
1

A Distributed Coordinated Atomic
Action Scheme

A.Romanovsky and A.Zorzo

Department of Computer Science, University of Newcastle upon Tyne

Coordinated Atomic actions have proved to be a very general concept which can be

successfully applied for structuring complex concurrent systems consisting of

elements which both cooperate and compete. The canonical Coordinated Atomic

action is built of several cooperating participants (roles) and a set of local objects

which represent the action state and provide the feature for cooperation. In addition,

Coordinated Atomic actions can compete for external objects which have

conventional transactional properties. The intention of this paper is to offer a general

approach to designing distributed Coordinated Atomic action schemes. Problems of

action components partitioning and distribution are discussed. We consider ways of

dealing with external and local objects within distributed Coordinated Atomic action

schemes; several proposals are discussed in detail. The approach proposed relies on

using forward error recovery in the form of distributed and concurrent exception

handling and resolution. After discussing the general approach, we demonstrate how

it can be applied when the standard distributed model of Ada 95 is used. The

presentation of the scheme is sufficiently detailed for it to be used in practice. In

particular, a thorough description of the action support and all patterns (skeletons)

required for designing application software are given.

1. Coordinated Atomic Actions

1.1. Atomic Transactions and Conversations

Most modern applications are inherently concurrent and distributed, and providing

software fault tolerance in such complex systems is a very difficult task. Traditionally

it relies on a proper system structuring when fault tolerance features are associated

with units of structuring. Atomic transactions (Gray and Reuter 1993) are used to

tolerate (hardware) faults in competitive concurrent systems (Hoare 1976). Within this

paradigm, a set of operations on shared data can be enclosed in a transaction in such a

way that transactional support guarantees the well known ACID properties —

atomicity, consistency, isolation and durability, for all operations carried out within

this transaction.

2

Conversations (sometimes called atomic actions) (Randell 1975) were proposed as a

means of allowing designers to structure cooperative concurrent systems (Hoare

1976) and to incorporate software fault tolerance in a disciplined way. Concurrent

processes (threads, activities) enter a conversation and cooperate within its scope in

such a way that no information flow is allowed to cross the conversation border. This

obviously restricts system design but makes it possible to regard each conversation as

a recovery region (beyond which erroneous information cannot be spread) and to

attach fault tolerance features (application-dependent or provided by conversation

support) to each individual conversation (Lee and Anderson 1990). Basically, these

features provide error detection and recovery within conversations: when an error has

been detected, the corresponding recovery starts. Conversations can use backward

error recovery, forward error recovery, or a combination of these (Campbell and

Randell 1986; Lee and Anderson 1990). In any case, recovery has to be coordinated,

and all conversation participants have to be involved in it. Backward error recovery

does not depend on the application much and can be made transparent (or provided, to

a considerable degree, by the conversation support) because it uses the rollback of all

conversation participants to recover the system. Forward recovery usually relies on an

exception mechanism and may incorporate an additional mechanism to resolve

multiple exceptions raised in several conversation participants (Campbell and Randell

1986). This can be done by imposing a partial order on all conversation exceptions in

such a way that a higher exception has a handler capable of handling any lower

exception. Exception handlers are attached to each conversation participant, and the

basic scheme of forward error recovery is to call handlers for the same exception in

all participants. This recovery is application-dependent by nature and this is why only

basic support and a general structuring mechanism are provided by conversations.

Conversations can be nested; in this case, the execution of the nested conversation is

indivisible and invisible for the containing and for the sibling conversations, and the

nested conversation results cannot be seen (are not committed) until the containing

conversation is completed.

1.2. Coordinated Atomic Actions

The Coordinated Atomic (CA) action concept was introduced (Xu et al., 1995) as a

unified approach to structuring complex concurrent activities and supporting error

recovery between multiple interacting objects in a distributed object-oriented system.

This paradigm provides a conceptual framework for dealing with both kinds of

concurrency (cooperative and competitive) (Hoare 1976) and achieving fault

tolerance by extending and integrating two complementary concepts — conversations

and transactions. CA actions have properties of both atomic actions and transactions.

3

Conversations (enhanced with concurrent exception handling) are used to control

cooperative concurrency and to implement coordinated error recovery whilst

transactions are used to maintain the consistency of shared resources in the presence

of failures and competitive concurrency.

Each CA action has roles which are activated by the action participants (some

external activities, e.g. threads, processes) and which cooperate within the CA action

scope. Logically, the action starts when all roles have been activated (though it is an

implementation decision to use either synchronous or asynchronous entry protocol)

and finishes when all of them reach the action end. The action can be completed

either when no error has been detected or after successful recovery or when the failure

exception has been propagated to the containing action.

External (transactional) objects can be used concurrently by several CA actions in

such a way that information cannot be smuggled among them and that any sequence

of operations on these objects bracketed by the CA action start and completion has

the ACID properties with respect to other sequences. CA action execution looks like

atomic transactions for the outside world. One of the ways to implement this is to

assume that there is a separate transactional support that provides these properties. A

number of such schemes are discussed in (Gray and Reuter 1993). They offer the

traditional transactional interface, i.e. operations start , abort and commit

transaction, which are called (either by the CA action support or by the CA action

participants) at the appropriate points during the CA action execution.

The state of the CA action is represented by a set of local objects; the CA action

(either the action support or the application code) deals with these objects to

guarantee their state restoration (which is vital primarily for backward error

recovery). Moreover, local objects are the only means for participants to interact and

to coordinate their executions. Two kinds of local objects are treated differently:

shared and private local objects. The former are intended for role cooperation, and

their consistency is provided on the application level rather than by the CA action

support (one of the ways is to design them with monitor semantics (Hoare 1974)).

Private local objects are used by individual action participants and represent their

internal states.

CA actions can use both backward and forward error recovery as well as their

combination. In this respect they inherit all main properties of conversations

(Campbell and Randell 1986): the action body is the exception context in which

exceptions can be declared, exception handlers are associated with each role,

exception resolution is used to resolve several exceptions raised by several roles; the

4

failure exception is used to inform the containing action when the action fails to

recover (in this case the atomicity property requires reversing all changes made

during the action execution and doing operation abort for external objects). A

general object-oriented framework for introducing forward error recovery into CA

actions was discussed in (Romanovsky et al., 1996). This paper clearly showed why

resolution should be used and why it is vital for distributed systems. In particular, in

these systems the overall hardware failure probability is higher than in centralised

systems and they are more difficult to program without design faults . Moreover, very

often there is a correlation between errors so they happen over a very short period of

time in different participants. On the one hand, due to hardware-related operational

errors, several nodes can be affected by the same bad conditions or by damage in a

channel responsible for traffic between several nodes. On the other hand, because CA

action participants were designed cooperatively from a given specification, an error in

the specification or a cooperative misunderstanding during the design could affect

several or all of them.

There are two ways of involving participants in a conversation or CA action recovery

(Campbell and Randell 1986; Romanovsky 1996). In blocking schemes (Kim 1982;

Jalote and Campbell 1986; Romanovsky 1996; Romanovsky et al., 1997) each

participant has either to reach the end of the action, or encounter an error and inform

other participants of an exception; it is only afterwards that this participant is ready to

accept the information about the state of other participants. Pre-emptive schemes

(Romanovsky et al., 1996; Wellings and Burns 1996) do not wait but use some means

of interrupting all participants when one of them has found an error instead. We could

call this blocking and pre-emptive exception handling.

Recovery and exception resolution are much easier to provide within blocking

schemes than pre-emptive ones because in blocking schemes each participant is ready

for recovery and is in a consistent state when its handler is called. In particular, in

blocking schemes all nested actions are to be completed before the recovery of the

containing action starts, which is not the case for the pre-emptive schemes. The

abortion of nested actions is difficult to program because it requires keeping dynamic

consistent information about all actions in the system. The general approach in

(Campbell and Randell 1986) requires programming abortion handlers for all actions

and calling them when the action is aborted, but, even if application programmers

implement such abortion handlers, a very sophisticated protocol (e.g. the one given in

(Romanovsky et al., 1996)) needs to be applied to raise abortion exceptions in all

nested actions (this must be done recursively and in the right order). The abort

protocol should take into account the possibility of several concurrent abortions being

5

initiated by several participants (in several actions of different levels of nestedness). If

centralised schemes (which assume that there is a controller for each action) are used,

then this protocol has to be centralised, and this requires a complex dynamic

coordination of action controllers (in blocking schemes the action controller may

know nothing about the controllers of nested actions). Moreover, we believe that the

nested action abortion contradicts the idea of action atomicity because the nested

actions are supposed to be indivisible and invisible for the containing and sibling

ones.

Although exception resolution seems to be much more important for blocking

schemes than for pre-emptive ones, it seems that losing (ignoring) all but one

exceptions is equally dangerous for both schemes. Obviously, there is a risk of

deadlocks arising in blocking schemes, but we believe that careful programming

should make it possible not just to completely avoid them but to simplify the

subsequent recovery. Some additional programming rules can make blocking

schemes more efficient and decrease delays (time-outs; assertions; checking

invariants, pre- and post-conditions; see (Romanovsky 1996) for a detailed

discussion; all this is in the line with defensive programming and designing self-

checking software (Yau and Cheung 1975)). This allows early detection of either the

error or the abnormal behaviour of the process which has raised an exception and is

waiting for the other processes. Although no time is wasted in pre-emptive schemes,

the features required for interrupting processes are not readily available in many

languages and systems. Even when they are, they are usually very expensive to

implement (e.g. asynchronous transfer of control in Ada 95 (Burns and Wellings

1995)). Moreover, they usually have complex semantics; it is more difficult to

analyse, to understand and to verify programs which use these features. In addition,

restrictions are often imposed on the program segment that can be interrupted

asynchronously (e.g. Ada 95 tasks cannot accept messages within this segment).

Generally speaking, the choice of the scheme depends on the application peculiarities

and requirements, on the errors to be detected, on the failure assumptions, etc. But we

believe that using blocking schemes suits the idea of forward error recovery better,

and our intention is to design a blocking scheme since these schemes have very

important advantages and there are many application domains in which their use is

fully adequate.

1.3. Previous Research

A set of Ada 95 atomic action schemes was discussed in (Wellings and Burns 1996).

Like the general framework of supporting CA actions (Xu et al., 1995), these schemes

6

use an action manager to control the execution of action participants. A very

important decision was to structure any atomic action as a package: the atomic action

is presented as a set of procedures that are designed together and declared within one

package. These procedures are to be called by external tasks for the action to be

initiated. This approach agrees with the CA action concept well since packages are

units of system design and since Ada 95 classes (tagged types) usually form packages

(Ada95 1995). This approach uses pre-emptive schemes, with no exception

resolution, and with a centralised action manager.

A general framework for using atomic actions with forward error recovery in existing

practical languages is offered in (Romanovsky 1996). This framework relies on a set

of programming conventions and views the exception context of an atomic action as a

set of local exception contexts of all participants. It uses local exception handling

(within one task), a form of which can be found in many practical languages. Each

action participant has to have a set of handlers for all action exceptions; handlers for

the same exception are started when an exception has been raised in any of them. All

participants are synchronised at the action exit by the action controller that resolves

multiple exceptions (if any have been raised). Although this framework neither was

intended for CA actions nor addresses distribution problems, we will rely on it to

some extent.

A general distributed decentralised resolution algorithm intended for object-oriented

systems designed using CA actions is proposed in (Romanovsky et al., 1996). This

algorithm is intended for general distributed systems with a simple message passing

feature and can be used for pre-emptive decentralised CA action schemes. In addition,

this paper briefly discusses a set of general rules describing how external objects

should be treated within distributed CA actions.

Paper (Romanovsky et al., 1997) introduces a blocking centralised CA action scheme

intended for single-computer applications and discusses how this scheme can be

programmed in Ada 95. Actions are associated with packages and their roles with

package interface procedures (this is why this approach can be used for module,

ADT, or object-oriented programming). Each action has a special controller that

synchronises role execution and resolves concurrent exceptions (forward error

recovery is used). Within this scheme, procedure blocks are exception contexts of

action participants. This scheme is not intended for distributed systems. In our

proposal we are going to discuss the structuring CA actions of distributed components

and the splitting of CA actions into different components which should be located in

different partitions. In addition, we will show below why this scheme (Romanovsky

et al., 1997) does not work for distributed Ada 95 systems.

7

In this paper our intention is to offer a general approach to designing distributed CA

action schemes which are blocking, use concurrent exception resolution and a

centralised manager. In addition to our reasons for the choices which have been

discussed above, we would like to mention the following. Forward error recovery is

most general, it is cheaper to execute because it is application-dependent. That is why

it suits a considerable part of applications with high dependability requirements better

(real time, control, reactive, interactive, etc. systems). Moreover, providing

concurrent exception handling and resolution is a very important part of the system

recovery support (Campbell and Randell 1986; Romanovsky et al., 1996). Our

analysis shows that using a blocking scheme is the right choice for distributed

systems.

After discussing the general approach, we will demonstrate it by using Ada 95. We

believe that it is important to come up with a practical scheme which can be used in

an existing language (the alternative for which is using the language extensions).

Employing programming conventions and a set of skeletons which demonstrate how

the scheme should be applied within standard languages is one of the solutions

(Randell 1993) to which we adhere. We have chosen Ada 95 because it is the most

popular standard language used in complex applications with high dependability

requirements and because it has standard features for exception handling, concurrent

and distributed programming.

In Section 2 we shall discuss the general CA action architecture, which is suitable for

distributed systems, and analyse the problems of how the action components should

be partitioned and recovered. In Section 3 we shall demonstrate how this approach

can be applied using features of distributed programming in Ada 95. Section 4 shows

how our approach can employ a small part of the design of Production Cell control

system.

1.4. Ada 95

In this Section we shall briefly introduce important the new features in Ada 95

(Ada95 1995) which are used in the implantation of our scheme.

Protected objects are a new concurrency feature similar to Hoare's monitors (Hoare

1974). They are essentially data-oriented because the encapsulated data can be

accessed only by calling object entries, functions and procedures. This access is

restricted by a well-defined set of rules that allow the consistency of the encapsulated

data to be guaranteed: only one entry or procedure can be executed at any time,

8

entries have barrier conditions (boolean guards) that can either allow the entry or

disallow it.

Exceptions in Ada 95 are basically the same as in Ada 83. But there is a new library

package, Ada.Exceptions , which is very important for our implementation. It

provides function Exception_Identity which returns the identifier of the

exception raised (each distinct exception is represented by a distinct value of type

Exception_Id). This identifier can be assigned, passed as a parameter, compared,

etc. An exception can be raised using its identity by procedure Raise_Exception

from the same package.

Ada 95 Distributed Annex (Ada95 1995) introduces the concept of partitions as the

units of distribution. Partitions can be either passive or active. Active partitions,

which may have their own threads of control, are configured on processing elements.

Passive ones, which have no thread of control, are associated with storage elements.

Passive partitions are intended to provide data and subprograms which are shared

among active partitions. Library units (e.g. packages) can be categorised to maintain

type consistency across distributed programs. In particular, there are the following

categories: Pure (to supply the same types to multiple active or passive partitions),

Remote_Call_Interface (to define the interface between active partitions and

to manage global data shared by several active partitions). Other categories are

Preelaborate , Remote_Types and Shared_Passive . One of the important

features of distributed programming in Ada 95, which we are going to use, is that

exceptions are propagated through remote procedure calls.

The main peculiarities of distributed system programming within Ada 95 which make

the implementation of the CA atomic scheme presented in (Romanovsky et al., 1997)

unsuitable are as follows: protected objects cannot be called through partition borders

and the exception identifier cannot be passed through the partition borders. Moreover,

an appropriate categorisation of the distributed components has to be chosen.

2. CA Actions in Distributed Systems

Our purpose is to understand clearly what are the units of distribution in our

approach, and to try to offer as much distribution as possible because this can allow a

better use of all advantages of distributed programming. It is clear although, that each

particular application should rely on the analysis of the system peculiarities and trade-

offs, and use the most suitable and reasonable way of component distribution.

Within our approach action roles are distributed. They are units of distributed action

design and are to be executed distributedly in the locations in which information is

9

produced or consumed. Although several approaches (e.g. (Romanovsky et al., 1997))

view CA actions as packages (modules, objects, etc.), we do not adhere to this

approach because these units cannot be split into parts and distributed. The general

idea of attaching handlers to roles suits role distribution very well, in spite of the fact

that these handlers are controlled (called) by the action controller (exception

resolution and coordinated action exit is not a local decision). The recovery which a

role provides is application-specific and should be executed in its context. Moreover,

because of this, roles deal with external and local object recovery. Another decision

we are taking is that the action controller should be located in a separate partition (we

use this Ada 95 term and the term 'location' interchangeably).

To understand how local and external objects are distributed more clearly we should

discuss how they are manipulated and recovered. Their recovery is an immanent part

of action recovery. It is clear that all these objects should be recovered by action

participants because this recovery is application-specific and cannot be provided by

the underlying support or by the controller.

Shared local objects should be recovered by participant handlers in an application-

specific way. Our proposal is to assume that each shared object is attached (logically)

to an action participant which has to recover it as part of action recovery if necessary.

The object designer should take advantage of any application-specific knowledge. If

there is a chance that these objects can be accessed by the containing, sibling, or

nested CA actions, then some mechanism should be programmed to guarantee the

object consistency and atomicity of all modifications carried within one action. The

simplest way could be just to lock the object. Another simplification is using shared

local objects which are declared in only one action and are not seen by others. Our

conclusion is that the recovery of these objects is essentially application-specific, and

it is only die to this that it can be made fast and simple; if this is not possible, then

these objects should be treated as external ones.

The participant context consists of its private local objects. This is why these objects

should be recovered by their owners. Designing them is facilitated by the fact that

they are not used concurrently, so, there is no need in concurrency control over them.

They should be recovered by role handlers. If recovery is not possible, these objects

should be returned to the initial state to guarantee the all-or-nothing semantics of the

failure exception.

There are two basic ways of supporting external objects in CA actions. In the first

one, all service requests are executed by transactional support which, in particular,

returns the transaction identity when the transaction is started (it should start at the

10

same time as the CA action). After this, all external object calls are accompanied by

the transaction identity. This can be provided either by the action supported or on the

participant level, in which case one of the action participants starts the transaction and

passes its identity to other participants if they are going to execute operations on these

external objects. In either case it is the responsibility of the application code

(handlers) to either abort or commit the corresponding transaction. The second way

uses atomic objects, each of which has its interface extended by operations start ,

abort and commit . These objects are involved in the CA action when their start

operations are called. Our proposal is to attach each of these objects to an action role

that should not only involve the object in the action but recover it after an exception

has been raised. This recovery is part of role recovery and should be executed by

handlers designed together with the role.

Table 1 summarises different choices for the external and local (both shared and

private) object distribution.

Location External Objects Local Objects

with roles impossible private local objects only

with controller impossible impossible

one separate

partition for all

objects

possible but not typical,

although can make the support

simpler

shared local objects only,

possible but not typical

separate partition

for each object

 more realistic and general for

external atomic objects

shared local objects only

other possible only when transparent

object distribution is provided

by transactional support

impossible

Table 1. Possibility of locations for external and local objects in distributed CA

actions

Figure 1 shows how CA action components are distributed in our approach.

The problems related to hardware fault tolerance are very important and there is no

doubt that these faults can affect the approach proposed. In dealing with them, we rely

on the existing approaches (e.g. (Powell 1991; Tanenbaum 1995)) which use different

sorts of software replication together with some redundant hardware (nodes and

links), and on special protocols which guarantee a reliable message delivery. These

directions are well-developed, and appropriate approaches can certainly be found and

applied in the system in which CA actions are used. Moreover, we believe that the

replication support and reliable message delivery should be transparently provided by

11

the underlying system levels, on top of which CA action schemes function. What we

need for our scheme is a hidden partition replication with reliable remote procedure

calls, and in the rest of the paper we will assume these. This corresponds well with all

ideas on system layering and structuring which provide a clear separation of different

concerns during the design of complex systems.

p
ar

ti
ti

o
n

 4

p
ar

ti
ti

o
n

 3

partition 6

object
shared local

action
controller

role 3role 2role 1

p
artitio

n
 2

from other
CA Actions

private local object

corresponding role responsible

the roles under control

for its recovery

partition 1
external

object
atomic

partition 5

CA action

connects an object and the

connects the controller and

shows that the
role uses this object

Figure 1. Distribution of CA action components

For example, paper (Wellings and Burns 1996) offers several ways of using passive

and active replication in Ada 95 distributed systems. The units of replication are

partitions, this is why any of the approaches proposed can be used for our Ada 95

implementation. There are two particular problems involved in our scheme which can

make the entire system more vulnerable to hardware faults: using a centralised

controller and choosing the blocking approach. The solution for the first one is

controller replication (passive or active) with node replication. The second problem

can be solved by using watch-dogs, time-outs and participant replication. Although

some extension of our approach would be not difficult to design, we believe that all

these features should be hidden from the application code (including CA action)

designers.

12

In the following section we will demonstrate how our approach can be used in

distributed systems which are designed using standard Ada 95 features and, in

particular, its standard distribution model (Ada95 1995).

3. Distributed Ada 95 Scheme

3.1. General Outline

The CA action concept is very general, and we believe that it can be successfully

mapped to different concurrent and distributed computational models. We will show

now how our approach to designing distributed CA actions (Section 2) can be mapped

onto Ada 95. As we have said above distributed CA actions cannot be mapped onto

classes or packages because their methods cannot be distributed. Our approach relies

on role distribution, so action participants are any Ada 95 blocks located in different

partitions, a participant enters the action when it starts the execution of a block.

Blocks can be procedures, tasks or object methods — we do not want to bound

ourselves to any particular way of role representation which depends on the

application and can be distributed or local.

We have chosen the centralised approach for implementing CA actions, so we

introduce a package with the action controller which is located in a separate partition.

To guarantee the consistency of the controller, we implement it as a protected object

which has to be hidden inside the package (because its entries cannot be called

distributedly; thus, concurrency control cannot be implemented on the partition level

in Ada 95). This protected object synchronises all action participants and raises the

resolved exception which is propagated to all of them. The controller package has the

only procedure in its interface which is called using Ada 95 remote call by all action

participants when they either reach the action end, or find an error. There are several

practical reasons why the action controller is not an object of a class in our scheme: i)

calling the methods of such objects is a complicated task in distributed Ada 95

systems, and we would like to keep our presentation clear and simple (see (Burns and

Wellings 1995) for a thorough discussion of this problem); ii) it is essentially

application-dependent (because the resolution tree and the type of the action

exception are application-dependent); iii) there is no need for it to be extended or for

its methods to be overridden.

Ada 95 has only local (sequential) exception handling, we will apply here the general

approach to introducing atomic actions based on concurrent exception handling into

languages with local exception handling (Romanovsky 1996) (see our discussion in

Section 1.3). This approach requires the synchronisation of all participants at the

13

action exit with the following exception resolution, and this will be the responsibility

of the action controller in our scheme.

Within our scheme, shared local objects are located in separate partitions with a

remote procedure call interface and should be accessed with consistency guarantees

(the best way of doing this is to implement them as protected objects). But this cannot

be explicitly programmed in Ada 95 because protected objects cannot be called

remotely in Ada 95. Our solution is to introduce a set of interface procedures, one for

each protected object entry or subprogram. These interface procedures are called

remotely and, in their turn, call through private protected object entries and

subprograms. Private local objects are hidden inside CA action roles. We assume that

external objects are either supported by transactional support or implemented in such

a way that their application interfaces are extended by operations start , abort ,

commit (see Section 2).

3.2. Action Participants. Exceptions. Handlers.

As we explained in Section 1.4, exception identities cannot be passed between

partitions in Ada 95 (the identities of exceptions with the same name but from

different partitions are different). That is why we introduce an enumeration type (one

type for each distributed atomic action): this makes it possible to collect all exception

values in one partition, to resolve them and to raise the resolved exception in all CA

action participants. Each package (including the service one) should be compiled with

a package (of category Pure) containing types and data common for all action

participants (the action exceptions and the enumeration type). For example:

package Action_A0 is
pragma Pure;
type Action_A0_Exceptions_T is (Exc_A, Exc_B, Exc_C, No_Exc, Fail_A0);

 A, B, C, No_Exception, Failure_A0, Universal_Exception: exception;
Participant_Number_A0 : constant := 2;

end Action_A0 ;

The meanings of the universal and failure exceptions (Campbell and Randell 1986)

will be explained in detail later. Note that the same exception raised in different

partitions by different action participants will have the same identity because it is

declared in the same Pure package.

We believe that the best approach which allows any action exception (predefined,

raised in the nested procedure, raised in the action exception context, raised by the

nested action) to be dealt with in a unified way is to catch all exceptions by clause

others and to call a special function which returns the value of the corresponding

enumeration type. Afterwards, this value is passed to the corresponding controller

14

package via a remote procedure call. For example, in any participant of action A0 this

should be done in the following way:

exception -- service handler
 when E : others => A0_resolve(Find_A0(Exception_Identity(E)));

 end; -- pseudoblock

Function Find_A0 has a simple structure; it is a library unit (of the normal

category) which is linked with each partition in which a participant resides. It is the

same for all action participants and is to be programmed by the action designer

(designers of participants need know nothing about it). For example, this function for

action A0 can be as follows:

function Find_A0(EI : in Exception_Id) return Action_A0_Exceptions_T is
begin

if EI=A'Identity then return Exc_A;
elsif EI=No_Exception'Identity then return No_Exc;
elsif EI=Tasking_Error'Identity then return Exc_A; -- predefined exception
elsif EI=Failure_A0'Identity then return Fail_A0;
else return Fail_A0; end if; -- did not find

end Find_A0;

Handling the predefined Ada 95 exceptions (Ada95 1995) (e.g. Tasking_Error) is

identical to handling the programmer's exceptions: function Find_A0 should

manipulate them, their handlers should be included in each participant, the identities

of these exceptions in the resolution tree and the corresponding values in type

Action_A0_Exceptions_T definition. If they are not treated in this way, they

will cause the action to be completed with the failure exception raised.

The action body is represented in each participant as an Ada 95 block. As we have

explained, it can be any block located in a separate partition:

 begin -- start of action A0 context
 begin
 -- ... action application code
 raise A;
 exception -- service handler

 when E : others => A0_resolve(Find_A0(Exception_Identity(E)));
 end;
 exception -- all A0 handlers:
 when No_Exception => ...; -- action A0 success
 when A => ...; handler for A
 when B => ...; handler for B

raise Failure_A0; -- for example
 when C => ... ; handler for C

raise Universal_Exception; -- for example
 when Universal_Exception => ...; -- clean up

raise Failure_A0;
 end; -- end of action A0 context

The resolved exception is raised by the action controller in such a way that it is

propagated to all participants, and the corresponding handlers are called in all of

them. All handlers for all action exceptions are to be designed and included into the

exception context (the action body) of each participant. These handlers can raise

15

exception Failure_A0 (to be propagated to the containing action). The last handler

should be the handler for exception Universal_Exception ; this is why all

handlers but the last can raise exception Universal_Exception . This exception

cannot be raised in the main context but its handler must be programmed in all action

participants. It executes the last will and/or clean up functions (basically, it assumes

that the action recovery is not possible and that the action state has been corrupted

and needs restoration (Campbell and Randell 1986)) and raises Failure_A0 (to be

signalled to the containing action). Handler others can be used, but it should have

all functionalities of the Universal_Exception handler.

3.3. Raising Exceptions. Controller Partition. Resolution Procedure

CA action exceptions should be raised by the conventional Ada operation raise.

These exceptions, predefined exceptions and exceptions raised inside nested

procedures are dealt with in a unified way in our scheme.

In our scheme action participants reside in different partitions; besides, we introduce

addit ional service part i t ion Controller_A0_P (of category

Remote_Call_Interface) to locate the action controller. This package has the

only service procedure A0_resolve which should be called by all action

participants from their service handlers:

package Controller_A0_P is
pragma Remote_Call_Interface;
procedure A0_resolve (E: in Action_A0_Exceptions_T := No_Exc);

end Controller_A0_P;

Each participant remotely calls it and passes the value of the exceptions it is going to

raise. There is a private protected object Controller_A0 in this package. The

resolution procedure is called in this object when the last participant calls procedure

A0_resolve . This procedure finds the covering resolved exception, which is raised

afterwards and propagated via all procedure A0_resolve calls to action

participants.

Thus, each action A0 should have package Controller_A0_P in a separate

partition with private protected object Controller_A0 . With some additional

complication a protected parameterised type can be designed which is suitable for

programming controllers for any actions. But, as we have explained before, this is not

a simple task because this object essentially depends on type

Action_A0_Exceptions_T (parameterising of the resolution tree and the

participant number is not difficult) and for the sake of simplicity we will not discuss

this further.

16

package body Controller_A0_P is

protected Controller_A0 is
entry Finish(E: in Action_A0_Exceptions_T := No_Exc);
private
 entry Wait_All;
 procedure Resolution;
 Finished : Integer :=0;
 Results : ... ; -- all exceptions raised, type Action_A0_Exceptions_T
 Resolved : Exception_Id;
 Let_Go : Boolean := False;
end Controller_A0;

procedure A0_resolve (E: in Action_A0_Exceptions_T := No_Exc) is
begin

Controller_A0.Finish(E);
end A0_resolve;

protected body Controller_A0 is
 procedure Resolution ... -- assigns Id of resolved exception to Resolved

 entry Finish(E: in Action_A0_Exceptions_T) when True is
 begin

Finished:=Finished+1;
-- ... -- add E to Results
if Finished = Participant_Number_A0 then

Resolution; Let_Go:=True;
end if;
requeue Wait_All;

 end Finish;
 entry Wait_All when Let_Go is
 begin
 if Wait_All'Count=0 then
 Let_Go := False; Finished :=0;
 end if;

Raise_Exception(Resolved); -- in each participant
 end Wait_All;
end Controller_A0;
begin

null;
end Controller_A0_P;

Exception resolution procedure Resolution uses list Results and the resolution

tree which imposes a partial order on the action exceptions: A, B, C, Failure_A0 ,

Universal_Exception and on some or all of the Ada 95 predefined exceptions.

It assigns the identity of the resolved exception to variable Resolved .

3.4. External and Local Objects

The general rule we are applying is that all these objects should be recovered by

action participants as part of action recovery; this cannot be done by the underlying

support or by the controller because this is forward error recovery, which is

application-specific.

Shared local objects should be recovered by the handler of one of the participants in

an application-specific way. We assume that each shared object is logically attached

to an action participant. As we have explained the consistency of these objects is

provided by their designers. The simplest way to do this is by using locks. For

17

example, a unique CA action name (identity) can be introduced. The corresponding

role locks the object when the action starts. Each operation carries the action name

which can be checked and only the operations which are issued within the same

action are allowed. For example, op1 carries the action identifier in the following

way:

op1(my_id : in CAA_name_T; application parameters) ;

A simple extension of this scheme allows passing locks to nested actions and

returning them back to the parent action. For example, an object interface can be

extended by the following operation:

lock(Parent_id : in CAA_name_T := no_id; My_id : out CAA_name_T) ;

We assume that each local shared object is/can be located in a separate partition. One

of the simplest ways is to implement it as a package of category

Remote_Call_Interface , in which case all of its methods can be called

distributedly.

Unfortunately, it is difficult to guarantee the object consistency (e.g. to allow only

one method updating the object data to be active) only by using locks. The more

general way, which relies on the Ada 95 features of data-oriented programming, is to

use protected objects. The problem is that in Ada 95 one cannot distributedly call

methods of protected objects. Our proposal is as follows: each partition in which a

shared local object is located has all object methods in its interface so that they can be

called concurrently and distributedly. There is a private protected object which keeps

all object data. Each of the interface procedures has a corresponding protected object

entry, function or procedure which it calls through. This allows a very sophisticated

distributed control and protection to be implemented on the object method level.

Another problem is to support both the passing of these objects into nested actions

and a consistent use of them by concurrent sibling actions. This should also be done

in an application-dependent way; for example, one of these nested actions can just

lock it to use exclusively. The general rule for solving all these problems is that

providing the shared local object consistency is essentially application-dependent and

that is why it can be made fast and simple. Otherwise these objects should be viewed

and treated as external.

Private local objects: should be recovered by the handlers of their owners. In

particular, they are returned to the initial state by handler Universal_Exception

to guarantee the all-or-nothing semantics of the failure exception. To implement this

semantics, any existing approach to state restoration can be used (Lee and Anderson

18

1990), but we believe that for most systems simple application-specific ways can be

applied (re-initialisation, cleaning data up, discarding all changes, etc.).

As we explained in Section 2, there are two basic ways of providing transactional

interface for external objects. Within the first one, all service requests are executed by

transactional support, which, in particular, returns the transaction identity when the

transaction is started. It is the responsibility of the application code (handlers) to

either abort or commit the corresponding transaction. If there is no exception raised,

then one of No_Exception handlers commits it. If one or more exceptions have

been raised and the handlers have succeeded in the action recovery, then one of them

commits this transaction. Otherwise, as we have explained, exception Failure is

raised to be propagated to the containing action. But before this the corresponding

transaction is to be aborted; in particular, handler Universal_Exception always

aborts the transaction.

The second way uses atomic objects, each of which has its interface extended by

operations start , abort and commit . The following example, based on the

implementation from (Strigini and Romanovsky 1993), demonstrates an interface of

external objects:

package SpreadSheet is
pragma Remote_Call_Interface;
procedure Start_Spread_Sheet (id: out Transaction_Id;

splock: in Lock; ...; fatherid: in Transaction_Id:=null);
procedure Abort_Spread_Sheet (id: in out Transaction_Id; ...;);
procedure Commit_Spread_Sheet (id: in out Transaction_Id; ...;);

-- application object methods:
procedure Set (id: in Transaction_Id; x,y: in Row_Colomn; ...);
procedure Get (id: in Transaction_Id; x,y: in Row_Colomn; ...);
...;

end SpreadSheet;

In this case any external object is to be attached to an action participant and recovered

by the corresponding participant (as part of the action recovery). Handler

Universal_Exception needs to call operations abort for external objects

associated with the participant. Operation Commit should not be used in the

application code (because even if a participant successfully reaches the action end, an

exception can be raised by other participants), so only the handlers which have

recovered the action should commit external objects. This is obviously the

responsibility of the handlers for exception No_Exception . Other handlers

(basically all those which raise the failure exception) should abort objects.

19

3.5. Nested Actions. Exception Propagation. Failure Exception

Our main rules concerning nested actions and using failure exceptions are simple: a

failure exception (e.g. Failure_A0) is declared for each action and should be

propagated to the containing action by the action handlers if they are not able to

recover the action (handlers Universal_Exception always do this). In this case

it is handled by the handlers of the containing action; that is why failure exceptions

for all nested actions should be viewed as the exceptions of the containing action.

Our scheme is blocking, which allows us to use the fact that all nested actions are to

be completed before the resolved exception is found in the containing one. This

means that there is no need in aborting these actions, which can be done only through

cooperation among the controllers of containing, nested and sibling actions. This

simplifies our scheme tremendously.

3.6. Introducing Synchronous Entry

Although we believe that asynchronous action entry is more suitable for most

distributed applications, we have implemented an extended controller which

synchronises all participants at the action entry. There is a need for this feature when

the action designer wants to make sure that the action starts only when all participants

are ready. This can facilitate action design, make the application code simpler and

serve as an additional feature in concurrent programming for guaranteeing the mutual

exclusion of action execution. In addition, synchronous entry makes it possible to

guarantee that the action starts only if all pre-conditions for all participants are

satisfied.

This extension is simple. We introduce a new parameterless procedure A0_entry in

package Controller_A0_P . It has to be called remotely by each action participant

at the beginning of the exception context execution (e.g. when it enters action A0).

The procedure calls through additional entry CA_enter of action controller

Controller_A0 ; the entry code of this protected object is similar to that of entry

Finish . These calls are requeued to private entry Wait_All_Enter which lets all

participants continue only when all of them have called A0_enter (there is no need

for calling the resolution procedure and raising exceptions). It is clear that the calls of

procedures A0_enter and A0_resolve will never be mixed: all participants have

to enter the action before any of them reaches the action end or raises an exception.

20

4. Example: Production Cell

Recently the Production Cell system has been designed at Newcastle University using

CA actions. This is a well-known case study (Lewrentz and Linder 1995) which has

been used by many research teams to demonstrate the applicability of their

approaches. The case study is mainly used for formal specification and verification

but we have found it very useful for demonstrating the CA action concept. Our design

will be described in a separate paper but just to give a flavour of our approach we will

show some parts of it using the distributed CA action scheme proposed.

The task of the case study is to develop a program for controlling a metal-processing

industrial production cell. The system comprises a number of devices: a feed belt,

rotary table, two-arm robot, press, crane, deposit belt, together with 14 sensors and 13

actuators to control these devices. We have design the system as a set of CA actions,

each of which controls the processing of one plate in one device or the cooperation

between two devices while executing one step of processing a plate. The first CA

action is FB_RT_Action action which has five roles: a plate, feed belt, rotary table,

extreme sensor and belt actuator (Figure 2 shows the action with asynchronous entry).

When the action is completed, another plate can enter the next instance of this action

together with other participants (if and when they are ready). The moved plate is free

to enter the following action RT_RA1_Action together with the rotary table, robot

arm 1 and the corresponding sensors and actuators.

Our Ada 95 CA action scheme (Section 3) allows action FB_RT_Action to be

programmed in the following way. Its participants are located in different partitions

and represented by the corresponding procedures:

procedure Plate;

procedure Feed_Belt;

procedure Feed_Belt_Extreme_Sensor;

procedure Feed_Belt_Actuator;

procedure Rotary_Table;

Shared local objects are used for inter-role communication (e.g. they can be of types

mailbox , queue , rendezvous). Private local objects represent the states of roles.

Forward error recovery is more suitable for this application because it allows fast

application-specific recovery without losing the plate and without moving the

mechanical devices back. The code of each participant is implemented using the

skeleton proposed in Section 3. Action controller Controller_FB_RT_Action is

located in a separate partition:

package Controller_FB_RT_Action_P is

21

 pragma Remote_Call_Interface;
 procedure FB_RT_Action_resolve (E: in FB_RT_Action_Exceptions_T := No_Exc);
end Controller_FB_RT_Action_P ;

and is programmed in the way explained above.

plate on
tableFeed_Belt_Extreme_Sensor

Rotary_Table

Feed_Belt_Actuator

Feed_Belt

on off

plate is ready

extreme
reached

table is ready

time

Plate

Figure 2. Production Cell design: CA action FB_RT_Action

If one or more exceptions have been raised by these participants, the action controller

resolves them and raises the resolved exception in all participants; after this the

corresponding handlers recover the action.

As we mentioned in Section 3.6, having synchronous entry can facilitate the action

design. This can be demonstrated by this example because, with synchronous entry,

role Feed_Belt can start only when the plate is on the feed belt, so the first message

from role Pla te can be omitted (as well as the first message from role

Rotary_Table).

5. Discussion

There are some similarities between our scheme and one of the Ada 95 atomic action

schemes in (Wellings and Burns 1996). This is a distributed scheme which action

participants are located in different partitions, and the data, that they share are put in a

separate partition. Several coordinators (controllers) are introduced into the scheme: a

local controller for each participant, a distributed action controller (located in a

separate partition), a shared data controller. The authors (Wellings and Burns 1996)

give a complete set of templates for programming distributed atomic actions with

forward error recovery. This is a pre-emptive centralised atomic action scheme which

uses forward error recovery. Unfortunately, the need for exception resolution is just

mentioned, and the scheme ignores all but one concurrent exceptions (this may be

suitable for some applications but ,generally speaking, is not acceptable). We believe

that exception resolution should be used; but when introduced, it affects the entire

22

scheme design. Nested actions and their abortion are not discussed in this scheme but

seem to be an essential problem which we do not have in ours, because, unlike to this

one, our scheme is blocking. We believe that different handlers should be used for

different application exceptions (which is not the case for the scheme in (Wellings

and Burns 1996)), it does not seem to make sense to have one unified handler

Others . The scheme requires a local controller for each participant mainly because

it is pre-emptive. Another drawback is vague treatment of shared resources as the

only means of communication (we believe that the concepts of external and local

objects, which are parts of the CA action concept (Xu et al., 1995), should be used

here in the general case).

Although our Ada 95 implementation is in some sense restricted and we have not

been able to make it fully object-oriented, we believe that in the future the approach

can be successfully applied in other object-oriented languages or systems. In

particular, the controller can be designed as a class (in our implementation it is rather

application-dependent, so, we did not do this). Our scheme allows objects to be action

roles by executing one method as part of the action, but some additional support is

required to guarantee participant consistency by imposing restrictions on the

execution of methods of these objects. The immanent restriction of using CA actions

in distributed systems is that it is not allowed to distribute methods of an object or a

class, so CA actions cannot be static units of system structuring (e.g. classes).

We believe that, within the general object-oriented approach, action participants

should be designed as objects. An important feature which can make this simpler is

treating exception handlers as special private methods (e.g. Handler_A ,

Handler_B). This will allow all action participants to be designed by inheriting

from the same class Action_A0_Roll , which is common for all of them. Together

with designing the action controller as a class, this can make our approach fully

object-oriented. The problems to be addressed are: overriding and inheriting handlers

and the resolution tree, extending the resolution tree, re-using the tree and/or handlers

(e.g. what happens if we add a new exception, or override the old one; how we can re-

order exceptions with minimum handler re-design; whether we should re-design and

override all handlers on the tree path between the newly inserted one and the root;

etc.).

6. Conclusions

The purpose of this research is to discuss how distributed CA action schemes can be

introduced and to outline the main problems and solutions for using CA actions in

distributed systems. The main components of CA actions are roles, external and local

23

objects, the controller; that is why we discuss different approaches to CA action

component distribution. We concentrate on forward error recovery, which is

application-dependent by its nature, and propose providing the recovery of external

and local objects by roles, and, in particular, to attach each object to a role. We give

the rules of object recovery to be followed which guarantee action atomicity and data

(object) consistency.

The approach we have chosen relies on using blocking and centralised CA action

schemes based on exception resolution. The action controller synchronises action

roles and resolves the exceptions raised. We have given the reasons for our choices

and, in particular, shown why we believe using blocking actions with exception

resolution is the best approach for many applications.

Our general approach has been demonstrated using Ada 95 features: protected

objects, exceptions, distributed programming. An Ada 95 CA action scheme is

presented as a complete set of patterns and programmer's conventions to be followed

when designing systems with high dependability requirements. We use Ada 95

because this is a standard language with a standard distribution model, and this allows

us not only to demonstrate our approach but to present a scheme which is ready for

use in designing such systems.

Acknowledgements. Thanks go to our colleagues: B.Randell, J.Xu, R.Stroud,

I.Welch (Newcastle University), A.Burns, A.Wellings and S.Mitchell (York

University). This research has been supported by the ESPRIT Long Term Research

Project 20072 on “Design for Validation” (DeVa). A.Zorzo is also supported by

CNPq (Brazil) under grant 200531/056.

References

Ada95 (1995). Information technology - Programming languages - Ada. Language
and Standard Libraries. ISO/IEC 8652:1995(E), Intermetrics, Inc.

Burns, A. and Wellings, A. (1995). Concurrency in Ada, Cambridge University Press.

Campbell, R.H. and Randell, B. (1986). Error recovery in asynchronous systems.
IEEE Trans. on Soft. Eng. SE-12(8): pp. 811-826.

Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and Techniques.
San Mateo, California, USA, Kaufman Publishers.

Hoare, C.A.R. (1974). Monitors - an operating system structuring concept.
Communication of ACM 17(10): pp. 549-557.

Hoare, C.A.R. (1976). Parallel Programming: an Axiomatic Approach. Languages
Hierarchies and Interfaces, Lecture Notes in Computer Science, LNCS-46. Eds. G.
Goos and J. Hartmaur, Springer-Verlag: pp. 11-39.

24

Jalote, P. and Campbell, R.H. (1986). Atomic Actions for Fault-Tolerance Using
CSP. IEEE Trans. Softw. Engng. SE-12(1): pp. 59-68.

Kim, K.H. (1982). Approaches to mechanization of the conversation scheme based on
monitors. IEEE Trans. Softw. Engng. SE-8(3): pp. 189-197.

Lee, P.A. and Anderson, T. (1990). Fault Tolerance: Principles and Practice. Wien -
New York, Springer-Verlag.

Lewrentz, C. and Linder, T. (1995). Formal Development of Reactive Systems: Case
Study Production Cell. Lecture Notes in Computer Science, LNCS-891., Springer-
Verlag.

Powell, D., Ed. (1991). Delta-4: A Generic Architecture for Dependable Distributed
Computing. Research Reports ESPRIT. Berlin, Springer-Verlag.

Randell, B. (1975). System structure for software fault tolerance. IEEE Trans. Softw.
Engng. SE-1(2): pp. 220-232.

Randell, B. (1993). Approaches to Software Fault Tolerance. In 25th Annual LAAS
Conference, Toulouse, France, LAAS pp. 33-42.

Romanovsky, A. (1996). Atomic actions based on distributed/concurrent exception
resolution, TR 560, Computing Department, University of Newcastle upon Tyne.

Romanovsky, A. (1996). Practical exception handling and resolution in concurrent
programs, TR 545, Computing Department, University of Newcastle upon Tyne
(accepted for Computer Languages J.).

Romanovsky, A., Randell, B., Stroud, R., Xu, J. and Zorzo, A. (1997).
Implementation of Blocking Coordinated Atomic Actions Based on Forward Error
Recovery. Journal of System Architecture (to be published in July).

Romanovsky, A., Xu, J. and Randell, B. (1996). Exception handling and resolution in
distributed object-oriented systems. In 16th Int. Conference on Distributed
Computing Systems, Hong Kong, IEEE CS Press pp. 545-553.

Strigini, L. and Romanovsky, A. (1993). Implementing atomic transactions in Ada,
(internal Technical Report), IEI CNR, Pisa.

Tanenbaum, A.S. (1995). Distributed Operating Systems. New Jersey, Prentice-Hall.

Wellings, A.J. and Burns, A. (1996). Implementing Atomic Actions in Ada95, TR
YCS-263, Department of Computer Science, University of York.

Wellings, A.J. and Burns, A. (1996). Programming Replicated Systems in Ada 95.
Computer J. 39(5): pp. 361-373.

Xu, J., Randell, B., Romanovsky, A., Rubira, C., Stroud, R. and Wu, Z. (1995). Fault
tolerance in concurrent object-oriented software through coordinated error
recovery. In 25th Int. Symp. on Fault-Tolerant Computing, Pasadena, USA, IEEE
CS Press pp. 499-508.

Yau, S.S. and Cheung, R.C. (1975). Design of Self-Checking Software. In Int.
Conference on Reliable Software, LA, California, USA pp. 450-457.

