical characteristics of

modern Web applications and analyses some of the
problems the developers of such systems have to face.

One of such types of applications are integrated Web

applications, i.e. applications that integrate several

independent Web services. The paper focuses on
providing software fault tolerance for such systems. The

solution we put forward employs the concept of Co-

ordinated Atomic (CA) actions for structuring such

applications and for providing fault tolerance using
exception handling. The paper discusses important design

and implementation decisions we have made while

developing a Travel Agency (TA) case study and attempts

to generalise them to allow CA actions to be easily
applied for building dependable Web applications.

1. Introduction

The use of Web applications by several people has

become very common in the past years. Hence, the

number of such applications has considerably increased,

and the same person can use several different Web

applications during a short period of time to achieve his

goal. Usually, the user controls several interactions with

all the Web applications in an ad hoc way. These

interactions can be very complex concurrent activities. In

some cases these concurrent activities may be working

together, i.e. cooperating; in other cases the activities can

be completely independent or may be essentially

independent though needing to compete for shared

common system resources. In practice, different kinds of

concurrency might co-exist in a complex activity that thus

will require a general supporting mechanism for

controlling and coordinating this type of activity.

In this paper, we use the concept of Co-ordinated

Atomic (CA) actions [1] for structuring such activities

and for providing fault tolerance using exception

handling. The paper discusses important design and

implementation decisions we have made while developing

a Travel Agency (TA) case study and attempts to

generalise them to allow CA actions to be easily applied

for building dependable Web applications that integrate

several Web services that a user might want to access.

In particular, the paper discusses how to enclose the

client side code and the server side code in one

framework in such a way that single or concurrent errors

detected on those sides are dealt co-operatively by both

sides and that CA actions can have participants executing

on both sides. Following the conventional way the Web

services are implemented, our framework is based on a

centralised component offering Web services to a number

of clients (although the whole service can be a distributed

application running, for example, on a cluster). An

example of such services is the TA application, which

allows integration of several other Web services available

on the Internet. Usually Web services have a client side

that uses a web browser to send HTTP requests to a Web

application. But it is clearly much more convenient to

implement the application logic on the server side using

Java RMI or some other technologies which are not

oriented towards the Web. This heterogeneity creates a

problem that we had to solve. In this paper we show how

the HTTP requests are transformed into remote method

invocations to specific Java objects implementing most of

the framework features, e.g. a special method for

concurrent exception resolution [2], and the application

logic. In order to transform a HTTP request into RMI

calls we use the Java Server Pages (JSP) [3] technology,

although other technologies like Active Server Pages

(ASP) [4] could also be used. Another important solution

we have used allowed us to deal with the statelessness of

the method calls on the server side. The approach we are

using makes it possible for a CA action to include

sequences of HTTP requests issued by the client side. To

conclude, the ultimate aim of this investigation conducted

within European IST DSoS project (IST-1999-11585) [5]

is to develop an advanced framework for employing CA

actions for building complex Web applications.

2. Co-ordinated Atomic Actions

The Co-ordinated Atomic (CA) action [1] is a general

mechanism for co-ordinating multi-threaded interactions

and ensuring consistent access to objects (resources) in

the presence of concurrency and potential faults. It can be

regarded as providing a programming discipline for

nested multi-threaded transactions that in addition

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

supports implicit co-ordination of a number of co-

operating activities and very general exception handling

facilities. The scheme is directly suitable for handling

situations in which hardware and software faults have not

been masked by the underlying transaction mechanism

but have instead been reported to the application level,

and/or at which there are application-level abnormal

situations that have to be handled.

A CA action involves multiple co-operating roles that,

among other things, must agree on the action outcome.

There are four possible kinds of outcome: normal,

exceptional, abort and failure. A CA action terminates

normally if it is able to satisfy its post-conditions. If a CA

action does not terminate normally, then each role must

signal an exception to indicate the outcome. The roles

should agree about the outcome so each role should signal

the same exception. If an exception is raised during the

execution of a CA action, this triggers a process of

exception handling. Depending on how successfully the

CA action can recover from the exception, it may still

terminate normally or otherwise exceptionally. If error

recovery is not possible, the CA action may attempt to

rollback the state of external objects and signal abort. If

the rollback is unsuccessful, then the CA action signals

failure.

If a CA action terminates exceptionally (i.e. with

exceptional, abort or failure outcome), the corresponding

exception is raised in the enclosing context. CA actions

can be nested and this means that an action which

terminates by signalling an exception is effectively

passing on the responsibility for exception handling to the

enclosing CA action.

Our experience in developing Web applications as TA

shows that there are situations in which the canonical CA

actions have to be modified for practical reasons and to

reduce the complexity the system designers have to deal

with while applying this fault tolerance scheme. For

example, canonical action nesting is defined in such a

way that a subset of participants of the containing action

takes part in a nested action. This is a straightforward rule

that guarantees absence of information smuggling and

facilitates the action support. Sometimes, as we will show

in the next sections, we have to apply another type of CA

action, i.e. CA actions that are executed as a method call

in which the body has several threads forked and joined

when the action starts and completes. All forked threads

are involved in co-operative exception handling when any

of them raises an exception. If there are several

concurrent exceptions they are resolved in the way this is

done in the canonical CA action scheme as described

above. Such method call either returns a result or signals

an interface exception to the containing action. It is not

difficult to see that such CA actions have all main

properties of the CA actions with respect to fault

tolerance and complexity encapsulation because there is

no information smuggling outside such actions. Actions

allowing this type of nesting can be freely mixed with the

canonical CA actions, as indeed has been done in this

paper.

3. Travel Agency Case Study

To demonstrate how CA actions can be used to build

Web applications, we have chosen a very typical system,

a Web Travel Agency, which, as our analysis shows, has

main characteristics of many real-life Web applications.

We assume that there is a number of Web services in

place that make it possible for the client to book some

parts of trips (e.g. a hotel room, a car, a flight). Therefore,

the goal of the exercise is to apply fault tolerance

techniques in building a new service that allows the client

to book whole journeys. By doing this we will be building

a new emerging service, which none of the existing

services is capable of delivering individually [6].

The main challenges related to provision of fault

tolerance of the integrated Web applications are as

follows. The legacy components are Web servers that are

controlled by different organisations and are not

developed for integration, because of this there is often

not enough information which the integrators might need

(including, for example, component complete and correct

specification). Another consequence of this is that system

integrators have to treat these components as black boxes

that can only be accessed via standard interfaces. With

respect to the dependability of the integrated application

there are two factors to be taken into account: a well-

known fact that the quality of many Web services is very

low [7] and absence of evidence supporting any

reasonable claims about their reliability. While integrating

dependable Web applications is important to realise that it

is impossible to develop or rely on features for locking

Web services and for aborting (sequences of) operations

on them. Another set of the problems specific for such

systems is related to the Internet as the only

communication media and the only environment in which

composed systems operate. Web services are autonomous

entities oriented mainly towards interactions with clients

and they often take liberty to send replies that do not

exactly fit the requests as a way of helping the clients or

promoting their service. Moreover, because of their nature

they offer a very specific type of interface suitable for

browsing only (HTML interfaces). It is a well-known fact

that the Internet is not a very reliable media and that there

is a high number of Internet-specific faults such as delays,

lost requests, services switched down (because of either

their faults or regular shutdowns) [7] [8]. Integrated

applications of the TA type have to meet high

dependability requirements including consistency of

money transfers and clients’ satisfaction. One more

problem that the designers of such systems have to deal

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

with is that they have to preserve the right level of

abstraction while composing the system. Such Web

applications are typically built using complex composite

middleware consisting of several levels with an ability to

deal with exceptions at different levels, so there is a need

for a unified approach and for a proper exception

handling encapsulation. One more characteristic worth

mentioning here is the fact that people are involved in

execution of such systems and they can both cause errors

and be involved in recovery; in the context of TA clients,

the integrated system support and the legacy component

support can be included into consideration.

Our choice of the fault tolerance and structuring

techniques to be used is defined by these characteristics.

In our design of TA case study we will be developing and

applying the techniques that allow system integrators to

meet high dependability requirements by incorporating

measures for disciplined tolerance to the faults of several

types. First of all, TA should tolerate errors caused by

hardware failures in communication (mainly delays) or in

legacy components (mainly crashes), which should not

cause failures of the whole TA. Secondly, the client’s

mistakes and client side machine crashes should be

tolerated without affecting either TA or the legacy

components. Thirdly, TA should tolerate situations when

legacy components cannot provide the required service or

when they behave abnormally. Besides, the clients should

be informed about the situations when the machines on

which TA is executed crash and these crashes should not

affect the legacy components. The design should

guarantee that all components, including legacy servers,

TA and clients stay in a consistent known state even when

faults happen.

4. Structuring Web Applications

Normally, Web applications are divide in two parts: a

client side and a server side. The client side executes on

the client’s machine and usually gathers information from

the user to be sent to the server. The server side is

responsible for using the users input, processing and then

returning the result to the client computer. The TA

structure has a similar structure, which is typical for many

Web services [6]. The major difference is that in the TA

system, requests from the client are passed to legacy

components (this is not seen by the client) (see Figure 1).

Note that a client can be accessing a legacy component

directly, therefore the legacy component will see our TA

as a client. In order to provide a client with some level of

fault tolerance, our approach focuses on employing

application-level fault tolerance by means of structured

exception handling. In designing TA we employ the CA

actions concept.

The overall TA execution, with respect to each client, is

structured using CA actions. TA is a complex concurrent

distributed application with a considerable number of

exceptions to be handled. Several interacting components

of different types are to be involved in this execution and

there is a need in consistent co-operative application-

specific handling of all abnormal situations. All

information exchanged between client and the TA is

realised inside CA actions via shared local objects.

Because the client thread is either executing in the client

side or on the TA side, a special shared object is used.

This object is a way of signalling exceptions to the client

side if the TA side raises an exception that has to be

handled by all participants of an action.

Figure 1. Architecture of Travel Agency

4.1. Structured System Design Using CA actions

In our design [9], every time a client connects to the TA

a special CA action is started on the TA side (this CA

action can be executed on the same place the TA server is

executing or in a special computer used to host the clients

actions). This special action encloses all activities that the

client executes, even if these activities are executed on the

client side. This action is called session action. The

session action finishes when the client logs off or crashes.

The session action is composed of three co-operating

roles, which are executed by participants represented as

concurrent co-operating threads: client controller, TA CS

(Client Side) controller and TA SS (Server Side)

controller. The first participant is mainly located on the

client computer, and is responsible for interacting with the

user. The client participant is responsible for gathering

input from the user, sending this information via HTTP

(JSP) to the session action, and exhibiting the result to the

user. During this process, the client thread can be seen as

a thread that executes partially in the client side and

partially on the server side. The remaining two

participants are executed on the TA computer (or the

computer destined to execute the client’s session action).

These last two threads are created when a client logs into

TA. Introducing such threads allows us to make the

system structure cleaner, to reduce the design complexity

by separating concerns and to improve system

performance. For example, one of the responsibilities of

the TA CS is to monitor the client side, while the TA SS

is responsible for distributing the client requests between

Web

varig l c
e o
g m
a p
c o
y n
 e
 n
 t
 s

client

client

TA

hilton

avis

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

the legacy systems. As discussed in Section 2, this

session action is not a canonical CA action, i.e. the

threads that will execute each of the roles of the CA

action are forked when the session action is started by the

client controller thread (see Figure 2).

After the session action has started, the client can

choose the activity among the following: checking

availability of a trip, booking a trip, cancelling a trip, and

paying for a trip. They correspond to four actions that are

nested into the session action: the availability, booking,

cancellation and payment actions. These four actions

have the same three participants as the containing session

action, i.e. they are canonical CA actions. The client may

choose to perform any of these actions in any possible

order but within a restriction imposed by the menu

presented to him (e.g. it is not possible to cancel a trip if it

has not been booked before). One of the possible

scenarios is shown in Figure 2. In the figure, we represent

the client participant informing the TA CS and TA SS

controllers that he wants to execute the availability action

and when this has finished (supposing that he is content

with the choices he got) he informs the other participants

to execute the booking action.

Figure 2. Valid execution of the session action

If any of those four actions is not able to deliver the

service required, it completes abnormally and propagates

an interface exception to the session action. When

possible all three participants of this action are involved

in handling of such exception. Note that when the

availability action completes without exceptions it

produces a normal result consisting of a description of a

number of trips meeting all client’s requirements: in the

scenario shown in Figure 2 the client chooses one of these

trips and proceeds with booking. The trip choices are sent

to the client when the client controller is executing inside

the availability action.

Let us consider now the internal structure of the

availability action. In our design it has two nested actions

(Figure 3): the request action and the consult_services

action. They implement distributed browser access to the

TA service. Within the request action client’s information

is passed from the client computer to the TA server and

checked. If during this checking the TA CS controller

finds that some part of the information is incorrect (e.g.

city name, days of travel, length of the stay, etc.) it raises

a corresponding internal exception in the action to alert

the client and to advise him to correct this information.

After such correction the action continues. If the TA

server is down or crashes, the corresponding action is

aborted and an external exception is propagated to the

availability action level. This action is aborted in its turn

and an external exception is signalled to the session level

to inform the client and to advise him to close the session.

If one of these two actions (request or consult_services)

detects that the client is not on-line or his computer

crashes, the action itself and the containing action

availability are aborted, and the session action completes.

Figure 3. Structure of the availability action

As mentioned in Section 2, sometimes we need a

special type of CA action that is initiated by only one

thread but that have several threads inside. The TA SS

controller, one of the participants of the consult_services

action, activates the compose_trips action that is designed

as a CA action of this type (Figure 4). CA action

compose_trips has four cooperating participants: the ct

controller (a service thread coordinating the execution of

the remaining three participants) and three participants:

flight, car and hotel, which are responsible for providing

respective information for composing the whole trip. The

arrow from the client participant to the TASS controller

represents the sending of the information from the client

to the TASS controller. This information is later passed to

the ct controller participant in the compose_trips action,

which will split the information into details of the flight,

car and hotel. The ct controller passes then this

information to the respective participants, which access

their legacy components.

Figure 4. Action compose_trips is nested in
action consult_services

If any of these participants raises an exception all of

them are involved in cooperative handling. For example,

if there is no car available for the date of travel the ct

action availability

client controller

TA CS controller

TA SS controller

action
request

action

consult_services

action session

client controller

TA CS controller

TA SS controller

action
availability

action
booking

client controller

ct controller

flight

car

hotel action compose_trips

TA CS controller

TA SS controller

action
consult_services

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

Figure 5. General implementation structure

controller may decide to find another airport nearest to the

destination city, or to check a more expensive or cheaper

option for car rental, or to search for the hotels offering

car rental. When handling is not possible at the level of

action compose_trips a corresponding exception is

propagated to the TA SS controller and raised in all

participants of action consult_services.

5. Implementation

The previous section has shown how we have

structured all activities that are executed by the TA in

order to access legacy components using the CA action

concept. In this section we discuss the implementation

details, the technologies used and the architecture of the

whole system. Figure 5 shows the architecture of our

system and possible technologies that could be used for

exchanging information between client, TA and legacy

systems. In our implementation we have used the

technologies written in bold font in the figure.

The first step (1) is executed by the client when he

sends an HTTP request to the HTTP server on the TA

side. When the TA HTTP server receives the request it

executes JSP code associated with the Web page the

client was trying to access (note in the figure that we are

using JSP but could have used ASP instead). This JSP

code is interleaved with Java code that makes an RMI call

(2) to the TA system, which is responsible for creating the

session action as described in the previous section. All the

CA actions are created as remote objects, via an RMI call

(3), on a different machine. Note that this remote machine

could be a set of computers, or a cluster of computers, and

the CA actions are distributed among these computers.

After the session action has been started, the client

receives back an identifier to this action, and a new Web

page containing a set of options he can access in the TA.

This identifier is send back to the client via a cookie,

which is stored in the client’s machine.

All the steps described above are related to the first

access the user makes to our TA. Once he has got a Web

page back, the whole structure for checking trip

availability, or executing any of the actions described in

the previous section is ready. Therefore, if the user now

wants to check availability for a specific trip, he fills a

form in an HTML page and the information on this form

is sent via an HTTP request (4) to the TA HTTP server.

The TA HTTP server executes then the JSP code that

sends this information to the session action via an RMI

call (5). In the session action, as described in the previous

section, the client’s request is passed to the legacy

components (6). When all legacy components, i.e. hotel,

airline and car rental Web sites, have returned the

availability, this information is send back to the client,

and the whole process can be started again (7,8,9,…). As

can be seen in Figure 5, the CA actions access the legacy

component via the RMI protocol, but we could have used

any of the other technologies shown in the figure, i.e.

SOAP, CORBA, etc. One important feature in our design

is that each access to legacy components is wrapped into a

special code implementing a kind of plug-in (or driver).

This plug-in provides always the same interface to the CA

actions independently of the technology used by the

legacy system. Employing such remote protective

wrappers is an important design decision that allows us to

separate a number of lower-level and routine activities

from the main TA logic. Moreover, although in our

current implementation we use synchronous calls to

legacy components, using such wrappers will allow us to

deal with asynchronous calls as well.

5.1 HTTP Server and JSP Code

One of the important features of the HTTP server is that

it is stateless, i.e. it does not keep state between calls.

This is very important when one wants to deal with faults

of the HTTP server. In the event of the HTTP server

crashing, then a new HTTP server can take over the job of

TA System

Client
browser

TA
CA actionsTA HTTP

server
(JSP/ASP)

Legacy
component RMI (6,9,…)

CORBA
SOAP
HTML

HTTP

request (1,4,7,...) RMI (5,8,…)
CORBA

RMI (3)
CORBARMI (2)

CORBA

Client
browser HTTP

request

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

the crashed server. This feature is also valid for the TA

system. All the information needed about the client is

kept, in our system, in a cookie that is set when the client

first connects to the TA Web site and downloads the

HTML page shown in Figure 7. In this figure, we show

how HTML and JSP code are interleaved. The Java code

is shown between lines 2 and 12. The Java code is

responsible for accessing the TA system (line 6), creating

a new session action in the TA (line 7), and creating a

cookie to store information about the session action. The

information stored in the cookie will be used every time

the client wants to execute a nested action in the session

action, for example availability action. The client, via JSP

code also uses this information to access local shared

objects that will serve as a communication channel

between the client and the other participants of the

session action. The HTML code shows a set of options to

the client, for example an option for making a reservation

(line 13), or an option to cancel a reservation (line 14).

01: <html> … <body>
02: <%@ page import="TravelAgency"%>
03: <%@ page import="java.rmi.*"%>
04: <%@ page // other Java imports …
05: <% try {
06: TravelAgency ta = (TravelAgency) Naming.lookup("rmi://address/TA");
07: int numb = ta.createAction();
08: Cookie c = new Cookie (request.getRemoteHost(), Integer.toString(numb));
09:
10: response.addCookie(c);
11: response.setContentType("text/html"); ...
12: catch (…) { … } %>
13: <p align="center">Make A Reservation</p>
14: <p align="center">Cancel a Reservation</p> ...
15: </body> </html>

Figure 7. HTML and JSP code for the start menu of the TA

01: public TASS(String n, drip.Manager mgr, drip.Manager leader) throws RemoteException {
02: super(mgr, leader, n);
03:
04: // Create the compose_trips CA action.
05: // Create managers. Parameters: manager name, DMI name
06: drip2.Manager mgr1 = new drip2.ManagerImpl("mgr1","compose_trips");
07: drip2.Manager mgr2 = new drip2.ManagerImpl("mgr2","compose_trips");
08: drip2.Manager mgr3 = new drip2.ManagerImpl("mgr3","compose_trips");
09: drip2.Manager mgr4 = new drip2.ManagerImpl("mgr4","compose_trips");
10:
11: // Create roles: Parameters: role name, role manager, leader manager
12: ctComposeTrips = new compose_trips.CT ("ct", mgr1, mgr1);
13: flightComposeTrips = new compose_trips.Flight("flight", mgr2, mgr1);
14: carComposeTrips = new compose_trips.Car ("car", mgr3, mgr1);
15: hotelComposeTrips = new compose_trips.Hotel ("hotel", mgr4, mgr1);
16: }

Figure 8. Java code for creating the compose_trips action

01: public void body(Object list[]) throws Exception, RemoteException {
02: try {
03: RemoteQueue rqIn = (RemoteQueue) list[0], rqOut = (RemoteQueue) list[1];
04: BreakRequest request = new BreakRequest((triprequest) rqIn.get());
05:
06: ctCarQueue.put(request.cr);
07: ctFlightQueue.put(request.fr);
08: ctHotelQueue.put(request.hr);
09: waitAnswers.synchronize();
10:
11: Flight fl[] = (Flight[]) ctFlightQueue.get();
12: Hotel hl[] = (Hotel[])ctHotelQueue.get();
13: Car cl[] = (Car[])ctCarQueue.get();
14: Trip trips[] = Compose.combine(fl,hl,cl);
15:
16: rqOut.put(trips);
17: } catch (Exception e) { throw e; }
18: }

Figure 9. Java code of the ct controller role of the compose_trips action

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

Another important feature that can be seen in Figure 7

is the Java exception handling code used to inform the

client when the TA system is not available (line 12). Note

that the HTTP server can be active but the TA system can

be down. They execute on different machines as shown in

Figure 5.

5.2 CA Actions

The implementation of the CA actions is realised using

an object-oriented framework [10] developed in Java

RMI. In this framework, CA actions are implemented

with two types of objects: manager and role. As described

in Section 2, each CA action is composed of a set of roles.

A role object contains the code that will be executed by a

participant of the CA action. A manager object is

responsible for controlling the execution of a role object.

The set of managers control as CA action protocols, i.e.

synchronisation upon entry, synchronisation upon exit,

concurrent exception resolution, testing of the pre and

post-condition. For the complete description of the

framework see [10]. This framework was extended to

support the type of CA actions described in Section 2.

Although this extension was enough to implement CA

actions, it could not be applied directly to the system we

have implemented. The major reason is that the code for

the client participant is split into two parts: one running

on the server machine and another running on the client

machine. We solve that by allowing the thread that

executes the client role to execute in the client’s browser,

therefore we consider the thread executing in the client’s

browser as being inside the action. The TACS participant

is responsible for controlling the client, and may use

timeout mechanism to detect when the client is not

running anymore.

Figure 8 shows the constructor of the TASS role object

of the consult_services action. This object is responsible

for creating and starting the compose_trips action. The

creation of the compose_trips action is divided into two

parts. First the set of manager objects is created (lines 6 to

9). Second, the set of role objects is created (lines 12 to

15). Each manager is created with a name and the name of

the action it belongs to, while each role object is created

with a name, a manager that will control the role, and a

manager that is the leader
1
 of the manager of this role. All

these objects are remote objects and could be executing

on different machines. One important feature that can be

identified in Figure 8 is the different managers that are

used in the compose_trips and consult_services:

drip.Manager (line 1) and drip2.Manager (lines 6 to 9).

The former is used to create a canonical CA action. The

latter is used to create the modified CA action as

described in Section 2.

1

The leader is responsible for controlling all protocols of the CA action.

Figure 9 shows the main code of the ct controller role

of the compose_trips action. This role receives references

to two remote objects that are used to receive (rqIn) and

send (rqOut) (line 3) information from/to the client via

the JSP code (see Figure 4). Line 4 shows how the client

request is received from the client via the remote object,

and how this request is split into separate requests to the

legacy components. The next step is to pass this

information (line 6 to 8) to the roles that will access the

legacy components. This sending of information is

realised via local objects. After sending this information,

the ct controller has to wait the other roles to receive the

required information back from the legacy components

(line 9). When car, flight and hotel roles have got back

availability from the legacy components, the ct controller

receives this information (lines 11 to 13), combines this

data, and sends it back to the client via the remote object

rqOut (line 16). Figure 4 represents the Java code from

Figure 9. Note that if any exception is raised during the

execution of ct controller role, this exception is caught

and thrown to the manager object that controls this role

(line 24). The manager object then informs its leader

about the exception and the exception resolution

algorithm is executed.

6. Concluding Remarks

Our experience in the past years has shown that CA

actions provide a powerful support structuring mechanism

for several different types of applications, for example,

control software for different types of production cells

(fault-tolerant [11], not fault-tolerant [12], and real time

[13]), or for complex GAMMA computation [14]. In this

paper we have discussed and shown how CA actions can

be used for structuring and implementing integrated Web

applications. This case study differs from the previous

ones because the application area has a number of very

specific characteristics, which required some adjustments

in the way CA actions are used. For example,

heterogeneity and complexity of the environment,

autonomy and legacy of the Web servers, and needs to

explicitly deal with node crashes and communication

delays. One of such problems is that legacy components,

i.e. existing Web services, are not controlled by system

integrators and, due to this, the main means of system

recovery is application-specific exception handling. The

situation is complicated by the fact that only weak

assumptions can be made of the behaviour of such

components. It is becoming clear to the specialists in the

field that ACID transactions cannot be used for such

purposes; this is why more flexible techniques are being

developed [15]. CA actions clearly offer a more general

approach that allows developers to deal with co-operative

and competitive concurrency, and to employ application-

specific and component-specific exception handling in a

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

disciplined and structured way. Another relevant

characteristic of CA actions is their ability to support

structuring and fault tolerance of the complex systems

that include non-software entities such as human beings,

devices, money, goods, documents, etc. Because of their

very nature, activities involving such entities become

long-lived and the abort semantics is not applicable. CA

actions keep all information under control and allow

different types of application-specific recovery to be

programmed using exception handling [1] [16]. CA

actions, being a general design concept, are not attached

to deal with any specific type of faults, although in each

particular case study the fault assumptions have to be

clearly stated. In this practical work we do not consider

Byzantine faults (this is where the main focus of research

on consensus is [17]), but we mainly deal with

environmental faults, software design faults and hardware

crashes with fail-stop semantics.

With respect to the implementation of CA actions, one

important aspect that had to be dealt with in this paper

was the separation of the code of one of the participants

of a CA action. The client participant code was split

between the TA computer and the Web browser

computer. Controlling this type of separation was very

complex. We solved this by having some kind of

watchdog that would check, via time-out, whether the

client was down or not. Another point, as explained in

Section 2, was the extension of the Java framework [10]

to allow for a new special type of CA action.

We would like to conclude by saying that in many

practical situations it makes sense to apply specific

structuring techniques tailored for particular needs: we

refer here to employing a special type of CA actions and

splitting an action participant into two parts executed at

different machines. Another important conclusion is that

the solution proposed for developing a unified service

interface and several wrappers oriented towards accessing

existing Web services using different technologies

(WSDL [18], SOAP [19], other XML-based techniques,

CORBA, etc.) offer a very flexible and dynamic way of

dealing with ever-growing number of technologies.

Acknowledgments. This work is supported by European IST

DSoS Project (IST-1999-11585). A. Zorzo is a researcher

supported by the Brazilian agency CNPq (350277/2000-1). We

would like to thank B. Randell, C. Jones, and V. Issarny for the

fruitful discussions.

References

[1] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, Z.

Wu. Fault Tolerance in Concurrent Object-oriented

Software through Co-ordinated Error Recovery. In FTCS-

25, California, USA. IEEE CS Press, 499-509, 1995.

[2] R.H. Campbel, B. Randell. Error Recovery in Asynchronous

Systems. IEEE Transactions on Software Engineering,

12(8), 811-826, 1986.

[3] Sun. Java Server Pages. http://java.sun.com/products/jsp/

[4] Microsoft. Active Server Pages. http://www.asp.net.

[5] Dependable System of Systems. European IST (1999-11585)

http://www.newcastle.research.ec.org/dsos/

[6] P. Periorellis, J.E. Dobson. Case Study Problem Analysis.

The Travel Agency Problem. Technical Deliverable CS1.

Dependable Systems of Systems Project. University of

Newcastle upon Tyne. 37 p.

[7] M. Kalyanakrishnan, R.K. Iyer, J.U. Patel. Reliability of

Internet hosts: a case study from the end user’s

perspective. Computer Networks, 31, 47–57, 1999.

[8] C. Labovitz, A. Ahuja, F. Jahanian. Experimental Study of

Internet Stability and Backbone Failures. In FTCS-29,

Madison, USA. IEEE CS Press, 1999.

[9] A. Romanovsky, P. Periorellis, A.F. Zorzo. On Structuring

Integrated Web Applications for Fault Tolerance. ISADS

2003 (to appear).

[10] A.F. Zorzo, R.J. Stroud. An Object-Oriented Framework

for Dependable Multiparty Interactions. In OOPSLA-99.

ACM Sigplan Notices, 34(10), 435-446, 1999.

[11] J. Xu, B. Randell, A. Romanovsky, R. Stroud, E. Canver,

A. Zorzo, F. Henke. Rigorous Development of a Safety-

critical System based on Co-ordinated Atomic Actions. In

FTCS-29, Madison, USA. IEEE CS Press, 68-75, 1999.

[12] A.F. Zorzo, A. Romanovsky, B. Randell, J. Xu, R.J. Stroud,

I.S. Welch. Using Coordinated Atomic Actions to Design

Safety-Critical Systems: A Production Cell Case Study.

Software: Practice and Experience, 29(8), 677-697, 1999.

[13] A. Zorzo, L. Cassol, A. Nodari, A. Oliveira, R. Morais.

Long Term Scheduler for Real Time Industrial

Installations. In 3rd Congress of Logic Applied to

Technology, São Paulo, Brazil, 2002.

[14] A. Romanovsky, A. Zorzo. Co-ordinated Atomic Actions as

a Technique for Implementing Distributed GAMMA

Computation. Journal of Systems Architecture – Special

Issue on New Trends in Programming. 45(9):79-95, 1999.

[15] J. Webber, V. Corrales, M. Little, S. Parastatidis. Making

web services work. Application Development Advisor

November-December, 68-71, 2001.

http://www.appdevadvisor.co.uk.

[16] A. Romanovsky. Coordinated Atomic Actions: How to

Remain ACID in the Modern World. ACM Software Eng.

Notes, 26, 2, 66-68, 2001.

[17] L. Lamport, R. Shostak, M. Pease. The Byzantine Generals

Problem. ACM Transactions on Programming Languages

and Systems, 4, 3, 382-401, 1982.

[18] World Wide Web Consortium. Web Service Definition

Language. http://www.w3.org/TR/wsdl

[19] World Wide Web Consortium. Simple Object Access

Protocol. http://www.w3.org/TR/SOAP

Proceedings of The Eighth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE
Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on June 10,2022 at 17:13:20 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

