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SELF-ATTENTION FOR IMPROVING THE DIFFERENTIABLE
RENDERING PIPELINE IN IMAGE 3D RECONSTRUCTION

RESUMO

Pesquisas recentes sobre modelos de Renderização Diferenciável relacionados à
reconstrução 3D de imagens utilizam modelos totalmente convolucionais para extração de
features ou para o processamento de decodificação. Por outro lado, várias tarefas de visão
computacional como reconhecimento visual, segmentação, geração de imagens e detecção
de objetos tiveram grande melhoria de desempenho ao fazer uso de modelos baseados em
self-attention, conhecidos tradicionalmente como Transformers. Devido a tal sucesso, neste
trabalho pretendemos explorar quatro diferentes abordagens de modelos baseados em self-
attention para reconstrução implícita de objetos 3D. Em nossa primeira abordagem, imple-
mentamos as camadas de self-attention da SAGAN junto as camadas convolucionais; em
nossa segunda abordagem, implementamos o modelo patchwise self-attention para subs-
tituir completamente o codificador convolucional. Em seguida, implementamos um modelo
de Transformer chamado Pyramid Vision Transformer para substituir o codificador convolu-
cional do modelo DVR; finalmente, em nossa quarta abordagem, implementamos o modelo
Nyströmformer como um otimizador para reduzir o custo computacional e para melhorar a
capacidade de extração de features. Considerando todas as abordagens, nossos resultados
mostraram que podemos alcançar resultados competitivos usando Transformers, bem como
adicionando um otimizador para reduzir seu custo computacional. Com a aplicação do mo-
delo de otimização e consequente redução do custo computacional, foi possível modificar
o módulo referente ao decodificador de forma a melhorar os resultados de reconstrução,
alcançando melhorias de até 8, 5% em relação aos baselines.



Palavras-Chave: Aprendizado Profundo, Reconstrução 3D, Visão Computacional, Trans-
formers.



SELF-ATTENTION FOR IMPROVING THE DIFFERENTIABLE
RENDERING PIPELINE IN IMAGE 3D RECONSTRUCTION

ABSTRACT

Recent studies on Differentiable Rendering models related to 3D reconstruction
focus on fully convolutional-based models for data feature extraction or for the decoding pro-
cess. On the other hand, computer vision tasks such as image recognition, segmentation,
image generation, and object detection is benefiting largely from using fully self-attention ap-
proaches known as Transformers. Due to the recent success of the Transformer backbone
models applied to computer vision, in this work we aim to explore four different approaches
of self-attention-based models for implicit 3D object reconstruction from images. In our first
approach, we have implemented the SAGAN Self-Attention layers together with convolutions
layers; in our second approach, we have implemented a patchwise self-attention model to
completely replace the convolutional encoder; next, we have implemented a Transformer
model called Pyramid Vision Transformer to replace the convolutional based encoder from
the DVR model; finally, we have implemented the Nyströmformer model, an optimizer to re-
duce the computational cost and to improve the feature extracting capability. Considering all
approaches, our results have shown that we can achieve competitive results by using Trans-
former models, as well as adding an optimizer to reduce the computational cost. By applying
the optimization model and reducing the computational cost, it was possible to modify the
decoder module to increase the reconstruction results, resulting in improvements of up to
8.5% compared to the baseline approaches.

Keywords: Deep Learning, 3D Reconstruction, Computer Vision, Transformers.
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1. INTRODUCTION

One of the long-standing goals of computer vision is recovering 3D information from
the image capturing process [1]. Classic multi-view stereo (MVS) methods [6] usually match
features between neighboring views for the reconstruction process, usually requiring a high
degree of engineering. More recently, researchers start to investigate the performance of
learning-based approaches for 3D reconstruction [10, 35, 36], with the disadvantage that
most of the proposed approaches are highly dependent on ground truth meshes and/or are
highly memory-consuming.

The Differentiable Rendering (DR) approach for 3D reconstruction introduces a
new strategy for the learning-based reconstruction process, where there is no need to use
meshes as ground truth. There are many DR approaches that use different types of data
such as voxels [39], meshes [58], and point clouds [49] for reconstruction and these type
of data can also be implicitly generated. The implicit 3D reconstruction can be seen as a
continuous decision boundary of a classifier function that can estimate a 3D surface of an
object [45], and it can reduces the memory footprint for reconstructed objects during the
training process. Most of the DR approaches make use of convolutional neural networks for
the encoding and decoding process, allowing the multi-view and single-view reconstruction.
In this work we choose to use as a baseline, a DR model that implicitly generates a 3D object
in both multi-view and single-view reconstruction process.

As an alternative to convolutional neural networks, self-attention based models
have started to gain popularity in the past couple of years due to their successful results
in computer vision tasks such as image recognition [15], object detection [5], image gen-
eration [70], segmentation [67], and visual question answering [55]. More recently, due to
the recent success of fully self-attention based models (known in the community as “Trans-
formers”) for tasks related to Natural Language Processing (NLP) [59, 14], many researchers
started to explore these models within Computer Vision. Some recent studies have explored
the self-attention modules [71] to better understand the possibility of replacing convolutional
layers with self-attention. Last year, new models have emerged entirely based on the trans-
former architectures for image feature extraction as in Dosovitskiy et al. [15], which proved
capable of matching the results obtained by convolutional models in Computer Vision. On
the other hand, Transformers are known for having a large time and space complexity due to
the attention mechanism, which is typically quadratic in the input size. To solve this problem,
different approaches have emerged [4, 60, 72, 66] to reduce the quadratic complexity to an
approximately-linear complexity.

Considering the lack of studies related to the usage of self-attention networks on 3D
implicit reconstruction models, in this work we seek to answer the following research ques-
tions: 1) Can we improve object reconstruction using a fully self-attention neural network?;
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and 2) Is it possible to improve object reconstruction using attention but with a sub-quadratic
computational cost? To answer these questions, we have decided to employ four different
self-attention approaches for implicit 3D object reconstruction using the DR model proposed
by Niemeyer et al. [45] as the baseline work.

The remaining of this work is organized as follows. Chapter 2 presents the back-
ground for machine learning, deep learning, and 3D reconstruction from images. Chapter 3
shows related work on 3D reconstruction and self-attention models. In Chapter 4 we present
our first and second self-attention models, while in Chapter 5 we present our third and fourth
approaches. Finally, in Chapter 6, we present the conclusions of our investigations and
experiments, and we point to some interesting future work possibilities.
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2. BACKGROUND

This chapter presents a brief review of the theoretical foundation of Machine Lean-
ing (ML) (Section 2.1) and Deep Learning (DL) (Section 2.2). In Section 2.2.3, we present
a background on Transformers models, whereas in Section 2.3 we present both traditional
and learning-based methods for 3D object reconstruction from images.

2.1 Machine Learning

Machine Learning is strongly linked to several other fields of research such as Ar-
tificial Intelligence, Probability and Statistics, Computational Complexity Theory, Information
Theory, Philosophy, among others. It is considered the study of how a computer program
learns through experience. A more precise definition following [43] is given as follows:

Definition: A computer program learns through an experience E in relation to a
given class of tasks T and a performance measure P, if the performance for the tasks T
measured by P improves with E.

To perform a given task T, a program learns a mathematical function, in an approx-
imate way, which represents a distribution of a set of available data. A dataset is composed
of instances, which consist of a set of attributes and possible associated labels. Usually, this
set is divided into three parts, namely: a training set, a validation set, and a test set. The
training set is used by the program as learning data to estimate a mathematical function that
models the problem. The validation set is used to measure performance P and to select
one of the trained models. Finally, the test set is used to analyze the generalizability of the
model, and this set is never used by the models during the training stage.

Traditionally, machine learning algorithms are divided into three main categories:
supervised learning, unsupervised learning, and semi-supervised learning. There is also
reinforcement learning, though it is usually considered to be a totally distinct area from the
others, often being approached by the literature of multi-agent systems.

2.1.1 Supervised Learning

According to [44], supervised learning aims to learn how to map input data x that
result in output data y given a labeled set of input and output D = {(xi , yi)n} where D is called
the training set and n = {1, ..., N} is the number of training examples. Also according to [44],
in a standard approach, each input data xi is a vector of numbers in a space of dimension
D that can represent, by example, data related to a person’s height and weight. These
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representations are commonly called features, or attributes. However, in some approaches,
the input data xi can have a more complex object structure, such as images, sentences,
time series, graphs, etc. Some common applications related to supervised learning can be
data classification and regression.

2.1.2 Unsupervised Learning

Neural network models that use approaches based on unsupervised learning can
generate output data without the need to use labeled input data. According to [44], the
goal of unsupervised learning is to discover an "interesting structure" in a given dataset. As
opposed to supervised learning, it is not said which result is desired for each input data.
Instead, we formalize our task as a density estimate, that is, we build our model in the form
p(xi |θ), where θ is the set of desired parameters, instead of the form p(yi |xi , θ) used in su-
pervised learning [44]. Some of the tasks related to unsupervised learning are: discovering
clusters and discovering latent factors.

2.1.3 Semi-supervised Learning

According to [9], semi-supervised learning is considered as an intermediate ap-
proach between supervised learning and unsupervised learning. In addition to unlabeled
data, the algorithm is provided with some supervisory information, but not necessarily for
all examples. Often, this information will be the targets associated with some of the exam-
ples. In this case the dataset X = {xi}i∈{1,...,n} can be divided into two parts: the points Xl :=
(x1, ..., xl) for which the labels Yl := (y1, ..., yl) are given, and the points Xu := (xl+1, ..., xl+u) for
which the labels are not known.

2.2 Deep Learning

Conventional Machine Learning techniques were limited in their ability to process
natural data in its raw form. For decades, building a pattern recognition system or Machine
Learning system required careful engineering and considerable mastery of the subject to
devise a features extraction architecture that could transform this raw data into an appro-
priate representation to be used by the system or a vector of features in which a learning
system could classify or detect input patterns [32].

Deep Learning Methods are learning methods with multiple levels of representa-
tion, obtained through the composition of non-linear modules capable of transforming the
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representation at a given level into a more abstract representation [32]. Through these trans-
formations, Deep Learning methods are able to learn extremely complex functions, making
it possible to achieve state-of-the-art results for various tasks, such as image recognition
[65], speech recognition [21], generation of texts [23], and image generation [54], in addition
to several other tasks. Therefore, Deep Learning methods make use of Artificial Neural Net-
work architectures with several representative layers capable of dealing with unstructured
data.

Artificial Neural Networks (ANN) are algorithms used in the field of machine learn-
ing and deep learning inspired by the biological neural connections that constitute the brains
of animals [41]. Its structure is composed of a set of connected nodes called artificial neu-
rons. Each connection, similar to synapses generated in a brain, is capable of transmitting
a signal to other neurons, which, upon receiving these signals, process and transmit them
again to other neurons in a forward direction. In ANN, these signals correspond to repre-
sentations of input data computed by some non-linear function, and the connections that
transmit these signals correspond to weights capable of reducing or increasing the strength
of each signal in a learning process.

The best-known ANN architecture is called Multilayer Perceptron (MLP). The focus
of this architecture is to approximate a function f , for example a classifier, which maps an
entry x to a category y as follows y = f (x ; θ), where θ are the values of the parameters
that best result in the approximate function [20]. Due to the natural advance in these models
requested by more advanced tasks related to text and image processing, other types of deep
models have emerged, as the Convolutional Neural Networks, Recurrent Neural Networks,
and more recently the Transformers models.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [34] are neural networks capable of process-
ing data with a matrix geometry. Its name indicates that the network is capable of applying
mathematical operations such as convolutions [20], which are linear transformations capable
of being applied to matrix data structures. The convolution operations performed in this type
of architecture are given by the use of element-by-element operations through the multipli-
cation of matrices with the same dimension. For this, weight matrices known as Kernels are
used. Kernels then traverse the entire input array. Architectures like the one in Figure 2.1
perform several convolution operations, enabling the extraction of features at different levels
until these feature maps reach a certain dimension. Furthermore, convolution sequences
can be interspersed by activation functions, such as ReLU, and by downsizing layers, such
as the Pooling layer, as in the AlexNet architecture [31].
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Figure 2.1 – An example of a CNN architecture (LeNet-5)[34] for classification of handwritten
digits images (image from LeCun et al. [34]).

2.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) [51] are a family of neural networks proposed
for sequential data processing [20]. The purpose of this type of network is the sharing of
parameters across the network over time. Traditionally, networks of the RNN type are loop-
based networks capable of making information persist in their execution. One of the most
temporary architectures in the RNN family is the Long Short-Term Memory (LSTM) [26]
module.

This module can solve one of the main problems related to traditional recurring
networks, which are like long-term dependencies. As opposed to a traditional RNN, LSTM
modules have four internal neural networks. This type of structure allows each cell to be
able to store long-term information without knowing the time, and also allows the information
in each cell of type LSTM to be read, written, and erased.

2.2.3 Transformers

An alternative to RNN models is the self-attention [59] module. The essence of the
self-attention modules (Figure 2.2) is that they are themselves an imitation of the mechanism
of human vision. When the human vision engine detects an item, it usually does not sweep
the entire scene end-to-end. Instead, it will always focus on a specific part according to the
person’s need. When a person notices that the object they want to pay attention to usually
appears in a specific part of a scene, they will learn that, and in the future, they will look
there for the object (their attention will switch to that area).

The attention mechanism of these modules is then given by the softmax operation
as in Equation 2.1
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Figure 2.2 – An example of attention mechanism [59] (image from Vaswani et al. [59]).

Attention (Q, K , V ) = Softmax
(

QK T
√

dk

)
V (2.1)

where Q, K , and V ∈ Rn×m are the input feature matrices, and dk is the dimension of K .
This function results in a matrix of weights that have a value distribution between 0 and 1.
These values are then applied to the V matrix.

Figure 2.3 – Transformer model proposed by [59] (image from Vaswani et al. [59]).

The Transformers [59] models are considered as a sequence of attention blocks,
where these blocks are composed of an attention mechanism with a residual connection
followed by a linear layer with another residual connection (Figure 2.3). The Transformers
model proposed by Vaswani et al. [59] has shown great promise in NLP tasks, and recently
this transformer architecture was extended to computer vision tasks.
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2.3 3D Reconstruction

The reconstruction of three-dimensional geometries is a technique for retrieving
information about a three-dimensional structure or space based on direct measurements
or through methods based on stereo images [12]. The 3D reconstruction area is directly
related to the classical Computer Vision area and several types of researches have been
implemented in this field for decades. Due to the evolution of 3D reconstruction techniques
and also systems capable of performing large amounts of computational calculations in less
time, its applications have been expanded to several areas such as engineering, architec-
ture, and medicine, in addition to more specific applications such as 3D printers, robotics,
and autonomous cars. However, currently, 3D reconstruction is not limited only to traditional
methods, but several ways to perform 3D reconstruction using approaches based on Deep
Learning are also being researched. Next, some traditional 3D reconstruction techniques
will be discussed, as well as current learning-based methods and their characteristics.

2.3.1 Traditional Methods

Traditional 3D reconstruction methods can be divided into two main categories: Ac-
tive Methods and Passive Methods [16]. The main characteristics of active methods are the
use of devices to obtain data from the distance and shape of objects mechanically, that is,
using equipment prepared with sensors capable of interpreting the radiance reflected by the
objects, such as laser or ultrasound measuring equipment. However, due to its implemen-
tation complexity, active methods will not be discussed in this work. Passive methods, on
the other hand, have as their main characteristic the non-direct interference with the objects
to be reconstructed, thus, how data are obtained for the reconstruction passively is given
through the use of images. A more precise definition of image-based 3D reconstruction
methods according to Furukawa et al. [16] is given as follows:

Definition: Given a set of photographs of objects or scenes, estimate a 3D form
that comes closest to explaining these photographs, assuming knowledge about materials,
viewpoints, and lighting conditions.

Among the passive methods, we can cite methods based on the use of one or more
images, such as the Shape by Shade, Photometric Stereo and Shape by Texture methods,
and also methods based on multiple viewing angles using multiple images, such as Multi-
View Stereo (MVS). The Shape by Shading method is used to reconstruct a 3D geometry by
analyzing the variation in the intensity of the luminosity of an image. Due to the fact that as
the normal vector varies on a three-dimensional surface, hence the brightness of this image
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also varies as a function of the angle of the normal vector orientation of a given surface
location with incident illumination in this region [12].

Assuming a knowing distant light source, an observer, and assuming that the object
surface is a uniform albedo, the variation in radiation is considered as a local function of the
surface orientation,

I(x , y ) = R(p(x , y ), q(x , y )) (2.2)

where R(p, q) is the reflectance map, that is, a proportion of the incident radiation flux and the
radiation reflected by the surface, and (p, q) = (zx , zy ) are the depth maps. In order to be able
to reconstruct the surface, it is then necessary to discover the values of the orientation fields
(p, q) and carry out the integration of these values in space. According to [12], considering
that the surface is diffuse (Lambertian) it is possible to assume that the reflectance map is
the scalar product of the normal surface. n̂ = (p, q, 1)/

√
1 + p2 + q2 and the direction of the

light source υ = (υx , υy , υz),

R(p, q) = max

(
0, ρ

pυx + qυy + υz√
1 + p2 + q2

)
(2.3)

where ρ is the surface reflectance factor (albedo). So, as the values related to light source
and observer are known, it is possible to estimate through the Equations (2.2-2.3), the values
of (p, q) using, for example, the nonlinear least-squares method.

The Photometric Stereo method is very similar to the previous method, but its differ-
ence is due to the possibility of using multiple light sources that can be selectively turned on
or off, thus being considered a more reliable method compared to the Shading from Shape
method [12]. The Shape by Texture method, on the other hand, requires several processing
steps, including the extraction of repeated patterns or the measurement of local frequencies
to calculate local deformations, and a subsequent step to infer the local orientation of the
surface [12].

However, the previous three methods only have the ability to reconstruct a three-
dimensional projection of a single view of the image, making the reconstruction process
more complex. One of the most used solutions today for a complete reconstruction of a
three-dimensional object or scene is the MVS. From a set of images in different views, it
is possible to generate a correspondence between pixels of each image using a MVS ap-
proach. According to Furukawa et al. [16], given a pixel in an image, finding the correspond-
ing pixel in another image requires two ingredients:

• An efficient way to generate possible candidate pixels in other images.

• A measure to determine the probability that a given candidate is the right one.
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Given then a pixel in an image, we can consider that assuming an optical ray that
passes through that pixel and the center of the camera in an image, the corresponding pixel
in another image can only also be over the projection of this optical ray, as can be seen
in Figure 2.4. The MVS approach has the advantage of being easy to implement some of
its standard algorithms, in addition to rebuilding objects with excellent quality according to
the number of views used in the process. However, there are still some limitations of this
method. According to Furukawa et al. [16], some cases where the reconstruction process
is flawed are: non-Lambertian surfaces (e.g. metallic or transparent surfaces), surfaces with
little texture, and surfaces with very fine structures. These disadvantages are due to the
difficulty in finding correspondences between pixels between pairs of images.

Figure 2.4 – 3D reconstruction using the MVS method. Given a set of images (left), it is
possible to estimate the three-dimensional geometry (right) of the object or scene of these
images, finding the correspondence between the pixels of each image [16]

2.3.2 Learning-based Methods

The use of methods based on machine learning for three-dimensional reconstruc-
tion of objects or scenes is based largely on the intrinsic capacity of human beings to be
able to infer dimensions and geometries of these objects using only their vision and their
prior knowledge of other objects or similar scenes. In addition, the growing amount of gen-
erated data sets and the advancement of new technologies capable of assisting in com-
puting a large volume of information enabled research to be carried out in the field of 3D
reconstruction using traditional approaches in the area of deep learning.

Although this type of approach is very recent compared to traditional methods,
several studies have shown very promising results. The first works relating to this type of
approach date back to 2015 [22]. Since then, the number of publications has increased sig-
nificantly, always bringing new features and improvements related to the reconstruction of
three-dimensional models, and due to this increase, companies such as NVIDIA and Face-
book have also brought advances in this area, such as libraries Kaolin [28] and PyTorch 3D
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[48], capable of helping to speed up the 3D reconstruction process. This advance is mainly
due to the ability of this type of approach to infer a complete volumetric representation of the
object or scene without the need to use a lot of information as input. With the use of deep
neural networks, according to [22] we can formulate the learning-based 3D reconstruction
problem as follows:

Definition: Let I = {Ik , k = 1, ..., n} be a set of one or more RGB images of one or
more objects X contained in those images. The 3D reconstruction is performed through the
process of learning a predictor fθ capable of inferring a shape X̂ that is as close as possible
to a unknown shape X . In other words, the function fθ is the minimizer of the error function
L(I) = d(fθ(I), X ), where θ is the parameter set of f , and d(., .) is a measure of distance
between the target shape X and the reconstructed form f (I).

There are in the literature different architectures and data structures used for 3D
reconstruction using deep neural networks and traditional methods. Currently, many re-
searchers are looking for improvements in learning based 3D reconstruction using only RGB
images, due to its ease of use in different types of neural networks and the great availability
of data to be used in training these networks. However, there are other types of structures
used, as indicated in Figure 2.5. These structures can be used both as input and output in
some models of neural networks, but the use of these types of structures as input ends up
bringing great difficulties in terms of memory and adaptation in several existing algorithms.

Figure 2.5 – Representation of data structures used in learning-based 3D reconstruction
methods: a) depth-maps, b) voxels, c) point clouds, and d) meshes.

Depth-Maps type structures are images that contains information about the dis-
tance of the surface of an object from a camera viewpoint. Depth-Maps are commonly used
as input data because in addition to the information of the RGB channels of the images, this
type of structure has depth information, which in turn helps in the quality of reconstructed 3D
models, but its disadvantage is the limited amount of data available for training. Voxel-type
structures are considered three-dimensional representations of pixels. This type of structure
has the advantage of being easy to be used both as input and output data in many deep
neural network architectures, but it has a high memory consumption for reconstructing 3D
models with a high degree of structural detail. The Point-Clouds type structure are a collec-
tion of points, positioned in a 3D space, that represents the surface of and object. This type
of structure is little used in learning-based 3D reconstruction because it is difficult to imple-
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ment in many neural network architectures, and also has a high memory cost. Its advantage
lies in the quality of the surface representation of the 3D model. Finally, the mesh-type
structure is a collection of vertices and faces that can represent the boundary of an object,
and has the advantage of its low memory consumption, but there are still many difficulties in
using this type of structure as an input in several neural network architectures. Due to these
reasons, this work will present approaches that use RGB images as input to learning-based
3D reconstruction models and don’t need 3D models as labels for training process.

Another important factor to be considered is the amount of data used for training
deep neural networks for 3D reconstruction. There are currently several datasets available,
such as those in Table 2.1. Datasets with a large volume of information such as images
and 3D models referring to these images help in the training of models based on supervised
learning, which are the most used in 3D reconstruction research. In addition, there are
specific datasets for certain types of tasks, such as data for reconstructing human bodies
and data for reconstructing certain types of objects.

Table 2.1 – Most popular datasets used in learning-based models for 3D reconstruction.
N° Img. N° Categ. Obj. per Img. 3D Ground Truth

Pascal 3D [64] 30,899 12 Multiple Yes
ShapeNet [8] 51,300 55 Single Yes
ModelNet [63] 127,915 662 Single No

Pix-3D [56] 9,531 9 Single Yes

It is also possible to separate 3D reconstruction methods based on learning by
the type of neural network architecture according to the data structure used. According to
Gao et al. [17], 3D reconstruction methods from RGB images are capable of using most
types of deep neural network architectures, such as Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN). Other types of data structures like Point Clouds
and Meshes end up being restricted to a few types of architectures, such as Variational
Autoencoders, and Graph CNNs. In addition, methods that use RGB images for 3D recon-
struction also benefit from the ability to use more than one type of network architecture in a
single model, making use of the advantages of each architecture to solve problems related
to 3D reconstruction, such as thin details in the 3D structures or voids contained in these
3D shapes. Finally, recent work has proposed a new method for 3D reconstruction, known
as Differentiable Rendering. The main advantage of this method is that it doesn’t need to
use a 3D object as the ground truth for learning-based models. Kato et al. [29] presents
a differentiable rendering model that can take different types of data as shape and camera
parameters as input and outputs an RGB image or Depth image. Also, as presented in Kato
et al. [29] a differentiable renderer computes the gradients of the output with respect to the
input parameters to optimize a loss function, but the computation of the gradients should
be accurate enough to propagate meaningful information required to minimize the objective
function.
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3. RELATED WORK

In this section, we briefly present different strategies that we could find in the lit-
erature related to the following topics: self-attention-based networks used in the 3D recon-
struction pipeline for computer vision tasks; different transformer backbone models for vision
tasks; and finally, transformer models that aim to optimize the computational cost of the at-
tention mechanism.

Self-Attention in 3D Reconstruction: studies that present self-attention-based
models for 3D reconstruction are the work from Salvi et al. [52], and from Lin et al. [37].
In Salvi et al. [52], the authors explore the usage of the self-attention module proposed by
Zhang et al. [70] inside the encoder of the model proposed by Mescheder et al. [42] for
3D object reconstruction. On the other hand, in Lin et al. [37], the authors present a new
method for 3D hand reconstruction in the wild, using a self-attention-based encoder-decoder
network.

Vision Transformer Backbone: the work proposed by Carion et al. [7] and by
Dosovitskiy et al. [15] present new learning models based on self-attention, but with similar
architectures to the Transformers models used in NLP tasks, and in addition, they compared
those models with Convolutional Neural Networks. In Carion et al. [7], a Transformer model
called DETR is proposed for object detection. This model has as characteristics an encoder-
decoder type architecture, in which the encoder is in charge of extracting information from a
set of features processed by a Convolutional Neural Network, and the decoder is in charge of
using the information extracted by the encoder in order to detect a certain number of objects
in an image

Unlike the model proposed by [7], the work published by Dosovitskiy et al. [15]
presents a Vision Transformer (ViT) architecture capable of being used as a backbone in
neural network models for image classification. The ViT model has a structure supported
only by an encoder, having as its main characteristic the use of image patches as input and
a positional encoding system to ensure the extraction of information from a patch referring
to its position concerning the original feature. The experiments performed by Dosovitskiy et
al. [15] were related to image classification for different datasets, comparing the proposed
ViT model with ResNet models.

In [68] a new Transformer model is presented, called Token-To-Token (T2T), and it
is based on the model proposed by Dosovitskiy et al. [15]. The T2T model aims to add one
more step of dividing the network input patches, further reducing the total size of the input
feature sequence in the self-attention modules. In addition, other encoder modifications
were made. According to [68], the backbone of the ViT model proposed by Dosovitskiy et
al. [15] had a much larger number of parameters than some convolutional models. The
T2T model has a backbone structure similar to ViT, but with 2 more layers and with smaller
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hidden dimensions. This modification made the structure of the T2T model comparable to
other convolutional models in terms of number of parameters.

As in Yuan et al. [68], the work proposed by Touvron et al. [57] was also based
on the model proposed by Dosovitskiy et al. [15], but a new learning technique was used to
improve the results in image classification, and also to produce a more efficient model, that
is, a smaller model with less computational cost. The approach used by Touvron et al. [57]
was the implementation of a training process known as Knowledge Distillation.

In the work proposed by Wang et al. [61] and by Jaegle et al. [27], new Transform-
ers models that could be used as a backbone for various tasks in the field of Computer Vision
were proposed. In Jaegle et al. [27] a Transformer model is proposed, and its structure is
based mainly on two components: 1) a cross-attention module, where a byte array (e.g., pix-
els of an image) and a latent array are mapped to a latent array, and 2) a Transformer tower
that also maps a latent array to a latent array. In the experiments performed by Jaegle et al.
[27], analyses were performed in several tasks using the developed Transformers model.

The work proposed by Raghu et al. [46] aimed to explore the ability of Transformer
models to learn image representations as in convolutional models. In Raghu et al. [46],
the internal representations of each layer generated by the ViT model and by the ResNet
model were analyzed individually. The results proposed by Raghu et al. [46] showed that
the representations computed by the ViT model in the initial layers were different from those
computed by the ResNet model and that the ViT model was able to propagate more informa-
tion in the initial layers than the ResNet model. Furthermore, analyzing the results obtained
regarding the transport of local and global information by the models, it was observed that
the ViT model accesses more global information from the input data in the first layers of the
network than the ResNet model.

Transformer Optimization: some recent work have proposed different approaches
for transformer optimization, i.e., reduce its computational cost related to the self-attention
mechanism. The Longformer [4] and Big Bird [69] models have a similar approach to re-
ducing the spatial and temporal complexity of self-attention mechanisms. Longformer [4]
has a sliding local window attention mechanism, but it depends on the depth of the neural
network to "recover" some information from initial layers. In addition, they show that adding
a global attention mechanism could still reduce the complexity of the mechanism, but it re-
quires some engineering for choosing special attention points for self-attention computation.
The Big Bird [69] model is similar to Longformer [4], but they add a new mechanism called
random attention.

The Linformer [60] model has reduced the computation by approximating the self-
attention mechanism to a low-rank matrix, i.e., a matrix projection in a lower dimension that
contains similar information, and more recently the Performer [72] model has approximated a
self-attention mechanism by decomposing the softmax computation using a kernel function
that approximate the inner product.
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4. SELF-ATTENTION BASED 3D RECONSTRUCTION APPROACH

Inspired by the proposed approach of Salvi et al. [52] that uses the self-attention
module in conjunction with a CNN for implicit 3D reconstruction, as well as by the advan-
tage of new approaches of fully self-attention-based neural networks in Computer Vision, in
this chapter we present the following content: Section 4.1 presents the baseline model for
3D reconstruction that we use as our pipeline for all our experiments; Section 4.2 presents
our first approach using self-attention layers in conjunction with convolutional layers, while
Section 4.3 presents a full self-attention encoder. Finally, in Section 4.4 all the experimental
setup is presented, and in Section 4.5 we report our results for these two proposed ap-
proaches.

4.1 Baseline

In this work, we have used the DVR (Differentiable Volumetric Rendering) model
proposed by Niemeyer et al. [45] as our baseline for 3D reconstruction. DVR is an implicit
object mesh and texture reconstruction model that uses the volumetric rendering process to
predict the object depth map from an image. The decision to use the DVR model is mainly
due to: 1) the use of volumetric rendering based on the rasterization process, which makes
the process inherently differentiable, that is, it is possible to use only images and information
of the positions of objects to have an end-to-end learning process, no longer being neces-
sary to use meshes as supervision; 2) there is no need to condition the representation of
texture in geometry, i.e., the model shares parameters of both geometry and texture; and
3) the DVR model makes it possible to reconstruct 3D objects for single or multi-view images
using the same architecture.

As in Mescheder et al. [42], the model proposed by Niemeyer et al. [45] represents
the 3D shape of an object implicitly given by an occupancy function as follow:

fθ : R3 ×X → [0, 1] (4.1)

where for each point p ∈ R3 in a tridimensional space, the occupancy function fθ(p, z),
where z are the input images, gives for each point a probability between 0 and 1, similarly to
a classification neural network. The surface of an object is determined by fθ = τ where τ ∈
[0, 1] is a pre-defined parameter that determines the surface level of an object by indicating
if a given value is located inside or outside of an object. Once the surface points are defined,
it is possible to extract the object mesh using the marching cube algorithm [40].

Similarly, the DVR [45] model is also capable of extracting the texture information
of an object as follow:
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tθ : R3 ×X → R3 (4.2)

which returns the information of the colors from RGB channels for each point p ∈ R3 in a
tridimensional space. The values of the texture tθ of an object are given by the object surface
(fθ = τ ). Both occupancy probabilities fθ and texture field tθ are given by the same neural
network.

The DVR [45] pipeline initially processes an image by an encoder where its features
are extracted, and in parallel, an initial set of N points relative to random positions in a three-
dimensional cartesian space is sampled from latent space. Then, both the set of cartesian
points and the image features are processed by a decoder, where the output is a set of N
cartesian points with information related to the occupancy function and a set of N points with
information related to texture.

The encoder-decoder architecture of the DVR [45] model is illustrated in Figure 4.1,
where the encoder is a ResNet [24] neural network and the decoder is a fully-connected
neural network with residual connections. The original encoder is made of five ResNet-
18 [24] layers and a fully-connected layer with a dimension of 256, and the output of the
encoder are passed through five fully connected blocks with residual connections using a
ReLU[19] activation function and a hidden dimension of 512 for 2.5D supervision or 128
for 2D supervision. The output of the final fully-connected block is then passed through
one fully-connected layer with an output of dimension 4, one of them for the occupancy
probabilities and the other three for the RGB color values.

Figure 4.1 – The encoder-decoder pipeline of the DVR model [45] for texture and occupancy
points extraction. The original encoder is composed of a ResNet-18 model that has an
output of 256-dimension following by a linear block with a 512-dimension for the 2.5D super-
vision process (RGB and depth supervision), or a linear block with a 128-dimension for 2D
supervision process (only RGB supervision). The decoder is composed of fully-connected
layers with residual connections. The output is a single points matrix with a depth dimension
of 4, one for ocuppancy points and the other three for texture points.
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Next, with the generated occupancy and texture information, the network starts to
predict the depth map of an object. As described in Niemeyer et al. [45], by sampling points
as pixels in a 2D plane given by a camera matrix information, lines are sampled using the ray
casting method from the camera location through each sampled point in the plane. For each
ray, they search for points on the ray that indicates the change from free space to occupied
space by evaluating the occupancy prediction fθ. Those changes on each sampled ray can
be used to find the depth values corresponding to a given camera matrix. In the next step,
each surface depth point is unprojected and evaluated using the texture field information at
the given 3D location. The resulting 2D rendering is compared to the ground truth image.
If the ground truth depth maps are available, it is possible to define a loss directly on the
predicted surface depth.

The learning process proposed by Niemeyer et al. [45] just needs the information
from the 2D image, allowing the network to learn by the given reconstruction loss:

L(Î, I) =
∑

u

||Îu − Iu|| (4.3)

where I is the observed image, Î is the rendered image, u indicates the image pixel and ||.||
is the photo-consistency measure as l1 − norm. To minimize the loss function, Niemeyer et
al. [45] proposed a approach for the rendering process given Î and u, and also find a closed
analytic expression to compute the gradients related to network parameters θ.

To obtain the gradients of L with respect to network parameters θ, it is first used
the multivariate chain rule:

∂L
∂θ

=
∑

u

∂L
∂ Îu

· ∂ Îu
∂θ

(4.4)

and by exploiting Îu = tθ(p̂) as presented in Niemeyer et al. [45], it is possible to obtain

∂ Îu
∂θ

=
∂tθ(p̂)
∂θ

+
∂tθ(p̂)
∂p̂

· ∂p̂
∂θ

(4.5)

where p̂ denotes the first ray casting point of intersection with the isosurface {p ∈ R3|fθ(p) =
τ}. For a camera located at r0, the ray can be described, for any pixel u, by r(d) = r0 + dw,
where w is the vector connecting r0 and u. Since p̂ lies on r as described by Niemeyer et al.
[45], there exist a depth value d̂, such that p̂ = r(d̂), and ∂p̂

∂θ
can be reformulated as:

∂p̂
∂θ

=
∂r(d̂)
∂θ

= w
∂d̂
∂θ

(4.6)

Then, for computing the gradient of the surface depth d̂ wrt. θ, Niemeyer et al.
[45] exploited the Implicit Differentiation as in Walter Rudin et al. [50]. So, by differentiating
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fθ(p̂) = τ on both sides with respect to θ, Niemeyer et al. [45] have demonstrated that it is
possible to obtain:

∂fθ(p̂)
∂θ

+
∂fθ(p̂)
∂p̂

· ∂p̂
∂θ

= 0

⇔ ∂fθ(p̂)
∂θ

+
∂fθ(p̂)
∂p̂

· w
∂d̂
∂θ

= 0
(4.7)

Finally, from rearranging the Eq 4.7 it is possible to reach the closed form expres-
sion for the gradient of the surface depth d̂:

∂d̂
∂θ

= −
(
∂fθ(p̂)
∂p̂

· w
)−1

∂fθ(p̂)
∂θ

(4.8)

Niemeyer et al. [45] remark that calculating the gradient of the surface depth d̂ wrt.
the network parameters θ only involves calculating the gradient of fθ at p̂ wrt. the network
parameters θ and the surface point p̂. As a result, they do not need to store intermediate re-
sults like volumetric data generated by voxel-based approaches for computing the gradients,
resulting in a lower memory consumption than other related works.

Finally, the forward and backward pass for the surface depth prediction for the au-
tomatic differentiation proposed by Niemeyer et al. [45] can be described. In the forward
pass the surface depth d̂ can be determined by finding the first occupancy change on the
ray r. To do that, the occupancy network are evaluated at n equally-spaced points on the ray
{pray

j }n
j=1, and using a step size of ∆s, the coordinates of the points in a cartesian space can

be expressed as:

pray
j = r(j∆s + s0), (4.9)

where s0 denotes the closest possible surface point. According to Niemeyer et al. [45], it
is possible to find the smallest j for which fθ changes from free space (fθ < τ ) to occupied
space (fθ ≥ τ ) as follow:

j = argmin
j ′

(
fθ(p

ray
j ′+1) ≥ τ > fθ(p

ray
j ′ )
)

(4.10)

Then, to obtain the approximation of the surface depth, the secant method is ap-
plied to the interval [j∆s + s0, (j + 1)∆s + s0] as proposed by Niemeyer et al. [45].

In the backward pass, the input to the backward pass λ = ∂L
∂d̂

is the gradient of the
loss with regard to a single surface depth prediction. The output of the backward pass is
λ∂d̂

∂θ
, which can be computed using Eq. 4.8. The backward pass is implemented for the hole

batch of depth values d̂. Niemeyer et al. [45] implement this efficiently by rewriting λ∂d̂
∂θ

as:



41

λ
∂d̂
∂θ

= µ
∂fθ(p̂)
∂θ

(4.11)

and

µ = −
(
∂fθ(p̂)
∂p̂

· w
)−1

λ (4.12)

where the right term in Eq. 4.11 corresponds to a normal backward operation applied to
the neural network fθ and Eq. 4.12 indicates an element-wise scalar multiplication for all
elements in the batch of depth values as indicated by Niemeyer et al. [45].

During training, N images are given {Ik}N
k=1 together with corresponding camera

intrinsics, extrinsics, and object masks {Mk
N
k=1}. The model can also incorporate depth

information {Dk
N
k=1}, if it is available. For training fθ and tθ, an image Ik and Np points u are

random sampled on the image plane. There are three distinguish cases: first, P0 denote
the set of points u that lie inside the object mask Mk and for which the occupancy network
predicts a finite surface depth d̂. For these points it is possible to define a loss LRGB(θ)
directly on the predicted image Îk . Moreover, P1 denote the points u which lie outside the
object mask Mk . It is possible to define a loss Lfreespace(θ) that encourages the network to
remove spurious geometry along corresponding rays. Finally, P2 denote the set of points u
which lie inside the object mask Mk , but for which the occupancy network does not predict
a finite surface depth d̂. It is also possible to define a loss Loccupancy (θ) that encourages the
network to produce a finite surface depth. The depth loss Ldepth(θ) can be used when the
depth information of an object are given. The normal loss Lnormal(θ) can also be used on the
surface points to incorporate the prior belief that surfaces are predominantly smooth. It acts
as a geometric regularizer and can be in particular useful for real-world scenarios where the
reconstruction problem might be less constrained and noisier.

The final loss for a sampled view is given by the sum of the components L(θ) as
follow:

L(θ) = λ0LRGB(θ)

+ λ1Ldepth(θ)

+ λ2Lnormal(θ)

+ λ3Lfreespace(θ)

+ λ4Loccupancy (θ)

(4.13)

where λi are the loss weight, and i = 0, ..., 4. The values of the loss weights proposed by
Niemeyer et al. [45] are: λ0 = λ3 = λ4 = 1, λ1 = 0 for 2D supervision or λ1 = 10 for 2.5D
supervision, and λ2 = 0.1. The photo-consistency loss LRGB(θ) for each point P0 can be
defined as:
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LRGB(θ) =
∑
u∈P0

||ξ(Iu) − ξ(Îu)|| (4.14)

where ξ(·) computes image features and || · || defines a robust error metric. As showed in
Niemeyer et al. [45], the RGB-values are used and (optionally) image gradients as features
and an l1-loss for || · ||. The depth loss can be directly incorporated as l1-loss on the predict
surface depth as:

Ldepth(θ) =
∑
u∈P0

|d − d̂|1 (4.15)

where d indicates the ground truth depth value of the sampled image point u and d̂ denotes
the predicted surface depth for pixel u.

To penalize if a point u lies outside the object mask but the predicted surface depth
d̂ is finite, Niemeyer et al. [45] proposed the freespace loss that can be used as:

Lfreespace(θ) =
∑
u∈P1

BCE(fθ(p̂), 0) (4.16)

where BCE is the binary cross-entropy. When no surface depth is predicted, the freespace
loss is applied to a randomly sampled point on the ray, and if a point u lies inside the object
mask but the predicted surface depth d̂ is infinite, the network falsely predicts no surface
points on ray r. To encourage predicting occupied space on this ray, Niemeyer et al. [45]
proposed to sample the depth value of the first point on the ray which lies inside all object
masks (depth of the visual hull) d and define

Loccupancy (θ) =
∑
u∈P2

BCE(fθ(r(d), 1) (4.17)

where, intuitively, Loccupancy (θ) encourages the network to occupy space along the respective
rays which can then be used by LRGB(θ) and Ldepth(θ) to refine the initial occupancy. Op-
tionally, the representation proposed by Niemeyer et al. [45] incorporate a smoothness prior
by regularizing surface normals. This is useful especially for real-world data as training with
2D or 2.5D supervision includes unconstrained areas where this prior enforces more natural
shapes. This loss is defined as:

Lnormal(θ) =
∑
u∈P0

||n(p̂u) − n(qu)||2 (4.18)

where n(·) denotes the normal vector, p̂u the predicted surface point and qu a randomly
sampled neighbor of p̂u.

To evaluate the model, Niemeyer et al. [45] have used the accuracy and complete-
ness values which are the (mean) Euclidean distances from the prediction to the ground
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truth and from the ground truth to the prediction, respectively. After the training process, the
DVR network predicts the occupancy probability for an object image input and reconstructs
the object by using the marching cubes algorithm. Then, the predicted surface can be eval-
uated using the ground truth mesh available in the ShapeNet dataset. For the evaluation
process, 100, 000 points are sampled from the prediction and the ground truth mesh. The
accuracy and completeness equations presented in Niemeyer et al. [45] are described as
follow:

Accuracy(Spred |SGT ) :=
1

Spred

∫
p∈Spred

min
q∈SGT

||p − q||2dp (4.19)

Completeness(Spred |SGT ) :=
1

SGT

∫
p∈SGT

min
q∈Spred

||p − q||2dp (4.20)

where more formally, let us define the ground truth and predicted surface of a 3D shape as
SGT and Spred , respectively. Since there is an inherent trade-off between accuracy and com-
pleteness, analyzing them separately provides only little useful information. For instance, it
is possible to achieve a good completeness score (at the expense of accuracy) by predicting
a lot of spurious geometry. Similarly, a good accuracy score can be achieved (at the expense
of completeness) by predicting only a small fraction of the object where the method is most
certain. For all experiments, Niemeyer et al. [45] report the Chamfer-L1 [42] distance which
is the mean of the two entities:

Chamfer − L1(Spred |SGT ) :=
1
2

(Accuracy(Spred |SGT )

+ Completeness(Spred |SGT ))
(4.21)

4.2 Self-Attention Layers Approach

Our first approach is to use self-attention layers in a different domain in a similar
fashion as proposed by Salvi et al. [52]. To do that, we have implemented the SAGAN self-
attention module proposed by Zhang et al. [70]. By using self-attention layers in conjunction
with convolutional layers, we could leverage the model to better extract local and global in-
formation [62, 3]. The self-attention GAN (SAGAN) is a Generative Adversarial Network
(GAN) that allows attention-driven, long-range dependency modeling for image generation
tasks. To do so, they developed a self-attention module that is complementary to convolu-
tions and helps with modeling long-range, multi-level dependencies across image regions,
as illustrated in Figure 4.2.
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Figure 4.2 – Illustration of SAGAN Self-Attention module [70] used in conjunction with con-
volutional layers in our experiments.

The SAGAN self-attention module can be easily linked to a CNN layer. As de-
scribed in Zhang et al. [70], the features from the previous layer x ∈ RC×N , where C is the
number of channels and N is the number of feature locations of features, are first transformed
into two feature spaces F, G to calculate the attention, where F(x) = WFx, G(x) = WGx. Then,
to extract the attention map from those feature spaces, the Softmax function is applied to
the features multiplication of the transposed F(x) and G(x), as follow:

ζj ,i =
exp(si ,j)∑N
i=1 exp(si ,j)

, (4.22)

where si ,j = F(xi)T G(xj), ζi ,j indicates the extent to which the model attends to the i th location
when synthesizing the j th region. Then, the output of the self-attention module is described
as follow:
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o = V

(
N∑

i=1

ζj ,iH(xi)

)
, (4.23)

where o ∈ RC×N , V(x) = WVx, H(x) = WHx, and WF, WG, WH, and WV are the learned weight
matrices.

As a result, Zhang et al. further multiply the output of the attention layer by a scale
parameter and add back the input feature map, so the final output is given by,

yi = ηoi + xi, (4.24)

where η is a learnable parameter that allows the network to first rely on the cues in the local
neighborhood and then gradually learn to assign more weight to the non-local evidence [70].
We hypothesize that by applying the SAGAN self-attention module in different parts of the
encoder from DVR, we could improve the baseline model results in a similar way as in Salvi
et al. [52] and Ramachandran et al. [47], where applying the self-attention layers at the final
layers of the encoder could leverage the encoder’s capability of feature extraction.

4.3 Patchwise Self-Attention Approach

Patchwise Self-Attention is a model proposed by Zhao et al. [71], where the ag-
gregation operations are performed by self-attention blocks and transformation operations
are performed by an element-wise perceptron layer. It was observed in Zhao et al. [71]
that traditional convolutional networks are divided into two types of functions: 1) aggrega-
tion functions, where convolutional operations are performed between map resources and
kernels, and 2) transformation functions, where they are performed as operations of linear
mapping and operations with non-linear functions. From these observations, Zhao et al. has
proposed the usage of vectorized self-attention blocks as aggregation operations.

The vectorized self-attention block proposed by Zhao et al. is described as follows:

yi =
∑

j∈R(i)

α(xR(i))j ⊙ β(xj), (4.25)

where ⊙ is the Hadamard product, R(i) is the local footprint of the aggregation and xR(i) is
the patch of feature vectors in R(i). α(xR(i)) is a adaptive weight tensor of the same spatial
dimensionality as the patch xR(i), and α(xR(i))j is the vector at location j in this tensor, corre-
sponding spatially to the vector xj in xR(i). The function β produces the feature vectors β(xj)
that are aggregated by α. The vectorized self-attention block is not permutation-invariant
or cardinality-invariant, i.e., the weight computation α(xR(i)) can index the feature vectors
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xj individually, by location, and can intermix information from feature vectors from different
locations within the footprint.

The α(xR(i)) can be decomposed as follows:

α(xR(i)) = γ(δ(xR(i))), (4.26)

where γ is a function that performs the transformation operations and δ(xR(i)) is a concatena-
tion function that combines the feature vectors xj from the patch xR(i) and can be described
as follows:

δ(xR(i)) = [φ(xi), [ψ(xj)]∀j∈R(i)], (4.27)

where φ and ψ are trainable transformations such as linear mappings and have matching
output dimensionality. The Vectorized Self-Attention Block is illustrated in Figure 4.3.

Figure 4.3 – The vectorized self-attention block [71]. C denote the channel dimension, ⊕
denotes the direct sum, the left branch calculates the attention weights α = γ(δ(x)), by
computing the function δ (via the mappings φ and ψ) and a subsequent mapping γ, while
the right branch transforms features using a linear mapping β. r1 and r2 denote the factors
by which both branches reduce channel dimension for efficient processing.

In Zhao et al., the Patchwise Self-Attention network architectures are called SANX,
where X refers to the number of vectorized self-Attention blocks. They have proposed three
types of SANX architectures - SAN10, SAN15, and SAN19. Those architectures are cor-
respondent to ResNet26 [25], ResNet38 [24], and ResNet50 [24] respectively. All three
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SANX proposed by Zhao et al. perform better than the correspondent ResNet architectures
in image recognition tasks. Besides that, all three Patchwise Self-Attention architectures
have fewer than 35% network parameters and 35% fewer Floating Point Operations (FLOP)
than all corresponding ResNet architectures. Considering that self-attention modules are
highly computational expensive, our intuition is that we could obtain similar results with less
memory consumption, allowing future improvements as hyperparameters optimization or ar-
chitecture modifications.

4.4 Experiments

For our implementation using the SAGAN Self-Attention module as in Section 4.2,
we have modified the original DVR encoder to fit the self-attention module after each ResNet
layer as illustrated in Figure 4.4. We have decided to experiment with the SAGAN self-
attention module only for 2.5D single-view supervision and 2D multi-view supervision, con-
sidering that we can reproduce the same behavior from 2D multi-view supervision to 2.5D
multi-view supervision. For both types of supervision, we have modified the encoder in three
ways as presented in Salvi et al.[52]. First, we have trained the DVR network by applying
the self-attention module after each ResNet layer inside the encoder. Then, for the second
experiment, we have trained the DVR network by applying the self-attention module just after
the ResNet layers 1 and 2, and for the last experiment, we have trained the DVR network by
applying the self-attention module just after the ResNet layers 3 and 4.

Figure 4.4 – The representation of the original encoder from DVR [45] with the SAGAN self-
attention module (yellow blocks) after each ResNet layer (red blocks)

Then, for our implementation of the Patchwise Self-Attention network illustrated in
Figure 4.5, where we have decided to remove the ResNet encoder from the original im-
plementation of the DVR model, and experiment with the SAN10 Patchwise self-attention
network explained in Section 4.3 as an encoder. The SAN10 model implemented in this
work was not pre-trained. We have decided to experiment with the SAN10 architecture for
2D multi-view supervision, and 2.5D multi-view supervision. We did not experiment with the
SAN10 for 2.5D multi-view supervision due to its high computational cost and consequently
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a reduction of the batch size. For these experiments, we have decided to use the same
architecture. We have only modified the final transition layer from the original Patchwise
implementation, from [1000 × 1 × 1] dimension to [256 × 1 × 1] dimension to fit the DVR
network.

Figure 4.5 – The illustration of Patchwise Self-Attention (SAN10) architecture as an encoder,
where the blue blocks correspond to transition blocks and red blocks correspond to SA Block.
The number inside each red block corresponds to the amount of the respective block are
connected after the transition block.

We have followed the training protocol as in Niemeyer et al. [45], starting with a
ray sampling accuracy of n = 16 which is iteratively increased to n = 128 by doubling n after
200, 600, and 1000 thousand iterations. We also set τ = 0.5 for all experiments according
to the baseline model. We train on a single NVIDIA GTX 1080 GPU with a sample of 1024
random points. We use the Adam optimizer [30] with learning rate lr = 10−4. We have
trained the DVR model using the ResNet18, SAGAN self-attention module, and SAN10 for
260 thousand epochs in 2D multi-view supervision, and for 2.5D single-view supervision
training process we have decided to train the ResNet18 and SAGAN self-attention module
for 260 epochs, and the SAN10 for 500 epochs considering that the network was not pre-
trained and the lack of multiple object views. The dataset that was used for training and
evaluation steps is the ShapeNet [8], which consists of 13 object classes with 24 images of
resolution 2562, camera matrix, depth maps, and object masks per object which are used
for supervision as in Niemeyer et al. [45]. For multi-view supervision, we have used a batch
size of 16 images for 2D supervision and a batch size of 4 images for 2.5D supervision, and
for single-view supervision, we have used a batch size of 16 images in 2.5D supervision.

4.5 Results

As described in Section 4.4, we have experimented with the baseline DVR model
using a ResNet18 encoder, and four other self-attention variations for both multi-view and



49

single-view supervision. In Table 4.1 it is presented the results for the 2D multi-view super-
vision training process. It is possible to observe that for this type of supervision, we improve
the results as expected using the SAGAN self-attention layers in conjunction with convolu-
tional layers, but differently from Salvi et al. our best results were using the SAGAN self-
attention layers after all convolutional layers inside the encoder. The two other approaches
using the SAGAN self-attention layers had a similar mean result as the ResNet18 approach.
For the fully self-attention model SAN10 used in our experiments, we could not improve the
mean results, but on the other hand, using the SAN10 model it was possible to see an im-
provement in object classes as Airplane, Car, and Rifle in comparison with the ResNet18
model, that could indicate a possible capacity of improvement on object classes that have
more structural details.

Table 4.1 – The Chamfer-L1 distance values for each object class relative to multi-view super-
vision reconstruction. The SAN10 is the Patchwise Self-Attention approach, and the SA-X in
the SAGAN self-attention approach where X is "All" for the self-Attention layer applied after
all conv layers, X is "12" for the self-attention layer applied after the first and second conv
layers, and X is "34" for the self-attention layer applied after the third and fourth conv layers.

Multi-view Supervision
2D

Object Class SAN10 ResNet18 SA-all SA-12 SA-34

airplane 0.0248 0.0257 0.0247 0.0245 0.0312
bench 0.0330 0.0254 0.0268 0.0250 0.0248
cabinet 0.0337 0.0248 0.0236 0.0247 0.0275

car 0.0237 0.0252 0.0214 0.0228 0.0212
chair 0.0336 0.0292 0.0305 0.0306 0.0303

display 0.0355 0.0283 0.0279 0.0295 0.0286
lamp 0.0540 0.0441 0.0418 0.0484 0.0538

loudspeaker 0.0395 0.0324 0.0313 0.0325 0.0342
rifle 0.0215 0.0255 0.0175 0.0293 0.0192
sofa 0.0308 0.0262 0.0262 0.0265 0.0272
table 0.0341 0.0329 0.0313 0.0322 0.0309

telephone 0.0246 0.0198 0.0187 0.0174 0.0191
vessel 0.0284 0.0264 0.0239 0.0272 0.0253

mean 0.0321 0.0281 0.0266 0.0285 0.0287

The results of our experiments for 2.5D single-view supervision are indicated in
Table 4.2. Differently from multi-view supervision, for our experiments using the SAGAN self-
attention layers we could observe a similar improvement using these layers after the first and
second convolutional layers than using after the third and fourth convolutional layers. Also,
using the SAGAN self-attention layers after all convolutional layers could still improve the
results for reconstruction.

Considering that for the single-view supervision training process we have less view
of the same object, and our fully self-attention implementation was not pre-trained, we have
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Table 4.2 – The Chamfer-L1 distance values for each object class relative to single-view
supervision reconstruction. The SAN10* is the Patchwise Self-Attention approach trained
for 500 epochs, and the SA-X in the SAGAN self-attention approach where X is "All" for the
self-attention layer applied after all conv layers, X is "12" for the self-attention layer applied
after the first and second conv layers, and X is "34" for the self-attention layer applied after
the third and fourth conv layers.

Single-view Supervision
2.5D

Object Class ResNet18 SA-all SA-12 SA-34 SAN10*

airplane 0.0402 0.0307 0.0364 0.0306 0,0303
bench 0.0443 0.0479 0.0426 0.0459 0,0458
cabinet 0.0407 0.0410 0.0399 0.0419 0,0412

car 0.0266 0.0317 0.0286 0.0290 0,0289
chair 0.0487 0.0514 0.0493 0.0499 0,0487

display 0.0558 0.0536 0.0556 0.0529 0,0586
lamp 0.0715 0.0766 0.0702 0.0791 0,0702

loudspeaker 0.0548 0.0551 0.0531 0.0555 0,0547
rifle 0.0804 0.0278 0.0380 0.0273 0,0286
sofa 0.0427 0.0467 0.0442 0.0444 0,0463
table 0.0524 0.0546 0.0531 0.0556 0,0540

telephone 0.0331 0.0315 0.0316 0.0329 0,0380
vessel 0.0414 0.0394 0.0402 0.0389 0,0377

mean 0.0487 0.0452 0.0448 0.0449 0,0448

decided to train the SAN10 model for 500 epochs. It is possible to observe in Table 4.2
that the SAN10 model has achieved a similar improvement than the SA-12 model, but it
took almost double the training time. Also, it was possible to observe that some object
classes had a bigger difference in results between the SAN10 model and the SA-12 model,
e.g., the bench and airplane classes. We believe that this behavior could have resulted
from the weight initialization, since the SA-12 has used some pre-trained layers from the
ResNet18 model, and the SAN-10* weights were initialized from a normal distribution. The
pre-trained model could leverage the network to learn from previous images features, giving
it the capability to extract new information in less time.

In Figure 4.6 and Figure 4.7 it is possible to observe our qualitative results from
our SAGAN self-attention and Patchwise self-attention approaches. In our multi-view super-
vision experiments, it is possible to observe that SAN10 has produced a reasonable result
for some object classes in comparison with other approaches. Differently from multi-view
supervision, in the single-view supervision process, it was possible to observe that SAN10*
has not produced good results in comparison with other approaches for some object classes
such as table and airplane.
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Figure 4.6 – Qualitative results for 2D multi-view supervision reconstruction using SA-X,
where X indicates the position of the SAGAN self-attention module after a ResNet layer, and
SAN10 is the Patchwise Self-Attention network.

Figure 4.7 – Qualitative results for 2.5D single-view supervision reconstruction using SA-X,
where X indicates the position of the SAGAN self-attention module after a ResNet layer, and
SAN10* is the Patchwise Self-Attention network trained for 500 epochs.
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5. 3D RECONSTRUCTION BASED ON VISION TRANSFORMER

In computer vision tasks, convolutional architectures remain dominant [33, 31, 24].
Inspired by the Transformers used in NLP, multiple studies try combining CNN-like architec-
tures with self-attention [62, 7], and even replace the convolutions entirely [47].

We have investigated the performance of a Transformer model operating directly
over images, with the fewest possible modifications. Differently from the previous approaches
presented in Chapter 4, the transformer model known as “Vision Transformer” splits the im-
ages into patches and provides the sequence of linear embeddings of these patches as
input to the model. Image patches are treated the same way as tokens (words) in NLP ap-
plications. Thus, we use the transformer as an image feature-extraction module in the 3D
reconstruction training process.

Transformers models used as backbone in Computer Vision [7, 15, 68, 27, 46, 57]
usually employ the COCO [38] and ImageNet [13] datasets, i.e., there are insight and results
regarding those specific datasets. In this work, however, we use images of isolated and
centralized objects with a white background, i.e., the ShapeNet dataset [8]. We hypothesize
that even with this type of image, it will be possible to take advantage of the same benefits
that Transformer models obtained in other datasets, like their capability of extracting object
structure and position information. Also, according to Ranghy et al. [46], transformer models
are able to propagate more information in the initial layers than ResNet models, i.e., they
can access more global information from the input data in the shallow layers. Our intuition is
that we could also modify the transformer layers to focus on data regions and consequently
improve the ability of the model in extracting features from input data.

This chapter comprises the following sections: in Section 5.1, we present our ap-
proach using a transformer-based model that is used as a backbone for vision tasks, and
in Section 5.2 we present an optimization approach that uses the Nyströmformer model. In
Section 5.3 we report our experiments using both original and optimized transformer models.
Finally, in Sections 5.4 and 5.5 we present the quantitative and qualitative results.

5.1 Pyramid Vision Transformer

The Pyramid Vision Transformer (PVT) [61] is a transformer model for Computer
Vision tasks that was based on the transformer proposed by Dosovitskiy et al. [15]. The
PVT model was developed as a backbone model for many dense prediction tasks as image
classification, segmentation, object detection, and many more.

Differently from previous transformers, the PVT model provides advantages such
as: 1) it introduces a progressive shrinking pyramid to reduce the feature sequence length
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when the depth of the model is increased, significantly reducing the computational burden;
2) it can serve as a backbone for many downstream tasks like image-level prediction and
pixel-level prediction; and 3) it has improved the performance of image classification and ob-
ject detection in comparison with convolution models like ResNet and previous transformers
like ViT [15] and DETR [7].

In this work, we propose the usage of PVT [61] as the encoder of DVR [45]. Since
the original DVR encoder is composed of a ResNet-18 [24] model, we hypothesize that due
to the spacial reduction mechanism and the previous results of the PVT model and other
previous transformer models in different vision tasks, we could improve the results of the 3D
object reconstruction by switching the convolution-based encoder for a transformer-based
encoder. In addition, we also believe that the structure proposed by PVT, which comprises
self-attention layers followed by linear layers, and with the addition of residual connections,
can help the model to extract both high-level and low-level features throughout the model.

The PVT backbone mainly comprises four compression stages as illustrated in
Figure 5.1. Each of the stages shares a similar architecture, which consists of a patch
embedding layer and multiple transformer blocks. The compression stage can be seen in
Figure 5.2.

Figure 5.1 – The Pyramid Vision Transformer (PVT) architecture proposed by Wang et al.
[61], which consists of four spatial reduction stages {SR-1, SR-2, SR-3, and SR-4} for fea-
ture extraction, sharing a similar architecture that comprises a patch embedding layer and
transformer blocks.

In Wang et al. [61], four different PVT architecture were proposed with different
sizes: PVT-Tiny, PVT-Small, PVT-Medium, and PVT-Large. According to the authors, all of
them follow the two rules of ResNet [24]: 1) the deeper the network is, the larger the hidden
dimensions, while the output resolution shrinks, and 2) the major computation resources are
concentrated in the third stage. Due to the high computational cost of DVR [45], and to allow
a fair comparison, we decided to use the PVT-Tiny model, which shows a similar architecture
to a ResNet-18 model.

The feature extraction pipeline (Figure 5.1) of PVT starts with a given input image
with size of H × W × 3, where H is the height and W is the width of the image, and it is
divided into H

4 × W
4 patches, where each patch has a size of 4 × 4 × 3. Then, each patch is
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Figure 5.2 – Feature compression stage as proposed by Wang et al. [61]. Here, the input
feature patches are embedded and then they pass through a positional encoding step. The
encoded features pass through N× transformer blocks where N is the number of blocks.

flatten and projected to a embedding dimension Ci-dim, where i is the corresponding stage.
The output shape from the linear layer is Hi−1

Pi
× Wi−1

Pi
× Ci , where Pi is the patch size of the

corresponding stage. Then, the embedded patches alongside with the position embeddings
pass through a transformer encoder (Figure 5.2) with N layers and the output is reshaped to
a feature map with size Hi−1

Pi
× Wi−1

Pi
× Ci . In the same way, using the feature maps from prior

stages, it is possible to obtain the feature maps for the next stage.

The spatial reduction occurs inside the self-attention layer. According to Wang et
al. [61], the attention layer receives query Q, key K , and value V as input, and the spatial
reduction operation is applied to K and V as follows:

SR(x) = Norm(Reshape(x, Ri)) (5.1)

where Ri is the reduction ratio in stage i , the Reshape(x, Ri) operation reshapes the input
x ∈ R(Hi Wi )×Ci into Hi Wi

R2
i

× (R2
i Ci), and Norm(.) is the layer normalization procedure [2]. The

spatial reduction operation can largely reduce the memory overhead.

5.2 Nyströmformer Optimization

One of the main disadvantages related to transformers models is their high com-
putational cost due to their quadratic complexity over the input due to the self-attention pro-
cedure. Therefore, models such as Longformer [4], Linformer [60], Performer [72], Big Bird
[69], and Nyströmformer [66] emerged with the intention of reducing this complexity to an
approximately-linear complexity.

Despite the success of these models in reducing the temporal and spatial complex-
ity of the self-attention mechanisms, the Nyströmformer model [66] proved not only to be
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more effective in reducing the complexity of the self-attention mechanism to large dimen-
sions, but also to be more efficient in producing approximate information that could help
other models to obtain better results in tasks related to NLP and Computer Vision.

The basic idea is to use landmarks K̃ and Q̃ from key K and query Q to derive an
efficient Nyström approximation without accessing the full QK T to approximately calculate
the full softmax matrix S. The approximation of S can be written as

Ŝ = softmax

(
QK̃ T√

dq

)
Z ∗softmax

(
Q̃K T√

dq

)
(5.2)

where Z ∗ is an approximation of

AS = softmax

(
Q̃K̃ T√

dq

)
(5.3)

by calculating the Moore-Penrose pseudoinverse as described in [66]. In addition, Nyström-
former can approximate the full softmax matrix by selecting all landmarks from query and
key. According to Xiong et al. [66], the landmark points can be selected by simply using
segment-means, e.g., for input queries Q = [q1; ...; qn], the n queries are separated into m
segments, and l = n

m is the landmark points for Q, assuming that n is divisible by m for
simplicity, then the landmarks can be computed as:

q̃j =
(j−1)×l+m∑

i=(j−1)×l+1

qi

m
(5.4)

where j = 1, ..., m, and the same approach can be used to compute the input keys K =
[k1; ...; kn] landmarks. As showed by the authors, 64 landmarks is often sufficient to ensure
a good approximation, and given the size o input length, the Nyströmformer can reduce
the amount of memory used more than 10 fold, and the running time more than 5 fold, in
comparison to a standard Transformer model that has no sequence length reduction.

One of our hypotheses is that by applying the Nyströmformer as an approximation
of the softmax on the self-attention layers of the transformer model, it could be possible
to reduce the memory consumption even though PVT [61] already has a spatial reduction
mechanism within its architecture.

We also believe that by applying the Nyströmformer optimization we could still pre-
serve the results of the implementation of the original PVT model, due to the characteris-
tics of the images from ShapeNet dataset used in this work. Since the ShapeNet dataset
contains images with a single, centralized object and a white background as presented in
Section 4.1, we hypothesize that by using the number of landmarks indicated in [66] we
could have a good approximation due to the fact that the information of the images is always
located in similar regions and the amount of relevant information are similar as well. Note
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that the segment-means for landmarks computation is similar to local average pooling used
in NLP [53] and vision [18] tasks, giving a good approximation that associates features with
the same importance to all locations in a small window.

5.3 Experiments

Our experiments using a transformer model follows a similar approach from our
self-attention based neural network experiments in Chapter 4. We decided to use the PVT
backbone model as an encoder inside the DVR model. Considering the architectures pro-
posed by Wang et al. [61], we implemented the PVT-Tiny architecture that has a similar
structure to the ResNet-18 model used in the DVR baseline.

PVT-Tiny (Figure 5.1) comprises two transformer blocks inside each spatial reduc-
tion stage SR − i with i = 1, ..., 4, where the patch size Pi of each stage is {4, 2, 2, 2},
the channel dimension Ci is {64, 128, 320, 512}, the reduction factor Ri is {8, 4, 2, 1}, the
number of heads Ni of the self-attention layers in each spatial reduction stage is {1, 2, 5, 8},
and the features dimension after each reduction is reduced by a factor of 2 as illustrated in
Figure 5.1. Then, we add a linear layer at the end of the PVT-Tiny model for spatial reduction
to fit into the DVR model. The last linear layer has a dimension of [256 × 1 × 1]. Differently
from our implementation of SAN10, we decided to experiment with the pre-trained PVT-Tiny
model and the standard PVT-Tiny model (not pre-trained). The pre-trained PVT-Tiny model
was trained for an image classification task using the ImageNet dataset [13] in a similar way
as ResNet in [24].

Since PVT-Tiny has a small memory footprint in comparison with our previous self-
attention based neural network implementations, we decided to increase the batch size from
16 to 32 images in the training process, and from 4 to 8 images in the validation process
for both 2D and 2.5D in multi-view supervision, and for 2.5D in single-view supervision.
This results in a faster training process without reducing the generalization capability of the
network, and also could help the network in finding better optima of the objective function
[20].

Increasing the batch size also increases memory consumption. For the 2D super-
vision training process, the increase in memory consumption was still below our maximum
memory available, but for the 2.5D supervision training process it was necessary to reduce
the hidden dimension of the decoder from 512 to 128. We believe that 128 as the size of the
decoder hidden dimension can still produce good results, since the same dimension is used
in the multi-view supervision training process.

Then, for our optimization experiments, we have decided to implement Nyström-
former inside the PVT-Tiny model, as a softmax approximation for the self-attention layers.
Due to the spatial reduction in the PVT model, we decided not to implement the Nyström-
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former in the last PVT spatial reduction stage SR − 4, since the number of landmarks pro-
posed by the authors is not sufficiently smaller than the dimension of the features in this
stage.

For our experiments using the Nyströmformer, we decided to implement it only
within the 2.5D single-view supervision training process. As an optimization process, we
believe that the results of using the Nyströmformer in one of the supervised processes could
have the same behavior in other supervised processes. We have used the Nyströmformer
in three different ways: only in the first layer; in the first and second layers; and in the first,
second, and third layers.

Then, considering the computational reduction provided by the Nyströmformer im-
plementation, we have decided to experiment with the addition and removal of decoder
blocks for our best Nyströmformer model. Since each decoder block from the DVR model
receives information from both the last decoder block and encoder output feature, we believe
that adding more blocks in the decoder could improve the capability of the model in retaining
information from different object classes. On the other hand, by removing a block from the
decoder, we expect a reduction of the capability of the model to retain information from ex-
tracted features, but could result in a reduction of memory consumption that can be used in
other future types of investigations, such as batch size increment or increasing of the hidden
dimensions from the decoder.

We also have decided to increase the number of epochs for training the model
with an additional decoder block, since the increment of the number of parameters in the
decoder module could result in more difficulty in finding good local minima. For all other
model hyperparameters, we have decided to use the same values from our last experiments
presented in Section 4.4.

5.4 Quantitative Results

In this section we present our results using the Chamfer −L1 metric as in Niemeyer
et al. [45]. The results from our multi-view supervision experiments are presented in Ta-
ble 5.1. Considering our previous self-attention-based approaches and previous transformer
related work, it is possible to observe that we could achieve better results using a pre-trained
transformer model instead of a non pre-trained model, as one could expect. Also, in both
2D and 2.5D experiments, the mean results were similar to the ResNet18 model, but con-
sidering each object class individually, it is possible to observe that in 2D experiments our
PVT implementation has improved the results of classes with fewer structural details, while
in 2.5D experiments our PVT implementation has a more general similarity between object
classes.
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Table 5.1 – The Chamfer-L1 distance values for each object class relative to multi-view super-
vision reconstruction training for 500 epochs. For our experiments in this type of supervision,
we have used the pre-trained Pyramid Vision Transformer model (PVT-T(PT)) and a non pre-
trained Pyramid Vision Transformer model (PVT-T(S)).

Multi-view Supervision
2D 2.5D

Object Class ResNet18 PVT-T(PT) PVT-T(S) ResNet18 PVT-T(PT) PVT-T(S)

airplane 0.02062 0.02586 0.02479 0.01838 0.01832 0.02237
bench 0.02544 0.02494 0.02929 0.02200 0.02237 0.02438
cabinet 0.02540 0.02447 0.02619 0.01952 0.02028 0.02172

car 0.02038 0.02258 0.02172 0.02012 0.01998 0.02295
chair 0.02760 0.02973 0.03415 0.02672 0.02890 0.03250

display 0.02889 0.02543 0.02799 0.03055 0.02867 0.03093
lamp 0.04304 0.04147 0.04839 0.04468 0.03993 0.04686

loudspeaker 0.03144 0.02998 0.03275 0.03129 0.03051 0.03213
rifle 0.01853 0.01844 0.02182 0.01689 0.01642 0.01786
sofa 0.02590 0.02405 0.03185 0.02464 0.02593 0.02771
table 0.02836 0.03043 0.03077 0.02417 0.02459 0.02673

telephone 0.01822 0.01714 0.01839 0.01551 0.01533 0.01771
vessel 0.02474 0.02478 0.03077 0.02565 0.02687 0.03077

mean 0.02604 0.02610 0.02914 0.02462 0.02447 0.02728

For our single-view supervision experiments, it is possible to observe the quantita-
tive results in Tables 5.2 and 5.3. As presented in Section 5.3, beyond our implementation
of the PVT model, we have decided to experiment with the Nyströmformer model within
the single-view supervision process, as well as with the addition and removal of decoder
blocks. In Table 5.2, it is possible to observe that using only the pre-trained PVT model we
could achieve better results than the ResNet18 model, and as we expected, we could still
improve the results using the Nyströmformer as an optimization approach. Our experiments
demonstrate that we can reach better results using the Nyströmformer only in the first trans-
former stage, indicating that the Nyströmformer can improve the capability of the network in
extracting information from a specific data region.

In Table 5.3, it is possible to observe that adding and removing one block from the
decoder does not significantly change the mean of the results. Considering our hypothesis in
Section 5.3, it is possible to observe that adding one linear block in the decoder increases the
training time to achieve the best result. Our experiment of adding one linear block took twice
as long as our previous experiments, but training for 1, 000 epochs result in an improvement
of 8.25% in relation to the ResNet18 model, and surprisingly achieving a better result using
much less memory than the experiments proposed in [45].
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Table 5.2 – The Chamfer-L1 distance values for each object class relative to 2.5D single-
view supervision reconstruction training for 500 epochs. For our experiments in this type of
supervision, we have used the pre-trained Pyramid Vision Transformer model (PVT-T(PT)),
a non pre-trained Pyramid Vision Transformer model (PVT-T(S)), and a pre-trained PVT-T
model with a Nyströmformer approximation (PVT-TNX), where X means the stages where
Nyströmformer was applied as explained in Section 5.3.

Single-view Supervision
2.5D

Object Class ResNet18 PVT-T(PT) PVT-T(S) PVT-TN1 PVT-TN2 PVT-TN3

airplane 0.03153 0.02949 0.03360 0.02694 0.02906 0.02894
bench 0.04407 0.04168 0.05100 0.04086 0.04460 0.04462
cabinet 0.04097 0.03940 0.04393 0.03917 0.04073 0.04158

car 0.02861 0.02848 0.03152 0.02779 0.02811 0.02977
chair 0.04809 0.04876 0.05158 0.04814 0.04824 0.04932

display 0.05399 0.05137 0.06219 0.05290 0.05628 0.05460
lamp 0.07226 0.07241 0.07016 0.06323 0.06367 0.06994

loudspeaker 0.05448 0.05181 0.05684 0.05184 0.05302 0.05428
rifle 0.03154 0.02731 0.03411 0.02453 0.02558 0.02615
sofa 0.04407 0.04385 0.05016 0.04289 0.04541 0.04647
table 0.05158 0.05114 0.05837 0.05108 0.05269 0.05458

telephone 0.03269 0.02989 0.03982 0.03264 0.02980 0.03164
vessel 0.03808 0.03635 0.04539 0.03534 0.03613 0.03785

mean 0.04400 0.04246 0.04836 0.04133 0.04256 0.04383

Table 5.3 – The Chamfer-L1 distance values for each object class relative to 2.5D single-view
supervision reconstruction training for 500 epochs, using the pre-trained PVT-T model with a
Nyströmformer approximation (PVT-TNX), where X means the stages where Nyströmformer
was applied as explained in Section 5.3. We also experiment the removal and addition of
blocks of the decoder, indicated by PVT-TN1-4B and PVT-TN1-6B.

Single-view Supervision - 2.5D
500 Epochs 1000 Epochs

Object Class ResNet18 PVT-TN1 PVT-TN1-4B PVT-TN1-6B PVT-TN1-6B

airplane 0.03153 0.02694 0,02812 0,02845 0,02713
bench 0.04407 0.04086 0,04305 0,04255 0,04055
cabinet 0.04097 0.03917 0,03976 0,03936 0,03897

car 0.02861 0.02779 0,02816 0,02783 0,02628
chair 0.04809 0.04814 0,04786 0,04749 0,04535

display 0.05399 0.05290 0,05152 0,05253 0,05081
lamp 0.07226 0.06323 0,06599 0,06125 0,05989

loudspeaker 0.05448 0.05184 0,05293 0,05151 0,05051
rifle 0.03154 0.02453 0,02591 0,02587 0,02509
sofa 0.04407 0.04289 0,04403 0,04325 0,04212
table 0.05158 0.05108 0,05209 0,05068 0,04968

telephone 0.03269 0.03264 0,03025 0,03163 0,03058
vessel 0.03808 0.03534 0,03608 0,03701 0,03622

mean 0.04400 0.04133 0,04198 0,04149 0,04024
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5.5 Qualitative Results

In this section, we perform a qualitative analysis of the results obtained through the
experiments indicated in Section 5.3. Because often the numerical results obtained may not
express the quality of many reconstructed models, and also that a visual comparison aiming
to indicate the quality of an object can often be considered subjective, we have conducted
a qualitative study through the application of a questionnaire that was able to extract infor-
mation about the quality of the reconstructed models as well as the characteristics of the
objects that could indicate how close they are to their original images. The questions of the
full questionnaire are presented in the Appendix A.

We decided to analyze the reconstructed objects using two of the best models used
in our experiments (PVT-TN1 and PVT-TN1-6B) and also the ResNet18 model. The recon-
structed objects used in this questionnaire were randomly selected from 26 reconstructed
objects for each class. Then, questions were asked requesting that a grade from 1 to 5
be indicated for each reconstructed object, where 1 indicates a strongly poor reconstruction
quality and 5 indicates a strongly good reconstruction quality. Then, for each class of ob-
jects, we asked which structural parts of the objects would indicate how similar they are to
their original image. In total, 47 participants answered the questionnaire.

The results from our questionnaire on the reconstructed objects are presented in
Figures 5.3 to 5.26. It is possible to observe that unanimously for all questions the trans-
former models showed better reconstruction quality compared to the ResNet18 model. Also,
only in questions regarding the sofa object class the PVT-TN1-6B model has better results in
all questions. For the plane, car, and chair object classes, the PVT-TN1-6B model showed
better results in comparison to the PVT-TN1 model in 2/3 of the questions. Furthermore,
by extracting the top-5 words from the answers to the questions on the structural parts
(Figures 5.27 to 5.30), it was possible to observe that classes with more structural details as
plane and chair have a structural attribute with much higher importance than other attributes,
and classes like car and sofa have a similarity in the importance of their structural attributes.
These words are important to corroborate the qualitative results that were obtained.

We also show our reconstruction results from multi-view supervision experiments
in Figure 5.31. It is possible to observe that for both 2D and 2.5D supervision, all models
have a similar reconstruction result, except for the chair reconstructed using the ResNet18
model in 2.5D supervision, which has a small change in overall dimensions of the object
compared to other models. The similarity of the reconstructed objects also corroborates the
numerical results obtained in our experiments.
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Figure 5.3 – The reconstructed objects presented in Question 1 in the questionnaire regard-
ing the plane object class.

Figure 5.4 – Results of the Question 1 regarding the plane object class.

Figure 5.5 – The reconstructed objects presented in Question 2 in the questionnaire regard-
ing the plane object class.
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Figure 5.6 – Results of the Question 2 regarding the plane object class.

Figure 5.7 – The reconstructed objects presented in Question 3 in the questionnaire regard-
ing the plane object class.

Figure 5.8 – Results of the Question 3 regarding the plane object class.
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Figure 5.9 – The reconstructed objects presented in Question 1 in the questionnaire regard-
ing the car object class.

Figure 5.10 – Results of the Question 1 regarding the car object class.

Figure 5.11 – The reconstructed objects presented in Question 2 in the questionnaire re-
garding the car object class.
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Figure 5.12 – Results of the Question 2 regarding the car object class.

Figure 5.13 – The reconstructed objects presented in Question 3 in the questionnaire re-
garding the car object class.

Figure 5.14 – Results of the Question 3 regarding the car object class.
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Figure 5.15 – The reconstructed objects presented in Question 1 in the questionnaire re-
garding the chair object class.

Figure 5.16 – Results of the Question 1 regarding the chair object class.

Figure 5.17 – The reconstructed objects presented in Question 2 in the questionnaire re-
garding the chair object class.
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Figure 5.18 – Results of the Question 2 regarding the chair object class.

Figure 5.19 – The reconstructed objects presented in Question 3 in the questionnaire re-
garding the chair object class.

Figure 5.20 – Results of the Question 3 regarding the chair object class.
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Figure 5.21 – The reconstructed objects presented in Question 1 in the questionnaire re-
garding the sofa object class.

Figure 5.22 – Results of the Question 1 regarding the sofa object class.

Figure 5.23 – The reconstructed objects presented in Question 2 in the questionnaire re-
garding the sofa object class.
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Figure 5.24 – Results of the Question 2 regarding the sofa object class.

Figure 5.25 – The reconstructed objects presented in Question 3 in the questionnaire re-
garding the sofa object class.

Figure 5.26 – Results of the Question 3 regarding the sofa object class.
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Figure 5.27 – The five most cited words in the
question about 3D plane models.

Figure 5.28 – The five most cited words in the
question about 3D car models.

Figure 5.29 – The five most cited words in the
question about 3D chair models.

Figure 5.30 – The five most cited words in the
question about 3D sofa models.

Figure 5.31 – Qualitative results for 2D and 2.5D multi-view supervision reconstruction using
a ResNet18 model and a PVT-T(PT) model.
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6. CONCLUSIONS

In this work, we have present four different self-attention-based approaches for
implicit 3D object reconstruction. We first introduce the usage of self-attention layers in con-
junction with convolutional layers, as well as the usage of a fully self-attention model that is
considered an approximation of convolutions. Our experiments show that, as presented by
Salvi et al. [52], the usage of the SAGAN self-attention module inside the decoder produces
improvements on implicit 3D object reconstruction, even in scenarios without 3D supervision.
The usage of the SAGAN self-attention module also shows that we can produce improve-
ments on different object classes based on the position of the self-attention module inside
the encoder.

The Patchwise Self-Attention network does not show any improvements for the
number of training iterations that we have trained the DVR model, but according to Cordon-
nier et al. [11], different architectures of self-attention models could take more training time
to reach the same results as ResNet network, including non pre-trained models.

Considering the results on the first two approaches, we have experimented with
the usage of a backbone transformer model considering its recent advantages on computer
vision tasks, like image classification, object detection, and image segmentation. By apply-
ing the Pyramid Vision Transformer model, it was possible to observe that the pre-trained
transformer model has produced better or similar results than the baseline.

We have also experimented with the Nyströmformer model as an approximation
of the softmax operation within self-attention modules in the single-view supervision training
process, considering that this type of approximation could have a similar result in other types
of supervision. We believe that by using this approximation one can achieve a reduction of
computational cost while improving the results of the reconstruction due to its capability of
focusing on more representative regions of the features. By applying the Nyströmformer
model in different stages of the PVT model, it was possible to observe that we could improve
the results by more than 6% concerning the baseline model, while our implementation of a
pre-trained PVT model resulted in an improvement of 3.5% to the baseline model.

Since the Nyströmformer model could also reduce memory consumption, we have
decided to use the reduced memory to add one more linear block from the decoder, as well
as to remove one linear block from the decoder to compare the capability of the decoder
blocks to retain information from objects. Our results have shown that adding one more linear
block to the decoder can still produce improvements in the reconstruction process, but it was
necessary to train the model with a larger number of epochs. Our results for adding a linear
block inside the decoder have shown an improvement of 8.5% compared to the baseline, and
this result is still better than the results of Niemeyer et al. [45], where they have trained the
model using more computational resources. We also applied a questionnaire to qualitatively
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evaluate the reconstructed objects via the PVT-TN1-6B, PVT-TN1, and ResNet18 models
used in the single-view supervision process. Through this questionnaire, it was possible to
corroborate the quantitative results previously demonstrated, thus building a strong case on
the advantages of using approaches based on both the Pyramid Vision Transformer and the
Nyströmformer model, showing an impressive improvement in reconstruction results.

Looking at the overall results, we believe that self-attention-based models such as
Transformers can be used to fully replace convolutional models as they can extract and
retain relevant information from input data in a similar way to convolutional models. To
deal with their increased computational cost, we showed that optimization strategies can
generate models with lower computational cost and possibly greater learning capability for
tasks related to Computer Vision.

Considering the results obtained in this thesis and the recent advances in the use
of transformer models in Computer Vision, we intend in the future to keep investigating the
use of self-attention-based models as a decoder module for 3D reconstruction tasks. We
plan to investigate how to replace the current linear blocks by self-attention blocks inside
the decoder, and also to investigate how self-attention layers compare to linear layers. In
addition, we also intend to provide new strategies to optimize transformer models, since
many models for 3D reconstruction have a high computational cost mainly due to the amount
of computations that need to be performed by the decoder module.
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APPENDIX A – QUESTIONNAIRE

Figure A.1 – Question 1 for reconstruction related to the Plane object class. Question: "Q1 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."

Figure A.2 – Question 2 for reconstruction related to the Plane object class. Question: "Q2 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."
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Figure A.3 – Question 3 for reconstruction related to the Plane object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."

Figure A.4 – Question 1 for reconstruction related to the Car object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."
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Figure A.5 – Question 2 for reconstruction related to the Car object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."

Figure A.6 – Question 3 for reconstruction related to the Car object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."
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Figure A.7 – Question 1 for reconstruction related to the Chair object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."

Figure A.8 – Question 2 for reconstruction related to the Chair object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."
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Figure A.9 – Question 3 for reconstruction related to the Chair object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."

Figure A.10 – Question 1 for reconstruction related to the Sofa object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."
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Figure A.11 – Question 2 for reconstruction related to the Sofa object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."

Figure A.12 – Question 3 for reconstruction related to the Sofa object class. Question: "Q3 -
Rate each 3D Object from 1 to 5 (where 1 is strongly poor, and 5 is strongly good) indicating
their quality considering the Original Image."



 

 


