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Measuring productivity in globally distributed projects is crucial to improve team performance. These mea-
sures often display information on whether a given project is moving forward or starts to demonstrate
undesired behaviors. In this paper we are interested in showing how analytical models could deliver insights
for the behavior of specific distributed software collaboration projects. We present a model for distributed
projects using stochastic automata networks (SAN) formalism to estimate, for instance, the required level
of coordination for specific project configurations. We focus our attention on the level of interaction among
project participants and its close relation with team’s productivity. The models are parameterized for differ-
ent scenarios and solved using numerical methods to obtain exact solutions. We vary the team’s expertise
and support levels to measure the impact on the overall project performance. As results, we present our
derived productivity index for all scenarios and we state implications found in order to analyze popular
preconceptions in GSD area, confirming some, and refusing others. Finally, we foresee ways to extend the
models to represent more intricate behaviors and communication patterns that are usually present in glob-
ally distributed software projects.
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1. INTRODUCTION

Software development has crossed geographical boundaries as companies adopt new
ways to deliver high-quality products in a timely manner. Global Software Development
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(GSD) has been intensively chosen around the world as a valid alternative to balance
costs and productivity [Ebert 2007]. Effective individuals’ interactions and a team’s
knowledge domain play an important role in GSD projects, within single-site and
multisite contexts. According to Sangwan et al. [2006], these aspects are a frequent
concern in distributed software projects and their effects are directly related to a team’s
productivity.

In order to reduce the need for constant communications and external support in
GSD, research results suggest dividing a project into self-contained units, loosely cou-
pled, to maximize work periods [Herbsleb and Mockus 2003; Sangwan et al. 2006],
taking into account levels of teams’ expertise. Another issue that has elicited a con-
siderable amount of discussions lately is the team leader’s availability. Its importance
should not be neglected since it affects the whole project organization and impacts
on the way that projects evolve, hopefully within budget and time constraints due
to deadlines. Resource availability has been the subject of much interesting research
[Setamanit et al. 2006]; however, there is a lack of quantitative analysis to uncover
their influence in several scenarios for GSD projects.

The literature on quantitative analysis and formal models is rich, and several authors
offer quite different points of view. For instance, Haake et al. [2010] have presented
a model of collaborative work to support context-based adaptation using the notion
of states in a graph, whereas Lamersdorf et al. [2011b] have presented an analysis
on the effect of distribution and time zones on communication in distributed projects.
Abrahamsson et al. [2007] offer an incremental model for estimating development effort
during project execution, without imposing overhead on the project, allowing early
and more frequent feedback to developers and managers. Browning and Ramasesh
[2007] discuss the application of activity-based models to decompose a development
process into a network of tasks in order to evaluate ways for reduction in process
time. Earlier, Moser et al. [1997] applied this modeling practice to evaluate global
product development considering distance in coordination features, and further, using
simulation for predicting behavior [Moser et al. 1998].

Other authors have discussed risks and mixed statistical evaluations applied to
GSD realities. For instance, Lamersdorf et al. [2011a] address customizable models
for project evaluation mainly focusing on the assessment of risks related to specific
work distributions. Sfetsos et al. [2006] have presented a statistical evaluation on the
application of Extreme Programming (XP) practices in software companies using a
sample survey technique consisting of questionnaires and interviews.

There is a trend in GSD research to combine and relate formal models to empirical
studies. In Broy et al. [2007], service-oriented software systems are described using
interacting components, proposing a formal model of services. Syed-Abdullah et al.
[2006] have discussed an empirical study investigating whether an agile methodology
has any distinct effect on the overall well-being of the software developers. Quan-
titative and qualitative methods were utilized, including participative observations,
focusing on group interviews, close-ended questionnaires, and simple statistical tests.
Lin et al. [1997] propose a framework for software-engineering processes simulation
called SEPS, in which a simulation approach is used to measure the trade-off of cost,
schedule, and functionality in a planning tool for testing the implications of different
configurations on project success. It is important to note that simulation approaches of-
ten produce samples for later statistical analysis, which is an approximative technique
to estimate entities behavior and scenario outcome [Stewart 2009]. Unlike simulation,
analytical modeling provides a more reliable way of calculating quantitative indices
about scenarios, since models are translated to a state-transition system whose related
matrix representation and corresponding linear equations can be solved by numerical
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methods. Therefore, the results obtained from analytical models are exact indices
calculated from a set of parameters, which is an uncontested advantage over simulation
techniques that need huge amounts of samples to achieve a satisfactory precision.

The general approach adopted in this work is directed toward analytical modeling
using real global software project data as input parameters to extract performance in-
dicators. The main idea is to enable a comprehensive analysis by alternating selected
parameters to inspect productivity gains and losses and point out process improve-
ments that could directly impact the project course until completion. One important
advantage of such modeling approaches over sample analysis, especially when those
samples comes from actual recorded data, is the possibility of generating abundant
data with small and large variations about specific situations. Analysis of real data
always refers to a specific situation from which measures were taken. It is rare to have
data from two realities similar enough to pinpoint specific variations. For example, it is
difficult to determine two similar projects, one with four junior developers, and another
with two experienced developers, in order to foresee the different behavior of these two
realities. Using analytical or simulation models, experiments can be conducted on small
and large variations by change of input parameters.

Analytical models have advantages over straightforward event-driven simulations,
since they are able to provide exact indices calculated from a discrete set of parameters,
using numerical methods1 such as iterative approaches [Stewart 1994], for example,
the Power method, Arnoldi, and GMRES [Philippe et al. 1992]. This process is different
from running simulations, in which the sampling process is dependent of the amount
of collected samples to provide a valid statistical estimation considering Markovian
behavior.

The use of analytical modeling in software-engineering contexts was successfully
employed in the past to provide quantitative performance measures [Whittaker and
Thomason 1994; Walton and Poore 2000; Farina et al. 2002; Bertolini et al. 2004;
Antoniol et al. 2004; Bertolino and Mirandola 2004] for several distinct realities. The
literature on this matter is wide and there are different ways to obtain performance
estimations, such as (i) monitoring – providing empirical results from analysis of team
behaviors and interactions [Mockus 2009; Mockus and Herbsleb 2002]; (ii) simulation–
analysis of the evolution and intercommunication of software-development processes
in order to help project managers grasp the related impacts in a global context as well
as in relation to a team’s productivity [Avritzer and Lima 2009; Setamanit et al. 2007,
2006; Kellner et al. 1999]; and (iii) modeling – identification of entities and relations
considering spatial and temporal boundaries in distributed projects [Cummings et al.
2009; Avritzer and Lima 2009].

The impact of coordination or cultural diversity on team performance are out of the
scope of this article. However, we are aware that these aspects are quite relevant in
respect to GSD projects, and further works may include them in our current model.
Nevertheless, we experiment on our colocated and globally distributed project models
with various scenarios, and the results are analyzed showing the trade-off of choosing
different team sizes and compositions.

In this sense, the goal of our article is to present findings in the form of implications
found from a large number of model results in order to confirm some preconceptions of
GSD area, as well as to question others. In a previous work [Fernandes et al. 2011] an

1Large analytical models sometimes need to be solved by simulation approaches. In this case, specialized
algorithms and properties are studied as alternatives for achieving approximate indices [Fernandes et al.
2008]. However, the majority of models are solved by iterative methods [Stewart 1994], providing exact
indices.
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analytical model for software-development teams was proposed and validated with a
real case scenario in which our previsions deliver an error inferior to 2%, predicting the
overall execution time of a globally distributed project with 16 members working for
22 months. In our current work, we perform several experiments on this generic model
in order to analyze the impact of different variations in the performance of a software-
development team. We also compare our findings with previous statements from the
literature in order to present implications found. This approach illustrates the benefits
of analytical modeling, since all conducted experiments were performed by input pa-
rameter changes. The observation of real case scenarios for all our experiments would
be impracticable; nevertheless, our sets of parameters are based on average behaviors
from real project record data. Thus, our experiments reflect possible combinations of
real data.

Section 2 contextualizes our work, stating ideas perceived by the GSD community
that are discussed in this article. Section 3 presents a systematic mapping study about
GSD and Stochastic Modeling (SM) in order to contextualize our contribution among
related works from the literature. Section 4 introduces SAN formalism, presenting
previously developed models to describe colocated (single-site) projects. In contrast,
Section 5 describes in detail a SAN model for a globally distributed project. Sections 6
and 7 present the main contribution of this article, with analysis of the obtained
performance indices for the proposed models and the implications found from these
results. Section 8 presents our conclusions and discusses future works directed to the
extension of models to capture advanced characteristics such as cultural issues and
diverse communication problems.

2. BACKGROUND

Related works concerning stochastic models and simulation are developed for the spec-
ification of the dynamics of software projects [Padberg 2002] and the usage of analytical
models to interpret a team’s productivity variability [Avritzer and Lima 2009]. Consid-
ering the fact that performance analysis of geographically dispersed teams is emerg-
ing [Swigger et al. 2009; Bass et al. 2007; Sangwan et al. 2006; Herbsleb et al. 2005;
Herbsleb and Mockus 2003], advances are still needed for the quantitative evaluation
of such systems using stochastic modeling as a valuable tool to derive performance
indices.

To represent a software project as an analytical model, one can choose from several
available structured stochastic formalisms based on Markov chains [Stewart 1994] such
as Stochastic Petri Nets [Ajmone-Marsan et al. 1995], Process Algebras [Hillston 1996]
or Stochastic Automata Networks (SANs) [Plateau 1985; Brenner et al. 2005]. The
present work focuses on the SAN, since it has been successfully used to represent GSD
projects [Fernandes et al. 2011]. The SAN is a powerful modeling formalism that works
with an underlying Markov chain, providing a high-level description (abstraction) of
any given reality. Its basic idea is to represent a system by a set of modules with
an independent behavior and occasional interdependencies. Furthermore, the SAN is
a suitable formalism for modeling globally distributed projects due to the fact that
development teams can be smoothly abstracted in a modular way. Basically, a module
is described by a stochastic automaton depicted by a state-transition diagram, in which
the transitions are labelled with probabilistic and timing information. A SAN model
has a set of events that triggers state changes on one or more automata. Each event
has an estimated frequency, which indicates how often this event occurs per time
unit.

The general solution of any analytical model is the numerical computation of its
steady-state probabilities [Sales 2012; Brenner et al. 2007; Fernandes et al. 2008] en-
abling the extraction of selected measures of interest, that is, performance indices
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regarding the system under evaluation. Previous works in the context of software
engineering described SAN models for the analysis of the impact of external dependen-
cies in dealing with teams’ local issues [Fernandes et al. 2011], showing that leaders’
availability and expertise have a considerable effect on team members’ productivity.
However, it is important to consider also the members’ skills to deal with their own
tasks, depending on team size. Such quantitative scenario evaluations are crucial to
develop techniques for allocating teams in different locations, deciding how each re-
source will behave within each environment. Organizations have developed methods
throughout the years for capturing detailed knowledge about projects using modeling
as a tool to evaluate their work processes, the relationship between activities and re-
quirements, and the interdependency among entities in order to provide better project
coordination [Levitt et al. 1999]. Furthermore, at the level of software design, some
specific modeling techniques can be used to derive task dependencies and constraints
in order to improve the design process itself, identifying its difficult aspects [Smith and
Eppinger 1997].

Both industry and academia have a special interest in modeling and predicting the
behavior of software-development processes, teams compositions and evaluation, that
is, estimating performance indices in scenarios according to different sets of parame-
ters (e.g., different skills, experience levels, and availability for collaboration). In GSD
teams, the participants spend large amounts of their time interacting and communicat-
ing, and it is well known that, despite best efforts at communicating among dispersed
teams, GSD brings more challenges than single-site development [Bass et al. 2007;
Herbsleb and Mockus 2003]. In a broader perspective, product-development compa-
nies are engaged in complex development processes, since their task force is globally
distributed and they face new challenges related to communication and interactions
[Tripathy and Eppinger 2011].

Those are the main reasons why it is important to quantify project scenarios and
to use the gained information to enhance decision making, avoiding improper utiliza-
tion of valuable resources. This article aims to exemplify the usefulness of analytical
modeling applied to investigate interaction patterns in colocated and geographically
distributed projects. We focus our attention on the impact of centralized control mecha-
nisms, a problem that usually surfaces as a major source of communication difficulties
in distributed projects. This communication metric may be related to teams with ge-
ographic distance and different time zones, but for our study’s purposes, all these
characteristics will be summarized by the central team’s availability.

3. SYSTEMATIC MAPPING STUDY

The systematic mapping study (SMS) of the literature allows the categorization of re-
search types and results. Specifically, we decided to follow the steps defined by Petersen
et al. [2008], which consists of defining the research question, conduct search, paper
screening, key wording using abstracts, and data extraction (mapping).

3.1. SMS Protocol

The specific SMS for this article was defined over the intersection between GSD and
SM. We thus came up with this research question:

“What has been employed to evaluate the performance of globally distributed software
development teams?”

We believe that, by answering this question, we will be able to contextualize our
article’s contribution, as well as to compare our findings with other similar approaches.

The conduct search starts by identifying the relevant literature. Specifically, we
choose to apply three distinct search strings:
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(1) Global Software Development AND Analytical Modeling
(2) Global Software Development AND Stochastic Automata Networks
(3) Global Software Development AND Performance Analysis

Those search strings were applied to some important digital libraries, such as ACM2,
IEEE3, Scopus4, Wiley,5 and Science Direct6, delivering 62 papers. In order to avoid
duplicated studies, we have selected 9 papers out of the 62, excluding the those

• published in nonacademic venues;
• written in other languages than English;
• considered as tutorials, short papers, or lectures;
• mentioning “performance analysis,” “stochastic automata networks,” or “analytical

modeling” only in the abstract or introduction, but not actually making any further
considerations in the central contributions.

As part of the SMS process [Petersen et al. 2008], during the screening of papers, we
have applied exclusion and inclusion criteria. In this context, it is important to note
that from the nine primary studies found, four were related to our research group.
Consequently, we decided to apply the inclusion criteria of studies based on analysis
of primary studies references, thus including 14 additional studies. Two of those 14
were not part of the digital libraries that we have used and 10 were using different
keywords that did not match our research strings. The selected studies of this process
are presented as follows:

Primary Found:

• Fernandes et al. [2011]: This study is the basis of our GSD modeling work using
single-site and multiple-site comparisons.

• Urdangarin et al. [2008]: This is a related work that started mapping the central
team configuration for GSD teams and reported that the existence of a central entity
is beneficial for GSD projects.

• Cataldo et al. [2007]: This research pointed out that tools may not be sufficient to
improve GSD communication issues. The point is that our work can help to predict
those issues prior to occurrence.

• Poikolainen and Paananen [2007]: This study reports how difficult it is to define mea-
sures for GSD performance evaluation. This gap can be reduced using performance
evaluation.

• Czekster et al. [2011b]: We have created a model to handle a specific type of GSD
project named follow the sun, which has been used as the basis for our work.

• Matusse et al. [2012]: This work presents a literature review, showing modeling
studies that have been used as part of our reference background.

• Avritzer et al. [2010]: In this related work, the authors reported that the success of
a GSD project is based on team configuration and communication, factors that we
cover in our model.

• Celik et al. [2010]: This related work also proposes a model to help GSD team
allocation; the difference from our study is that the authors proposed a model using
social network analysis.

2http://dl.acm.org.
3http://ieeexplore.ieee.org/Xplore/home.jsp.
4http://www.scopus.com.
5http://onlinelibrary.wiley.com.
6http://www.sciencedirect.com.
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Inclusion Criteria:

• Jalote and Jain [2004]: This related work covers GSD team allocation, specifically at
the task level using CPM analysis.

• Hossain et al. [2009]: This paper presents a literature review of Scrum in the GSD
environment. Of specific interest for our study, it draws some conclusions concerning
the benefits brought by a qualified and proactive central team.

• Padberg [2002]: This related work presents a simulation model using a theoretical
project in order to evaluate schedule performance.

• Casey and Richardson [2006]: This study presents a qualitative analysis of two
organizations in terms of communication and management issues. Of specific interest
for our study are their considerations regarding technical ability and knowledge
transfer between the central team and members.

• Setamanit et al. [2007]: This study presents a model to evaluate allocation issues
and schedule impact. The difference from our work is that our model is stochastic
and has an approach evaluating the availability of a central team.

• Sooraj and Mohapatra [2008]: This related work presents an approach for a 24h
software-development process showing the interaction between two sites. It is differ-
ent from our model, which can be used for N sites.

• Taweel and Brereton [2006]: This related work demonstrates GSD challenges that
can be applied to modeling as well as providing a graphical model.

• Ramasubbu et al. [2011]: This related work describes experience supporting conclu-
sions concerning configuration of globally distributed software-development teams.

• Dafoulas et al. [2009]: This related work presents a base model for GSD configura-
tions and reports that simulation is a feasible tool to evaluate GSD projects.

• Ebert and De Neve [2001]: This work presents general statements concerning GSD
decisions, in contrast with the traditional single-site solution.

• Houston et al. [2001]: This work presents a simulation tool created by the authors
in order to evaluate risk management activities, a different view from the scope of
our model.

• Laurent et al. [2010]: This related work presents a visual notation for requirements
of the management process on GSD, presenting the challenges in this context, and
also mentions important aspects covered by our model, such as roles, communication,
and shared resources.

• Raffo and Setamanit [2005]: The authors report in this study that simulation models
can be used for GSD projects, confirming the findings of our research group work.

• Setamanit et al. [2006]: The authors presented a GSD model that can be used as
support for project planning, especially aspects such as communication frequency
and trust. The scope of our model does not cover the trust aspect.

After finishing data extraction, we started the SMS keywording process, assigning at
least one category to each found study as presented in Table I. This SMS resulted in 11
categories related to GSD modeling and performance evaluation. The most commonly
found variable was communication (6), followed by time-zone differences (5), allocation
strategies (4), and schedule performance (2). The remaining variables were found once.

3.2. SMS Final Remarks

This literature mapping enabled us to select 19 different studies about GSD aspects
using performance-evaluation models. However, excluding those developed by our re-
search group, all other works are based on specific simulation tools. Therefore, we
believe our line of work is original by the actual proposal of a formal model that can
be solved and analyzed by generic performance evaluation tools, for example, Ciardo
et al. [2006], Brenner et al. [2007], and Sales [2012].
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Table I. Study Categories

Study Categories

Urdangarin et al. [2008] Communication
Cataldo et al. [2007] Communication
Poikolainen and Paananen [2007] Communication
Czekster et al. [2011b] Time zone difference, task allocation
Matusse et al. [2012] Metrics
Fernandes et al. [2011] Communication, workload
Avritzer et al. [2010] Communication
Celik et al. [2010] Resource assignment
Jalote and Jain [2004] Resource assignment
Hossain et al. [2009] Communication, roles
Padberg [2002] Schedule performance
Casey and Richardson [2006] Communication, task allocation
Setamanit et al. [2007] Schedule performance
Sooraj and Mohapatra [2008] Time zone difference
Ramasubbu et al. [2011] Resource assignment, schedule performance
Taweel and Brereton [2006] Time zone difference, task allocation
Dafoulas et al. [2009] Task complexity
Ebert and De Neve [2001] Communication
Houston et al. [2001] Risk management
Laurent et al. [2010] Requirements management
Raffo and Setamanit [2005] Time zone difference
Setamanit et al. [2006] Communication, effort

4. SAN FORMALISM AND SINGLE-SITE TEAM MODEL

Analytical modeling formalisms are usually employed to describe real systems in a
state-based approach. An example of a well-known modeling formalism is Markov
chains [Stewart 1994], which is applied to several domains such as bioinformatics, eco-
nomics, chemistry, and engineering, to name a few. Such models use simple primitives,
such as states and labelled transitions, to represent system evolution and operational
semantics. In the context of software engineering, analytical models can be widely used
to estimate costs, needed effort, resource utilization, and the amount of time it would
take to build a specific software-based system or product, or even to study the dynamics
of software projects and a team’s productivity. Modeling software development teams,
often geographically dispersed, is an important task since it can determine the success
or failure probabilities of a project. Stochastic models [Bernardo and Hillston 2007]
can focus, for example, on important factors such as communication and coordination
issues among teams.

The SAN is a high-level structured formalism to represent structured Markov
chains [Plateau 1985; Brenner et al. 2005]. There is a wide scope of SAN appli-
cations mainly focused on performance evaluation of parallel and distributed sys-
tems [Assunção et al. 2013; Brenner et al. 2009; Chanin et al. 2006; Baldo et al. 2005;
Bertolini et al. 2004; Farina et al. 2002; Fernandes et al. 2013b; Santos et al. 2015]
that can profit from SAN primitives, such as synchronizing events among entities and
functional dependencies to model complex interactions. Moreover, SAN is a formalism
well fitted to model global software development environments in a modular and effi-
cient fashion. The basic idea is to observe discrete states related to a scenario as well as
the dynamics represented by a set of events with associated timed information (rates).
After parameterization of the model events, one can obtain the numerical solution,
that is, the steady-state probabilities of being in each state. The numerical analysis
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Fig. 1. Leader and Member entities (single-site context).

of SAN models can be performed by dedicated software packages such as Performance
Evaluation of Parallel Systems (PEPS) [Brenner et al. 2007], SAN Lite-Solver [Sales
2012], or GTAexpress [Czekster et al. 2009], which implement numerical solutions
using iterative [Czekster et al. 2010a, 2011a], symbolic [Fernandes et al. 2013a] and
simulation [Czekster et al. 2010b] techniques.

4.1. Single-Site Team Model Automata and Events

This section presents a model for a development team for which members are located in
a single-site context. This model was initially presented in a previous work [Fernandes
et al. 2011] and is presented here to introduce the SAN formalism, as well as to serve as
a comparison paradigm to the multisite (and globally distributed) team model proposed
in Section 5.

As any SAN model, the single-site team model is composed of several automata,
each representing an individual, but not independent, entity. The aim in modeling
such entities is to represent discrete states in which team components can be during
a full workday. Moreover, one can express the interactions of these members using
different events at various rates, composing several scenarios of evaluation. The states
of automata are changed due to local events, which change one automaton state at a
time, or synchronizing events, which possibly change more than one automaton at the
same time.

In our model, one automaton describes the management staff, typically the project
manager, but also the supplier and R&D managers can be represented. The other
automata describe the developers, designers, architects, or even Q&A experts, since
these members work under leader supervision, that is, reacting to leader demands or
requesting leader assistance. The automaton called Leader represents the manage-
ment staff. Each automaton Member #i represents the ith team member of the team
(i = 1, . . . , N).

Figure 1(a) illustrates the automaton Leader, which has two different states: Mg
(Management) and Co (Collaboration). For all purposes, these two states represent
that the leader is available to collaborate with members while in the Co state, or un-
available while in Mg. Practically, being in those states enables events for transitions,
depending on automata Member #i synchronizations. The events called ai (with the
leader availability rate) and si (with the leader support rate) are related, respectively,
to the time spent in management activities and the period of time that each team
member collaborates with the leader. Actually, event ai represents the start and event
si represents the end of communication between the leader and the ith member.
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Figure 1(b) generically depicts the automata describing a team member. Each au-
tomaton Member #i has four states: Wk, meaning the member working in an assigned
task; Wt, meaning the member waiting for collaboration; Co, meaning the member col-
laborating with the leader in a meeting, chat, or other channel; and Rw, meaning the
member reworking an issue. Events ai and si presented in the Member #i automaton
synchronize the change of state of the ith member with the leader. These two events are
related to the leader’s availability and support, considering that there is a probability
π of the leader to solve the issues during the collaboration and the complementary
probability (1 − π ) to keep the issue unsolved and force the member to rework. Local
events mei and ri, on the contrary, are independent of the leader behavior. These events
are related to the member’s expertise itself and capacity to rework in a given issue,
that is, the time spent working (Wk state) until the member needs to collaborate (Co
state) and the time spent reworking (Rw state) an unsolved issue.

The development team interaction pattern used for this single-site context model,
that is, the relations between leader and members, is focused on synchronizing inter-
actions in fixed periods of time. With this perspective, we consider a team composed
of single members to a maximum size of N members attached to one leader7 to col-
laborate. The development team behavior states that members work on their assigned
tasks, engaging in local cooperation with other members and interactions with the
leader. In this abstraction, the leader has a holistic project view and the capability to
reassign tasks, to consider minor decisions, and to carry out new (small) developments
according to project demands (encapsulated in the Mg state of the leader automaton).

4.2. Single-Site Team Model Event Rates and Numerical Results

For simplification in this model example, the members and issues to study are homo-
geneous, meaning that every member has the same level of expertise and time spent
in rework, but the model is flexible to consider distinct rates for each member. Accord-
ing to estimations based on empirical experience acquired in academic and business
projects, permanence times are assigned to every state in the model, that is, rates
correspond to frequencies at every connection among states.

Specifically, for all rates used in this article, we estimate event rates according to
average values observed from a database with record data of nearly 300 real projects
conducted in a world-class software-development company. Such data is protected by
a nondisclosure agreement; therefore, we limit the information about it to the average
values assumed for the events of the models in this article.

Despite the origin of estimated event rates, a project manager willing to use our
model can set specific rates according to its own project assuming mean behaviors
for each participant’s model rates. For instance, according to our project’s data, an
inexperienced member works an average of 90min before encountering a problem that
requires assistance from the leader. Such a value was a round value from 92min average
time between impediments for junior developers found in our 300 projects’ recorded
data. An expert member, on the contrary, may work an entire day (eight hours, or
480min) before needing assistance from the leader.

Therefore, assuming inexperienced members, the rate of event me that leads from
the Wk state to the Wt state will be equal to 480

90 = 5.3333, that is, the event will occur,
on average, 5.3333 times per working day. On the contrary, assuming expert members,
the rate of event me will be 1, that is, once a working day ( 480

480 ).
Table II shows the estimated rates for the events in the single-site model, assuming

as reference an 8h workday. It is important to remember that the numerical values

7Although using a flat structure with one leader and N undistinguishable members, this model could be
extended to several leaders and members split in subsets without any loss of generality.
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Table II. Event Estimated Rates for the Single-Site Team Model Example

Event Estimated rates for an 8h workday

me

(I)nexperienced: Member demands cooperation, on average, after 90min of
work, that is, a member with a lack of required skills (or low expertise) to ac-
complish its own responsibilities autonomously.

(E)xpert: Member requires cooperation, on average, once a day, that is, an expert
member presenting a high expertise level related to its role.

s
(L)ow: Leader requires, on average, 90min for solving issues brought by members.

(H)igh: Leader requires, on average, 30min for solving issues brought by mem-
bers.

a
(A)vailable: Leader cooperates with a member after 30min of management time.

(B)usy: Leader presents low availability due to management duties, that is, the
leader cooperates only once a day.

r (R)ework: Member requires, on average, 120min to review/correct its tasks.

needed to estimate each event rate was based on managers’ records from real projects.
Nevertheless, it was our choice for this experiment to model a software-development
team with one leader and N members, where N varies from 2 to 9. From these initial
values assigned to each event, one can assume different combinations of rates in order
to analyze more effectively their impact on the model dynamics considering various
team formations.

Therefore, combining the estimated event rates presented in Table II, we assemble
the eight possible scenarios8 [Fernandes et al. 2011] called: ILA, ILB, IHA, IHB, ELA,
ELB, EHA, and EHB. For instance, the ILA scenario represents a team with inexperi-
enced members (I), a leader that provides low support (L) – that is, an inexperienced
leader in solving issues demanded by members – but often available to cooperate with
the members (A). We choose to vary parameters of the three major aspects that our
model captures, looking for results that promote a better understanding of the relations
among those variables. It is important to keep in mind that event estimated rates are
empirical values and those estimations are very dependent on the modeler’s knowledge
and available data from previous project observations.

Note that different inputs (event rates) can generate different outputs (performance
indices or steady-state probabilities) even for small scenarios. For example, Figure 2
shows the results for three scenarios in the single-site development context, for which
the impact on team members’ productivity is considered according to the assumed
members’ expertise and leader’s availability. The productivity (y-axis) is computed as
the average probability to have the members in the working (Wk) state. These results
distinctly point out that, for small-sized teams, it is better to have an available leader
that provides high support to an inexperienced team (ILA scenario), than a busy leader
providing support to an experienced team (EHB and ELB scenarios). On the contrary,
as team size increases, it is possible to disregard available leaders only if the members
are experienced, independent of the level of support given by the leader (EHB and
ELB scenarios). This result is emphasized in Figure 2 by the significant decrease of
productivity of IHA in contrast to the less pronounced degradation of performance
presented for ELB scenarios, and even less for EHB scenarios.

8The terminology “scenarios” instead of “experiments” is intended to call the reader’s attention to the fact
that our results are of a different nature than those often found in the GSD literature. As mentioned in
Section 3, related works are based on simulation methods, while our work performs a numerical solution of
formal methods, thus delivering exact measures.
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Fig. 2. Impact on the productivity considering members’ expertise and leader’s availability.

Fig. 3. Example of a software development team with off-site support.

4.3. Single-Site Team Model Extended Version with Off-site Support

The use of formal models and analytical evaluations can generate new ideas regarding
how to compose teams and interaction patterns to deal with different team sizes and
project demands. Recent research parameterized the single-site model and extended it
to a multisite context [Fernandes et al. 2011], in which a centralized external resource
is needed to solve more complex questions, also forcing synchronizations among mem-
bers and their leader to accomplish assigned tasks. In order to model this new form
of interaction, new states and synchronizing events with their respective rates were
added.

Figure 3 shows a multisite configuration with additional states for the leader and
for team members, and the interplay between them. The leader is modeled with an
extra state Ex, which indicates that the leader is interacting with an off-site central
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Table III. Event Estimated Rates for Multisite Model in Figure 3

Event Estimated rates for an 8h workday

a
(A)vailable: Leader cooperates with a member after 30min.

(B)usy: Leader presents low availability due to management duties, that is, the leader
cooperates only once a day.

le
(I)nexperienced: Leader demands cooperation with central team, on average, four times
a day.

(E)xpert: Leader requires cooperation with central team, on average, once a week.

es
(L)ow: Central team requires, on average, one day for responding to issues demanded by
leaders.
(H)igh: Central team requires, on average, 30min for responding to issues demanded by
leaders.

me Member demands cooperation, on average, twice a day.

r Member requires, on average, 2h to review/correct its tasks.

s Leader requires, on average, 1h for solving issues demanded by members.

team, becoming unavailable to collaborate with the members. In a similar way, state
Wr was added for members’ automata, indicating that the members wait for the leader
to resume collaboration. State Wr forces a synchronization between the leader and
members while the leader is communicating or cooperating with the central team. In
Figure 3, we represent the leader and members dependability of the central team by
the dashed transitions and states (Ex and Wr).

In this extended example, the external collaboration with the off-site central team
is directly influenced by the level of expertise of the leader (event le) in addition to
factors such as distance from the central team, different time zones, and cultural and
language diversities [Herbsleb and Moitra 2001] represented by synchronizing event
es. The other events remain the same as those of the single-site model for simplification
purposes. Table III redefines the rates parameterization for this new example.

Using the event estimated rates for the off-site model presented in Table III, eight
possible scenarios were defined as follows: AIL, AIH, AEL, AEH, BIL, BIH, BEL, and
BEH. These scenarios were parameterized with average values to the team’s expertise
and experience, and level of support provided by the leader, which refers to the events
me, r, and s, respectively. As explained in Section 4.2, all estimations for scenarios in
this article come from average values computed from data records of more than 300
actual projects.

The performance indices obtained from these models bring some questions about the
need of broad leader availability in teams with different levels of expertise and specific
characteristics as well as external support availability to communicate. For example,
in Figure 4(a), we observe the team members’ productivity on highly available external
support scenarios (AIH and BEH), in order to inspect some relevant decisions such as
which type of leader is better: an available and inexperienced leader or a busy and expert
one? In this case, our results show that it is better to have an available leader even if the
leader is inexperienced, since the leader provides high external support, compensating
for the lack of experience. This fact is corroborated by the numerical results for all team
sizes. However, the variation of productivity is considerably greater for AIH scenarios
than BEH scenarios, that is, the decrease of team members’ productivity is emphasized
much more in AIH than BEH scenarios.

Additionally, these results allow us to answer this question: Is it also better to have an
available and inexperienced leader than a busy and expert one in low external support

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 3, Article 26, Publication date: August 2016.



26:14 R. M. Czekster et al.

Fig. 4. Team members’ productivity on high and low external support scenarios.

scenarios? Observing the initial productivity values, that is, the results for very small
teams (just two members), the answer is yes. On the contrary, as team size increases,
the team members’ productivity is better overall having an expert leader, despite be-
ing busy. In this case, the leader experience improves the members’ productivity, as
indicated by the AIL and BEL curves crossing shown in Figure 4(b).

5. GLOBALLY DISTRIBUTED TEAM MODEL

This section proposes a model of a software development team with N participants that
interact (communicate) among themselves and with a central team to solve issues and
collaborate. The interactions are now dependent on time zones, availability, levels of
support, and so on. The model copes with this information declaring events associated
to specific transitions. Moreover, in comparison with earlier modeling experiments, we
model more frequent collaborations and new states for abstractions related to face-to-
face communications among participants and self-learning in some situations triggered
by the level of expertise and a lack of leader availability.

5.1. Globally Distributed Team Model Automata and Events

Figure 5 depicts the development team interaction pattern in a globally distributed
project. We model the central team as two automata representing the states in which
the central team could be in terms of activities and availability. The first automaton
(Availability) has two states: A (central team available to cooperate) and U (central
team unavailable for a given reason, for example, time zones and other meetings).
The second automaton (Activities) also has two states: M (central team performing
management activities in general, according to the specific modeled scenario) and C
(central team effectively cooperating with a participant).

We model the participants of a software development team with different states as
follows: W means that the participant is working, completing its tasks, or collaborating
with other members; S means that the participant is seeking for a specific solution,
information, documentation, sources of data, or even learning some technical issue
by its own; C means that the participant is collaborating with the central team due
to solve technical questions. Figure 5 presents the stochastic automata network for
this proposed scenario. Note that more development teams could be attached to a
central team, including more instances of synchronizing events s and co in automaton
Activities.

The local behavior of a team describes that, when members are actually working, they
can stop for a while seeking a solution on their own, or preferably move to cooperate
with the central team, returning to the working state after that. The central team
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Fig. 5. Global software development team model.

is also managing or cooperating with the participants, if automaton Availability is in
state A.

It is worth noting that our abstraction is powerful enough to consider the global con-
text as being represented by the addition of new states and events, allowing the model
to simply capture new characteristics in comparison to the earlier models presented.
However, our modeling choice was to envelop all details in each task in the states, tran-
sition, events, and rates. For instance, eventual breaks, extra working hours, absence
of participants, and people replacements are all transparent to the model, since when
we consider an average of 480min as a working day, we do not take into account if the
participant is continuously working 480min or it is a composition of smaller portions
of time.

5.2. Globally Distributed Team Model Event Rates

It is important to note that events s and co in Figure 5 are fully synchronized, that
is, as soon as the central team is available, a participant requesting collaboration can
immediately start. This abstraction is represented by a functional rate involving the
verification of central team availability each time a participant wants to collaborate
while seeking a solution. The collaboration state has an average fixed time in which the
central team and a participant remain in the state, and the given participant returns
to the working state when finished with the meeting/collaboration. Table IV presents
the events depicted in the model of Figure 5, which correspond to the new activities
performed by the central team and participants in the global context.

We proceed to the explanation of the events and their associations with some es-
timated rates (Table V). These rates take into account the configuration of a remote
team in a global context in order to map the participants’ behavior for different case
studies. As explained in Section 4.2, all estimations for scenarios in this article came
from average values computed from data records of more than 300 actual projects. It is
important to stress that a project manager using our model is able to model one’s own
team assuming specific productivity levels for each participant. The rates assumed in
Table V may be used as reference since they represent a sample of GSD data. However,
our model is flexible enough to consider particularities of any specific project.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 3, Article 26, Publication date: August 2016.



26:16 R. M. Czekster et al.

Table IV. Description of the Events in Figure 5

Event Description

a Availability: This event indicates the moment when the central team becomes available to
cooperate with participants.

u Unavailability: This event indicates the moment when the central team becomes unavailable
to cooperate with the participants.

coi
Collaboration: This event starts the cooperation of the ith participant with the central team.

ei
Participant’s expertise: This event represents the ith participant starting to solve issues
without cooperating with the central team.

si
External support: This event represents the ith participant resuming work after the end of
the cooperation with the central team.

sfi
Solution found: This event represents the ith participant resuming work after finding a
solution by himself or herself.

Table V. Event Estimated Rates for the Model in Figure 5

Event Estimated rates for an 8h workday

a | u

(A)vailable: Central team is available to cooperate with participants, on average, during
420min per workday, that is, 7 of the 8 hours of a workday. Note that events a and u
present complementary rates for an 8h workday, for example, 420min actually collaborat-
ing (available), and 60mins unavailable (busy).

(B)usy: Central team presents low availability due to time spent in management duties, or
very small time-zone overlap, that is, central team is available only 60min per workday,
for example, software development team in India and the central team in the United
States.

ei

(I)nexperienced: Participant works, on average, 1h before seeking cooperation or finding
one’s own solution.
(E)xperienced: Participant works for a long period, approximately 7h, without requiring
any external support or starts looking for a solution on one’s own.

si

(L)ow: Central team takes, on average, 60min for responding to participant issues. Low
support is often characterized by communication issues such as language, available chan-
nels, time zones and cultural diversity, but also the central team’s expertise.

(H)igh: Central team requires, on average, 30min for responding to participant issues.

coi
This event occurs immediately when the central team is available. Hence, a functional
rate verifies this condition in automaton Availability.

sfi This event assumes that the participant finds a solution by independently in 1h.

Using the estimated rates for the model presented in Table V, we consider eight
possible scenarios combining the defined rates: AIL, AIH, AEL, AEH, BIL, BIH, BEL,
and BEH. For example, the AEL scenario represents a team in which the central team
is frequently Available to cooperate with the participants (7h of 8h); the participants
are Experienced (working for 7h before seeking cooperation or one’s own solution), and
receiving Low quality support from the central team (issues handled in 1h).

6. PERFORMANCE ANALYSIS OF TEAMS

In this article, a team’s productivity is evaluated as the probability of a participant
being in the working state (W) since the workday time is split in collaboration (C),
seeking solution (S), and working states. In our model, team participants gener-
ate output and contribute to project completion in a prompt manner, that is, task
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Fig. 6. Productivity trend results (%) for teams with inexperienced participants.

assignments and completion are encapsulated in the working state. The time spent on
the W state reflects the amount of useful work. Therefore, we consider the team pro-
ductivity percentage the average probability of being in the W state for all participants.
The following figures and tables demonstrate the main results obtained from the GSD
team model, varying the team size from two to ten participants, since specialists of the
domain suggest keeping the number of participants within this limit [Sangwan et al.
2006].

6.1. Analysis of Inexperienced Participant Scenarios

Figure 6 presents the productivity results for four scenarios with inexperienced par-
ticipants. In this figure, the exact values obtained from the model’s numerical solution
are plotted in percentage.

As expected, the worst-case scenario is configured by an inexperienced participant
coping with a busy central team providing low-quality support when collaborating, that
is, the BIL scenario. Obviously, this scenario presents the worst productivity because
the participants are often seeking solutions themselves and collaborating with the
central team rather than actually working on their tasks.

Given the worst-case scenario, one alternative to increase productivity is to increase
the availability of the central team, since changing all inexperienced participants for
more experienced ones is probably more difficult. Therefore, we compare the productiv-
ity achieved by BIL and AIL scenarios, that is, assuming the central team more avail-
able to cooperate. For small-team configurations, the productivity gain is very large
(from 20% to 40% with two participants), but as the number of participants increases,
the productivity gain drops considerably (from 14% to 19% with ten participants).

Another alternative to improve productivity is to increase the quality of the support,
that is, change from the BIL to the BIH scenarios. However, this improvement is negli-
gible (3% gain with two participants and 1% gain with ten participants). Nevertheless,
combining the two improvements, that is, improving the availability and support qual-
ity of the central team (AIH scenario), the productivity gains are much more impressive
(57% productivity with two participants and 27% with ten participants).

The availability and support quality parameters are changed to determine some
aspects considering inexperienced participants in terms of communication. As seen in
the results of Figure 6, the productivity increases in the scenarios with more available
external resources (AIL and AIH scenarios) and, as expected, the best productivity is
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Fig. 7. Teams with inexperienced participants productivity flow.

achieved in the one with high-quality external support to the participants, that is, the
AIH scenario.

In addition to the visual observation of the scenario productivity depicted in Figure 6,
we include in Figure 7 the computation of the P value using t-test over the values
obtained comparing each pair of scenario sets. Specifically, we considered productivity
percentage for each class of scenarios (each curve in Figure 6) as a group, and the
productivity of scenarios with a different number of participants (vertical section for
all curves in Figure 6) as an independent sample of the scenario class. For example, we
applied a t-test between AIH and AIL scenarios considering individually the red curves
in Figure 6 as sets of 9 samples of AIH and AIL, respectively. Therefore, the resulting
P value of 0.140 was considered the statistical relevance of the difference between AIH
and AIL, and in Figure 7 the arrow between AIH and AIL indicates with one minus
and one plus signs the relevance of the difference. Following the same reasoning, when
a smaller P value, such as the 0.000371 encountered between AIH and BIH, indicates
a much more significant difference, then the arrow between AIH and BIH is indicated
with four minus and four plus signs. When the computed P value was below 10−5,
as between the AIH and BIL scenarios, we adopted five minus and five plus signs,
indicating a statistically clear difference in favor of AIH over BIL scenarios.

It is important to mention that the choice of t-test instead of other measures of
statistical comparison was based on the fact that ordinal data comparisons, such as
Friedman and Wilcoxon signed-rams tests, delivered obvious results. After all, the
groups of samples are clearly ordered, for example, the pairwise comparison of BIH
and BIL scenarios has always the same rank, with BIH values superior to BIH val-
ues. For the same reason, other statistical relevance tests, such as ANOVA, delivered
the obvious conclusion of hierarchy among methods. Further details about the use of
statistical relevance computation methods may be found in Demšar [2006].

6.2. Analysis of Experienced Participant Scenarios

Now, observing more experienced participants, we analyze the impact of support qual-
ity and availability provided by the central team on productivity. Figure 8 presents
the numerical productivity achieved for the scenarios composed of experienced teams,
that is, BEL, BEH, AEL, and AEH, according to the exact values obtained from the
model’s numerical solution. They were obtained with a 10−10 floating-point precision
from the model’s numerical solution. Specifically, comparing AEL and BEL scenarios
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Fig. 8. Productivity trend results (%) for teams with experienced participants.

productivity, there were slight differences found in 10−6 decimal places in favor of AEL.
However, we would like to stress the fact that AEL and BEL have different results be-
low 10−5, which means a negligible difference of less than 0.001%. Therefore, it is
possible to affirm that the availability of a low-support quality central team is not an
issue for a project with experienced team participants.

The first clear observation from Figure 8 results is that the case with experienced
participants shows that they are far more productive than the results obtained for
the inexperienced participants (Figure 6). Nevertheless, an interesting result emerged
from these comparisons. For instance, one could verify that a more experienced central
team, even less available to others, is more important to have in a project than a
less experienced one with greater availability, mainly because such project leaders
solve issues faster, releasing others to resume working. From a project perspective,
the experience to solve and decide the most important issues is much more important
than availability, which is a remarkable insight, mapped from a numerically computed
index.

Analogous to the results of inexperienced-participant scenarios, Figure 9 depicts
the productivity flow for the scenarios with experienced participants. Note that for
the scenarios in which the central team provides low-quality support (BEL and AEL),
productivity does not seem to change, regardless of the central team’s availability. On
the contrary, for the BEH and AEH scenarios, that is, the central team delivering high-
quality support, the increase in the central team’s availability represents a considerable
increase in productivity.

It is important to note that the computation of P value using t-test over the sets of
scenarios delivered statistical relevance between all cases with high and low support
that were very significant (P values under 10−5), despite the visual impression of rather
different behaviors given by the curves in Figure 8.

It is important to stress that the model is evaluated using numerical methods. Hence,
the presented results are exactly computed and more statistically relevant than results
obtained from simulations or real case observations, which often depend on a sampling
process. Therefore, assuming that the designer could provide reliable parameters, re-
liable probabilistic predictions can be achieved for different scenarios.

For instance, the practical equality found for AEL and BEL scenarios regardless of
the number of participants is justified by the fact that we assume equally distributed
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Fig. 9. Teams with experienced participants productivity flow.

tasks among participants, without explicit task dependency indicated, that is, the only
dependency found in the model is related to the communication dependence of each par-
ticipant with a central team or leader. In all activities performed except collaborating,
participants are considered to be independent in this model. We know for a fact that
further improvements in the models will consider more intricate dependency interac-
tions and more detailed definitions of tasks in quantity, time to completion, and even a
more detailed view of productivity needs to be explored. However, even in this situation,
which could be improved, it is possible to discover new and counterintuitive relations.
For instance, with experienced participants on teams, the degree of availability of a
central team providing low support (BEL=AEL) simply does not matter.

An interesting fact numerically shown was the situation in which one has to choose
between an available and low-support central team (AEL or AIL) and a busy, but high-
support central team (BEH or BIH). In such cases, a different decision must be made
according to the experience of the development teams. In the case of experienced teams,
the quality of support is more important (BEH > AEL), but for inexperienced teams,
the availability is more important (BIH > AIL).

6.3. Analysis of a Very-Low-Quality Support Scenario

Let us consider different scenarios, in which the central team provides very-low-quality
support, that is, the central team takes 2 hours to answer requests from participants.
Once again, let us observe this situation under a large availability (7h of 8h of a
workday, noted as “A”) and busy (1h of 8h a workday, noted as “B”) situations for the
central team. Additionally, let us consider the cases of experienced (7h of work before
requesting support or seeking own solution, noted as “E”) and inexperienced (1h of work
before requesting support or seeking own solution, noted as “I”) for the development
team’s participants.

Figure 10 presents the productivity percentage for these very-low-quality support
scenarios labeled AEvL, BEvL, AIvL, and BIvL. These results are quite different from
the previous ones since, in these configurations, the central team does not really help
the participants, but sometimes actually hinders the productivity of experienced par-
ticipants, which represents another counterintuitive finding.

Considering the central team availability and experienced-participants scenario
(AEvL) from Figure 10, the numerical results show that, as the number of partici-
pants increases, the productivity increases. In fact, for this scenario, the experienced
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Fig. 10. Productivity trend results (%) for teams with very-low-quality support from central team.

Fig. 11. Very-low-quality support from central team productivity flow.

participants find solutions to their problems faster by themselves versus with collab-
oration of the central team, as seen by the higher productivity of the analogous BEvL
scenario. On the contrary, with inexperienced participants (AIvL and BIvL), the pro-
ductivity decreases as the number of participants increases. The participants left by
themselves are even worse than with the low-quality support provided by central team,
as attested by the lower productivity of the BIvL scenario, that is, for inexperienced
teams, low-quality support is feeble, but nonetheless, still a help.

Observing the P values computed using t-test, as indicated in Figure 11, we observe
that the statistical relevance does not follow the intuition about the differences be-
tween the curves presented in Figure 10. In fact, the pure observation of the curves is
numerically represented by the average of the values. For example, the impression that
scenarios AEvL are much more productive than scenarios AIvL is because the average
productivity of AEvl is 82.13%, while productivity of AIvL is 18.74%. However, the P
value delivered by t-test between AEvL and AIvL is 1.10e-02, that is, the statistical
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relevance of the difference between AEvL and AIvL scenarios is not as statistically
significant as the difference between AEvL and BEvL (3.27e-04).

6.4. Analysis of the Variation of Participants’ Experience

It is a known fact that the participant’s expertise is an important parameter to increase
productivity [Sangwan et al. 2006]. In Figure 12(a), we present a set of results for
scenarios in which an available central team provides low support to the participants,
varying the average time in which participants work before seeking cooperation or
finding a solution by themselves. For these scenarios, we vary the working time from
60min to 420min per workday, which is related to the participants’ experience. This
parameter variation corresponds to considering participants seeking help from the
central team once an hour, that is, working productively for 60min, to once a workday,
that is, working 7h (420min). Note that it is assumed that an experienced participant
will split the 8h workday into 7h doing productive work and 1h contacting the central
team or trying to solve a problem independently.

In order to highlight the increase (+) or decrease (−) in terms of productivity, we have
calculated a percentage index called � that relates the configuration with 2 and 10 par-
ticipants. � is computed as the ratio between how much productivity was lost from two
to ten participants and the maximum productivity (which is always with 2 partici-
pants). For example, considering the AIL scenario, which is the first x-axis value in
Figure 12(a), the probability for the working state (W) measure for N = 2 participants is
40.44%, while for N = 10 participants, it decreases to 19.53%. Therefore, � = 51.70% =
40.44%−19.53%

40.44% .
Our aim is to analyze the relation between participants’ experience and the central

team’s availability. In other words, the � index quantifies the visual impression that
as the participants’ experience grows (from 60min to 420min of uninterrupted work),
the productivity decrease is less relevant. Numerically, � decreases from 51.70% with
inexperienced participants (AIL scenario) to 0.25% with experienced participants (AEL
scenario). Therefore, it is possible to affirm that the importance of an available and
low-quality support central team decreases very quickly as the participants’ experience
increases.

Analyzing the same situation for scenarios with a busy central team and high-quality
support (Figure 12(b)) we observe similar results with a smaller difference between two
and ten participants. Note that the � index variation here from BIH to BEH scenarios
is smaller than the variation in AIL to AEL scenarios (Figure 12(a)). In that case, it is
possible to affirm that the importance of a busy and high-quality support central team
was not as big as for the A_L scenarios for inexperienced participants (� for A_L =
51.7% is bigger than � for B_H = 33.39%). However, as the participants’ experience
increases, the central team importance will clearly decrease, but not as low as for the
A_L scenarios (� for A_L = 0.25% is smaller than � for B_H = 0.36%).

It is important to stress that the use of statistical significance tests such as Fried-
man and ANOVA are not applicable for this analysis, since the curves depicted in
Figure 12 are clearly stratified, that is, the productivity results for 2 participants are
always superior to 6 participants, and those are always superior to 10 participants.
Consequently, any paired test based on ranking will deliver the obvious conclusion of
the ranking order among scenarios.

7. IMPLICATIONS FOUND

We now turn our attention to some implications found for the case under study, con-
sidering analysis provided by the numerical results obtained from the models.
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Fig. 12. Team’s productivity analysis, varying the level of participants’ experience.
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I1: For teams with experienced participants, the availability of the central team is of little
importance if it provides good-quality support, or irrelevant if it provides low-quality
support.

Observing the results from Figure 8, we have noticed that the results from AEL and
BEL scenarios were practically the same. In fact, experienced teams are sufficiently
capable to solve their own issues quickly, without the need of constant interactions
with the central team. Only the high-quality support from the central team is able to
improve productivity, as could be seen in the BEH scenario, and even clearly for the
ideal AEH scenario. It is important to note that this finding is counterintuitive for many
researchers and practitioners in the GSD area, since they usually assume that central
team availability is always beneficial. For example, the observation made by Casey
and Richardson [2006] states that, in successful GSD environments, the central team
must provide an excellent level of management and knowledge transfer. Analogously,
Jalote and Jain [2004] state that communication and coordination difficulties have
clear negative effects on project schedule, but our findings indicate that this is not the
case for teams with experienced participants.

I2: According to productivity, teams with experienced participants scale better than
teams with inexperienced participants. Moreover, the models show numerically that
only teams with an available central team and inexperienced participants tend to not
scale very well in comparison to others.

We observe that the productivity index for scenarios BEL, BEH, AEL, and AEH
(Figure 8) remains practically the same as the number of participants increases. How-
ever, the teams with experienced participants are not the only cases that scale well.
Scenarios BIL and BIH (Figure 6) scale almost as well as the scenarios with expe-
rienced participants. These findings are perfectly in accordance with Ebert and De
Neve [2001], who state that experienced senior developers enhance productivity, since
the engineering costs to detect and correct defects is particularly high, especially for
projects without an intensive central team support.

I3: Teams with experienced participants with high-quality external support provided by
the central team have better productivity if the external staff is often available.

We obtained the best productivity results for AEH scenarios. However, the numerical
increase of productivity from the scenarios with low availability (BEH) is quite small
(around 3%), as seen in Figure 8. These numbers probably indicate that a highly
available central team is not really necessary, especially considering the usual high
costs to make a high-quality central team available often. These findings were verified
for Agile projects globally [Hossain et al. 2009], but it is natural to expect similar
behavior for other approaches.

I4: Sometimes teams with experienced participants also need central team high-quality
support and availability to improve their productivity even more. However, the drawback
of this kind of configuration requires additional project costs and a percentage of extra
effort from the central team.

For teams with inexperienced participants, high-quality support and availability is
very important, as seen in Figure 6, in which the AIH scenario practically doubles the
productivity of the BIL scenario. However, the gains achieved by the AEH scenario
compared to the BEL scenario represent a 5% increase in an already highly productive
situation (Figure 8), that is, in this case, the extra costs needed must be balanced to
become a benefit in the context of the project. These findings are compatible with the
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notion of importance of a qualified central team stated in previous works [Jalote and
Jain 2004].

I5: A central team highly available and providing high-quality support does not mean
that teams’ productivity will significantly change.

Even though a good and available central team could increase productivity, as seen
in Figure 6, the key factor to productivity seems to be the experience of the team’s
participants. In fact, a central team highly available and providing high-quality sup-
port matters only when you have inexperienced participants. Even for these situations,
when the central team is both available and highly qualified, the performance increase
will be insignificant, as can be clearly seen for the AEH scenario in Section 6.2 results.
This conclusion is somewhat surprising compared with the findings in previous works.
For instance, Raffo and Setamanit [2005] states that a central team managing strate-
gic factors significantly impacts a GSD project’s performance. However, our findings
indicate that the importance of the central team is linked to the low level of experience
of participants.

I6: A central team providing very-low-quality support may hinder the productivity of
teams with experienced participants.

As seen in Figure 10, the central team providing very-low-quality support may be
seen as an adversity to experienced teams. The higher productivity of BEvL scenarios in
comparison with AEvL shows that availability of the central team hinders the team’s
performance, since the central team provides very-low-quality support. This result
is counterintuitive, since it could be expected that a low-quality central team would
be neutral to teams with experienced participants. Curiously, when the participants’
experience decreases, that is, scenarios AIvL and BIvL, even a low-quality-support
central team represents some help. This conclusion was, at the authors’ best knowledge,
a novelty in the domain, since previous works [Ebert and De Neve 2001; Ramasubbu
et al. 2011] express opinions about the benefits of experienced participants in a team,
but they do not mention the fact that a low-quality-support central team may actually
do harm. In that case, it could be preferable to have inexperienced participants rather
than experienced ones, if the central team is not expected to deliver good support.

7.1. Discussion on Model Application

Many software development projects, regardless of chosen methodology, require project
managers that are responsible for a team of programmers/testers. Moreover, results
from other researchers point out that teams should gather professionals with valued
contributions to the project, avoiding communication issues and other problems due
to eventual mandatory synchronizations. In this article, we stress that practitioners
could benefit from our modeling template as a basis to map their own reality with
their own parameters, then compute the numerical solution and analysis in hopes of
determining interesting trade-offs for their own projects.

As mentioned during the explanation of models in Sections 4 and 5, the choice of
parameters is a crucial aspect for the performance prediction. Our results presented
so far assume parameters according to a sample of 300 GSD projects, but it may be
interesting for a specific project modeling the choice of specific event rates. The pro-
posed solution mechanism works regardless of the parameters; therefore, stakeholders
using our methods may use their own time or frequency information to set their own
event rates. Professionals adopting our technique for analysis could also vary a set
of parameters and investigate trade-offs and relations, in a “what if” setting. All of
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this is possible with our analytical modeling proposal, which analyzes parallel and
synchronized behavior within development teams.

As stated earlier, it will be sufficient to parametrize the model with data pertaining
to each participant’s behavior and execute the numerical solution mechanism to ob-
tain interesting performance measures to guide project decisions, such as for adequate
capacity: for example, increase the number of programmers or testers or, for instance,
decrease project managers’ availability. It is possible to obtain model parameters from
several approaches, such as application logs, questionnaires, and even project man-
agers’ educated guesses. It is also possible to benefit from systematic reuse of our own
model to fine-tune event-rates estimation.

8. CONCLUSION

The use of a formal modeling approach to describe a GSD project is not a simple
task. Nevertheless, there are clear advantages in doing so. First, it allows a very
thorough reflection about the players, roles, and actual interactions in a GSD project.
Another important advantage is the scientific credibility achieved by the performance
predictions. In fact, the conclusions obtained are free from possible misinterpretations,
since all numerical conclusions are based on solid probabilistic analysis over a given
set of input parameters.

In this article, we present two variations to model development teams in a global
context, and we analytically solve a large set of scenarios to investigate the produc-
tivity index. For our analysis, it is important to note that basically three parameters
play a direct influence in a team’s productivity: the central team’s availability, quality
of external support, and the participants’ experience level. The results provided valid
insights regarding the analyzed examples, but we believe that this article’s main con-
tribution is the use of a formal stochastic modeling approach to describe and predict
the productivity9 of a globally distributed development project. With that in mind, we
welcome the readers interested in more details about our models to ask us to run vari-
ations in terms of different parameters, as well as to disclose the SAN models to those
interested in solving the models by themselves10.

It is our belief that future works could enhance the models including a large number
of significant parameters. Especially for globally distributed teams, it is possible to
imagine the inclusion of features such as organization behavior, team dynamics, learn-
ing curves, and so on. Despite that, even in the current version, the presented models
results are already insightful. According to our conclusions, it is possible to foresee the
impact of some basic decisions while the team assembling is still being planned. Fur-
thermore, model parameters can be easily changed to produce a wide variety of results,
which is unthinkable using the traditional observation of real cases. For example, it is
unrealistic to believe that some project manager could observe four different projects
to work with experienced and inexperienced participants, with low- and high-quality
support central teams in order to take decisions to assemble the team for a specific
project. The presented models, on the contrary, were good enough to offer a panoramic
view of a wide range of the chosen parameters and even draw some conclusions stated
as implications found from our scenarios.

It is important to note that the use of the term “scenarios” instead of “experiments”
has a purpose in this article. We chose such terminology to stress the fact that our

9The productivity index computed for our models was abstracted from the probability of the working state
(Wk in single-site and off-site support models or W in the GSD model) in teams’ participants (Member or
Participant) automata (see Section 4).
10To request details and running variations or to receive SAN models described in this article, please send
a message to paulo.fernandes@pucrs.br.
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results are based on a numerical solution of a formally defined stochastic model; there-
fore, it is distinct from those usually found in the GSD literature. However, this nomen-
clature does not imply a value judgment, since we do not believe that results found here
are better or worse than those obtained from experimental observations. Both options
have their advantages, such as the higher statistical relevance of numerically computed
results, and the avoidance of misunderstandings on experiments’ observations.

Unfortunately, there is also the major disadvantage of a formal approach, which is
the high-level abstraction that keeps the input parameters somewhat distant from the
daily routine of software-engineering projects. It is rather easy to feed the model with
numerically inaccurate input parameters, mostly due to a priori misconceptions. For
example, the modeler may assume a same average time to an expert project manager
to solve a developer request, but that estimation may be based only on the project
manager skill, ignoring the developer skill level. Modeling a project with developers
having very different skill levels may be much more accurate assuming different rates
to synchronize the leader with different members. However, this problem far from
invalidates the applied formal approach because informal approaches also may suffer
from these incorrect assumptions. Despite the fact that formal approaches are more
prone to this kind of error, in informal approaches these errors are usually harder to
detect.

Markovian formalisms, usually in their structured form, are widely used for stochas-
tic modeling of myriad real-life problems, since they are reliable and the state-
transition paradigm is quite intuitive. Usually, the parameterization of models is a
little harder, but it is also the key point in prediction effectiveness.

Therefore, in this article, we present a model considering different degrees of avail-
ability, levels of support, and participants’ expertise. More complex situations, such as
cultural differences and coordination issues, can be added to the proposed model to
improve applicability in real GSD projects. Such improvements will probably require
a few changes in the states and events, but a much more complex estimation of event
rates. However, even with the current level of abstraction, it was possible to obtain rele-
vant performance indices to set up development teams, multisite projects, and resource
allocation decisions.

An interesting aspect worth considering is the team building process, in which opti-
mal team configuration is to be sought to improve financial considerations. The model
presented here can help this overall process since it sufficiently observes the reality,
then performs a sensitivity parameter analysis to discover more efficient team settings.
Nevertheless, more experiments may be required before such future work. For instance,
in our article, we performed a sensitivity analysis of team sizes to some extent, from 2
to 10 participants. A wider range, or the sensitivity analysis of other aspects, such as
the quality of central team support, could provide interesting new insights.

Other possible future work is to enhance the formal model, considering more subtle
information about the modeled project. There are different factors that affect teams’
productivity such as perceived schedule versus actual schedule, increased interactions
due to project milestones and task misconceptions or changes in requirements, and
even concentration on the analysis of accomplished project tasks. The measure of
teams’ productivity can be also influenced by the developers’ morale, as they must
constantly feel that the project is smoothly progressing [Sangwan et al. 2006]. Most, if
not all, of these project characteristics could be included in the model, but such future
work would demand many assumptions that involve complex human behaviors.

A more tangible future line of study consists of extending the model to consider other
forms of project organization. The proposed model presents a high centralized commu-
nication pattern, which can be very risky for some projects. Nevertheless, depending on
the size of the team, as well as the levels of expertise and support provided, these risks
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can be attenuated or aggravated. The proposed model could be extended to take into
account the complexity of tasks, the duration of the project, or even specific phases.

The main contribution of this article is to propose a valid modeling exercise to for-
mally describe software-development projects and extract meaningful performance
indices. Some insights on the analyzed models are quite reasonable, since they confirm
to intuitive expectations, but also demystify some preconceived assumptions. The best
results achieved with our stochastic modeling approach were to express performance
predictions with numerical values in a research area that is usually more driven by
qualitative aspects based on implications found from previous experiences. Much more
research on formal modeling of GSD projects remains to be done, and we believe that
SAN formalism may play an important role as a tool.
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