
Canopus: A Domain-Specific Modeling Language

for Performance Testing

Maicon Bernardino1, Avelino Francisco Zorzo1

1Postgraduate Program in Computer Science – Faculty of Informatics (FACIN)

Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Av. Ipiranga, 6681 – Partenon, 90619-900 – Porto Alegre – RS – Brazil

bernardino@acm.org, avelino.zorzo@pucrs.br

Abstract. Despite all the efforts to reduce the cost of the testing phase in soft-

ware development, this is still one of the most expensive phases. In order to

continue to minimize those costs, in this paper, we propose a Domain-Specific

Language (DSL), built on top of MetaEdit+ language workbench, to model per-

formance testing for Web applications. Our DSL, called Canopus, was devel-

oped in the context of a collaboration between our university and a Technology

Development Laboratory from an Information Technology (IT) company. It is

presented, in this paper, the overview of Canopus, including: metamodels, its

domain analysis, a process that integrates Canopus to Model-Based Testing,

and applied it to an industrial case study. Furthermore, we also carried out a

controlled empirical experiment to evaluate the effort (time spent), when com-

paring Canopus with another approach widely used by industry - UML.

Resumo. Apesar de todos os esforços para reduzir o custo do testes de software

na fase de desenvolvimento, esta ainda é uma das fases mais caras. Para contin-

uar a minimizar esses custos, neste artigo, propõe-se uma linguagem especı́fica

de domı́nio (Domain-Specific Language - DSL), desenvolvida usando a ferra-

menta MetaEdit+, para modelar testes de desempenho para aplicações Web. A

DSL, chamada Canopus, foi desenvolvida no contexto de uma colaboração en-

tre a universidade e um laboratório de desenvolvimento de tecnologia de uma

empresa de Tecnologia da Informação (TI). Apresenta-se, neste artigo, a visão

geral da Canopus, incluindo: metamodelos, sua análise de domı́nio, um pro-

cesso que integra a Canopus ao teste baseado em modelos, bem como sua

aplicação a um estudo de caso industrial. Além disso, realizou-se um exper-

imento empı́rico controlado para avaliar o esforço (tempo gasto), ao comparar

Canopus com outra abordagem amplamente usada pela indústria - UML.

1. Introduction

It is well-known that the testing phase is one of the most time-consuming and laborious

phases of a software development process [Yang et al. 2008]. Depending on the desired

level of quality for the target application, and also its complexity, the testing phase may

have a high cost. Normally, defining, designing, writing and executing tests requires a

large amount of resources, e.g. skilled human resources and supporting tools. In order

to mitigate these issues, it would be relevant to define and design the test activity using a

well-defined model or language and to allow the representation of the domain at a high

400



level of abstraction. Furthermore, it would be considerable to adopt some technique or

strategy to automate the writing and execution of the tests from this test model or lan-

guage. One of the most promising techniques to automate the testing process from the

system models is Model-Based Testing (MBT) [Utting and Legeard 2006].

MBT provides support to automate several activities of a testing process, e.g. test

cases and scripts generation. In addition, the adoption of an MBT approach provides

other benefits, such as a better understanding on the application, its behavior and test

environment, since it provides a graphical representation about the System Under Test

(SUT). Although MBT is a well-defined and applied technique to automate some testing

levels, it is not fully explored to test non-functional requirements of an application, e.g.

performance testing. There are some works proposing models or languages to support the

design of performance models. For instance, the SPT UML profile relies on the use of tex-

tual annotations on models, e.g. stereotypes and tagged values to support the modeling of

performance aspects of an application. Another example is the Gatling Domain-Specific

Language (DSL), which provides an environment to write textual representation of an

internal DSL based on industrial needs and tied to a testing tool.

Although these models and languages are useful to support the design of perfor-

mance models and also to support testing automation, there are a few limitations that

restrict their integration in a testing process using an MBT approach. Despite the benefits

of using an UML profile to model specific needs of the performance testing domain, its

use may lead to some limitations. For instance, most of the available UML design tools

do not provide support to work with a well-defined set of UML elements, which is needed

when working with a restricted and specialized language. Thus, the presence of several

unnecessary modeling elements may result in an error-prone and complex activity.

Most of these issues could be mitigated by the definition and implementation of

a graphical and textual DSL for the performance testing domain. However, to the best of

our knowledge, there is little investigation on applying DSL for the performance testing

domain. Therefore, it would be relevant to develop a graphical modeling language for the

performance testing domain to mitigate some of the limitations mentioned earlier. In this

paper, we propose Canopus, a DSL that aims to provide a graphical and textual way to

support the design of performance models, and that can be applied in a model-based per-

formance testing approach. Hence, our DSL scope is to support the performance testing

modeling activity, aggregating information about the problem domain to provide better

knowledge sharing among testing teams and stakeholders, and centralizing the perfor-

mance testing documentation. Moreover, our DSL will be used within an MBT context

to generate performance test scripts and scenarios for third-party tools/load generators.

Consequently, the research problem is the lack of a modeling standard and/or

language that aims at meet the particular needs of the performance testing domain for Web

applications. This way, this study seeks to research a modeling standard for performance

testing, i.e. to develop a DSL that meets the specific needs of the domain for modeling

performance testing in a Web application, as well as its use in the MBT approach. It is

highlighted that a DSL can be represented graphically, i.e. using graphs and diagrams, and

when it is applied to the context of software testing, enables the use of the MBT approach

for generating test artifacts. Hence, to formalize the exposed problem, a research question

is defined to guide the research methodology.

401



Research Question (RQ): “RQ0. How to improve model-based performance test-

ing using a domain-specific language in Web applications?”

The RQ is in line with some of the achievements, challenges, and dreams pre-

sented by Bertolino [Bertolino 2007] in the software testing research roadmap. The au-

thor asserts that both MBT and DSL are promising approaches and in actual research

expansion. Together they define the dream of test-based modeling and the proposal to

hold 100% automatic testing. Domain-Specific Testing (DST) is a defined term by the

author as an efficient solution to allow that domain experts can express abstract specifica-

tions, e.g. models or languages, to be automated in their process, having as its focus on

transforming the domain knowledge to improve the testing process.

From the industry perspective, the performance testing process is usually very ex-

pensive, regarding infrastructure resources and generation of test scenarios and scripts.

Another significant gap to be highlighted is the lack of non-functional performance re-

quirements in the system analysis, in addition to the absence of a standard documentation

among the stakeholders about the problem domain, allowing a common understanding

and interpretation of goals and aims of the system.

Regarding academia, several types of research are evolving for the purpose of au-

tomating the testing process with the aim of reducing the cost and effort applied in the

activity of the generation of test scenarios and script activities, which would consequently

improve the software quality. To support this challenge, one way to operationalize this

process is through the MBT adoption, with the intention of sharing among stakeholders

the project information regarding system behavior. Thus, it enables functional require-

ments and, mainly, non-functional performance requirements to be contemplated, anno-

tated and documented into the system models on the early cycle of software development.

1.1. Objectives

The main goal of this research is to propose a domain-specific language for modeling

performance testing in a Web application. To achieve the research goal, we derived the

following objectives: i) Deepening the background concerning models and formalisms

for performance testing; ii) Studying the models and formalisms for model-based testing;

iii) Conceiving a DSL for modeling performance testing, characterized by the follow-

ing representation factors of performance testing [Woodside et al. 2007]: a) Represent-

ing their features; b) Identifying their goals; c) Measuring their performance counters;

d) Modeling their different user profiles as well as their behavior. iv) Validating the DSL

for modeling performance testing proposed using a controlled experiment, in comparison

with usual approaches for performance modeling; v) Evaluating the DSL proposed by

professionals or expert groups in the field whereby the empirical study; vi) Documenting

and reporting the study results, publishing them in scientific conferences, in addition to

the technology and knowledge transfer to industry.

This paper is organized as follows. Section 2 describes the research methodology

applied in this study. Section 3 presents the metamodels and how they are related one

each other, as well as describes a model-based performance testing process. Section 4

shows the results of how we applied Canopus in a case study. Besides it, also reports the

outcomes of a controlled experiment. Section 5 concludes the paper with highlights of re-

search contributions, limitations, future directions, and points out academic publications.

402



2. Research Methodology

The knowledge is considered scientific if techniques that allow its verification can be

applied, i.e., determining the research methods that achieved such knowledge. We can

define a method as a way to reach a purpose. Thus, the scientific research depends on

a set of intellectual and technical procedures so that its goals are achieved, i.e., research

methodology. Hence, research methodology is a set of process and mental operations that

had to apply in the research. In that sense, this section presents a research methodology

that was planned and applied in this study developed.

This research is exploratory. Exploratory research enables to define a problem and

formulate hypotheses about the topic under study [Yin 2013]. Besides, it aims to examine

an issue or a non-studied problem, which has not been discussed previously by other

studies. Exploratory research allows the researcher to determine a set of data collection

techniques to conduct the study. In this research, we choose to use as main methods:

literature review, case study, and controlled empirical experiment. Next, we present how

each method will be applied in the context of the research design.

The research developed follows the objectives defined in Section 1. Thereby, we

classified the nature of our proposal in applied research, with a strategy quantitative of

the exploratory research type, having as its base the experimental research design. The

empirical experiment method having been applied, we follow the protocol proposed by

Wholin [Wohlin et al. 2012], using the instruments of quantitative and qualitative data

collection. For this reason, it is an experimental research, developed in a laboratory,

i.e., in vitro. The choice to apply an empirical experiment should be in fact that the

study proposal makes “how” and “why” questions, due to needs of validation of the DSL

proposed to compare its performance with other approaches already used by industry.

To develop the research project proposed, we planned a research methodol-

ogy organized in three phases: Conception, Validation, Knowledge and

Technology Transfer; according to the presented research design in Figure 1. Each

phase is described in details as follows:

(1) Conception: The first phase is divided in two blocks: Theoretical Base

and Development. The former block includes the idea definition, the research ques-

tion, as well as its strategy, the research design, besides a literature review in order to

establish the theoretical basis to main research topics such as performance test modeling,

model-based testing, and domain-specific language. This block is also responsible for

defining the requirements of the DSL, and consequently, the design decisions based on

these requirements. The latter block exerts the function to identify, analyze and imple-

ment the domain, in addition to studying the different frameworks and Language Work-

benches (LW) [Erdweg, S. [et al.] 2013] for creating domain-specific languages, and also

for elaborating the mechanisms to translate the visual model in a textual language, i.e.

the generator module; (2) Validation: The second phase is divided in two blocks:

Utilization and Experiment. The first block is responsible for applying our

DSL in two Web applications: one simple and didactic, known by academic commu-

nity, TPC-W, and the other more complex and robust, based on an industrial environment,

henceforth Changepoint. The second block is part of the validation of a proper ap-

proach. Therefore, we intend to conduct a controlled empirical experiment with inex-

perienced and experienced subjects, with the purpose to plan, execute, collect data, and

403



Figure 1. Research design

analyze the experiment results comparing our DSL with another approach applied by in-

dustry. Based on the enrollment context and the previously conducted research, we chose

comparing our DSL with the UML approach; (3) Knowledge and Technology

Transfer: The last phase is responsible for producing scientific essays to the academic

community, as well as transferring the technology developed to our partner with the in-

tention that it adopts our solution to improve its testing process.

Regarding data analysis, we intend to apply statistical methods such as average,

median, and standard deviation, among others based on descriptive statistics proposed by

Oates [Oates 2006], in order to measure the efficiency and effectiveness of the proposed

DSL to answer the research questions. However, we intend to perform advanced statis-

tical techniques to evaluate, for instance, the normal distribution and quality of our data.

However, it depends on the number of experiment subjects. Table 1 presents a synthesis

of the research methodology.

Table 1. Synthesis of the research methodology

Subject Performance Testing

Topic Performance Test Modeling

Research

Question

How to improve model-based performance testing using the domain-specific lan-

guage in Web applications?

Hypothesis The performance test modeling through of a domain-specific language in Web

applications can improve the quality, cost and effectiveness of performance testing.

Main Goal To develop a domain-specific language for modeling performance testing in Web

applications.

404



3. Canopus

In this section we present Canopus, the metamodels that compose our DSL, and describe

our model-based performance testing process using Canopus to support the design of

performance testing modeling of Web applications.

It is important to mention that during the design and development of our DSL,

we also considered some requirements from a Technology Development Lab (hereafter

referred to as TDL) of an industrial partner, in the context of a collaboration project to

investigate performance testing automation. These requirements were: a) the DSL had to

allow for representing the performance testing features; b) The technique for developing

our DSL had to be based on Language Workbenches (LW); c) The DSL had to support a

graphical representation of the performance testing features; d) The DSL had to support

a textual representation; e) The DSL had to include features that illustrate performance

counters (metrics, e.g. CPU, memory); f) The DSL had to allow the modeling of the

behavior of different user profiles; g) Traceability links between graphical and textual

representations should require minimal human intervention; h) The DSL had to be able

to export models to specific technologies, e.g. HP LoadRunner, MS Visual Studio; i) The

DSL had to generate model information in an eXtensible Markup Language (XML) file;

j) The DSL had to represent different performance test elements in test scripts; and, k) The

DSL had to allow the modeling of multiple performance test scenarios.

The rational and design decisions for our DSL are described in

[Bernardino et al. 2014]. Furthermore, in that paper we discuss the performance

testing domain and describe how the metamodels were structured to compose our DSL.

Besides, we also present how Canopus was designed to be applied with an MBT approach

to automatically generate performance test scenarios and scripts. To demonstrate how

our DSL could be used in practice, we applied it draft version of Canopus throughout an

exemple of use for the TPC-W e-commerce Web application.

3.1. The Language

Canopus is composed of three main parts: monitoring, scenario, and scripting.

Monitoring: the performance monitoring part is responsible for determining all

servers used in the performance testing environment. For each server (i.e., application,

databases, or even the load generator), information on the actual testing environment has

to be included, e.g., IP address or host name. It is worth mentioning that even the load

generator has to be described in our DSL, since we can also monitor the performance of

the load generator. Sometimes, the load generator has to be split into several servers if

we really want to stress the application or database server. For each host, it is possible to

indicate the performance counters that will be monitored. This monitoring part requires

that at least two servers have to be described: one that hosts the application (SUT) and

another to generate the workload and to monitor the performance counters of the SUT.

Scenario: the performance scenario part allows setting user and workload profiles.

Each user profile is associated to test scripts. If a user profile is associated with more than

one test script, a percentage is attributed between the user profile and each test script,

i.e., it describes the percentage that that test script is executed. In addition to setting

user profiles, in this part, it also is important to set one or more workload profiles. Each

workload profile is composed of several elements, defined as follows: a) Virtual users

405



(VU): refers to the number of VU who will make requests to the SUT; b) Ramp up time:

defines the time it takes for each set of ramp up users to access the SUT; c) Ramp up

users: defines the number of VU who will access the SUT during each ramp up time

interval; d) Test duration: refers to the total time of performance test execution for a given

workload; e) Ramp down users: defines the number of VU who will leave the SUT on

each ramp down time; f) Ramp down time: defines the time it takes for a given ramp down

user to stop the testing.

Scripting: the performance script part represents each of the test scripts from the

user profiles in the scenarios part. This part is responsible for determining the behavior

of the interaction between VU and SUT. Each test script includes activities, such as trans-

action control or think time between activities. The same way as there is a percentage

for executing a test script, which is defined in the scenarios part, each test script can also

contain branches that will have a user distribution associated to each path to be executed,

i.e., the number of users that will follow each path.

Figure 2. Canopus package diagram

To support the creation of our DSL with these parts, we chose MetaEdit+,

one of the first successful commercial tools. MetaEdit+ supports the creation and

evolution of each of the Graph, Object, Port, Property, Relationship and Role (GOP-

PRR) [Kelly and Tolvanen 2007] metatypes. Canopus has 7 metamodels represented by

7 packages (see Figure 2). The main metamodels that compose our DSL are Canopus

Performance Monitoring (CPMon), Canopus Performance Scenario

(CPSce), and Canopus Performance Scripting (CPScr), which together

compose the Canopus Performance Model. Complementing the structure, the

following metamodels Canopus Performance Metric (CPMet), Canopus

Performance Workload (CPWl), Canopus Performance External

File (CPExF) are extended, respectively, by each one of main metamodels.

3.2. A Model-Based Performance Testing Process

The aim of our Domain-Specific Modeling (DSM) process, using Canopus, is to improve

a performance testing process to take advantage of MBT. Figure 3 shows our process for

modeling performance testing using Canopus. This process incorporates a set of activi-

ties that have to be performed by two different parties: Canopus and Third-Party.

Besides, our DSM process is composed for seven main activities described in details next.

406



Figure 3. Model-based performance testing process using Canopus

Model Performance Monitoring: the designing of the first activity of our process is ex-

ecuted by the Canopus party. In this activity, the SUT, monitor servers and performance

metrics that will be measured are defined. The milestone of this activity is the generation

of a CPMon. This model is composed of SUT, Load Generator (LG) and Monitor objects.

A Monitor object is enabled to monitor the SUT and LG objects; this object is controlled

by a CPMet that can be associated with one or more of these objects. A CPMet model

represents a set of predefined metrics, e.g., memory or processor. Each one of them is

associated with a metric counter, which in turn is linked to a criterion and a threshold.

Model Performance Scenario: the next activity of our process consists of modeling the

performance test scenario. The CPSce model is the output of this activity. This model is

composed of user profiles that represent VU that can be associated with one or more script

objects. Each one of these scripts represents a functional requirement of the system from

the user profile point of view. Furthermore, a script is a detailed VU profile behavior,

which is decomposed into a CPScr model. Besides, each scenario allows modelling

several workloads in a same model. A workload (CPWl) is constituted of setup objects of

test scenario, i.e. ramp up, ramp down, test duration (time) and number of VU.

Model Performance Scripting: in this activity, each script object, modeled in the CPSce

model, mimics (step-by-step) the dynamic interaction by VU with the SUT. This activity

generates a CPScr model that is composed of several objects, such as, activity or think

time. It is important to notice that two objects, i.e. activity and data table, can be de-

composed into new sub-models. The former can be linked to a CPScr model that allows

encapsulating a set of activities to propose its reuse into other models. The latter is as-

sociated with a CPExF that fills a dynamic model with external test data provided by a

performance engineer. After the three first activities from our process, the performance

engineers have to decide whether they generate a textual representation from the designed

Canopus Performance models, an input for a third-party tool, or even a generic XML

representation that might be integrated to any other tool that accepts XML as input.

407



Generate Textual Representation: this activity consists of generating

a textual representation in a semi-natural language, a DSL-based on the

Gherkin [Wynne and Hellesøy 2012] language that extends it to include performance

testing information. Our design decision to deploy this feature in Canopus is to facilitate

the documentation and understanding among development and testing teams.

Generate Third-Party Scripts: Canopus was designed to work also as a front-end to

third-party performance tools. Therefore, even though we can generate a ”generic” textual

representation, our process allows integration of new features in Canopus to generate

input for any testing tool. Hence, it can be integrated with different load generator tools.

Generate Canopus XML: this activity is responsible for generating a Canopus XML file.

We included this feature to support the integration of Canopus with other technologies or

IDEs. Hence, Canopus can export entire performance testing information from Canopus

Performance models to an XML file.

Third-Party: the other three activities, shown in Figure 3, are not part of the Canopus

process, depending on the third-party tool that is used, such as HP LoadRunner, MS Vi-

sual Studio or Neo Load. The Execute Generated Scripts activity consists of

executing the performance scenarios and scripts generated for a third-party tool. Dur-

ing the execution of this activity the load generator consumes the test data mentioned

in the data table object in CPScr model; Monitor Performance Counters ac-

tivity is executed if the third-party tool has a monitoring module; and, Report Test

Results activity is also only executed if the performance tool has an analysis module.

4. Empirical Studies Evidences

This section will present the achieved results of empirical evidences conduted during this

research aiming to validate and to evaluate Canopus.

4.1. Case Study

We applied Canopus to model an application in an industrial case study, in the context of

a project of collaboration between a Technology Development Lab (TDL) of Dell Com-

puter Brazil and our university [Bernardino et al. 2016a]. Thereunto, to demonstrate how

our DSL can be used in practice, we applied it throughout the Changepoint Web appli-

cation, in which Canopus is used to model performance testing information supported by

the model-based performance testing process. Changepoint is a commercial solution to

support portfolio and investment planning, project and application management.

In short, we aim to explore two Research Questions (RQ) applying this case study:

RQ1. How useful is it to design performance testing using a graphical DSL?

RQ2. How intuitive is a DSL to model a performance testing domain?

We investigated and answered each one of the RQ based on the results of our case

study and interviews conducted with a performance testing team. The performance testing

team was formed by three performance engineers. Moreover, a Web-based survey was

answered by fifteen performance test experts. The purpose of this survey was to evaluate

the graphical elements and their representativeness to symbolize performance elements

that compose each Canopus Performance metamodel (Scripting, Scenario, Monitoring).

The subjects answered a Web-based survey composed of:

408



(a) Statements to find whether the element is representative for a specific metamodel,

based on a five points Likert scale: Disagree Completely (DC), Disagree Some-

what (DS), Neither Agree Nor Disagree (NAND), Agree Somewhat (AS) and

Agree Completely (AC);

(b) Open questions to extract their opinions on each metamodel.

0 10 20 30 40 50 60 70 80 90 100

Monitoring

Scenario

Scripting

60.5

73.3

67.6

21

17.3

18.1

7.2

6

7.1

7.7

0.7

5.3

3.6

2.7

1.9

M
et

am
o
d
el

s

Disagree Completely (DC) Disagree Somewhat (DS)

Neither Agree nor Disagree (NAND) Agree Somewhat (AS)

Agree Completely (AC)

Figure 4. Frequency diagram of the graphical elements grouped by metamodel

The answers were summarized in the frequency diagram shown in Figure 4. The

numbers in this figure are based on the evaluation of 37 elements: 13 elements for the

CPScr metamodel, 10 for CPSce metamodel and 14 for CPMon metamodel. The fre-

quency diagram presents the results grouped by each set of elements evaluated for each

metamodel. As can be seen in Figure 4, 81.5% (60.5% AC + 21% AS) of the answers

agree that the Monitoring elements are representative for the CPMon metamodel. For

the CPSce metamodel, 90.6% (73.3% AC + 17.3% AS) agree that the elements for that

metamodel are representative. Finally, 85.7% (67.6% AC + 18.1% AS) agree that the

elements represent the features they intend for the CPScr metamodel. These results are

used as part of the evaluation of Canopus.

Each of the research questions mentioned in Section 4.1, are answered next.

RQ1. The graphical representation of a notation, language or model is useful

to better explain issues to non-technical stakeholders. This was also confirmed by the

performance team that reported that using our approach, it is possible to start the test

modeling in early phases of the development process. Furthermore, it would be possible

to engage other teams during all process, mainly the Business System Analyst (BSA).

The BSA is responsible to intermediate the business layer between the developer team

and the product owner. Another interesting result pointed out by the subjects is that the

textual representation is also very appropriate, since it allows to replace the performance

testing specification. However, as expected, there is a steep curve on the understanding

of the DSL notation and an initial overhead when starting using an MBT-based approach

instead of a Capture and Replay (CR)-based approach.

RQ2. The case study execution indicates that the use of Canopus is quite intuitive,

since the performance testing domain is represented throughout graphs, objects, relation-

ships and properties. Visually, for instance, the scripting model can show the different

flows that have been solved in several test cases on the fly, and also the decomposition

and explosion features that can map objects into other graphs. This feature is also re-

lated to the reuse of partial models, characteristic of a DSL that allows to improve the

productivity and to reduce the time spent on performance testing modeling activity.

409



4.2. Controlled Experiment

This section reports the results of a controlled empirical experiment. Thus, to support

our partner company in the decision process to replace UML by a DSL, we designed and

conducted an experimental study to provide evidence about the benefits and drawbacks

when using UML or DSL for modeling performance testing.

We evaluate Canopus presenting an in vitro experiment, where the subjects an-

alyze the design of annotated UML models and Canopus Performance models. Hence,

twenty-six subjects were assigned and randomized with two groups (13 subjects per

group): experienced and inexperienced. Each group started the execution of one of the

two treatments (UML or DSL). This is for the purpose of evaluation with respect to the

effort and suitability, from the perspective of the performance testers and engineers in

the context of industry and academic environments for modeling performance testing.

A complete experiment design can be found in [Bernardino et al. 2016b]. Our statistical

analysis indicate that the results were valid, i.e., that to design performance testing models

using our DSL the effort using a DSL was lower than using UML.

To achieve our objective and purpose, we stated the following research questions:

RQ3. What is the effort to design a performance testing model when using UML or DSL?

RQ4. How effective is it to design a performance testing model when using UML or DSL?

Hence, we discuss the data collected to answer each one research questions.

RQ3. Table 2 presents the summarized effort data (time spent) to perform each

task using each approach. In the table, the columns Scenario and Scripting present the

average time per blocks and treatments, respectively. Based on the results summarized,

the average effort using Canopus was lower than with UML in all scenarios, either to

experienced or inexperienced subjects. The average time spent to design the performance

testing modeling using Canopus was lower than with UML (51.08 min vs 63.69 min).

Table 2. Summarized data of the effort (minutes)

Treatments Blocks
Blocks Average Time Treatments Average Time

Scenario Scripting Total Scenario Scripting Total

UML
Inexperienced 15.69 52.62 68.31

13.62 50.08 63.69
Experienced 11.54 47.54 59.08

DSL
Inexperienced 10.54 39.31 49.85

10.23 40.85 51.08
Experienced 9.92 42.38 52.31

Figure 5 depicts the box plot graph of the Scenario Task data set, represented by

UMLScenario and DSLScenario boxes. In the Scenario Task, the median of execution time

with UML was 12.5 minutes and with Canopus it was 10 minutes. Moreover, the UML

standard deviation (Std Dev) was 5.02 minutes, against 3.43 minutes for Canopus. It is

important to highlight that there is one outlier in the data set for Canopus that took 17

minutes. From another point of view, Figure 5 also presents the box plot graph of the

Scripting Task. This task is represented by UMLScripting and DSLScripting boxes, where

the median time to execute the UML treatment was 50.5 minutes, while for Canopus it

was 39.5 minutes. Moreover, the UML Std Dev was 11.84 minutes, greater than the 7.12

minutes for Canopus. Again, notice that there is one outlier in the data set for Canopus

that took 23 minutes. Figure 5 also shows the box plot graph of the summarized data set,

i.e., the sum of Scenario and Scripting tasks, identified by UMLTotal and DSLTotal boxes.

410



Here, the median of execution time with UML was 62.5 minutes, inasmuch as Canopus

was 48.5. It is important to highlight that the Canopus Std Dev (9.46 minutes) represents

66.8% of variation of the UML treatment (14.16 minutes). Once again, notice that there

is one outlier in the data set for Canopus treatment that took 28 minutes.

UMLScenario DSLScenario UMLScriptingDSLScripting UMLTotal DSLTotal

0

20

40

60

80

100

m
in

u
te

s

Figure 5. Box plot - treatments per task

As for hypothesis testing, we performed the Kolmogorov-Smirnov test to verify

the normality of data distribution. In this context, we followed the best practice in Statis-

tics and chose a significance level of α = 0.05. Although, almost all results had a normal

distribution, there was one exception, i.e., the Scenario data set, that showed a p-value

(0.355835174) greater than α. For this reason, we assumed that the distribution was not

normal. Therefore, we applied a non-parametric test: Wilcoxon signed rank test. We

applied a non-parametric test since it uses the median instead of average as used in para-

metric test, and this solves the problem with outliers. For each data set, we applied the

statistical test to the paired samples, i.e. to compare the effort spent to model performance

using UML or DSL (RQ3). Hence, for all samples pairs, the results of the Wilcoxon test

reject the null hypothesis. Therefore, we can conclude that there is, statistically, a no-

ticeable difference in effort to design a performance testing model when using UML and

DSL. Thus, for all data sets we confirmed the alternative hypothesis.

0 10 20 30 40 50 60 70 80 90 100

Intuitiveness

Easy to Design

Representativeness

Expressiveness

30.8

50

61.5

53.9

65.4

34.6

27

26.9

3.8

15.4

11.5

19.2

Strongly Disagree (SD) Disagree (D) Neither Agree nor Disagree (NAD)

Agree (A) Strongly Agree (SA)

Figure 6. Frequency diagram of the Canopus

RQ4. After designing the performance models using both approaches, the sub-

jects answered a survey composed of: (a) statements to survey how much they concur

with our Canopus features; (b) open questions to extract their opinions. The answers

can be seen in the frequency diagram shown in Figure 6. As can be seen in the figure,

411



the statement most accepted is that the Canopus has Expressiveness (61.5% SA, 27% A

and 11.5% NAD), followed by that it has Representativeness (50% SA, 34.6% A, 15.4%

NAD) and Easy to Design (30.8% SA, 65.4% A, 3.8% NAD). The statement that received

the worst mark was Intuitiveness (53.9% A, 26.9% NAD and 19.2% D).

5. Final Remarks

The final remarks section is organized as follows. Section 5.1 revisits the achieved study

contributions that support answering such a RQ. Section 5.2 summarizes the study limi-

tations, and also sketches ongoing research and planned future work. Finally, Section 5.3

describes the academic contribution of the author in terms of publication.

5.1. Research Contributions

This section states the achievements and outcomes of this research as follows.

A pioneer graphical DSL for performance testing: we proposed, designed and devel-

oped Canopus, a graphical and textual language to model performance testing. MetaEdit+

was the LW applied to implement Canopus. Thereby, to design our textual representation,

we extend the Gherkin [Wynne and Hellesøy 2012] language to include performance test-

ing information. We chose to design both graphical and textual languages, because even

though graphical may be more rich visually, not all information can be represented.

Mechanisms to easily support the integration with third-party performance tools:

the MetaEdit+ have a feature that allows applying model transformation between the mod-

els instantiated from metamodels to code generation. Canopus was proposed to support

dual output, graphical and textual representation. Therefore, we proposed an XML struc-

ture as another output option. The idea is applying this strategy to integrate Canopus

with other load generators technologies, e.g. HP LoadRunner. Even so, a particular script

generation for each technology as a new feature of Canopus can be also implemented.

Model-based performance testing process: our DSL was designed to integrate with an

MBT approach. Thus, we propose a model-based performance testing process, which

uses Canopus as a modeling tool. The process incorporates a set of activities that have

to be performed by two distinct parties: Canopus and a Third-Party. Among of the set of

activities, we highlighted the design, graphically, of the Canopus Performance models, as

well as the following generations: textual representation, XML, and third-party scripts.

Industrial case study evaluation: we evaluated Canopus in an industrial case study.

This case study applied the model-based performance testing process proposed. Thus,

an experience with real-world applications - Changepoint - within an IT corporation was

reported. This case study provided evidence that Canopus is feasible in real and less con-

trolled contexts. Moreover, an analysis of a Web-based survey to evaluate the graphical

elements and their representativeness, intuitiveness, and usefulness to symbolize perfor-

mance elements, was answered by fifteen performance test experts.

Experimental evaluation: we conducted a controlled experiment to compare two ap-

proaches for modeling performance testing. We analyze the design of annotated UML

and Canopus models for the purpose of evaluation with respect to the effort and the suit-

ability, from the perspective of the performance testers and engineers in the context of

industry and academia environments for modeling performance testing. Our findings in-

dicate that, statistically, the effort of using a DSL was lower than that of using UML.

412



5.2. Limitations and Future Works

Despite this study having presented real contributions to the performance testing, MBT,

and DSL areas, we identified limitations of the study contributions that can be dealt with

in the future. Hence, we herein describe broader limitations to be overcome as well as

opportunities for future works made during short and medium term research.

Limitations of the Canopus metamodels: the architecture of Canopus is composed of

three main metamodels: monitoring, scenario, and scripting. Each one of theses meta-

models requires improvements in its properties, graphical elements, or even the translation

to textual representation. At first, the Monitoring metamodel needs to add new properties

to some elements. Another limitation is regarding the metrics, in which the solution de-

signed is dependent of each type of metrics instead of an abstract and generic solution.

Next, the Scenario metamodel does not provide the decomposition feature among scenar-

ios. Our industrial experience points out that this feature is necessary to express a real

synthetic workload. Finally, our empirical evidences, some limitations on the Scripting

metamodel were identified some graphical elements. Further investigations into strategies

for designing these graphical elements can shed some light on this topic.

Canopus is not exclusive to performance testing: foremost, our intention was to design

the DSL to support performance testing. Nevertheless, the proposed DSL is not restricted

only to this scope. In future work, we may extend Canopus for other contexts or, who

knows, to other testing paradigms, e.g. functional testing or security testing.

Replication of controlled experiment: in the experiment conducted, the most interesting

dimensions were the effort dedicated to the subjects for performance testing modeling

both approaches. However, we were aware that it was necessary to evaluate the deviation

of the error rate from the models designed. Hence, we would ensure more precisely that

time is spent meaningfully when compared with both approaches. Therefore, we are

planning the replication of the experiment with a large sample of experiment subjects.

Comparison of Canopus and Capture & Replay (CR) techniques: we performed an

experiment to compare UML and DSL models for modeling performance testing. How-

ever, for most of the industry players, MBT is not yet a standard. Therefore, for this

reason, we believe that an empirical study comparing a CR-based [El Ariss et al. 2010]

and DSL-based techniques require investigation and evidences.

Human-Computer Interaction (HCI) evaluation of the Canopus: although we per-

formed two empirical studies that perform qualitative analyzes based on survey results,

our approach does not apply a rigorous method supported by a widely known technique.

Therefore, we already began to investigate how to conduct a heuristic evaluation for us-

ability in HCI for user interface design of the Canopus.

5.3. Publications

During the development of this study we presented and discussed our research results

in the following papers: [Bernardino et al. 2014]: the requirements analysis and de-

sign decisions (ICSEA); [Bernardino et al. 2016a]: the canopus language and an indus-

trial case study (ICST); [Bernardino et al. 2016b]: an empirical experiment evaluation

(SAC); [Bernardino et al. 2017]: a systematic mapping study on model-based testing

(IET Software).

413



References

Bernardino, M., Rodrigues, E., and Zorzo, A. (2016a). Performance Testing Modeling:

an empirical evaluation of DSL and UML-based approaches. In 31st ACM Symposium

on Applied Computing, pages 1660–1665, New York, NY, USA. ACM.

Bernardino, M., Rodrigues, E., Zorzo, A., and Marchezan, L. (2017). A Systematic

Mapping Study on Model-Based Testing: Tools and Models. IET Software.

Bernardino, M., Zorzo, A., and Rodrigues, E. (2016b). Canopus: A Domain-Specific Lan-

guage for Modeling Performance Testing. In 9th International Conference on Software

Testing, Verification and Validation, pages 157–167, Washington, DC, USA. IEEE.

Bernardino, M., Zorzo, A. F., Rodrigues, E., de Oliveira, F. M., and Saad, R. (2014). A

Domain-Specific Language for Modeling Performance Testing: Requirements Analy-

sis and Design Decisions. In 9th International Conference on Software Engineering

Advances, pages 609–614, Wilmington, DE, USA. IARIA.

Bertolino, A. (2007). Software Testing Research: Achievements, Challenges, Dreams. In

Future of Software Engineering, pages 85–103, Washington, DC, USA. IEEE.

El Ariss, O., Xu, D., Dandey, S., Vender, B., McClean, P., and Slator, B. (2010). A

Systematic Capture and Replay Strategy for Testing Complex GUI Based Java Appli-

cations. In 7th International Conference on Information Technology: New Generations,

pages 1038–1043, Washington, DC, USA. IEEE.

Erdweg, S. [et al.] (2013). The State of the Art in Language Workbenches. In Erwig, M.,

Paige, R., and Wyk, E., editors, Software Language Engineering, volume 8225, pages

197–217. Springer International Publishing.

Kelly, S. and Tolvanen, J.-P. (2007). Domain-Specific Modeling: Enabling Full Code

Generation. John Wiley & Sons, New York, NY, USA.

Oates, B. J. (2006). Researching Information Systems and Computing. SAGE Publica-

tions, London, UK.

Utting, M. and Legeard, B. (2006). Practical Model-Based Testing: A Tools Approach.

Morgan Kaufmann, San Francisco, CA, USA.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., and Regnell, B. (2012). Experimen-

tation in Software Engineering. Springer–Verlag, Berlin, Germany, 1st edition.

Woodside, M., Franks, G., and Petriu, D. C. (2007). The Future of Software Performance

Engineering. In Future of Software Engineering, pages 171–187, Washington, DC,

USA. IEEE.

Wynne, M. and Hellesøy, A. (2012). The Cucumber Book: Behaviour-Driven Develop-

ment for Testers and Developers. The Pragmatic Bookshelf.

Yang, Y., He, M., Li, M., Wang, Q., and Boehm, B. (2008). Phase Distribution of Soft-

ware Development Effort. In 2nd ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement, pages 61–69, New York, NY, USA. ACM.

Yin, R. (2013). Case Study Research: Design and Methods. SAGE Publications, London,

UK, 5th edition.

414


