
Stochastic Model for QoS Assessment in
Multi-tier Web Services

Ricardo M. Czekster1,6 Paulo Fernandes2,7 Afonso Sales 3,8

Thais Webber4,9 Avelino F. Zorzo5,10

Pontif́ıcia Universidade Católica do Rio Grande do Sul
Avenida Ipiranga, 6681 – Prédio 32

90619-900 – Porto Alegre – RS – Brazil

Abstract

Service Level Agreements (SLAs) are used to guarantee quality of service (QoS) between customers and
service providers. In an SLA, parties establish a common set of rules and responsibilities. In this paper we
propose a practical stochastic modeling of a multi-tier architecture considering SLAs for specific transactions.
The model is parameterized with available performance testing data for a real web service, and with a testing
environment having unpredictable and unknown external workloads of simultaneous execution. In addition,
we present multiple scenarios of external applications impacting on the SLAs in our target architecture.
Having a previous knowledge about the average time demanded by some external applications, our model
results can provide evidences when the system under test will not respect the agreed-upon SLAs. Finally, we
discuss possible model extensions towards further unknown workload characterizations and considerations
about application execution profiling.

Keywords: Analytical Modeling, Stochastic Automata Networks, Service Level Agreements, Quality of
Service, Performance Evaluation

1 Introduction

Service Level Agreements (SLAs) are contracts between service providers and cus-

tomers and are used to ensure that an application will deliver a high quality of

1 Corresponding author. The order of authors is merely alphabetical.
2 Paulo Fernandes receives grants from CNPq-Brazil (PQ 307284/2010-7).
3 Afonso Sales receives grants from CAPES-Brazil (PNPD 02388/09-0).
4 Thais Webber receives financial support provided by PUCRS-Petrobras (Conv. 0050.0048664.09.9).
5 Avelino F. Zorzo receives grants from CNPq-Brazil (PQ 307737/2010-1).
6 ricardo.czekster@pucrs.br
7 paulo.fernandes@pucrs.br
8 afonso.sales@pucrs.br
9 thais.webber@pucrs.br
10avelino.zorzo@pucrs.br

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 275 (2011) 53–72

1571-0661 © 2011 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.09.005
Open access under CC BY-NC-ND license. 

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.09.005
http://dx.doi.org/10.1016/j.entcs.2011.09.005
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/


service (QoS) in a timely manner. Ensuring SLAs to execute within healthy envi-

ronments is important to performance testing since it enables the capacity planning

process as well as scalability analysis due to predictable load increase, user growth

or based on patterns of future use.

According to Software Performance Engineering (SPE) practices [1], perfor-

mance analysts doing Performance Testing are expected to enforce that the System

Under Test (SUT) is executed in isolation and following a specific test plan accord-

ing to a well-defined test objective [2,3]. Respecting SPE practices adds a layer

of responsibilities, new roles (human resources such as performance analysts and

similar capacities) invariably leading to additional costs, and also new risks to soft-

ware projects. However, it is not always possible to follow SPE guidelines rigorously

due to the low priority (or impossibility) that is associated with pure performance

testing in software projects. In contrast, Functional Testing is considered more im-

portant for stakeholders and thus, has a higher priority level. In software projects,

one must balance the advantages of using SPE to devise responsive and performant

applications in respect to the effort to be spent.

Both types of tests are equally important and usually executed in testing en-

vironments to comply with distinct objectives. The former is interested in testing

the system for failures (according to the taxonomy proposed by Avizienis et al. [4])

with respect to the functional aspects of software, whereas the latter works with the

non-functional requirements of software, e.g., availability, usability, quality of ser-

vice or compliance with design specifications, to name a few. Generally, functional

testing is applied to validate or to verify software products and performance testing

is used to attest quality attributes of systems under particular workloads. Despite

the fact that performance testing is often considered after functional testing, this

process is equally important because it helps improving overall quality of service.

One should remark the fact that perfect conditions for having a dedicated per-

formance testing environment seldom exists. Problems such as servers belonging to

remote locations, security constraints (e.g., static firewall machines), unavailabil-

ity of the maintenance team for emergency repairs and general updates, general

project miscommunications on the test purpose (both for failure discovery and per-

formance), among other factors contribute to degrade web services responsiveness.

Web Servers, for instance, for small or large organizations are configured to run mul-

tiple types of services, e.g., mail server, multiple instances of java virtual machines

governed by application server options or external applications under software test-

ing.

To enhance QoS, web services stipulate contracts to be executed within certain

predefined amounts of time, i.e., they should respect an SLA to avoid contrac-

tual penalties. In this context, we are interested to devise a stochastic model that

describes the operation of web services under performance testing subjected to a

testing environment running several external applications with unpredictable work-

load intensities. Note that external applications also share important resources that

may deteriorate the response time of the application under performance testing, and

sometimes contribute to break SLAs. Our proposed model is parameterized with

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7254



data obtained from a performance testing study of a critical application of a large

software corporation (omitted here due to signed non-disclosure agreements). Our

results demonstrate that characterizing a set of known external workloads inten-

sities it is possible to devise maximum levels of response times given the service

demands and verify if the SLA is not respected.

The remainder of this paper is organized as follows. Section 2 addresses software

testing and performance testing generally. Our target application is explained on

Section 3 as well as its architecture and internal operational details. In Section 4

we discuss stochastic modeling and the formalism known as Stochastic Automata

Networks. Section 5 presents our model and an analysis of our results. Finally, in

Section 6, we present our final considerations and future works.

2 Software Testing for Performance and Failure Anal-
ysis

Software Testing is a crucial task in current Information Technology (IT) orga-

nizations because it helps ensuring the delivery of high quality products to end

customers [5]. There are two aspects of testing that must be considered for every

type of software project (small, medium and huge sizes), i.e., failure analysis (or

functional software testing) and performance testing. Functional Software Testing

(FST) is a process that follows a rigid set of rules allowing testers and developers

to repeat error conditions and fix issues, hopefully, in a timely manner. The main

interest of FST is to ensure if a functionality is producing the expected output for

given input.

Performance Testing is an important component of Software Performance En-

gineering (SPE) practices [1]. In contrast to FST, it is directed towards the non-

functional aspects of systems, e.g., availability, security, reliability, responsiveness,

among other attributes [6]. There are three major objectives to test the performance

of an application:

(i) determine the load intensity at which the system fails;

(ii) discover bottlenecks that impairs operation; and

(iii) perform capacity planning [1,2].

The interest is to evaluate the quality of the product that is subjected for con-

sideration. To test a given application in terms of performance, it is recommended

to follow guidelines and principles according to a methodology. The methodology

must relate to a precise objective, for instance, discover the major application bot-

tleneck or assess the network impact on performance indices. It also describes the

workload that must be characterized to assess the overall performance.

It is usual to set up the same environment for both FST and Performance Test-

ing. Multi-tier applications, e.g., web servers, application servers and database

servers, are deployed in the same environment, causing overloads that diminish the

server’s original capacity. This excess of execution is attributed to the installation

of multiple services with multiple workloads and executing profiles (e.g., CPU or IO

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 55



bounded processes). The organizations choose a single server to act as the external

accessible server, installing the firewall for security reasons. Therefore, the main

reason for building such rigid and underachieving infrastructures is due to security

concerns rather than performance. To test the performance of applications, one

must be aware that external and unpredictable workloads will be present and even-

tually disturb the monitoring as all applications are sharing resources (processor

time, memory, and so on).

Unfortunately, performance testing is expected to be carried out only by the

conclusion of projects rather than simultaneously with the product development.

Nevertheless, if development and performance teams somehow managed to work

together, as recommended by experts and researchers, maybe the product would

complete faster and with more quality [1]. An even more critical aspect to this is

that the stakeholders already dispensed large sums of financial incentives to have a

high quality software, ready to be used, responsive, and having reasonable resource

allocation. Nevertheless, even if it runs in the very last phase of any given project,

performance testing must be executed at least until resource usage and application’s

response time have acceptable levels according to the design specification. More

importantly, the application must conform with the predefined SLAs stipulated

with the clients.

SLAs are high-level contracts established by stakeholders, e.g., service providers

and customers. The main objective to set up an agreement stems from the need to

guarantee that quality of service is present and ensured throughout a business rela-

tion. Defining SLAs between interested parties helps the understanding of responsi-

bilities and conditions to deliver performant services. SLAs relates to non-functional

application testing since it helps devising a compromise in terms of expected quality

of service.

When applications are fully tested for both functional and non-functional spec-

ifications, they are ready to be deployed in a production environment. There is a

huge research effort to characterize the behavior of applications and map to distri-

butions in order to enhance the comprehension of how the system will behave under

certain conditions, anticipating and efficiently reacting to problems. Next section

discusses related works regarding stochastic models of multi-tier architectures and

also some approaches where SLAs are under consideration.

2.1 Related works on modeling SLAs

SLAs were discussed in seminal works regarding Service Oriented Computing [7,8,9,10].

Dealing with SLAs and cost models associated with contracts was researched by

several authors in a recent past. Ashok et al. [11] investigated location-aware SLA

contracts and quality of service measurements whereas Liu et al. [12] build a cost

model to analyze the impact of SLA to maximize profit. Cost models for SLAs are

a hot topic for research as it was investigated by Ardagna et al. [13], where the au-

thors designed a resource allocation scheduler to study SLAs presenting heuristics

as to how maximize the associated profits. SLAs and Queueing Networks modeling

has also been used before to represent and analyze the effects of service deadlines

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7256



in several domain applications. For instance, Abrahao et al. [14] devised a self-

adaptive SLA capacity planner for Internet applications and Menascé et al. [15]

discussed policies for managing web related resources for e-commerce servers using

a Customer Behavior Model Graph. The technique used to extract performance

indices was the development of a simulation model of an electronic bookstore as

the main example. Ferrari et al. [16] used Queueing Networks (and also simulation

for validation purposes) to model a tiered system comprising an Application Server

and a Database Server. This work is closely related to the approach adopted in

the present paper, where a simple stochastic model is presented and offer a fast

approach to extract performance indices readily available to decision makers.

A more structured approach was presented by Clark et al. [17], using a formalism

close to a Process Algebra known as Markovian Calculus as the main mechanism

to study SLAs and quality of service. Clark and Gilmore [18] used Performance

Evaluation Process Algebra (PEPA) to describe a stochastic model and then they

converted it to a Petri Nets representation for analysis using a special set of com-

piling tools. The example considered an Automotive Crash Scenario where the

deployment of certain car attributes (e.g., the air bag) in combination with actions

to be taken was studied as well as the modeling of event durations with uncertainty

data (an aspect of special interest to the present work). A Layered Queueing Net-

work was proposed in Diao et al. [19] to model differentiated services in multi-tier

web applications. Once each tier is evaluated, the authors proceed analyzing per-tier

concurrency limits and cross-tier interactions. Finally, Sauvé et al. [20] proposed

a method to reduce costs in IT realities by defining Service Level Objectives with

examples in the context of multi-tier architectures.

2.2 Discussion

The research presented here distinguishes itself from related works from previous

authors on the description and analysis of a stochastic model specially tailored

for applications under performance testing subjected to external workloads and

observance of SLAs. It is important to map the amount of external influence or

unknown workloads to predict if the contract established by the service agreement

will not be met. Case the time to complete jobs in the main load balance servers is

taking a time that is superior to the threshold computed by our stochastic model,

given the external load, it indicates that the SLAs will probably never be met. It

is reasonable to consider that external influences are the main cause for the test

fail, not because of some bottleneck problem. After some time or if the main server

experiences less amount of loads, one could restart the Performance Testing process

and resume SUT operation.

In fact, the bottleneck for such types of environments is directed towards the

main server acting as a dispatcher that distributes the workload among the re-

maining servers. As stated before, after the transactions pass this server, they are

executed in a clean and dedicated environment, where more reliable usage statistics

are enabled. Thus, it is possible to populate a stochastic model with parameters

measured after the transaction passed the main server. One clear advantage of such

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 57



stochastic models is the possibility of computing the average time necessary to pro-

cess a given transaction, using the SLA deadline to calculate the available time that

can be spent in the main server. An online monitoring tool could keep observing

the process that are under execution in the main server and decide whether or not

the SLA will be met. If a break of contract is imminent, one could stop the perfor-

mance test and resume afterwards, to continue searching for application bottlenecks

or some other performance testing objective.

3 Overall System Architecture and Operation

This section presents the architecture of the target application. This is a common

setup for an IT infrastructure having Application Servers andDatabase Management

Servers (DBMS). The SUT runs in a shared execution environment with external

and unpredictable service demands. All computational resources (e.g., processor,

disks, main memory, and network) are common in the environment. The DBMS

was configured to behave as a Storage Area Network with high memory capacity

(superior to one TByte).

The architecture is presented by Figure 1. It consists of a multi-tier architec-

ture having web servers for presentation, application servers for running business

logic and database servers for data storage, and a DBMS for query management.

Transactions arrive with rate λ in the first web server called PRF01, which sole

purpose relies on routing them to one of two other web servers, named PRF02 and

PRF03. Both PRF02 and PRF03 consult one of the available DBMS in the system,

named DBMS01 and DBMS02. The SUT was implemented in Java and uses a pool

of threads of fixed capacity and two pools of connections to the DBMS for perfor-

mance reasons. The main distinction between server PRF01 and its counterparts

PRF02 and PRF03 is the fact that this is the only machine accessible externally,

e.g., there is also a firewall installed for security concerns. Because PRF01 is the

only machine with a valid external IP address, every application is installed, e.g.,

applications that must submit to software failure analysis before its deployment in

the production environment. For this reason, PRF01’s Processor Time is usually

high due to unscheduled executions that systematically runs in the server in a daily

basis.

Once the transaction is successfully processed by PRF01 and routed to PRF02

or PRF03, the execution becomes dedicated for the SUT. All three web servers run

on a Pentium IV 2.66GHz machines with 16 GBytes of RAM, dualcore, running

WebLogic 8.1 as application server and Windows 2003 Server Edition. The DBMS

runs on a Pentium IV 3.2GHz, quadcore, with the same amount of RAM and run-

ning Linux RedHat Enterprise Edition and Oracle 10i with dedicated execution.

Transactions that disrespects the SLA are stored for counting reasons (for subse-

quent quality assurance purposes) and exits the system. Ideally, no transaction

ought to pass the higher limit of the agreement ensuring high QoS to the system

and certainty that every transaction runs below specified thresholds.

Since PRF02 and PRF03 are dedicated, the best possible execution scenario is

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7258



Server

Main

Application

Phase II
(dedicated environment)

Database

Server

#1

DBMS01

Database

Server

#2

DBMS02

Application

Server

#3

PRF03

Application

Server

#2

PRF02

Phase I
(shared environment)

Application

#1

Server

PRF01

external
application
demands

Load

Balancer

Main Application Server

Delay
Preprocessing

incoming
transactions

global
processed

transactions

Service Level Agreement (SLA) range

Fig. 1. Main architecture and details of the testing environment.

to enable transactions to bypass PRF01 and directly reach them without loosing

time and disputing processing slices with every application present in the first server.

However, due to security precautions this configuration is forbidden and PRF02 and

PRF03 should remain hidden to the outside world, e.g., configured with only local

IP addresses. This decision also makes it very hard to install new software, update

the hardware or perform other configurations on the main machine. Moreover, the

machine was located outside the main development site, making maintenance very

difficult.

The measurements ruled out the network as an application bottleneck since

every server is present in the same environment and the monitoring tool was able

to attest that the system was robust and healthy for the totality of the test plan

execution. The critical aspect of the architecture is towards the PRF01 server since

it encompasses every demand for every application that is running. Since the SLA

must comply with a set of rules, our main strategy is to divide the system into two

distinct blocks and analyze them separately, in order to isolate our problem into

more manageable pieces.

The execution profile of the PRF01 machine showed that most of the time, its

processor is running the Application Server and creating multiple instances of the

Java Virtual Machine. Operating Systems naturally consume continuous (some-

times fixed) amounts of processing power. On our case, the servers are installed

with the Windows 2003 and its operation does not compromise the access to re-

sources (we are assuming that the machine is well configured and ready to execute

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 59



processes). Occasionally, a process is loaded to memory and remains executing in-

definitely. This can be mitigated by a soft reset (only a few processes are destroyed)

or, more extremely, a hard reset (the whole machine is reinitialized). In production,

the same problems related to server instabilities may or may not appear, depending

on the execution profile. Since we are testing the application in the most problem-

atic situation, our effort in this work will present a worst case scenario analysis.

3.1 Transaction lifecycle

Transactions in the SUT follow a specific pattern from creation until they are pro-

cessed and stored. Customers positioned around the globe start the whole process

under the form of issues that must be solved, e.g., repairments, questions, operation

of devices, and so forth (in Figure 1, it corresponds to the Preprocessing Delay).

All transactions are sent to a general purpose queue that follows a First Come First

Served policy that translates them to a format understandable by the Main Appli-

cation Server. The format uses an XML based structure with particular attributes

such as general issue descriptions, time stamps, or customer identifier, to name a

few. The next step for the transaction is to enter the queue of processes of the

main application server, sharing execution and time with external processes from

the point of view of the SUT. Once in the queue, operators accessing the system in

other global locations are allowed to take ownership of the issue, taking an amount of

time to either solve it or relaying it forward (also known as thinking time, associated

with mouse clicks, click presses or general system operation). If this happens, the

ownership is removed for that operator, and the transaction returns to the queue of

transactions. Every interaction between operators and the system are accumulated

to the overall time to solve the transaction, i.e., under the time limit imposed by

the existing SLAs. The time operators take to process transactions are based on

averages readily accessible in the application’s log files and available for us to use

in our stochastic model.

3.2 Research opportunity

The architecture presented earlier (Figure 1) is common to many IT organizations.

Evidently, SLAs must be met in production to avoid customer dissatisfaction or

even legal problems. Performance Testing techniques are used to verify if SLAs are

being respected, however, it can cloud the QoS assessment regarding the amount

of time dispensed for each transaction. Due to this fact, applications having SLAs

must be tested for performance in an environment that emulates production as

closely as possible.

Our objective here is two-folded: firstly, we are profiting that testing environ-

ments have external demands just like happens in production, determining the

conditions on which SLAs will not be met; and secondly, to enumerate the set of

executing conditions that imbalance the time to process every transaction. As a

positive side effect, the data available during testing will be used without loss of

generality to parameterize our stochastic models.

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7260



The approach taken here innovates the way of mixing performance testing and

stochastic modeling altogether, offering a way to match distinct problems in Soft-

ware Performance Engineering: stochastic model parameterization, meeting SLAs

in production and profiting of usual external workloads present in testing environ-

ments to study its influence on overall time to process transactions.

4 Stochastic Modeling and Stochastic Automata Net-
works

The objective of our model is to describe an IT infrastructure and compute, in

average, the amount of time needed to process a transaction after it is routed by a

server that executes important services (e.g. load balancing, firewall service, among

other). The main characteristic of our environment is that we have a server that

is overwhelmed processing various requests, acting as the only externally accessible

machine. When transactions reach dedicated servers (just as presented in the archi-

tecture - Figure 1), they operate in full capacity, accessing resources located in the

vicinity (without additional cost due to network exchanges). There is a deadline

that a transaction must respect, defined between customers and service providers,

measured since creation until it exits the system. The deadline is defined accord-

ing to an agreed-upon SLA with the customer, and the main objective is to offer

QoS and ensure that once a transaction is present in the system, it will have an

associated time to completion, otherwise it will incur in losses (e.g. monetary).

4.1 Stochastic Models

For this particular problem, one could model the reality choosing standard Queueing

Networks (QN) [21,22]. QN is a very powerful formalism to model systems and ex-

tract performance indices such as average state permanence probabilities, transient

behavior or scalability analysis [23]. It has been used in the past in many appli-

cations with significant results, from economic models to distributed computing.

However, our reality implements a unique behavior to balance transaction routing

that is hard, if not impossible, to model with QNs. The problem under analysis

needs a more sophisticated manner to convey the fact that transactions are routed

following patterns that must know the apparent load within each server.

For that matter, we took the decision to model the reality with a structured

formalism based on Markov Chains [24,25] named Stochastic Automata Networks

(SAN) [26]. The reason to adopt such formalism stems from the fact that SAN

allows easy definition of modular structures, also known as automaton, having states

and transitions among states according to a list of events (one or more). Events

can be defined as one of two types: local events, happening in the context of a

single automaton; and synchronizing events, which needs to act accordingly to other

automaton (or more) to be fired. Each event is mapped to a frequency of occurrence,

termed a rate. Every rate in a SAN model is governed by a constant or a functional

value [27,28]. Constants are based on pure observations of the reality, whereas

functional rates are dynamically computed based on the states of other automata’s

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 61



states.

SAN is used to model realities where parallel and synchronizing behavior (re-

source sharing, for instance) is expected to occur. It is specially suited for dis-

tributed systems but can be applied to several application domains. It has been

successfully used to extract useful performance indices of Global Software Develop-

ment realities [29], Non-Uniform Memory Access architectures [30], Master/Slave

parallel computing platforms [31] and Mobility patterns [32] to name a few. In a

mathematical point of view, SAN uses Tensor Algebra properties to compute the

probability vector that withholds the performance indices. It basically multiplies a

vector by a non-trivial structure called a Markovian Descriptor, i.e., a list of small

sized matrices that captures the occurrence of every event present in a given model.

These matrices are operated with tensor sums for local events and tensor products

for synchronizing behavior. One of the greatest advantages of using SAN to rep-

resent and solve stochastic models is due to its power of description and efficient

storage mechanism.

Y

X

J

I

K

l2 s1

l3

l1 s1

l3

AUT1 AUT2

Function Definition

f (state AUT1 �= I)× r2

Type Event Rate

syn s1 r1
loc l1 f

loc l2 r3
loc l3 r4

Fig. 2. SAN example having local and synchronizing events with constant and functional rates.

Figure 2 shows an example of a SAN model. It has two automata with states,

transitions, events and associated rates. The automata are named AUT1 and AUT2,

respectively with states I, J , K and X, Y . The cardinality of the state space set

for this model is six. It is calculated by the product of local state spaces of each

automaton, where the global states are IX, IY , JX, JY , KX, and KY . The

transitions among states vary from each automaton, where a corresponding event

is set and follow a given rate value. In this example, there are four events, one

synchronizing (s1) and three local (l1, l2, l3), having constant rates and a functional

rate for the event l1. Due to the synchronization defined by the event s1, the local

states of both automata are changed simultaneously (from K to I in AUT1, and

from Y to X in AUT2). Considering this global change in terms of the underlying

Markov chain that is created for the model, the state combination of KY changes

to IX with rate r1. The functional rate verifies if the state of automaton AUT1 is

different of I. If this condition is true, the event can occur with a rate r2 according

to the function definition (f).

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7262



5 Numerical Analysis

This section presents our stochastic model and a numerical analysis to inspect the

maximum amount of time that could be used on each phase (according to Figure 1).

We begin our analysis presenting the results for the dedicated environment defined

for Phase II because its behavior is more stable, in Section 5.1. In Section 5.2

we analyze Phase I in detail, where we calculate the response time of the main

application server in observance to the SLA. The section also explains the model, its

parameters and the numerical results. We finalize the numerical analysis discussing

future model extensions in Section 5.3.

To model our reality we will assume a SLA for each transaction of 10 seconds.

To our SUT, the SLA total time must be computed taking into account the time

since the beginning of the processing until the transaction leaves the system. This

time is divided by the time spent to preprocess the transaction (Tproc) plus the

response time of Phase I (TphaseI) and Phase II (TphaseII). The value must be less

than 10 seconds, otherwise the SLA will not be met. Our measured data on the

preprocessing server accounted a time of 0.02 seconds for every transaction to be

properly formatted to an XML definition and other modifications necessary to serve

as valid input to the SUT. So, we have Tproc = 0.02 seconds, and the remaining

available time to respect the SLA is equal to 9.98 seconds, distributed between

Phases I and II.

5.1 Average time to completion analysis for Phase II

This section presents how we calculate the time needed to process the Phase II, i.e.,

the total response time for this phase (TphaseII). The main idea is to profit from

the isolation of the application and database servers in terms of execution. Once

the transaction arrives in this phase, it is processed in dedication with full use of

available processing power and memory. We are assuming the servers with a high

level of stability, i.e., needing system restorations and management operations only

occasionally.

Let N be the average queue length, X the throughput, S the service time, R the

response time, and U the utilization. To compute the values we used well established

QN formulas available in the theory [21]. We used Little’s Law (N = X × R), the

Utilization Law (U = X × S), average queue length derivation (N = U/(1 − U))

and Response Time (R = S/(1−U)) which was derived from the previous formulas.

According to our performance testing data, the workload intensity is 50 Transac-

tions Per Second (TPS), in average, corresponding to the global incoming transac-

tions (Figure 1). The chart in Figure 3 shows the average response time for different

values of U and S. For instance, if the utilization is equal to 90%, the best response

time will be 1.1 seconds when the service time is equal to 0.12 seconds. However,

as the time increases, it dramatically changes the response time from 1.1 seconds to

the maximum value of 8.8 seconds per transaction, assuming the same utilization

of 90%. This example shows the worst response time, i.e., for higher utilization

values. The figure shows that if the utilization decreases, the response time follows

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 63



��

��

��

��

��

��

�	

�


��

��

�

��

�

�	

�

��

�

��

�

��

�

��

�

�	

�

��

�

��

�

��

�

��

�

�	

�

	�

�

	�

�

	�

�


�

�


	

�

��

�

��

�

��

��
��

��
��

���
�

��
��

��
��

��
�

����������������������

������� �!"����
������� �!"����

������ �!"����
	������ �!"����
������� �!"����
������� �!"����
������� �!"����
������� �!"����
������� �!"����

Fig. 3. Maximum Response Time according to utilization choice for Phase II.

the same pattern, e.g., approximately one second for utilizations of 10% or 20%.

In this paper, once the main application server routes transactions forward, we

assume that on the worst case scenario a maximum theoretic value for the response

time of precisely 8.8 seconds, i.e., we assume the worst case scenario, TphaseII = 8.8

seconds. This value will be used to derive the final SLA time needed to complete

the transaction.

The real existing problem to meet the SLA is set by the amount of time needed

to route the transactions in our reality due to external workloads with somewhat

unpredictable behavior. If no process is executing, i.e., just after a system reboot,

every transaction is routed with full capacity. However, if some other process is run-

ning at the same time, the routing is impaired in direct proportion to the intensity

of external applications that we must share resources with.

5.2 Maximum value for the response time of Phase I

We proceed our analysis on studying the response time for Phase I (TphaseI). The

model presented here was described by a SAN instead of a QN because our reality

has several different behaviors that must be captured in terms of external influence

modeling. Next, in Section 5.2.1 we explain our stochastic model in detail and its

results are presented in Section 5.2.2.

5.2.1 Proposed model

We choose to model the transaction queue and several external processes that are

either stopped or running within the application server. A depiction of our SAN

based stochastic model is presented in Figure 4.

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7264



...

...

Run

Stop

Run

Stop

arrival

arrival

arrival

arrival

service

service

service

service

2

0

1

APP1

APPP

PRF01

stop1 start1

startPstopP

K

Function Definition

fs
1

service time × (1 + f1 + ··· + fP )

f1 (state APP1 == Run)× τ1
... ...

fP (state APPP == Run)× τP

Type Event Rate

loc arrival λ

loc service fs
loc start1 α1
loc stop1 β1
... ... ...

loc startP αP
loc stopP βP

Fig. 4. SAN model proposed for Phase I.

The number of automata in the model varies, depending to the desired num-

ber of external processes that will be created. We defined the main automaton,

named PRF01, that represents the transaction queue to be processed by the main

application server. This queue has K + 1 positions where K is the queue capacity,

representing that at least K transactions could be saved to be served by PRF01.

Event arrival indicates the number of incoming transactions that arrives in the sys-

tem, with constant rate λ. Event service sets the frequency on which transactions

are processed, and it has a functional rate defined by fs. The service time of this

queue is influenced by the number of existing external applications, i.e., its per-

formance depends on the amount of work that needs to be processed by the main

server.

Complementing the first automaton, we have created P other automata called

APP i where i ∈ 1..P of two states. P represents the amount of different types of

applications present in the system for execution, having distinct times and patterns

of execution (more CPU bound or more IO bound processes, for instance). Each

application type has a weight or a proportion of influence applied to the service

time of the main server (defined by τi), slowing it down in this case. An automaton

APP has two states: Stop, indicating that the application has been stopped; and

Run otherwise. There are two events present, named start and stop with rates

respectively equal to α and β. When either event is triggered, the application starts

or stops its execution under different rates depending on the case.

As a final remark, we are abstracting the fact that the SUT has two cores of ex-

ecution, modeling our main queue with a single server to process every transaction.

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 65



Our proposed model focus on the external execution aspect of applications, and its

influence on the QoS requirements that must be enforced by the SLA.

5.2.2 Model results

Stochastic Automata Networks are solved using a software package called GTAex-

press [33]. On the core of its implementation, the tool is equipped with the latest

version of the Vector-Descriptor Product algorithm called Split [34], which depend-

ing on the model to be solved, accelerates convergence and allows modelers to assess

performance faster. GTAexpress is also under new developments such as the addi-

tion of Multi-valued Decision Diagrams [35] and Perfect Simulation [36] techniques

for state spaces that exceeds 65 million of states, i.e., the current limit of the tool

for machines with 4 GBytes of RAM.

To sum up the time spent until now, we have Tproc = 0.02 seconds spent in

preprocessing, TphaseII = 8.8 seconds to run the business logic of our application

in a dedicated environment at most and 10 seconds to comply with the SLA. So,

it remains 1.18 seconds to use in Phase I and still guarantee that the system will

meet the time requirements, i.e., TphaseI must be inferior to 1.18 seconds.

We conducted several performance tests and monitored important resources such

as Processor Time and Available Memory (only to name a few) for all application

servers and the database servers. We used LoadRunner as the main tool to perform

the load testing procedure on our SUT, where the verified throughput (X) was 50

TPS. Following a methodology, our performance testing objective was to verify that

at least 90% of the total number of transactions were being met by the SLA.

We have measured that the main server (PRF01) had, in average, an utiliza-

tion of 75% for the workload proposed in the performance test plan. Having the

throughput (X = 50 TPS) and the utilization (U = 0.75), we used the Utilization

Law to compute the service time S for this application. The value that we have

obtained was 0.015 seconds to execute a transaction. It is worth mentioning that we

ascertain that no external execution was present in PRF01 in order to determine the

utilization, i.e., the service time was not contaminated by external processes (when

none external applications are present in PRF01, then all τ are equal to zero).

Using this service time of 0.015 seconds in function fs of our model, we have

a service rate of 66.67 TPS for an arrival rate of 50 TPS (assuming balance in

the system, i.e., the arrival rate equals the throughput). The average number of

processes in the queue is N = 3 and the response time is R = 0.06 seconds, which

is quite low and would ever respect the remaining possible time to ensure the SLA,

calculated in 1.18 seconds (an order of almost 20 times as low as the possible value).

However, this is also quite unrealistic to our testing environment, where it is almost

impossible to test the system without interference. It is only natural to have multiple

sources of interference, impairing the service time and thus increasing the response

time.

To estimate what is this influence in the overall performance of our SUT we

need to assign external workload profiles from different application types that are

executed in the machine (also termed application profiles). We will assume P = 5,

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7266



e.g., five types of different applications such as scientific software, service daemons,

firewall server, or other web services. We also choose to define fixed applications

that corresponds to the machines’ native operational system that is running con-

tinuously and constantly using computational resources (or any other application

that endlessly runs within the testing environment).

Table 1 shows the average time that each application is under execution on

PRF01 in a single day. Note that APP5 represents the operating system of the

machine, and we measured that, in the worst case in a one day time frame, at

least one 10 minute full reboot happens. These data were obtained through average

usage monitoring that was done prior and it was run according to a measurement

methodology adapted from [2]. We used the usual performance counters (%Pro-

cessor Time, Available Memory) for the Windows machines and a combination of

monitoring scripts (e.g. vmstat, iostat, etc.) for the ones executing Linux. We have

created several scripts to convert log files from the measurements information. We

combine this file with the one created by the Windows machines, which allowed us

to analyze the average values for each time frame of each experiment.

Table 1
Running time estimates for each application in a single day of operation.

APP1 APP2 APP3 APP4 APP5

Running time 18 hours 8 hours 20 hours 5 hours 23:50

hours

Table 2 shows the τ configured for each application. It basically states the weight

associated to every external application that influences the service time of the main

server. This factor is important to our model since it relates to the amount of

external work that must be done by the server, usually having variable processing

demands.

Table 2
Different execution scenarios based on application profiles.

Scenario τ1 τ2 τ3 τ4 τ5 Total

1 17% 13% 6% 4% 5% 45%

2 4% 2% 33% 1% 5% 45%

3 9% 16% 6% 14% 5% 50%

4 11% 3% 27% 4% 5% 50%

5 3% 19% 1% 32% 5% 60%

6 19% 4% 21% 11% 5% 60%

7 2% 11% 3% 49% 5% 70%

8 22% 17% 14% 12% 5% 70%

9 3% 12% 8% 52% 5% 80%

10 33% 2% 37% 3% 5% 80%

11 6% 8% 4% 67% 5% 90%

12 36% 28% 17% 4% 5% 90%

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 67



Next, in Table 3 we show our main performance indices in terms of the utiliza-

tion, the average number of transactions in the queue, throughput and response

time for the scenarios explained in Table 2.

Table 3
Performance indices in terms of N , X, U and R in relation to the proposed scenarios.

Scenario
U N X R

(%) (Trans.) (TPS) (seconds)

1 95.55 21.48 50.00 0.43

2 99.27 135.50 49.32 2.75

3 93.44 14.25 50.00 0.28

4 99.37 157.63 48.83 3.23

5 90.78 9.85 50.00 0.20

6 99.43 175.67 47.91 3.67

7 91.20 10.36 50.00 0.21

8 99.44 177.44 47.70 3.72

9 94.96 18.85 50.00 0.38

10 99.49 194.25 41.94 4.63

11 94.73 17.99 50.00 0.36

12 99.48 192.32 43.54 4.42

The results shows that the response time extracted from the model is varied and

directly proportional to the workload intensity of the applications. However, it is

interesting to verify that not necessarily decreased load levels impacts on equally

decreased response times. For instance, in Scenarios 1 and 2, the total time added

in the application’s service time is up to 45%. The time spent by the external

applications to execute presents different response times for every scenario. As an

example of this behavior, Scenario 1 had a response time of 0.43 seconds, which is

less than the available time to meet the SLA (estimated as 0.7 seconds), contrary to

what is observed by the results showed by Scenario 2 that spent 2.75 seconds. The

increase in time was due to the variation in terms of average queue length as well as

a throughput decrease that happened accordingly. For these cases the arrival rate

is greater than the service rate, bringing congestion, causing delays and queueing

in the system. The same situation is verified in Scenarios 4, 6, 8 and 12, where the

workload has impacted the overall response time under different circumstances.

For the rest of our analyzed case scenarios where we varied the workload inten-

sity, we were able to compute response times within the available SLA time, i.e.,

cases where the external application influence over service time enables meeting

the time constraint. Our stochastic model was able to help us understand the fact

that depending on the application execution profile we can anticipate if the response

time for our SUT will fall under the SLA threshold. This is very interesting because

the model could forecast, for instance, the unfavorable or advantageous conditions

present on the environment to allow the execution of performance testing. Case

such conditions are causing external delays, it is safe to conclude that it is not our

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7268



SUT that have a problem, maybe our executing environment is not yet suitable to

perform accordingly.

5.3 Model extensions discussion

Our model could be extended to compose other behavior arising in multi-tier archi-

tectures. For instance, one could consider studying the effect on end-to-end response

time when the external applications are observed to have workload burstiness, i.e.,

several transactions arriving almost instantaneously and long periods of idle time.

We are aware of an efficient overload management in multi-tier environments having

bursty workloads recently studied by Lu et al. [37]. In our model, this issue can be

adapted by setting the parameters Stop-Run of the external loads accordingly. The

analysis would show how the burstiness affects performance and SLA requirements.

Another interesting aspect to be further inspected concerns extracting perfor-

mance indices when the external applications are executing stress testing within

several contexts. During stress test, the limits for a given application are tested

and usually it increases the amount of existing resource sharing and also the rate

of failures (or even faults). Our model could define different application testing

profiles to inspect its relation to the performance testing of our SUT.

Since we have half of our system under dedicated operation, we could adapt

our environment to receive incoming transactions from external workloads as well.

Then, we could assess and analyze the sharing resources (in this case, every server

have shared execution) and the impact to meet the contract stipulated by the SLA.

6 Final Considerations

The present work proposed stochastic models and SLA assurance applied in the

context of multi-tier web services with external workloads. There is an increasing

interest for practical applications of stochastic modeling for performance evaluation.

We modeled the reality and performed a worst case scenario analysis to verify

if the contracts between users and service providers were being respected. Our

performance indices computations presented means to decide if the SLA would be

executed below its deadline and the impact of external workloads in this time.

The IT multi-tier infrastructure modeled in this work shares resemblance with

many real web services deployed throughout the world. Many organizations use

SLAs in their business operations to ensure high quality of service to their customers.

The present paper proposed a stochastic model to represent and evaluate such

architectures and studied the influence of external workloads to meet SLAs. The

model was parameterized with data obtained from a testing environment, where

performance testing processes were being executed with unpredictable workloads

caused by the presence of external services. As mentioned before, a good side

effect of this is that the same model could be adapted and parameterized with

data obtained from a production environment. This will enable the verification of

SLAs in customer side applications, assessing overall quality of service that is being

provided for.

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 69



As future works, we consider applying the same model ideas for busy envi-

ronments with more intense workload variation. Such work may demand a deeper

analysis of stochastic distributions leading to the extensions of the model to consider

more complex distributions. One option is the inclusion of phase-type transitions to

approach some non-exponential phenomena like timeouts. In this case, some prior

studies on phase-type representation for SAN formalism [38] could be used.

In another interesting future work we could also develop and install a daemon

with both a stochastic model and a numerical solver (e.g., GTAexpress [33] or

similar) in the application servers of interest to monitor the execution and self-

parameterize a model with the obtained data to decide whether or not the SLA

will be met in a timely fashion. This research will allow decision makers to stop

the execution of some external workloads or to control the incidence of external

applications that are allowed to run. This will undoubtedly help to assure a higher

level of availability to the web service, avoiding economical losses and ensuring user

satisfaction.

Acknowledgments

The authors thank Dr. Alberto Avritzer from Siemens Corporate Research (SCR),

Princeton/NJ/USA, for insightful discussions that led to the elaboration of this

paper and the Performance Testing Research Team, a collaboration between the

Faculty of Informatics at PUCRS and Dell Brazil. This work has also support from

FAPERGS/CNPq.

References

[1] C. U. Smith, L. G. Williams, Performance Solutions: a practical guide to creating responsive, scalable
software, Addison-Wesley, Boston, MA, USA, 2002.

[2] D. A. Menascé, V. A. F. Almeida, Capacity Planning for Web Services: metrics, models, and methods,
Prentice Hall, Upper Saddle River, NJ, USA, 2002.

[3] D. A. Menascé, L. W. Dowdy, V. A. F. Almeida, Performance by design: computer capacity planning
by example, Prentice Hall, Upper Saddle River, NJ, USA, 2004.

[4] A. Avizienis, J. C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of dependable and
secure computing, IEEE transactions on dependable and secure computing 1 (1) (2004) 11–33.

[5] G. J. Myers, C. Sandler, The Art of Software Testing, John Wiley & Sons, 2004.

[6] J. D. Musa, A. Iannino, K. Okumoto, Software reliability: measurement, prediction, application,
McGraw-Hill, Inc., New York, NY, USA, 1987.

[7] M. P. Papazoglou, Service-oriented computing: concepts, characteristics and directions, in: Proceedings
of the Fourth International Conference on Web Information Systems Engineering (WISE 2003), 2003,
pp. 3–12.

[8] M. P. Papazoglou, D. Georgakopoulos, Service-oriented computing, Communications of the ACM
46 (10) (2003) 25–28.

[9] M. N. Huhns, M. P. Singh, Service-oriented computing: key concepts and principles, IEEE Internet
Computing 9 (1) (2005) 75–81.

[10] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: State of the art
and research challenges, Computer 40 (11) (2007) 38–45.

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7270



[11] A. Argent-Katwala, J. Bradley, A. Clark, S. Gilmore, Location-aware quality of service measurements
for service-level agreements, in: Proceedings of the 3rd Conference on Trustworthy Global Computing
(TGC’07), Springer-Verlag, Berlin, Heidelberg, 2008, pp. 222–239.

[12] Z. Liu, M. Squillante, J. L. Wolf, On maximizing service-level-agreement profits, in: Proceedings of the
3rd ACM Conference on Electronic Commerce (EC’01), ACM, New York, NY, USA, 2001, pp. 213–223.

[13] D. Ardagna, M. Trubian, L. Zhang, SLA based resource allocation policies in autonomic environments,
Journal of Parallel and Distributed Computing 67 (3) (2007) 259–270.

[14] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D. Beyer, F. Safai, Self-Adaptive SLA-Driven
Capacity Management for Internet Services, in: 10th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), 2006, pp. 557–568.

[15] D. A. Menascé, V. A. F. Almeida, R. Fonseca, M. A. Mendes, Business-oriented resource management
policies for e-commerce servers, Performance Evaluation 42 (2-3) (2000) 223–239.

[16] G. Ferrari, P. Ezhilchelvan, I. Mitrani, Performance Modeling and Evaluation of E-Business Systems,
in: Proceedings of the 39th Annual Simulation Symposium (ANSS’06), IEEE Computer Society,
Washington, DC, USA, 2006, pp. 135–142.

[17] A. Clark, S. Gilmore, M. Tribastone, Service-Level Agreements for Service-Oriented Computing, in:
A. Corradini, U. Montanari (Eds.), Proceedings of the 19th International Workshop (WADT 2008),
Vol. 5486 of Lecture Notes in Computer Science, Springer-Verlag, Pisa, Italy, 2009, pp. 21–36.

[18] A. Clark, S. Gilmore, Evaluating quality of service for service level agreements, in: Proceedings of the
11th international workshop, FMICS 2006 and 5th international workshop, PDMC conference on Formal
methods: Applications and technology, FMICS’06/PDMC’06, Springer-Verlag, Berlin, Heidelberg, 2007,
pp. 181–194.

[19] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, M. Surendra, A. Tantawi, Modeling Differentiated
Services of Multi-Tier Web Applications, in: 14th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2006), 2006, pp.
314–326.

[20] J. Sauvé, F. Marques, A. Moura, M. Sampaio, J. Jornada, E. Radziuk, SLA Design from a Business
Perspective, in: J. Schonwalder, J. Serrat (Eds.), Ambient Networks, Vol. 3775 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2005, pp. 72–83.

[21] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik, Quantitative system performance: computer
system analysis using queueing network models, Prentice Hall, Upper Saddle River, NJ, USA, 1984.

[22] G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi, Queueing Networks and Markov Chains: Modeling
and Performance Evaluation with Computer Science Applications, John Wiley & Sons, Inc., New York,
NY, USA, 1998.

[23] A. Avritzer, A. Lima, An Empirical Approach for the Assessment of Scheduling Risk in A Large Globally
Distributed Industrial Software Project, in: Proceedings of the 4th International Conference on Global
Software Engineering (ICGSE’09), IEEE Computer Society, Washington, DC, USA, 2009, pp. 341–346.

[24] J. R. Norris, Markov Chains, Cambridge University Press, New York, USA, 1998.

[25] W. J. Stewart, Introduction to the numerical solution of Markov chains, Princeton University Press,
1994.

[26] B. Plateau, On the stochastic structure of parallelism and synchronization models for distributed
algorithms, ACM SIGMETRICS Performance Evaluation Review 13 (2) (1985) 147–154.

[27] P. Fernandes, B. Plateau, W. J. Stewart, Efficient descriptor-vector multiplication in Stochastic
Automata Networks, Journal of the ACM 45 (3) (1998) 381–414.

[28] L. Brenner, P. Fernandes, A. Sales, The Need for and the Advantages of Generalized Tensor Algebra
for Kronecker Structured Representations, International Journal of Simulation: Systems, Science &
Technology 6 (3-4) (2005) 52–60.

[29] R. M. Czekster, P. Fernandes, A. Sales, T. Webber, Analytical Modeling of Software Development
Teams in Globally Distributed Projects, in: Proceedings of the International Conference on Global
Software Engineering (ICGSE’10), IEEE Computer Society, 2010, pp. 287–296.

[30] R. Chanin, M. Corrêa, P. Fernandes, A. Sales, R. Scheer, A. F. Zorzo, Analytical Modeling for Operating
System Schedulers on NUMA Systems, Electronic Notes in Theoretical Computer Science (ENTCS)
151 (3) (2006) 131–149.

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–72 71



[31] L. Baldo, L. Brenner, L. G. Fernandes, P. Fernandes, A. Sales, Performance Models for Master/Slave
Parallel Programs, Electronic Notes In Theoretical Computer Science (ENTCS) 128 (4) (2005) 101–121.

[32] F. L. Dotti, P. Fernandes, C. M. Nunes, Structured Markovian models for discrete spatial mobile node
distribution, Journal of the Brazilian Computer Society 17 (2011) 31–52.

[33] R. M. Czekster, P. Fernandes, T. Webber, GTA express - A Software Package to Handle Kronecker
Descriptors, in: Proceedings of the 6th International Conference on Quantitative Evaluation of SysTems
(QEST’09), IEEE Computer Society, Budapest, Hungary, 2009, pp. 281–282.

[34] R. M. Czekster, P. Fernandes, J.-M. Vincent, T. Webber, Split: a flexible and efficient algorithm to
vector-descriptor product, in: International Conference on Performance Evaluation Methodologies and
tools (ValueTools’07), ACM International Conferences Proceedings Series, ACM Press, Nantes, France,
2007, p. 83.

[35] A. Sales, B. Plateau, Reachable state space generation for structured models which use functional
transitions, in: Proceedings of the 6th International Conference on Quantitative Evaluation of SysTems
(QEST’09), IEEE Computer Society, Budapest, Hungary, 2009, pp. 269–278.

[36] P. Fernandes, J.-M. Vincent, T. Webber, Perfect Simulation of Stochastic Automata Networks, in:
K. Al-Begain, A. Heindl, M. Telek (Eds.), Proceedings of 15th International Conference on Analytical
and Stochastic Modelling Techniques and Applications (ASMTA’08), Vol. 5055 of Lecture Notes in
Computer Science, Springer-Verlag, Nicosia, Cyprus, 2008, pp. 249–263.

[37] L. Lu, L. Cherkasova, V. de Nitto, N. Mi, E. Smirni, AWAIT: Efficient Overload Management for Busy
Multi-tier Web Services under Bursty Workloads, in: B. Benatallah, F. Casati, G. Kappel, G. Rossi
(Eds.), 10th International Conference on Web Engineering (ICWE’10), Vol. 6189 of Lecture Notes in
Computer Science, Vienna, Austria, 2010, pp. 81–97.

[38] I. Sbeity, L. Brenner, B. Plateau, W. J. Stewart, Phase-type distributions in stochastic automata
networks, European Journal of Operational Research 186 (3) (2008) 1008–1028.

R.M. Czekster et al. / Electronic Notes in Theoretical Computer Science 275 (2011) 53–7272


	Introduction
	Software Testing for Performance and Failure Analysis
	Related works on modeling SLAs
	Discussion

	Overall System Architecture and Operation
	Transaction lifecycle
	Research opportunity

	Stochastic Modeling and Stochastic Automata Networks
	Stochastic Models

	Numerical Analysis
	Average time to completion analysis for Phase II
	Maximum value for the response time of Phase I
	Model extensions discussion

	Final Considerations
	References

