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ABSTRACT: Good performance of a stand-alone system is related to correct sizing. The purpose of this paper is to present 
an analytic method for sizing stand-alone systems in Brazil. The task of sizing a PV system consists of finding the PV-array 
area and the battery capacity that fit in well with the energy demand and the behaviour of solar radiation for a specific loss of 
load probability (LLP). To achieve this goal, a computer program was developed to simulate a stand-alone system with 
constant demand during the year. The system was simulated during ten years in order to find the slope of the modules that 
leads to the lowest PV-array cost for LLP=10-1 and LLP=10-2. The procedure was then applied to obtain the isoreliability 
curves, i.e. the PV-array capacity as a function of the storage capacity, for both LLPs. This approach was carried out for 144 
Brazilian cities. Equations were fitted to the values of slope of the modules found for each place as a function of the latitude 
and clearness indexes. The isoreliability curves can be obtained if two parameters, denominated a and b, are estimated. Two 
methods are presented. The method A consists of finding the parameters a and b as a function of the latitude and in the 
method B these parameters are obtained as a function of the latitude and clearness indexes. In this way, a stand-alone system 
can be more easily sized in Brazil, starting from a set of equations. The proposed analytic methods were applied to size a 
stand-alone system in Torres (latitude = - 29.3o). For LLP=10-2, the difference between the simulated and estimated values is 
lower than 10% and 6% when method A and method B are used, respectively. 
Keywords: Stand-Alone PV System; Sizing.  
 
 
1 INTRODUCTON 
 

Good performance of a stand-alone PV system is 
related to the correct sizing. However, for many places 
irradiation data does not exist to design the system and it 
is usually sized intuitively. Consequently, many 
problems may appear for users. For instance, if the 
system is oversized it becomes expensive and if it is 
undersized, the produced energy is not as expected.  

The methods based on the simulation of the system 
for a large period are a good approach for sizing the 
system. However, in many times this kind of computer 
program is not available and, on the other hand, it is not 
easy to use. Due to these facts, some analytic methods 
were developed [1]-[4]. The purpose of this paper is to 
present an analytic method for sizing stand-alone systems 
in Brazil. The task of sizing a PV system consists of 
finding the PV-array area and the battery capacity that fit 
in well with the energy demand and the behaviour of 
solar radiation for a specific loss of load probability 
(LLP). 
 
 
2 SIMULATION OF A STAND-ALONE PV 
SYSTEM 
 
2.1 Estimation of Daily Irradiation 
 In this simulation, the input data includes: slope of 
the module β, loss of load probability, storage capacity, 
PV-array efficiency and monthly average daily 
irradiation on a horizontal surface. 
 A sequence of daily clearness indexes is generated by 
the Aguiar’s Method [5] and by using the monthly 
average daily irradiation on a horizontal surface. 
Following this, the daily irradiation is split into its beam 
and diffuse components on a horizontal surface [6]. 
Starting from the daily total and diffuse irradiation, the 
hourly irradiation data on a horizontal surface are 
estimated, using the method proposed by Collares-

Pereira and the ratio of hourly diffuse to daily diffuse 
irradiation is obtained from Liu-Jordan model [6], [7]. 
The hourly diffuse irradiation on a tilted surface is 
calculated using the Perez’s model [8]. Hourly solar 
irradiation data is used because the methods to estimate 
the hourly diffuse irradiation on PV-array is more 
accurate. Then, the daily irradiation is obtained starting 
from the hourly values. 
 
2.2 Performance of Stand-Alone PV Systems 
 The electric energy provided by the PV system relies 
on the natural behaviour of local solar radiation. 
Consequently, the system is related to a loss of load 
probability (LLP) [1]-[4], [9],[10] defined as the ratio of 
energy deficit to energy demand.  
 The PV-array capacity CA [1], [2] and the storage 
capacity CS [2] are defined related to average daily 
energy demand L: 

 
L

AGC dm
A

η
=   (1)

and 

 
L
CCS =  (2)

where, 
A = PV-array area; 
η = PV-array efficiency; 
Gdm = annual average daily irradiation on a horizontal 
surface; 
C = maximum energy that can be taken out of the 
batteries. 
 The storage capacity represents how many days the 
battery can supply the demand, without any energy from 
the PV-array. For instance, if CS = 5, this means that the 
batteries have stored energy for five cloudy days. 
 In order to calculate LLP, the daily state of charge 
(SOC) of the batteries is simulated for each day, during 
ten years. The state of charge is the ratio of available to 
nominal capacity of batteries. At the end of day i, SOC is 



obtained by doing a balance of energy consumed by 
users and supplied by PV-array, as follows: 
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ηBc = charge efficiency of the batteries and 
Gd(β) = total daily irradiation on PV-array. 
 In these equations, we assume that all energy 
produced by the PV-array passes through batteries and a 
constant daily load during whole year [3], [11], [12]. If 
SOC is greater than 1, it’s assumed to equal 1. On the 
other hand, if a lack of energy occurs, then SOC is 
negative. This means that the available energy is lower 
than that demanded by users. Then, the deficit of energy 
is: 
 SD C)i(SOC)i(E =  (4) 

and SOC(i) is reduced to zero. This procedure is carried 
out for every N days and LLP is given by: 
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 Using this procedure, LLP is obtained as a function 
of CA and CS. However, we need to calculate CA for a 
determined LLP and CS. An interactive method is used to 
achieve this goal. 
 The optimisation of the slope of the modules consists 
of finding the value that leads to the lowest cost of PV-
array. Bearing this in mind, the cost of PV-array is 
normalised to the daily energy demand: 
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where Pmod is the price per square meter of the modules. 
 The system is simulated for a ten years period and 
the LLP is obtained from the analysis of the state of 
charge of the batteries and an initial value of CA. An 
interactive method is used to calculate CA for a 
determined LLP and CS.  
 
 
3 PROPOSED ANALYTIC METHOD  
 
 The computer program was carried out for 144 
Brazilian cities, illustrated in the Figure 1. The system 
was simulated for a ten years period in order to find the 
slope of the modules (β) that leads to the lowest PV-array 
cost for LLP=10-1 and LLP=10-2. The lowest slope was 
limited to 10o, because for low latitudes its optimum 
value is smaller than 10o. Then, the procedure was 
applied to obtain the isoreliability curves, i.e., the PV-
array capacity as a function of the storage capacity, for 
both LLPs. A isoreliability curve are illustrated in Figure 
2. 
 The isoreliability curves can be fitted by the 
following equation [2]: 

b
SA aCC −=  (7) 

where  a e b are parameters which depend on the LLP 
and location. However, analyzing the results we 
concluded that Equation 7 can be modified by: 
 ( ) ( )[ ] b
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 The parameters a and b were calculated for the 144 
locations and a set of equations was found to estimate both 
parameters as well as the slope of the modules. Two 
methods are presented. The method A consists of finding 

the parameters a and b as a function of the latitude and in 
the method B these parameters are obtained as a function 
of the latitude and clearness indexes. 
 

 
Figure 1: Distribution of the 144 Brazilian cities selected 
to simulate the stand-alone PV system. 
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Figure 2: The isoreliability curves for a stand-alone 
system at Porto Alegre  (φ = -30o) and for LLP=10-2. 
 
 
4 RESULTS AND DISCUSSION 
 
 We verified that the optimum slope of the modules 
increases as a function of the latitude (φ), but the behaviour 
is not linear and depends on the LLP.  Then, equations to 
estimate β as a function of latitude were found, in order to 
define the method A, for both LLPs. The results are 
presented in Table I, where φ is the absolute  of latitude and 
Ktinv is the daily average clearness index related to June, 
the month corresponding to the winter solstice. 
 The comparison of estimated (VEst) to simulated (VSim) 
values is carried out by the average deviation, defined as 
follows: 
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  For method A and LLP=10-1, DAver = 4.5%. In this 
case, the value of the average deviation is low, then it is not 
necessary to develop method B. However, for LLP=10-2, the 
average deviation, for method A, is equal to 24.6% and 
8.4% for latitudes lower than 20o and higher than 20o, 
respectively. When method B is used this values became 
equal to 15.9% and 7.9%, for latitudes lower than 20o and 
higher than 20o, respectively. From an analysis of the 
influence of the difference between the estimated and 



simulated values of β, we concluded that variation of 10o 
results in an increase cost of the PV-array of  3%. 
 
Table I: Equations to obtain the slope of the modules (β) for 
LLP=10-1 and LLP=10-2 as well as for both developed 
method. 
 

LLP Met. Equations 

°=β⇒°≤φ 107  
10-1  A 

φ+=β⇒°>φ 081.1860.17  
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 Figure 3 compares the simulated values of the slope of 
the modules with that estimated by method A and method 
B. We observe that for LLP=10-1, method A fits in well to 
simulated data. Similarly, method B yields better fits to low 
latitudes. 
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Figure 3: Simulated slope of the modules and values 
estimated by method A and method B for (a) LLP=10-1 and 
(b) LLP=10-2. 
   
Table II: Equations to estimate parameters a and b, for 
LLP=10-1 and LLP=10-2 as well as for both developed 

method. These parameters can be used to size stand-alone 
systems in Brazil. 
 

LLP Met Equations 
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 From Equation 8 and the isoreliability curves 
determined for each location, the a and b parameters 
were calculated. Then, a set of equations was obtained to 
estimate these parameters for both LLPs and methods. 
The results are summarized in Table II, where Ktmin is the 



daily average clearness index related to the month that 
presents the lowest irradiation data.  
 The analysis of average deviation demonstrates that 
parameter a presents good result and the values of DAver are 
lower than 3.3%.  For high LLP and method A, the average 
deviation is of 0.5% and, then, method B is not necessary. 
From Equation 8, we verify that this parameter influences 
strongly the value of CA, meanwhile, the parameter b affects 
the shape of the curve. The average deviation of the 
parameter b is high, as shows Table III. 
 The results obtained with method A and method B as 
well as the simulated values of parameters a and b for 
LLP=10-2 are presented in Figure 4.  We observe that better 
results were obtained with method B. 
 
Table III: Average deviation (DAver) of the parameter a and 
b estimated by using method A and method B as well as for 
LLP=10-1 and LLP=10-2. 
 

LLP Met. Parameter DAver (%) 

φ≤20o 0.5 
a 

φ>20o 0.8 

φ≤20o 68 
A 

b 
φ>20o 53 

φ≤20o 38 

10-1 

B b 
φ>20o 30 

φ≤20o 2.4 
a 

φ>20o 3.3 

φ≤20o 20 
A 

b 
φ>20o 17 

φ≤20o 1.6 
a 

φ>20o 2.5 

φ≤20o 13 

10-2 

B 
b 

φ>20o 12 
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Figure 4: Simulated and estimated values of the (a) 
parameter a and  (b) parameter b, using both proposed 
methods and for LLP=10-2.  
5 CONCLUSIONS 
 

 The method B presents the better results, but if 
irradiation data does not exist, the method A can be used 
with only a slightly decreasing of accuracy. Both 
proposed analytic methods were applied to size a stand-
alone system in Torres (φ = -29.3o). This location was 
selected because the results presented the highest 
difference between the simulated and estimated values. 
For LLP=10-2, this difference is lower than 10% and 6% 
when method A and method B are used, respectively. 
 In summary, two analytic methods for sizing stand-
alone systems in Brazil were developed and analysed. 
Such methods can easily be used by PV system designer 
in order to obtain cost effective systems. 
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