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UMA IMPLEMENTAÇÃO LEVE DE UMA REDE NEURAL DE

CONVOLUÇÃO 3D PARA DETECÇÃO ONLINE DE GESTOS

RESUMO

Com os avanços de técnicas de aprendizado de máquinas e o aumento da capacidade

computacional disponível, redes neurais artificiais (ANNs) representam o estado-da-arte na tarefa

de classificação de imagem, e mais recentemente na classificação de vídeos. A possibilidade do

reconhecimento de gestos através de imagens de vídeo permite uma interface homem-máquina mais

natural, maior imersão ao interagir com equipamentos de realidade virtual e pode até nos levar, em

um futuro breve, à transcrição automática de linguagem de sinais. No entanto, as técnicas utilizadas

para classificação de vídeo possuem um alto custo computacional, se tornando proibitivas para o uso

em hardware mais simples. Esta dissertação busca estudar e analisar a aplicabilidade de técnicas

de classificação de gestos contínua para sistemas embarcados. Este objetivo é atingido através da

proposição de um modelo de rede neural baseado em redes de convolução 2D e 3D, capaz de realizar

reconhecimento de gestos de forma online, isto é, gerando uma predição de classe para o vídeo

concomitantemente com a obtenção dos quadros são obtidos, de uma forma preditiva, sem ter acesso

a todos os quadros do vídeo. O modelo proposto foi testado em três diferentes bancos de dados de

gestos presentes na literatura. Os resultados obtidos expandem o estado-da-arte por apresentar uma

técnica de leve implementação que ainda apresenta uma acurácia alta suficiente para a aplicação em

sistemas embarcados.

Palavras Chave: Reconhecimento de Gestos, Classificação online, 3DCNN.



A LIGHT IMPLEMENTATION OF A 3D CONVOLUTIONAL NEURAL

NETWORK FOR ONLINE GESTURE CLASSIFICATION

ABSTRACT

With the advancement of machine learning techniques and the increased accessibility to

computing power, Artificial Neural Networks (ANNs) have achieved state-of-the-art results in image

classification and, most recently, in video classification. The possibility of gesture recognition from

a video source enables a more natural non-contact human-machine interaction, immersion when

interacting in virtual reality environments and can even lead to sign language translation in the near

future. However, the techniques utilized in video classification are usually computationally expensive,

being prohibitive to conventional hardware. This work aims to study and analyze the applicability

of continuous online gesture recognition techniques for embedded systems. This goal is achieved by

proposing a new model based on 2D and 3D CNNs able to perform online gesture recognition, i.e.

yielding a label while the video frames are still being processed, in a predictive manner, before having

access to future frames of the video. This technique is of paramount interest to applications in which

the video is being acquired concomitantly to the classification process and the issuing of the labels has

a strict deadline. The proposed model was tested against three representative gesture datasets found

in the literature. The obtained results suggest the proposed technique improves the state-of-the-art by

yielding a quick gesture recognition process while presenting a high accuracy, which is fundamental

for the applicability of embedded systems.

Keywords: Gesture Recognition, Online Classification, 3DCNN.
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1. INTRODUCTION

Ever since the creation of the computer, researchers and the industry have been working on

more natural ways of interaction with machines. Outside from the common mouse and keyboard,

somemainstream technology that is already present in nowadays commercial products include: speech

recognition (e.g. Google Assistant, Alexa from Amazon, Siri from Apple, etc), face recognition

(e.g. Android and iPhone unlock mechanisms), full-body movement recognition (e.g. Kinect from

Microsoft), etc. Gesture recognition is present in some technologies, such as the remote triggering

of a camera shutter, but less present than the prior mentioned. The introduction of gestures as a way

to interact with machines can have several utilities ranging from controlling household equipment

remotely, to being used to detect human intention in a self-driving car, for example. One of the

characteristics that possibly made speech recognition more widely available and more present in

everyday applications is the lessened complexity (in terms of the amount of data needed to represent

it) of it, when comparing to gesture detection through a sequence of images, for example. Sound is

less computationally expensive to process than video and removing noise and distractions from the

original captured signal (or even obtain a clear voice over a silent ambient) can be easier than isolating

the parts of a gesture in a camera outside of a controlled environment. Besides being an alternative to

voice commands (in ambient with loud noises, speech recognition is hindered, for example), gesture

recognition adds a new layer of what machines can understand from humans, therefore, enhancing our

capability of communication and easing intention understanding from computers.

Gesture recognition techniques can be divided into two major groups: contact-based and

vision-based [33]. The former uses additional equipment, that will physically interact with the subject

performing gestures. Some examples include: wearing gloves or suits equipped with accelerometers,

submitting the subject to ultrasound waves and holding a remote controller (such as used in the Wii

game console). Figure 1.1 shows an example of a contact-based technique for hand tracking. Although

the capture of the movement is vision-based (a camera) a special glove is required to improve the

capability of the system to detect the exact hand position. Vision-based gesture recognition uses

cameras to record the subject performing gestures, although in some cases it may still require the

wear of reflective material to enable body detection and tracking. Contact based gesture detection

is often considered intrusive and is less well-received due to the necessity to use extra equipment.
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Vision-based recognition, on the other hand, due to the simplicity for the end-user, got more attention

and development in the past years [33].

Figure 1.1 – "We describe a system that can reconstruct the pose of the hand from a single image of
the hand wearing a multi-colored glove. We demonstrate our system as a user-input device for desktop
virtual reality applications." Source: [46]

In addition to how the information of the gesture is captured, there is also a big distinction

when it comes to how data are interpreted. According to [33], which compiled a study from many

gesture recognition papers from 2005 to 2012, the majority of the vision-based approaches include

some pre-processing of the captured image that is then used as features for a machine-learning

algorithm to classify it as a certain gesture. Some of the reason why the pre-processing state is used

in these works are:

• Isolate the hand from the background of the image;

• Compensate for the varying illumination conditions;

• Compensate for motion blur;

• Track hand movement;

• Identify and ignore other moving objects in the background.

This process of identifying only the meaningful information from the input data (the hands),

while disregarding background information, is called detection, and can be achieved using a variety

of approaches: based on skin color, based on the shape of the hand, based on pixel values (textures),

based on motion, etc.

Another aspect, this time not always present, is tracking, i.e. the frame-to-frame corre-

spondence for the segment of an image in which the hands are contained. Some implementations of

tracking are as follows: template-based (what is considered a hand in the current frame is based on
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the hand detected from the previous frame), optimal estimation (a framework provided by the Kalman

filter) and particle filtering (many particles are used to represent where the hands and fingers are).

The final step in gesture recognition is the recognition itself, i.e., using the given features

extracted from the original data to predict what gesture is being performed. The recognition can be

static (a still image can represent the gesture) or dynamic (gestures in which there is movement from

the user’s hand). Although it can be done, theoretically, by manually writing rules based on observed

features, the majority of published techniques use some sort of learning algorithm to perform the

recognition. Some techniques used in the literature are:

• K-means;

• K-nearest neighbor;

• Mean shift clustering;

• Support vector machine;

• Hidden Markov model;

• Dynamic time warping;

• Finite state machine;

• Neural Networks.

The recent highlight from these techniques in the past years has been the Neural Networks

(NN) and its various topologies [23]. Due to the increase of available computing power, the enhance-

ment of topologies such as the CNNs (Convolutional Neural Networks), and availability of richer

databases with larger quantities of data to learn from, a sub-field of machine learning called "Deep

Learning" was developed. When it comes to more data and computing power available, more complex

models of NNs started to outperform other machine learning techniques [40], by being able to make

better use of the additional data when utilizing more complex models. In addition to that, some topolo-

gies of neural networks, CNNs for instance, can produce its features, relinquishing the necessity of

detection and tracking as separate steps (for classification only purposes). Many applications of CNNs

shows its capabilities of recognizing a certain subject in the middle of a more complex scene, thus

16



detecting and isolating hands from the rest of the environment is not necessary for most applications.

Some implementations of CNNs will have only a normalization of the pixel values as the needed

preparation before inserting the data in the network, in other words, the only information given to

the network is the image itself. The features for detection can be learned during the training process

(concomitant with the recognition portion of the network or not), without the need of human-created

filters or other techniques in the process.

Neural networks implementations have been used to achieve excellent results with image

recognition tasks [41]. The task of using neural networks for video classification (e.g. dynamic

gestures) is a natural extension from this task and can make use of the same tools for identifying

visual parameters on video. Video classification solutions are, nowadays, possible using the strong

background of image recognition techniques and extending that with techniques that allows to the

network to learn temporal aspects of the provided data, such as LSTM (Long short-term memory)

networks, 3D convolutional networks (3DCNNs) or through the use of handcrafted features that extract

motion information from the static frames, such as Optical Flow [19].

It is worth noting the definition of modes of operation for classification: offline classification

and online classification. The former has all frames of the video in advance, the gesture recognition

occurs after the video was captured, e.g. performing gesture recognition from a database. Since there

are no hard deadlines for the processing of the data, the usual objective with this kind of operation is to

achieve the highest accuracy possible. On the other hand, online classification refers to the operation

in which the gesture recognition is being performed for every incoming frame, i.e. it does not have

access to future frames and, in the case of real-time applications, it has a hard-deadline to yield the

prediction, to keep up with the next incoming frames. This mode of operation can be used in real-time

applications, requiring additional attention for computing power restrictions, or can be a simulated

online operation, which is not being acquired in real-time, but it is used to check how accurate the

model is when performing in this manner.

While the advancements in the usage of video footage for classification tasks have been

heavily enhanced lately, most of the studies focus on offline classification, leaving out the considerations

needed to apply such techniques in real-time applications through online classification. Designing a

model for offline classification of video allows the design to dismiss some restrictions that would take

part in a real-time environment, such as time to yield a prediction (overall complexity of the network),
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RAM and VRAM memory usage and dealing with a moving window of incoming frames. Making

the model light on resources needed to run it, allows the technology to be used in conjunction with

less expensive hardware, and thus be applied more broadly and in cheaper hardware.

This work will focus on the task of online dynamic gesture classification considering which

topologies of NNs allow for a light implementation (low on computing power needed to run it) to

use with online classification, using several hand-gestures datasets to train and validate the proposed

model. Particularly, a study of which neural network structures can be better used to perform in

online operation, the accuracy achievable by a lighter implementation when compared to state-of-the-

art techniques, the corresponded comparison between accuracy and complexity and a study of the

effectiveness of adapting trained models from one gesture dataset to another (transfer learning).

This work is developed as an embedded software problem. The neural networks proposed

are implemented in python using the PyTorch library, which offers optimized code for describing the

most common network structures. The main code of the networks is provided at https://github.com/

fabiopk/RT_GestureRecognition. While the development aims at embedded systems, the networks

were trained and run in desktop graded hardware. Implementing and testing the proposed networks

in an actual embedded system (such as a Raspberry Pi or a smartphone) is part of future work.
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2. BACKGROUND

The development of Neural Network is evolving rapidly since its invention in the past century,

and most recent work has been highlighting this technique as one of the most common and effective

inside the machine learning area. The advancements in hardware performance and richer databases

allowed the supervised learning branch of neural networks to achieve a new baseline of what machine

learning techniques can achieve in areas inside computer vision [45], natural language processing

[49], and general classification problems.

In this section we will first explain how neural networks work and review some of the

most relevant structures utilized in computer vision, focusing only on neural networks for supervised

learning. After we will comment on different topologies that are state-of-the-art for video and/or

gesture recognition. The reference for the review part of this chapter is based on the book [10].

2.1 Review of Neural Networks

A Neural Network (NN) is a technique of machine learning, first theorized in 1943 by the

neurophysiologist Warren McCulloch and mathematician Walter Pitts, only tested in computers by

the 1950s, due to computer hardware limitations of the time. Neural networks are inspired by the

human brain, specifically on how neurons transmit, emit and block signals. A neuron, therefore, is the

name given to the basic structure of a neural network, and it is responsible for combining many input

"signals" from its input to make an output signal. A general image representing a neural network is

shown in Figure 2.1. A neural network can have many layers, each one containing many neurons, in

which the first layer of the network will contain neurons that receive the input of the system (shown

in yellow) and will output an intermediate result that is passed to the next layer of neurons (blue

neurons). The last layer of neurons will output the final output of the system (salmon-colored neuron).

The layers between the input layer and the output layer, which are represented in blue and green in

Figure 2.1, are called hidden layers. This kind of configuration in which all neurons of a given layer

are connected to the neurons of adjacent layers is often called "fully connected".
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Figure 2.1 – Basic structure of a neural network
Source: [3]

Figure 2.2 – Block diagram of a basic NN neuron
Source: [3]

The computation inside a neural network is a linear combination of all of its inputs passing

through a non-linear "activation function". A representation of this is process is shown in Figure 2.2,

and its output z is detailed in the equation (adapted from [10]):

ẑ = f (b̂ +
n∑

i=1
xiwi) = f (b̂ + x̂.ŵ) (2.1)

where x and w are the inputs of a neuron and the weights in vector form, f is the activation

function and b is the bias. This input of each node from the previous layers is multiplied by a weight
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ω j which can be a positive or negative value, reinforcing or inhibiting a certain signal. The bias,

sometimes represented as an input of unitary value, is almost always present to allow the neuron to

fit to models that do not have an output zero when all inputs are zero (i.e. it allows the output of the

neuron to "move" in the y-axis). There are many commonly used activation functions, each one with

different applications. Some common examples are:

1. Binary step;

2. Rectified linear unit (ReLU);

3. Leaky rectified linear unit (Leaky ReLU);

4. Sigmoid;

5. TanH.

Some examples of activation functions are shown in Figure 2.3. ReLU, for example, keeps

the original values of the signal if it is positive, or set it to zero if it is negative. The sigmoid function

is useful for transforming a signal into another from the interval of zero to one. Different activation

functions might have different uses depending on the need of the creator of the network.

Figure 2.3 – Some examples of activation functions and its graphs
Source: [35]

Activation functions, depending on its type, help themodel (i.e. the neural network structure)

to solve non-linear problems, prevent values from overflowing (e.g. a TanH function has an output

range of (−1,1)) and transform general numbers into probability values (e.g a Sigmoid function

transform values from the range (−∞,∞) to the range (0,1)).
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The weights are part of the parameters of the neural network (the values that are changed

when training a network). In supervised learning, the network modifies these values by training on a

set of labeled data. The next section will elaborate on how neural networks are trained.

2.1.1 Training Neural Networks

The process of training a network refers to fitting that network to a certain dataset, that

is, changing the values of the parameters of the network to yield an optimal accuracy between the

inputs and labels of a certain dataset. The most common way of training neural networks is called

backpropagation and consists of minimizing a defined loss function.

The loss function (J(y, ŷ)) is defined based on what the network is trying to achieve. In

regression problems (e.g. estimating the price of a house) a common loss function would be the Mean

Square Error (MSE) of the predicted values and the true labels. For classification problems (e.g.

deciding if a credit card is fraudulent or not) a common loss function would be Cross Entropy. The

loss function can also help to compensate uneven class distribution and penalize high weights as a

manner of preventing overfitting during the training process (overfitting will be commented in detail

in a later section).

The backpropagation algorithm starts by inserting the input data into the network (either by

feeding batched or the whole dataset), calculating all the values in the hidden layers until and output

layer, this process is called "forward". With the predictions from the output layer (ŷ) and the true label

of the data (y) it is possible to calculate the loss function. A loss function for a classification problem

using cross-entropy is shown in the following equation (adapted from [10]):

J(y, ŷ) = −(y.log(ŷ) + (1 − y).log(1 − ŷ)) (2.2)

The next step in backpropagation is calculating the gradient of the weights in order to

minimize the loss function. Since neural networks are deterministic, and all of its computational steps

can be derivable, it is possible to calculate the gradient of weights that will reduce the loss function

mathematically. With this gradient, small adjustments are made to the weights of the network by
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subtracting the current weight of the network by gradient calculated multiplied by a α factor called

the learning rate. The following equation (adapted from [10]):

θ̂x := θ̂x − α
δ

δθx
J(θ̂x) (2.3)

describe the updated value for the weights (θx) of the network on each step of the training

process. This terms is a small number (commonly 10−2 to 10−5) and prevents the network frommaking

large adjustments at each step. Since the training is done iteratively, small steps towards the optimal

point help the network to converge to an optimal set of weights, while a big learning rate might lead

to bigger and bigger "adjustments" in the weights, setting it further from its point of local or global

minimum of the loss function.

During the training process, all the available data are divided into three groups: train set,

validation set, and test set. The NN is trained using the train set, either by forwarding the whole set

through the network at once. Whenever the network is shown all the samples from a dataset an epoch

has passed. Commonly, in the cases where the whole train set is too big to be fed to the network at

once, or by design choice, the data are presented to the network in batches, which are a subset of the

original set. Similarly, once all batches of a given set are used for training, an epoch has passed. In the

case of using batches for training, the Gradient Descent technique is applied in the same manner, but it

receives a different name, Stochastic Gradient Descent (SDG) since each step is not going necessarily

in the gradient of the entire dataset anymore.

The validation set is used for evaluating the performance of the model during training. Since

the data was trained using the test set, the network performance should be evaluated based on novel

examples to check if it is learning useful and generic features of the dataset. When experimenting with

different architectures of a neural network (e.g. different layers, different loss functions, activation

functions) the data from the train set and validation set can be shuffled and redistributed among the

two. This is helpful especially in smaller datasets in which there might be some bias for some classes

for the train or validation set.

The test set contains data that should only be used for a final evaluation of the network,

containing data never seen by the network before and never tested before. Even though the model is
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never trained in the validation dataset, some bias still exists for it since the experimentation done with

the validation dataset will opt for models that have a good performance on it.

2.1.2 Neural Network Concepts

So far, we have discussed basic structures of simple neural network structures. This section

will anticipate some of the possible concepts related to neural networks that will be mentioned further

in the text.

Overfitting and Underfitting

Possibly the most common problem to be avoided in neural networks is overfitting, and it is

the phenomenon of a network "adjusting" its response too close to the train set, instead of classifying

based on general features that can be generalized for other samples. Overfitting a NN will cause it to

have high accuracy on the training dataset but a low accuracy on the validation dataset. In extreme

cases the neural network will behave as a Truth Table, knowing what are all the possible inputs and

"memorizing" the correct answer for each item. If the network is able to memorize all possible inputs

and its responses, there is no need to generalize (from the point-of-view of the optimization algorithm)

and thus prediction on new data is impaired.

Some common causes of overfitting are:

1. Too few training samples;

2. Too many parameters available for the network;

3. Presence of bias in the training set;

4. Having too many features;

Having too few samples in the training set hinders the ability of the neural network to learn

the truly useful parameters for a given dataset. For example, in gesture recognition, showing to the

network only a few samples of a given gesture will hamper the understanding of the network that the

movement of the hand is the deciding factor to classify a certain sample. Instead, the network might
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rely on other similarities that are not intuitive for humans, such as the texture of walls, clothes and

skin, the color of the background, the relative position of the camera, and so on. Although it might

seem a simple task for a human to understand that the hand gesture is the focus, for the network, there

might be many other (possibly simpler) factors that help to differentiate one gesture from another.

Increasing the number of samples in the training dataset reinforces common characteristics among the

samples of a certain class, inducing the network to learn useful general features to minimize its loss

function.

In addition to that, having a network with too many parameters allows the network to

"memorize" specific characteristics of each sample to minimize its loss function. An analogy that

might help to explain the problem of having too many parameters is the following: Let’s suppose we

have a piece of paper to take notes to a math test about prime numbers. If the paper is big, we might

be tempted to write all the prime numbers possible in the piece of paper, and check whether or not

a number is prime by checking our list in the paper. However, if the piece of paper was small this

strategy would not work well, it would be best to write the concept of what a prime number is. There

is no rule of what is considered an ideal number of parameters of a network, most of it is based on

trial and error and experience from other similar problems.

Figure 2.4 – Examples of overfitting and under-fitting for a two-class classificator
Adapted from: [2]

On the other hand, underfitting is the terminology used when the output predictions of a

network do not represent well the train set, neither the validation set. It can happen when the network

is not trained for enough epochs, there are too few parameters to represent the test set adequately or

that the network is not adequate to learn the features needed for a given dataset. Figure 2.4 shows an

example of a classification NN which tries to separate two classes (red crosses and blue circles) based
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on two features (represented by the x and y-axis). The blue line represents the border between where

the network will predict as a red cross or a blue circle. In the first image, the line separates too poorly

both classes, leaving many samples in the wrong side of the border. This might be the case that this

model lacked the complexity to predict a border different than a line, for example. The right-most

image represents an example of overfitting, the border do whatever is possible to get every sample

right, resulting in a counter-intuitive shape. The red crosses in the middle of the blue circles might

be outliers, and in that case, trying to force them to the right class might result in poor accuracy in

the validation and test sets. The example in the middle, while getting a couple of predictions wrong,

seems intuitively a more natural solution for this problem, which can only be evaluated based on

testing outside of the test set.

Vanishing Gradient

A common occurrence of deep neural networks (ones with many layers) is the incapability

of training properly due to a problem called "vanishing gradient". With the addition of many layers in

a NN, the gradients of the loss function, during backpropagation, approach zero, making little to no

modification on early layers, thus hindering training. This is especially the case when using activation

functions that "squish" the signal, such as Sigmoid and Tanh.

Some solutions to the vanishing gradient problem when implementing deep neural networks

are:

1. Using activation functions that do not squish the tensors (e.g. ReLU);

2. Add batch normalization layers in between layers;

3. Make a direct path from earlier layers to the output of the network;

A "zoomed in" (a piece of amuch larger network) version of theGoogle’s network, Inception,

is shown in Figure 2.5. This is a deep network used for general image classification. It is possible to

see paths that skip some layers in the network every so often. This makes easier for the network to

train through backpropagation of the earlier layers since there is a path passing through fewer layers.
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Figure 2.5 – "Zoomed In" repeated structure of Inception Network
Source: [41]

Transfer Learning

The concept of transfer learning refers to the re-purpose of a pre-trained network to fit a

different dataset. One clear example of this is re-purposing a NN trained on ImageNet, a dataset

containing thousands of classes and millions of images from all types, to train on specific classes that

the user wants. As an example, Google’s Inception, which is heavily based on feature extraction using

CNN layers (see Section 2.1.3) while having the last fully-connected layers used for classification.

Thus, it is possible to freeze (i.e. impede the change on the parameters) the training on the convolutional

layers (which contain filters able to classify a variety of classes) while training only the last layers of

the network for the novel data.

This process allows for a quick implementation of networks since it is possible to reuse a

big part of a validated network to accelerate the training process. The concept of transfer learning

will appear in this work in the context of using image classificators in video classification structures

or even using networks trained for offline classification to real-time use.

2.1.3 Neural Network Structures

So far we have been discussing fully connected neural networks, which are still a relevant

structure for the majority of proposed NN architectures. In this section, we will discuss other
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configurations of neuron structures, in which each node might not be connected to all other nodes

from adjacent layers. These specific configurations were created having in mind a problem to solve

or an adaptation to approach a specific data type more efficiently. Specific structures are commonly

combined in layers to create a network.

CNN - Convolutional Neural Networks

One of the obstacles when trying to use regular fully connected networks to classify images

is the needed number of neurons required to represent each pixel of an image. Considering an RGB

image of dimensions [100,100,3] (100 pixels of height, 100 pixels of width and 3 color channels) it

would require a total of 30k weights per neuron in the first layer of the network. For larger images

or more complex networks, these values can scale to unpractical numbers, limiting the application of

such networks.

Convolutional Neural Networks (CNN) are specialized structures for neural networks that

do not connect all the neurons between adjacent layers. Instead, it uses the operation of convolution

between kernels (parameters of the network, which will be trained to fit a certain dataset) and the input

data. The 1D discrete convolution operation, for an input f with length n and a kernel g with length

m, is presented here (adapted from [10]):

( f ∗ g)[i] =
m∑

j=1
g[ j]. f (i − j + m/2) (2.4)

The convolutional process can be used for any dimension and is commonly used for images

in the form of 2D convolutions. For the rest of this section, we will be using 2D kernels and images

as the input of the networks to better illustrate how CNNs operate, however all the concepts here

demonstrated can be adapted to other dimensionalities. The example of input image, in numeric form,

and a 2D kernel is shown in Figure 2.6.

For the case of two-dimensional inputs and kernel, the convolution operation can be thought

as if the kernel is positioned on top of the image, performing a pixel by pixel multiplication, summed

and then moved to the right to repeat the process. As an example, let’s consider the values for the

image and kernel shown in Figure 2.6, and do a step by step calculation of the result of the convolution

between the two, demonstrated at Figure 2.7 (steps "a" to "i"). In the first step, labeled as "a", the
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Figure 2.6 – Image matrix and 2D Kernel example
Source: [32]

original image is represented in green and the kernel is positioned on top of it, aligned in the first row

and first column (its values are shown in red, as a multiplication) the overlap of both matrices is shown

in yellow. This arrangement will yield the first value of the resulting convolution, by multiplying pixel

by pixel of this combination and adding the resulting values, which for this case is 4. To calculate the

next value of the convolution, the kernel moved one column to the right (see step "b") and the same

process is repeated, yielding a 3 as the next value. The same process is repeated for step "c", and for

step "d" the kernel is positioned in the first column again (since it cannot advance another column),

however, shifted downwards by one line. This process is repeated for the remaining steps until the

kernel is aligned with the right-most column and the last line. The result of each step is represented

in the "Convolved Feature" matrix.

The shape of the resulting matrix depends on the shape of the original image, the shape of

the kernel, stride, and padding. In this example, it was considered a stride of one, which refers to how

many columns and lines the kernel moved between steps. A stride of two, for example, would imply

skipping steps "b", "d", "e", "f" and "h", resulting in a result of size 2 by 2, composed by the values

seen at steps "a", "c", "g" and "i". Also, there was no padding, if there was a padding in the example

the original image would have a "frame" of zeros around it (in the case of zero-padding), and the

kernel move across this frame containing the original image, increasing the number of steps needed

to roam on top of it, and therefore resulting in an increased shape of the output of the operation.

This example described a convolution between an image with dimensions [5,5] and a kernel

[3,3]with stride on one pixel and no padding. The stride represents howmany pixels the kernel moves

between each step of its calculation. A bigger stride will result in fewer steps in the convolutional

process, and thus a smaller output image from the process. This can be used as a way of reducing the

dimensionality of the network. The padding in a convolution is applied in the input image (usually
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Figure 2.7 – Demonstration of a convolution between a 5x5 image and a 3x3 kernel
Adapted from: [32]

with zeroes, but other approaches are common as well) primarily in order to control the size of the

output of the operation. In the example case, since there was no padding in the input image, the output

image has dimension [3,3], smaller the input image. If a padding of 1 pixel was applied to the input

image (thus resulting in a [7,7] image, with the original image surrounded by zeroes) the output image

would have a dimension of [5,5].

The use of kernels on images to extract features predates the CNNs. Specific kernels can

be used to achieve edge detection, to sharpen an image, to blur an image and other features. Some

examples of uses of kernels are shown in Figure 2.8.

These examples show the use of predetermined kernels, with known uses. CNNs have the

values of their kernels modified by the training process. The examples shown contemplate small filter

of dimensions [3,3], however, bigger filters can be used to identify specific textures and even parts

of objects. A smaller filter can still be used in succession (many CNN layers connected) to obtain

the same effect of bigger filters, as suggested by [50]. In their work, it is possible to visualize what

the filters of CNNs are abstracting from image datasets, and it is possible to recognize shapes that
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Figure 2.8 – Demonstration of application for some 3x3 kernels
Source: [32]

reassemble human body parts (eyes, faces) and parts of an object (e.g. a tire from a car). CNNs are

capable of creating these kernels without direct human input, by training on a certain dataset.

Similar to the fully-connected networks, the CNNs usually have an activation function

following the convolution operation, the most common approach is to use ReLU. In order to reduce

the dimensionality of the tensors through the network, pooling operation is sometimes used as well.

In the case of images, the process of pooling creates a smaller output image with each pixel based

on several pixels from the original image. For example, a pooling of dimension [2,2] will transform

every 4 pixels (in a [2,2] shape) of the original image into 1 pixel of the output. Some examples of

pooling are Max pooling (which will take the biggest value out of the 4 pixels) and average pooling

(which averages the value of the 4 pixels). Another common inclusion in CNNs is a step called

batch normalization. As explained in [14], normalizing the values of signals allows the use of bigger
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learning rates, thus improving the speed of training of the network, makes the network less susceptible

to initialization problems and helps to generalize data acquired from different sources.

A full CNN network will usually have several layers of convolution, activation function,

pooling and, possibly, normalization. After all these steps, the tensor (which is at this point usually

smaller than the original data due to mainly pooling) is flattened, losing its two-dimensionality, in

order to be fed to a fully-connected layer that will yield the final predictions for the network. The

structure of a classic CNN, ResNet-18, is shown in Figure 2.9. This network was initially developed to

perform handwritten digit recognition, using as input small monochromatic images of a single written

digit. The dropout layers that appear in the image are a special type of layer, used in training only, that

deactivate some percentage of signals randomly. This prevents the network from relying on a single

path developed, which would make it more prone to overfitting.

Figure 2.9 – Structure of ResNet-18
Source: [1]

RNN and LSTM Networks

So far, we have discussed a specialized network for spatially related data, such as images.

In this section, we will comment on the most common networks utilized for temporally related data (a

sequence of some sort), which are RNN (Recurrent Neural Networks) and its more complex successor:

Long Short-TermMemory (LSTM) Networks. In a fully connected network, all the data are presented

at the input of the network, without any context of the order. Considering an application where the

network is responsible for predicting the temperature for the next day, feeding the daily temperature

of the past year would be very helpful. However, in a fully connected network, the notion of order is
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not present, making it difficult for the network to learn patterns of the temperature across the year. In

this case, a hypothesis of what might occur is the network relying only on the neurons containing the

temperature of the most recent days, and making a prediction close to those values.

Recurrent Neural Networks try to solve this problem by feeding data "sequentially". Each

data point (for our previous example, the daily temperature) will pass the network in sequence, taking

into consideration parameters from the previous data point. More specifically, the hidden layers (or

part of them) are fed as inputs to the next data point in addition to the actual data point for that cycle.

An RNN can be unrolled to see that, actually, data does not need to be fed sequentially, but it just

means that older data points have more computations before reaching the layers containing the final

prediction. Figure 2.10 shows a RNN, presented showing its feedback loop and in its unrolled form.

Figure 2.10 – An unrolled recurrent neural network
Source: [7]

One of the problems that the RNN structure creates is the difficulty to train longer sequences

due to the vanishing gradient problem. For our previous example, there would be at least 365 layers

between the input of a certain neuron and the outputs. Due to how backpropagation works, the

gradients have less and less impact the closer a neuron is to the beginning of the network, not being

able to modify properly its values. Because of this, RNNs do not perform well when dealing with

longer data sequences when compared to LSTM networks, which were created as an alternative to

RNNs when dealing with more complex data.

The Long Short-Term Memory Network (LSTM) was first proposed by [12] in LSTM as a

variation of an RNN capable of learning long-term dependencies. LSTM replace the conventional

RNN structure with LSTM cells (shown in Figure 2.11). These cells add a more complex structure

with the added state (the top line that runs through the cells) and gates (depicted by pink elements)

driven by neural network layers (depicted in yellow).
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Figure 2.11 – Representation of an LSTM cell, inside a LSTM network
Source: [7].

The main gates represented in Figure 2.11 are the forget gate, input gate, and output gate.

The forget gate (Figure 2.12 a) is responsible for "forgetting" information from the previous cell. The

input gate (Figure 2.12 b) is responsible for adding new information to the state of the cell. The

process is divided into two parts: a sigmoid (σ) network decides which values will be updated and

next the tanh layer decides which are the candidates to be added to the new cell state (Figure 2.12 c).

Lastly, the output gate controls what the output the cell will be, based on the cell state. A sigmoid (σ)

network determines which parts of the cell will move to the output and are multiplied by the output

of a tanh function from the state of the cell (Figure 2.12 d). All these neural networks are fed by

the previous cell output and the inputs for this step of the sequence and are trained in to be able to

forget/remember information that will render the lowest loss for the network.

Figure 2.12 – Different parts of a LSTM cell: a) forget gate; b) input gate; c) state path; d) output gate
Source: [7].
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LSTM networks achieved state-of-the-art results in many areas, such as speech recognition

[34], video classification [21] and NLP (Natural Language Processing) in general [8].

2.2 State-of-the-art in Neural Networks for video classification

The task of video classification can be broadly defined as the task to extract information

from video to attribute a class (or label) to it, or an event contained on it. For example, identifying

what sport is being played in a certain sample of video (classification of the entire video) or detecting

in a security camera when suspicious activity might occur, therefore labeling a specific event inside

the video. The task of gesture recognition can be considered a type of video classification, in which

the labels are the different gestures recognizable by the network and the task consists of identifying

which and/or which gesture is being performed in a given sample.

Another aspect to consider in the task of video classification is if the classification is done

online or offline. The former refers to yielding a label as frames of the video are being processed,

in a predictive manner, unable to have access to future frames of the video. There is a time aspect

in this mode of operation, i.e. the label is yielded at a given time (at a given frame of the video, for

instance), and cannot be corrected later on if the label was later discovered as incorrectly classified.

In online classification, the delay to make the prediction is relevant because if the network waits for

higher confidence before yielding a label, it might introduce a bigger delay in the prediction, while

if it is more sensitive (more likely to yield a label) it might result in an increase of false positives.

Online classification is relevant for applications in which the video is being acquired concomitantly

to the classification process and the issuing of the label has a deadline.

On the other hand, offline classification refers to the same process of labeling, but without

any of the constraints mentioned before, a sample can be analyzed in its plenitude before issuing the

labels related to it. It can be used in applications in which the sample to be analyzed is finite and

its end is known, e.g. when a video is uploaded to YouTube, it is automatically tested for containing

copyrighted content, nudity, violence and other types of content that not allowed in the platform.

Video classification tasks have two major aspects to be retrieved from the video data: spacial

features (visual characteristics of single frames) and temporal features (information taken from the
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sequence of frames of a video). This dissertation is focused on the specific application of hand gesture

recognition, and since gesture recognition is a specific sub-group of video classification, this section

will contemplate networks that have state-of-the-art performance in more common video classification

datasets.

Themajority of studies in video classification is focused on offline classification, i.e.checking

how different network topologies can result in the highest accuracy for a given dataset or task. Online

classification has gained more attention in recent years [18] due to the possibility of using these

networks in real-time applications, which is a hard task given the computational power needed to

run video classification models at compatible speeds to meet deadlines in these applications. This

dissertation will consider the gesture classification problem as an embedded software problem, not

only accounting for how accuracy performance is affected in online operation, but also take into

consideration power consumption, the complexity of implementation, delay time, and others while

choosing the network topology. Although this work will not specify a hardware platform to run this

code, the considerations needed to implement the proposed approach in lower-cost equipment are

taken into account while designing the proposed topology.

This section will present some of the traditional and state-of-the-art techniques used to

achieve high accuracy in video datasets such as Youtube 8M, Something-Something, Jester, EgoGes-

ture, HMDB51, and UCF-101. Although most of the work presented in this section represent offline

implementations of video classification tasks, these represent the techniques which, so far, yield the

best accuracy on most common video classification datasets. Based on these topologies, the pro-

posed technique of this dissertation was based on, picking elements that are, in a first moment, good

candidates to work in an embedded system.

2.2.1 Convolutional Networks + LSTM Networks

Convolutional networks (CNN) are responsible for high performance of image classification

tasks in deep learning[41] , in datasets such as ImageNet and CIFAR-10, some examples include:

ResNet [11], DenseNet [13] and Inception [41]. On the other hand, LSTM networks have achieved

state-of-the-art results when dealing with sequential data, such as sentiment analysis and speech

recognition [29, 34]. Combining the capabilities of extracting spatial features with convolutional
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networks and using LSTM networks to connect those features temporally achieved state-of-the-art

such as the results presented in works as [21, 22, 47]. One of the facilitators of using 2D convolution

for visual tasks is the possibility of using transfer learning from networks previously trained on other

databases (e.g ImageNet). This allows the network to re-use kernels which will help the network to

train faster, and possibly achieve higher accuracy.

An example of an application of this kind of network is seen in [22]. In this work, the

authors present the structure of an "attention-based" network, which decides which part of the video

should be focused on. The authors use RGB and flow frames as the input of a CNN, in a two-stream

configuration, for action recognition and automated video captioning. A simple demonstration of the

network’s structure is shown in Figure 2.13.

Figure 2.13 – VideoLSTM network structure
Source: [22].

This network also contains 3D CNN structures and the use of flow frames, which will be

further commented on in the following sections. The use of CNNs and LSTM in conjunction is to

have the CNN extract the spatial information and feed this data to the LSTM (which normally only

operates with flattened data, although multi-dimensional networks can be used). The LSTM in this

example can be used to make a video label prediction or to generate a caption describing the content

of the video. The structure of an LSTM allows each cell to make a word prediction based on the

predictions of previous cells, this can also be used for text generation (based on some samples) such

as demonstrated in [31].
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2.2.2 3D Convolutional Networks

The natural adaptation of the successful convolutional networks to work with a sequence of

images is to expand the network’s kernels an extra dimension and input all the frames at once, adding

a new dimension to the input data. A 3d convolutional layer can extract spatial-temporal features,

which is usually combined with a linear layer to adapt the output to the number of classes of a given

dataset. This technique has been used in previous applications such as action labeling [42], real-time

object recognition [24] and action recognition [21, 37], hand-gesture recognition (using an additional

depth sensor) [26] and large-scale video recognition (Youtube 1M) [16].

One difference from the 2d convolutions is the added difficulty to re-purpose other trained

models, resulting in most of the work with those networks having to train from scratch. Although

is hard to re-use state-of-the-art trained 3d convolutional networks for a different application, these

structures are commonly present in many state-of-the-art approaches for video classification, such as

in [19, 20].

Figure 2.14 – A 3D CNN architecture for human action recognition.
Source: [15].

In the Figure 2.14, the structure of a 3DCNN presented by [15] is shown. In this work, the

network should be able to identify gestures in real-time scenarios, such as humans interacting with

objects, putting the cellphone to their ears, pointing, etc. This network shows a network using only

RGB frames as its input and 3D CNNs as the feature extraction layer. Although 3D CNNs are not

necessarily easy to compute in real-time, this network did not rely on any handcrafted feature and was

suitable for real-time operation.
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2.2.3 Handcrafted features

In addition to features learned by NN through training, it is possible to introduce hand-craft

features to the network as an attempt to facilitate the training of network by feeding into its data which

are believed to be easier to extract information. As mentioned before, one of the advantages of CNNs

is that there is no need to "manually" create features for the detection step of the gesture recognition

process. Nonetheless, the introduction of hand-crafted features i.e. features created by a human and

not the network itself, is shown to help with the network performance (accuracy) in some cases. These

features are often introduced to the network as a pre-processing of the data, modifying the data before

feeding it into the network.

One example of pre-processing that could be used for hand gesture is OpenPose [5], which

is able to trace arms, torso and fingers position form a 2D video source. A demonstration from this

tool is shown in Figure 2.15. The output of this tool is not the overlay image shown in the example

itself, but rather a description of each member recognized, its junctions, angles, etc. Using the output

of this library, [30] was able to perform full-body gesture estimations in real-time.

Figure 2.15 – A demonstration of OpenPose capabilities of tracking the human body.
Source: [5].

The most present handcrafted feature in video classification is possibly optical flow [22],

which is a process that extracts the perception of motion from two or more frames into a visual

representation. Figure 2.16 shows a demonstration of this process. On the left, there are two

overlapped frames from a tennis player moving (the position in the camera for both pictures is the
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same). The overlapping is only present for demonstration purposes since both frames would look

the same side-by-side. Based on those two frames, an algorithm (optical flow) creates 2 arrays that

represent the perceived movement between the two frames. One array represents the horizontal

movement between the images while the second array represents the vertical movement. The image

on the right side, in Figure 2.16, is a combined version of those two arrays, created to visualize the

effect of vertical and horizontal movement in a single RGB image. The name given to these arrays or

the combined version of them is a "flow frame".

A flow frame represents the movement between two video frames, reinforcing the movement

happening among videos frames (e.g. where the tennis player is moving), instead of the spatial charac-

teristics (e.g. the clothes used, the racket, colors, textures, etc). There are multiple implementations of

optical flow available, and studies aiming to develop more accurate and less computational expensive

approaches to it, such as [38].

Figure 2.16 – A demonstration of the optical frame (right) resulted from the two overlapped original
frames (left).

Source: [4].

An example of an application using optical flow is shown by [36]. Is this paper, the authors

are inspired by the human visual cortex, which is divided into two parts: the ventral stream (which

performs object recognition) and the dorsal stream (which recognizes motion). Their suggested

network divides the task of recognizing the spatial-temporal aspects of videos in two networks. The

network responsible for detecting spatial characteristics performs action recognition from still video

frames, using a CNN pre-trained on ImageNet. The temporal network instead of receiving the raw

video receives flow frames (optical flow was implemented using OpenCV toolkit), which analyzes the
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relativemovement of pixels across frames of the videos, and produces images that reflect themovement

present in the footage. The result of both networks is then combined (late fusion) to produce only one

prediction from both networks. This network was able to achieve top performance at the UCF-101

dataset and state-of-the-art results in other datasets such as HMDB51. A representation of the network

is shown in Figure 2.17, it is possible to see both branches of the network: on the top the spacial part

of the network, which will be able to detect characteristics such as the presence of a bow or not and

the bottom branch of the network receives information about the movement occurring in the video.

Both outputs from each branch combine at the end to predict what is the correct label for the video.

Figure 2.17 – Two-stream architecture for video classification.
Source: [36].

2.2.4 Techniques Comparison

Some recent approaches for action and hand gesture detection are listed in Table 2.1. These

were selected based on the datasets used: Jester (the main focus of this work), nvGesture, EcoGesture

and other staples of action recognition as UCF101 and HMDB51. The latter two datasets share

similarities with Jester by having users interacting mostly with their hands with other objects, in

contrast to other general-purpose video datasets. The nvGesture and EcoGesture are datasets of

gestures, however from a different angle of capture and different labels.

The techniques presented that are not marked for online operation are usually concerned with

achieving maximum accuracy within each dataset, making use of every possible resource that might

help achieve it. These are the state-of-the-art techniques and their results in each dataset represent the

standard to be chased. It is worth noting that the computing power required for online classification is
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Table 2.1 – Related techniques

Tecnique Year Datasets Mode of Operation
ECO[53] 2018 UCF101 HMDB51 Online

EMV-CNN [51] 2016 UCF101 HMDB51 Online
ConvNet[6] 2017 UCF101 HMDB51 Offline
MFF[19] 2018 Jester Offline
MFNet[20] 2018 Jester Offline

VideoLSTM[21] 2018 Jester Offline
3DCNN [18] 2019 Jester nvGesture EcoGesture Online

not a project constrain focused by the authors, for this reason, it is possible that these approaches are

unable to perform in real-time on most hardware platforms.

Neural networks for gesture recognition in real-time applications (in which video acquisition

and classification must happen concomitantly), should take into consideration the resources needed

to run online classification in real-time. In [53] and [51], the authors developed an approach mainly

based on 2D and 3D CNNs, without the need for flow frames (which are computationally expensive

for real-time use) by using motion vector CNNs. The former technique is able to produce captions

descriptions of videos in online operation. The author was able to reach accuracy results comparable

to those of techniques using flow frames, with the advantage of being able to run in real-time. In

the EMV-CNN technique [51], the author compares the performance of executing Optical Flow and

executing the Motion Vector network, resulting in a reduction of 27 times for the computation of the

latter. In the work of [18] a network built for gesture detection was build for online operation, utilizing

mainly a 3D CNN topology. The network was first trained in the Jester dataset due to its large number

of samples and then retrained for benchmarking in the EgoGesture and nvGesture datasets.

The technique proposed in this dissertation aims to find an efficient neural network design

for hand gesture classification in online operation, considering not only the accuracy obtained in each

dataset (such as most of the offline techniques presented in Table 2.1) but also the implications on

online accuracy performance and aiming at lower-capable hardware, such as smartphones. Differently

on what is done in the online techniques [18, 53, 51] presented in Table 2.1, this dissertation aims for an

even lower computational cost of network, possibly affecting the overall accuracy in the tested datasets,

but enabling it to run on cheaper and less powerful hardware. This is done by reducing the number of

frames input to the network, avoiding the use of computationally expensive pre-processing techniques
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and controlling the number of parameters used in the network (or the number of bytes needed to

represent the operations in the network). The following chapter will list the project specifications for

this dissertation and Chapter 4 will discuss the experimented topologies.

43



3. PROJECT SPECIFICATION

In this chapter, we will discuss the overall constricts and design characteristics for this work.

This work comprehends the data journey from RGB images of a front view of a person performing

gestures (not including the image acquisition itself) to an online gesture detection indicator, which

should displaywhen andwhich gesture was performed continuously. For this work, real-time operation

detection will be considered as a detection up to 500ms [25] (based on human perception of real-time)

after the gesture is performed that can work continuously.

The proposed implementation shall be hardware agnostic, developed considering only perfor-

mance and power (energy consumption) in mind, but not taking into account the specific architectures

from any hardware.

3.1 Functional-related Requirements

This section lists the functional requirements for the system. Since the performance of the

neural network (power consumption, time to process, etc) depend highly on which network structure

is implemented, which tools are available on the hardware and other external factors, performance

requirements will be treated as non-functional requirements due to case-by-case analysis required to

measure those metrics.

The main metric used for comparison with other deep learning gesture detection techniques

will be the accuracy of the technique in datasets such as Jester, Nvidia Gesture (nvGesture) and

EgoGesture. The Jester dataset will be used for most of the work, due to its quantity of videos and a

more convenient and natural angle of capture from the videos of the gestures. At the time of this work,

the best reported accuracy for the Jester dataset is around 96%. Since this work aims for a lighter

implementation of a gesture detection network, using less complex models and using fewer frames of

the video, the accuracy of the network will be targeted at 85% or higher, and further effort will be put

into the post-processing of the network to yield a better gesture prediction capability in real-time.

Preliminary testingwith the planned structures and the dataset allowed to establish a reference

for the functional requirements. Early developed networks, without further optimization, were able

to achieve above 80% accuracy (in the Jester dataset) with less than 50MB of parameters. For the
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delay requirement, similar work in gesture recognition, such as [18], shows that these models are

able to predict gestures before its completion, yielding a negative delay in terms of response, when

considering the end of the performed gesture as the reference.

A list of the main project functional-related requirements is presented below:

1. The prediction should occur before the gesture performance ends (negative delay);

2. The accuracy of the network on the Jester Dataset should be greater than 85%;

3. The neural network model used should allocate at maximum 100MB of video memory.

3.2 Quality-related Requirements

A list of the main project quality-related requirements is presented below:

1. The implementation must work in a moving window of frames environment, without indications

of when a gesture is starting or ending;

2. The performed gestures should be recognized only once during the time that it is performed;

3. There should be no prediction while the user, in front of the camera, is not performing any of

the gestures known by the network;

4. Contrary to previous work presented in Chapter 2, whereas performance was not the main

concern of design, the proposed technique have it as it main focus;

5. The implementation should take into account computational performance of the overall system

as well;

6. The system shall receive only RGB frames as its input. Any other image processing such

as Optical Flow should be considered part of the system, when benchmarking for power and

performance.
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4. IMPLEMENTATION

In this section, we describe the development of the work, the considered constrains for

an online classification application, and how our network is organized to be efficient in terms of

computing power while maintaining as high accuracy as possible to similar state-of-the-art proposals.

Particularly, we first define how the online classification is done and how data is structured. Then, we

introduce the network structures (the layers contained in it) considered to be part of the final model

and how and why some structures were or were not a good fit for the network.

4.1 Datasets

In our context, datasets are a well defined group of labeled data, which are elaborated with

the intent of serving as a source of data to test algorithms and train them (in the case of machine

learning algorithms). Specifically for this work, the datasets described in this section contain labeled

video samples of gestures being performed. These are used not only to train the models mentioned in

this dissertation, but also serve as a fair common ground to compare to other techniques related to this

work.

For this work, we are using three datasets in order to train, validate and compare the proposed

models in this dissertation. The main dataset used is called Jester [43], and it was the dataset primarily

used to experiment with different network topologies, train the models proposed from scratch and

compare the results to other offline techniques. The datasets nvGesture [39] and EgoGesture [52] are

used to validate the offline and online operation of the models previously trained on Jester. Utilizing a

process of transfer learning, it is possible to modify a previously trained model to perform a different

task. Specifically in this case, utilizing transfer learning it was possible to adapt models trained to

perform well on the Jester dataset to make use of the features learned beforehand to perform well in a

different dataset, such as nvGesture and EgoGesture.

Utilizing more than one dataset to validate the proposed model shows that the the trained

neural networks are actually learning useful features for gesture recognition, instead of being artificially

good at a specific dataset. In this sections we will describe the datasets utilized in this work the

differences between them and show an example of what each sample look like for each dataset.
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4.1.1 The Jester Dataset

The main dataset used for this work is called Jester, and it is provided by TwentyBN. It

contains over 148k videos of 27 different labels [43]. A sample of 5 frames from each class of this

dataset is shown in APPENDIX A (the frames are not necessarily consecutive, and the main objective

is to demonstrate how the gesture is performed). The labels for this dataset, and its amount of samples

are shown in Table 4.1.

Table 4.1 – Classes in Jester dataset and its number of samples

Label Samples
Doing other things 12,416
Drumming Fingers 5,444

No gesture 5,344
Pulling Hand In 5,379

Pulling Two Fingers In 5,315
Pushing Hand Away 5,434

Pushing Two Fingers Away 5,358
Rolling Hand Backward 5,031
Rolling Hand Forward 5,165

Shaking Hand 5,314
Sliding Two Fingers Down 5,410
Sliding Two Fingers Left 5,345
Sliding Two Fingers Right 5,244
Sliding Two Fingers Up 5,262

Stop Sign 5,413
Swiping Down 5,303
Swiping Left 5,160
Swiping Right 5,066
Swiping Up 5,240
Thumb Down 5,460
Thumb Up 5,457

Turning Hand Clockwise 3,980
Turning Hand Counterclockwise 4,181
Zooming In With Full Hand 5,307
Zooming In With Two Fingers 5,355
Zooming Out With Full Hand 5,330
Zooming Out With Two Fingers 5,379

The labels "No gesture" and "Doing other things" represent a samplewithout the performance

of a gesture. The first of the two consists of a static person, with no particular movement being done.

The "Doing other things" label includes all kinds of actions non related to any of the gestures, such as
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drinking water, interacting with a pet, checking their phone and so on. Due to this variety present in

this class, its number of samples is considerably larger if compared to the, on average 5200 samples

per class.

Figure 4.1 – Sample of a gesture from Jester dataset (12 out of 26 images shown, for this specific
sample)

The data is provided in the form of JPEG images (RGB, 3 channels) for each frame of each

video, having on average 32 frames per video, although some are longer or shorter. The video was

captured at 12 FPS, resulting in each frame spaced timely by 83ms. The size of each image is also also

varies a bit depending on the specific sample. Each image has exactly 100 pixels of height, however

they can have 100 to 160 pixels of width. The dataset is divided in a train set, validation set and test

set in the respective proportions: 80%, 10% and 10%. The labels for train and validation sets are

provided, however the labels for the test set are purposefully not present, since their own website ranks

approaches based on sent labels from this test set.

4.1.2 The nvGesture Dataset

This dataset contains gestures performed indoors in a car simulator by a driver, with a camera

located in the center panel of the car (where the radio controls usually are). Its intended use is to

allow the driver to perform touch-less gestures as human computer interface. The dataset contains,
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similarly to Jester, many classes of gestures however there are some main differences on how they are

presented:

• The angle of capture of the camera, which is slightly off centered and from a lower point of

view, if compared with Jester;

• The video contain large portions of a driving simulation, only a small part of the sample (exactly

80 frames) represent the gesture being performed;

• There is no specific class for "No Gesture".

• There is far less samples to learn from (1532 in total compared to the 148k from Jester);

• There are not only RBG frames, but also depth and stereo-IR sensors.

• The frames were captured at 30 FPS (33.33 ms between frames).

This dataset is only going to be used in the validation section, in order to evaluate the

capacity of the network to be applied with different gestures and in a different environment. For this

process, we are only going to use RGB frames, since that is in line with the proposal of this work of

not requiring additional equipment. With a transfer learning process, a network pre-trained on Jester

will be adapted to fit the data from nvGesture. Due to the low amount of samples, the overfit problem

was more evident when training with this dataset, i.e. the network had the tendency to over tune the

parameters of the network to maximize an accuracy in the train dataset which did not translate to

improvements in the validation dataset.

In addition to that, since the dataset have longer samples, which do not only encompass the

gesture itself, it can be used to simulate online operation and evaluate the accuracy and delay of the

network when predicting the gesture.

This dataset does not name any of its 25 gestures, so list of gestures will not be presented

for this dataset. An example of what a gesture look like from of a full sample is shown in Figure

4.2. This is represents the portion of the video containing a gesture being made, there were frames of

video before and after the gesture when the subject was simulating driving movements. This dataset

is distributed by NVIDIA [27], which allows the use of it for academic purposes.
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Figure 4.2 – Sample of a gesture from nvGesture dataset (handpicked frames for demonstration
purposes)

4.1.3 The EgoGesture Dataset

This dataset consists of 83 classes of dynamic or static gestures, containing in total 2081

videos and 24.161 samples of gestures (almost evenly split among all video classes), the samples

contain also depth frames, which are not utilized in this work. Each video contain 9 to 14 gestures

being performed in a single shot. The camera utilized for the capture of the sample was located in the

users head, resulting in a first-person point of view, the videos mostly contain a background (indoors

or outdoors, static or dynamic) and the user’s hand in the first plane making the gestures.

Since the model utilized in validation tests for this dataset is pre-trained on the Jester Dataset,

some differences between the two are listed bellow:

• The angle of capture of the camera, which is from a first-person perspective, and except for its

hands, does not capture the rest of the user in the frame;

• The video contain contains more than one gesture per sample, with moments in between of no

gesture being performed;

• There is no specific class for "No Gesture".

• In addition to RGB frames,there are also depth frames (not utilized in this work);
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• The background can be dynamic, ,i.e. with part of it moving or with the camera moving;

• There are more classes of gesture, and proportionally less samples per class.

• The frames were captured at 30 FPS (33.33 ms between frames).

Figure 4.3 – Sample of a gesture from EgoGesture dataset (handpicked frames for demonstration
purposes)

Figure 4.3 shows a sample of the video, demonstrating the point of view previously men-

tioned. A diagram showing each one of the 83 gestures is shown in ATTACHMENT A.

This dataset was created focused in gesture classification from continuous data. From the

datasets mentioned, it represents the best the types of samples which online classification techniques

would have to classify in a real-time application, due to its longer samples and multiple gestures per

sample.

This dataset is distributed by Yifan Zhang [52], and the database is released for research and

educational purposes.

4.2 Network Structure

In this work we present three versions of online capable gesture recognition networks. All of

them are using 3D convolutional networks as it core components in the network, due to 3DCNNs being

present in most of the state-of-the-art techniques for both offline and online video classification. Two of
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the networks presented in this section are essentially 3D CNN networks (RT3D_8F and RT3D_16F),

containing layers of 2D convolution, 3D convolution and a liner layer for the final classification.

Based on the success of optical flow in some of state-of-the-art techniques that achieved the

highest accuracy in offline gesture classification datasets and the fact that new lighter implementations

of optical flow were developed recently, this section presents a third network (RT_FLOW), a variation

of the RT_RGB-16F network, which in addition to RGB frames, has an additional component in its

model to generate flow frames that are fed to the network. Since the use of OF is often prohibitive for

real-time applications, the RT_FLOWmodel is an attempt to check if these lighter implementations of

OF can translate into benefits for the network’s accuracy and what impact it may cause on computing

performance overall.

4.2.1 Models RT_RGB-8F and RT_RGB-16F

The general structure for all three networks can be seen in Figure 4.4 .The network consists

of basically 3 major steps: Reducing the dimensionality of the frames using 2D CNN layers, extracting

spatial temporal features with 3D CNN layers and use this features to make a prediction with linear

layers. One of the biggest challenges of working with a neural network that can perform online video

classification is the amount of data needed to be processed by the network at a given time, due to the

complexity of the techniques used.

Figure 4.4 – High-level block diagram for models RT_RGB-8F and RT_RGB-16F

Since one of the objectives of this work is to create a light (low on resource usage) neural

network capable of gesture classification, reducing as much complexity of the network as possible is

necessary in order to make these networks usable in simpler hardware. And for this network, the 3D

CNN layers are the part of the network that requires the most parameters and computing time in order
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to perform properly. With that in mind, it was opted to pre-process the images with a 2D CNN before

feeding into the 3D CNN. This design choice allowed to include some pooling layers while extracting

spacial features, reducing the size of the data without as big of a loss of information that pooling only

operations would result, while allowing the use a of simpler 3DCNN network inside the model.

The use of pretrained models and transfer learning was studied, and it was opted to use

a custom structure for the convolutional layers due to satisfactory results being achieved with very

simple network structures in comparison to more complex and general models commonly used as a

starting point (e.g ResNet, Inception). One of the reasons of why it was opted to train convolutional

layers from scratch is due to how general purpose networks have the tools available to discern various

types of features in a image, while for a gesture dataset most of the actual images from frames of

different gesture look alike, and a general purpose network would probably be underused for a niche

task like gesture recognition. Due to this classification problem being limited to what the network

has of visual feature to distinguish, training a network from scratch seemed a more efficient approach

rather than sub-utilizing a more powerful network.

Model RT3D_8F

For the simpler network (RT3D_8F) only 8 frames from the original samples from Jester

dataset are used, which results in skipping 3 out of every 4 frames. Considering that the original rate

of frames per second (FPS) for the dataset is 12 FPS, this model operates with images sample at 3

FPS (since it only uses a quarter of the frames). This value is taken into account when utilizing this

model with datasets which are captured in a different frame rate. The frames are selected starting on

the first frame and skip 3 frames to select the next one, and in the case of not having enough frames

to represent the data using this method, the final frame is repeated. In addition to that, the images are

center cropped in a [96,96] size (96 pixels of width and height). This choice allows every sample to

be cropped in a smaller size than its original size, and the number 96 is used instead of 100 due to the

first being divisible by two multiple times, which, in the pooling operations of the network, avoids the

need of padding to complete the operation.

In this first 2DCNN there are 5 layers, with progressively increase the number of channels and

progressively pool the original image in order to reduce its size. Figure 4.5 shows the transformation
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Figure 4.5 – Representation of data shape throughout the 2D CNN in RT_RGB-8F

that each single frames passes at each layer, starting with an RGB image (3 channels) and progressively

increasing the number of channels and reducing the width and height with pooling operations. Other

works with CNNs [17] frequently use similar structures of progressive pooling in multiple layers. All

kernels in this network are of size [3,3], as shown by [37] that multiple layers with smaller kernels

([3,3]) have a similar effect as having a bigger kernels, resulting in the capability of detecting more

complex features. Since the input of this first layer are 8 frames (equally spaced) from the original

video source, therefore the inputs in this layer consists of 8 frames of shape [3,96,96] (3 color channels,

96 pixels of height, 96 pixels of width). After all the convolutional layers and pooling layers of the

2D CNN section of the network, the dimensions of the tensor referent of each of the original 8 frames

will be the following: [256,6,6].

The next step in the network is the 3D CNN, the core of the network. It is the part of

the network which requires the most parameters (due to its multiple tridimensional kernels) and it is

responsible for extracting the spacial-temporal features of the data. Until this point, each frame of

the video was individually processed, i.e. the convolution process of the layers is individual for each

frame. Before entering the 3D CNN part of the model, the data is concatenated into a 4D tensor of

shape [8,256,6,6] (the 8 represents the number of frames), and after this point the data from different

frames is fused. There are 3 layers of 3D CNN, in which all kernels are size [3,3,3] and pooling is

done progressively. Pooling is done not only on the height and width of the image, but also across

frames of the image. Pooling in different frames mean that pixels from different frame are compared

and combined in order to reduce the number of frames, similarly to what is done in height and width.
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For the 3D CNN, the number of channels is kept the same for all layers (256, the same number from the

2D part of the network). The output result of each kernel from the 3D CNN contains more meaningful

data, for example, each value can be representing shapes (hands, fingers, arms), movement (left to

right, upward, etc) or even specific motions such as a closed fist opening its fingers. It is possible to

try to decode which features the network learned during training, as some work has demonstrated in

[50], and thus seeing what each feature is likely trying to identify in the image, however this would be

a merit of a different work itself due to the complexity involved.

Figure 4.6 – Representation of data shape throughout the 3D CNN in RT_RGB-8F

In order to show the tensor transformation (similarly to what was shown for the 2D CNN in

Figure 4.5), it was opted to show the transformation of only one of the 256 channels in the network,

since the number of channels does not change throughout the layers and the representation of a 4D

tensor would not yield a good representation in a figure. Figure 4.6 shows the transformation of the

tensor relative to one of the 256 channels. The value on top of each tensor is the shape of the data

for each point. The name at the bottom, between each transformation refers to the operations made

to the tensor.For the case of a pooling operation, the value in the brackets is the shape of the pooling,

e.g. a value of (2,1,1) represents pooling in the depth dimension (the number of frames) reducing its

size by a factor of 2, while leaving untouched the height and width of the tensor. The first tensor of

shape [8,6,6] represents a stack of the 8 frames of the [256,6,6] channels generated by the 2D CNN.

Note that, as mentioned before, the actual shape of data at this point is [8,256,6,6], however only one

of the 256 channels is shown in the figure. As the tensor passes through the layers of the network,
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the pooling operations reduces the size of the shape of the tensor to [1,3,3]; or considering the other

channels: [1,256,3,3].

At this point, the network was able to transform the values of pixels into meaningful features,

the next step is to feed this features to a fully-connected network in order to make a class prediction.

The data that is output from the 3D CNN is the shape of [1,256,3,3], at this stage the tensor is flattened

(i.e. lost its shape to become a 1D vector) to pass to the linear layers (which do not accept multi

dimensional data). The general concept of how neural networks work (specially focused on fully-

connected architectures) is reviewed in Section 2.1. The number of parameters in this point of the

network can be calculated by multiplying each value of the shape of the network: 256x1x3x3 = 2304.

For the classification part of the network, there are two main decisions to be made: the

number of layers and how many neurons will be put in each layer. As many other implementation

decisions in neural networks, there is not a single right way to choose those parameters based on the

literature. Most decisions are based on what other successful works used and through experimentation.

About the number of layers, according to [10]: "A feedforward network with a single layer is sufficient

to represent any function, but the layer may be infeasibly large and may fail to learn and generalize

correctly". For this work it was experimented with 2 and 3 layers, opting to use 2 with RT3D_8F due

to unnoticeable gain of performance when using 3 layers. The decision on the number of neurons

was chose to create a progression from the number of parameters that the 3D CNN output (2034) and

the number of classes (27), having a linear layers in between with 1024 neurons. These layers also

contain batch normalization steps and ReLU as its activation function.

Model RT3D_16F

Asmentioned before, this network is just a variation on the previously shownmodel, adapted

to work with 16 frames instead of 8. In addition to that, it was noted that the cropping of the original

frames to a [96,96] shape could be affecting the performance of the network, since some of the

samples from the Jester dataset were leaving relevant information (the arms and/or hands of the

subject) outside of the cropped version in a small sample of the analysed results. It was opted for

this model (RT3D_16F) to have in addition to more frames, slightly wider images as its frames (of

shape [140,100]). The reason for developing this variation on the first network was to observe the
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increased gains in accuracy and compare that to the penalty in performance resulted from running a

more complex model. Although this model is more complex than the previous one, it is still light on

resource usage if compared to the techniques presented in Section 2.2, and possibly viable for usage

in embedded systems (results sustaining this argument will be presented later in Section 5.3).

To increase the complexity of the network, it was opted to add more layers to both the

2D and 3D CNN networks (which adds more kernels to the network, and therefore the capacity of

detecting more complex features) and reducing and delaying the pooling operations done to the tensors

(increasing the amount of data needed to be processed in the network). The overall designing of the

network is the same for the model RT3D_8F shown in Figure 4.4, while the main differences are inside

both the 2D and 3D CNNs.

Figure 4.7 – Representation of data shape throughout the 2D CNN in RT_RGB-16F

Figure 4.7 shows the tensors shape during the 2D CNN layers of the network. The main

difference between the RT_RGB-8F model layers, is the size of the original frames, which is bigger,

and the lack of pooling in the second layer of the network. As a result, more data will be passed to

the 3D CNN portion of the network (16 frames of shape [256,17,12], instead of 8 frames of shape

[256,6,6]).

Figure 4.8 shows the tensors shape during the 3D CNN layers of the network, considering

only one channel of the tensor. In this network, it was added an additional layer of 3D convolution,

and the pooling operations have changed been changed to reduce the size of the data in later layers of
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Figure 4.8 – Representation of data shape throughout the 3D CNN in RT_RGB-16F

the network. The result of this portion of the network is a tensor of shape [2,256,4,3], which when

flattened results in a vector of 6144 values.

The linear portion of the network contains one extra as well, from 6144 to 3072 neurons,

then to 1024 and finally to the 27 for the class scores.

4.2.2 Model RT_FLOW

This variation of the network structure is inspired by two-stream models, having a RGB

image processing path, and a flow path, however, instead of combining both with late fusion at the end

in order to make a prediction, the RGB and flow frames are concatenated at the start of the network,

following, then, a similar structure from RT_RGB-16F. A block diagram illustrating the network

structure is shown in Figure 4.9. In order to use flow frames in real time, it was needed to find a

light implementation of it, since most optical flow implementations are computationally expensive,

rendering a real-time implementation impractical or requiring special hardware to run it. For this

work, the implementation used is called PWC_Net [38], provided by NVIDIA. This implementation

is lightweight and a order of magnitude faster to run than FlowNet [9] and DCFlow [48], and it

presented state-of-the-art results in datasets as "Flying chairs" and MPI Sintel (datasets commonly

used to evaluate optical flow algorithms).

The contents of both the 2D CNN and 3D CNN are the same as shown in Figures 4.7 and

4.8, with the only difference being in the 2D CNN, which starts with 5 channels instead of 3, being 3
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Figure 4.9 – Representation of data shape throughout the 3D CNN in RT_RGB-16F

from the original image (red, green and blue) and the other two from the flow frames (horizontal and

vertical movement).The benefit of this implementation in online operation is that the output of the 2D

convolutional layers can be reused for the next cycles. Since the data only fused data from RGB and

Flow frames, and not from adjacent frames, the same computation of the 2D CNN layers would be

repeated each cycle, making possible to skip this step for old frames, while only computing the flow

frame itself and the 2D CNN layers for the new RGB frame and flow frame pair.

The conception of this networkwas inspired by threemain factors: the success of flow frames

in action recognition, the possibility of reusing flow frames between cycles and the effectiveness of

light convolutional networks to process video inputs in this formats.

There are two main challenges with this design of network: the first is checking whether

the flow frames generated from a lighter implementation of optical flow can actually improve the

network’s capacity to detect gestures and if so what is the overhead in computing performance to do

so.

4.3 Network Training

In this sectionwewill discuss how the training on the networkwas done, speciallymentioning

which measures were taken in order to avoid overfitting and also which general parameters were used

during development.
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4.3.1 Data Augmentation

As stated in Section 2.1.2, having a small amount of samples to train a network might result

in overfitting, while that is not a specific case for the Jester dataset, which has a considerably high

amount of samples per class, the more samples to learn from, the better are the chances that the

network will be able to generalize its learning examples to samples from outside the dataset. Data

augmentation refers to techniques to artificially increase the number of samples that a network is

going to see, by applying modifications to the data (in our case, images from videos) to make them

different each time they are fed to the network. Some examples that can be applied to images are:

random cropping, random zooming, flipping horizontally/vertically adding blur, etc. The intent of

these modifications is to keep the information contained in the data the same while changing the way

it is presented to the network. This helps during the training process making the network focus on

developing useful features which are not sample specific. If a certain feature fails to classify the same

sample video with some modifications, it is probably not useful, and it will be eventually replaced for

something that helps to minimize the loss function by a greater amount.

For this work two data augmentation techniques are implemented to help to prevent the

network from overfitting during training: random cropping and random rotating.The Figure 4.10

shows how these two transformations modify the frames fed to the network during training. Image "a"

shows the original image, of size (176, 100), figure b) shows a random crop of the image and figure c)

show the the rotation of the cropped part (inserting black pixels where the image is no longer present).

Both the transformations are applied in the same manner for all frames of a single sample, i.e. all

frames are cropped and rotated together. For the random cropping, it was imposed a random rotation

from -20◦ to +20◦. Higher rotation ended up cropping too much from the original source, hindering

predictions on that information. For the random cropping, since the source image is larger (see Section

4.2)than the used input for this network ([96,96]), during training a random crop is applied in the

source image, with the correct dimensions needed. When not training the network, the validation set

is evaluated using no rotation and center cropped.

Some common and simple transformations used in similar work were not possible to be

used in this dataset due to ambiguity that it would cause depending on the gesture. As seem in
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Figure 4.10 – Data Augmentation for the Jester Dataset. a) Orignal Image, b) "Randomly" cropped
image and c) "Randomly" rotated Image

Section 4.1.1, some gestures can be performed as a mirror counterpart of another (e.g. Swiping Left

and Swiping Right). In these cases, a horizontal flipping would make the samples presented to the

network indistinguishable even for a human, inducing the network to create sample specific features to

distinguish the two. Vertical flipping, even though not as drastic as horizontal flipping in the cases, can

cause problems similarly. In the case of "Swiping Up" and "Swiping Down" it is possible to distinguish

one from a vertically flipped, other (since the head of the user would be upside down), however this

would hinder the ability of the network to associate "upward" or "downward" motion to some labels.

It was not opted to use vertical flip due to possibly being prejudicial to the training process. Applying

a zoom to the image was also opted to not be used, specially because since the network already crops

part of the network, any more cropping could cause it to produce unrecognizable gesture by letting

out important parts of the image.

4.3.2 Training parameters

Dropout amount

The first parameter mentioned here is relative to the dropout layers. These layers are

introduced in the network during training, deactivating some neurons (i.e. transforming their output

signal to zero) in order to stimulate the network to create many paths to a correct response, instead

of relying on one strong feature. The parameter in the dropout layer is a probability that a certain

neuron will be deactivated (from 0 to 1). For this work, dropout layers are used only in between the

linear layers, with a dropout probability of 70%. Although is possible to use dropout layers anywhere

in the network, they are more commonly seen in linear layers, and thus it was opted to make this use.

The bigger the chance of dropout, the less likely a network is to overfit, however a big enough value
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might hamper the training process. For this work the values of 50% and 90% were experimented, and

the mentioned value was observed to help with overfitting by observing train and validation accuracy

without any observed train performance loss.

Loss Calculation

As mentioned in Section 2.1, the loss function is a design choice. For this work, it was

opted to use Cross Entropy as the loss function, which is shown in Equation 2.2. It was attempted to

make a weighted loss function, giving some classes a higher importance than others in an attempt to

improve accuracy in the worst performing classes. This attempt would train a network focused only

in some classes in order to be run in conjunction with the current one. The results did not show any

improvement in the classification of those classes, while increasing significantly the complexity of the

network, therefore it was opted to leave this part out of the final design.

Optimiser, Learning rate and Momentum

In order to train the network, the Stochastic Gradient Descent (SGD) was used. Other

optimiser were not heavily experimented with. The learning rates used started at 0.001 for a randomly

initialized model, decreasing by tenfold every time the loss was not decreasing anymore (about 50 to

100 epochs depending on the dataset). It was used momentum of 0.9, which means that the gradient

that will adjust the weights of the network is summed to the gradient of last step with a weight of 1

and 9 respectively. With this, at each step the network will have adjust its weights roughly at the same

direction, since there is a component from the previous step’s gradient. This helps the network to train

in the "general direction" that the samples are pointing, instead of going exactly to a direction that the

current sample would be optimized. These values of learning rate and momentum were chosen based

on common practices in the field, such as in the works of [22, 19, 37].

Stop train criteria

Each model during experimentation was trained for a maximum of 4 reductions of learning

rate, each one with 50 to 100 epochs, adding up to 200 epochs per training of a certain network. In

addition to that, training loss, validation loss and accuracy was also observed for the majority of the
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networks. If it was observed that a certain learning rate was not being effective anymore in reducing

the calculated loss, instead of waiting to finish the 50 epochs, the learning rate is reduced immediately.

The training loss is observed in real-time during the training process, and with the aid of a filter (due to

high variance of loss within the steps), it is possible to visually inspect the progress, or lack of, of the

model performance. This was done using the library tensorboardX [44], and its graphs for accuracy

and train loss can be seen in Figure 4.11.

Figure 4.11 – Observation of accuracy and train loss during training of a model

4.4 Modifications towards online operation

For this work, we will consider the video data as a sequence of images instead of an encoded

format, although the latter can be explored in a different work. In a real-time application, we consider

a given video input with a certain frame rate, yielding that many images per second. In order to

recognize gestures, a certain window frame have to be analysed by the network to classify as a gesture

or not. The hand gestures in the Jester dataset [43] have a duration from 1 to 2 seconds on average,

meaning that frame window around this duration should be able to identify all the gestures for this

dataset.

One approach to gesture recognition would be to wait until N video frames are acquired and

make a prediction on the given gesture of the interval, and after that start the window over, sharing no

frames in common. One problem to this approach is the delay introduced between one window and

the next one, if the window represents a high enough interval (a second, for instance). In the case of

a smaller window frame, a gesture might not be able to be able to be entirely represented inside the

window frame, impairing the gesture recognition capabilities of the network. In addition to that, it
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might be the case that a gesture starts at the end of a window frame, and ends at the start of the next

one.

Considering a moving window of N video frames, i.e. whenever a new frame is acquired

and the oldest one is dropped (first in, first out), each consecutive window will share N − 1 frames

in common with the previous one. For this scenario, a prediction can be made for every new frame

acquired by the video input, and the moving frame will guarantee that a given gesture will always be

able to have all its frames inside a window for prediction. The main disadvantage of this approach

is the number of prediction that have to be made per second, making the necessary computing power

significantly higher.

The following sections present the modifications implemented towards rendering the ap-

proach to operate in real-time mode.

4.4.1 Data Reuse

As mentioned before, in a moving window input scenario, most of the video frames form

the previous window will be the same, with the exception of the new ones. Being able to reuse some

information about those frames in the next processing cycle will save computing power and allow a

new prediction to be made in less time, therefore reducing the delay of the prediction and the needed

computing power to execute the operation.

In order to reuse information from one frame to the next, we opt for a late-fusing strategy in

the neural network, processing the frames individually for the most part of the network, only fusing

the data of different frames in the latter layers of the network. This strategy allows a significant portion

of the data to be reused, while for each cycle only the processing of new frames and the final layers

have to be made. The two main structure that are discussed in this work are 2D CNNs and the creation

of flow frames, which both can be processed individually for each new frame. That means that each

frame processed by the 2DCNN contains data only from a single frame, and therefore if it was to be

reprocessed next cycle, the information would be the same, allowing to save this output of the 2DCNN

and only process the output of the 2DCNN for the new acquired frame. This process cannot be done
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wiht the 3DCNN due to its output be a result from all input frames, and therefore the output with the

new acquired frame will be significantly different.

4.4.2 Online operation

In this section we describe the main differences in the network implementation related to

online operation. There are two main aspects to be noted in this section, the first being how the

data is interpreted in an online application, i.e. how the model output, which was trained in a offline

environment, will be utilized to yield a usable gesture recognition application in continuous online

operation. The second aspect noted is how data is processed and what information needs to be kept in

memory for the next cycle of operation.

Continuous Online Classification

During offline testing, a sample small enough to be fed to the network was presented, and

the network, then, calculated which label best represented the sample. On the contrary, during online

operation a moving window of frames yields a new output from the network at each new acquired

frame, which may or may not yield a detected gesture "label" at that point (e.g. the user in front of the

camera it is not performing any gesture). As mentioned in Chapter 3, the network should only yield

a label once per gesture performed. To illustrate this process, Figure 4.12 shows the output of the

network for a gesture sample (from the nvGesture dataset) containing 47 frames. The first 15 frames

of this sample were passed through the model, in order to first fill moving window of frames, which

supports 16 frames as its input, and thus further in this paragraph we will only refer to the analysed

frames. Each of the lines in the graph represents the probability of the network for a given label (based

on a softmax operation on the class scores). The brown line, which is predominant at the start and

towards the end, is the "No Gesture" label, while the blue line, which peaks around frame 25, is a

gesture labeled as "Gesture 1" on the dataset.

This sample chosen represents a long time with no gesture being performed, at some point

"Gesture 1" is performed and towards the end of the sample, the user already finished the gesture and

goes back to a neutral position.
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Figure 4.12 – Predictions for a moving window of frames of a sample from the nvGesture dataset

In order to simplify the this example, all the other lines other than the ones representing "No

Gesture" and "Gesture 1" were removed from the image in Figure 4.13. Also, a green background was

added between frames 9 (start) and 25 (end) to show were the gesture was actually being performed.

This sample’s correct label is "Gesture 1", however the gesture only starts being performed at frame

9, and the objective is to yield a "Gesture 1" only once during this period, and preferably before the

gesture actually ends at frame 25.

Figure 4.13 – Predictions for a moving window of frames of a sample from the nvGesture dataset

The online detection and classification is done with the post-processing of the trainedmodels

from offline training, i.e. multiple outputs from the network will be analysed in order to yield the

continuous online classification. The application saves N predictions from consecutive frames from

the network, i.e. for N = 3 the application should remember the predictions from the current and

two most-recent outputs from the network, and average the probability of the predicted class for this
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period. If the averaged probability of the highest scoring class is above a determined confidence

threshold Cth, the network will yield a prediction of that class. In order to avoid yielding the same

prediction in the next cycle, there is a "cooldown" system, which prevents the network from yielding

a prediction for T frames, where T is a chosen parameter, representing the number of frames after a

prediction in which the same gesture cannot be predicted again.

Figure 4.14 – Averaged signal (pink) of the probability of a gesture (blue) surpassing the threshold
(dotted line) and yield a label (vertical line)

In Figure 4.14 the same sample is illustrated, this time omitting the "No Gesture" label,

which is ignored in the application, and adding a line representing the averaged value of the value for

"Gesture 1" for 3 frames (N = 3), in pink with a filling. The dotted horizontal line in red represents the

confidence threshold Cth set to 0.4 (or 40% probability). The red vertical line (at frame 21) represents

the moment in which the network will yield a label "Gesture 1", due to the averaged value of its

prediction surpassing the established threshold. Note that in the absence of a cooldown system, in

the following frames (22, 23, 24...) the value of the observed averaged probability is still above the

threshold, which would yield a new label for the same gesture. In this image the cooldown was not

represented in order to keep the visualization simple, however it is possible to notice that a T value

of 10 frames would be enough for this sample to avoid yield the label twice for the same gesture.

Of course, the other probabilities for the remaining gestures were hidden for visualization purposes,

however in reality the highest scoring class (the one with the highest probability) is being compared

to the threshold at any given sample.
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Flow diagram for the presented technique

In order to reuse the data, some layers of the networkmust not fuse information frommultiple

frames. That allows to "skip" some of the steps of the network for frames present in the previous

window. Some other implementations that have more complex pre-processing on individual frames

(Or every two frames, like optical flow) can benefit significantly more from this approach. Data from

individual frames can be saved for use in the next cycles.

In the application level, the system should set the acquisition frame rate of the camera to be

the same as the dataset (or at least a multiple of it) in order to match the time between frames to what

the network was trained. Considering a window of W frames (W could be 8 or 16 for the networks

shown in this work), for every incoming frame, the network should pre-process all the steps that do

not fuse data from other frames, i.e. 2D CNNs and optical flow computation. This results should be

stored in memory and the original frame can be removed from memory once they are not necessary

for other computations. Once W frames have been computed, the network can do a proper prediction

by feeding all the data to the next steps of the network (3DCNN, Linear). After the prediction is made,

the application should discard the data that is not going to be used for the next cycle, and at this point

the network is able to perform one new prediction for every new frame acquired, following the rules

described above. The flow diagram showing the algorithm used for class prediction in this work is

shown in the Figure 4.15.

4.4.3 Summary of the innovations presented

To finish this section, we present Table 4.2, which contains a summary of the innovations

proposed in this technique and their respective benefits when compared to others.
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Figure 4.15 – Flow diagram for the proposed approach

69



Table 4.2 – Summary of the innovations proposed by our approach when compared to similar tech-
niques

Feature Advantage
Insertion of a 2DCNN before the 3DCNN to
pre-process the original frames

Reduction of the dimentionaloty of the data
for the 3DCNN (reducing its complexity) and
the possibility of reusing the output of the
2DCNN in between cycles which contain the
same frames, saving computation during on-
line classification

Reduction in the frames per second needed
to identify a gesture

Reduced amount of data to be processed by
network and a longer time frame to process
the output of the network for a given new
frame

Adaptation from an offlinemodel to an online
mode of operation.

The proposed model is simple to implement,
with low impact on the overall performance
of the system. The cooldown system pro-
posed prevents the multiple computation of
the same performance of a gesture.
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5. VALIDATION

In this chapter, we will validate the proposed model, by, in a first moment, evaluating the

overall accuracy of the network on the following datasets: Jester, nvGesture and EgoGesture. The

results of accuracy from offline and online tests will be compared to alternative techniques. The last

section of this chapter contains the evaluation of themodel in real-time conditions, by checking the gain

of performance operating in real-time and comparing results to another real-time network, specifically

the one proposed by [18], which share the most similarities to the objective of this proposed work.

5.1 Offline Validation

For offline validation, the main aspect observed in each dataset will be its accuracy on the

dataset itself. The Jester dataset was utilized to train all of the initial models, due to its increased

number of samples to learn from. The models for the nvGesture and EgoGesture dataset started their

training process utilizing the most accurate version of the model trained on the Jester dataset.

5.1.1 Jester Dataset Validation

Due to its high amount of samples, the Jester dataset is the main dataset used for this work.

For this offline test, the three models presented in Section 4 of this dissertation were tested. The

results from these models are presented in Table 5.1 were tested with the validation set provided by

the creators of the dataset. The scores represent how often the correct label was presented in the

top-scoring classes, i.e. how often it was correct, how often it was in the top three classes and the top

five classes (top1, top3 and top5 accuracy respectively). Top1 accuracy is the actual accuracy of the

network, while top3 and top5 represent how close the network was on choosing the correct label.

Table 5.1 – Scores obtained in Jester’s validation set

Technique top1 top3 top5 Model’s size
RT3D_8F 90.11 % 97.15 % 98.47 % 32.4MB
RT3D_16F 93.00 % 98.43 % 99.16 % 118.1MB

RTFLOW_16F 91.68 % 98.17 % 98.92 % 103.5MB
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The proper test set from Jester’s dataset does not provide its labels, instead, a file is submitted

with the predicted classes for each sample of the test set. The creators have a proper leaderboard with

all user’s submissions and their accuracy (top1). The results from other authors in this leaderboard

can be seen in Table 5.2. Since the site allows only one submission for evaluation, it was opted to send

the best performing model based on the validation set.

Table 5.2 – Score on Jester’s test set, as in the official leaderboard

Tecnique accuracy
MFNet[28] 96.22 %

Motion Fused Frames (MFF) [19] 96.28 %
RT3D-16F-WIDE 92.65 %

20BN Jester System [43] 82.34 %

From these results, it can be seen that adding more information to the network (more frames

and awider field-of-view) did increase the accuracy ofmodel RT3D_16Fwhen compared to RT3D_8F,

albeit with diminishing returns. That is, the correlation between the amount of data provided to the

network (and thus its complexity to process the data) and its observed accuracy is not linear.

The attempt to use flow frames generated from low computing power techniques did not

perform as expected. During all the experimentation with this model, there was no instance where

it performed better than the base model it was based on (i.e. the same network, but only using RGB

frames). One hypothesis of why the flow frames did not help to make a better prediction is that the

models utilized to create the flow frames have good results in synthetic datasets (computer-generated

videos). The application utilizing these models to create flow frames from the Jester dataset has

to consider not ideal conditions for the capture, such as imperfect lighting, motion blur, and low

resolution, which might hinder the final results of the flow frames.

While all the other models represented a trade-off between network’s complexity and per-

formance, the last one, utilizing flow frames, was discontinued from further testing, since it did not

perform better than the simpler models, while presenting increased complexity and overall computa-

tional time.
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5.1.2 nvGesture Dataset Validation

This dataset was trained using transfer learning from the Jester dataset, i.e. the network

that was trained for the Jester dataset was utilized as a starting point for this dataset. This allows not

only for a quicker learning process (since fewer parameters were changed) but also helps to reduce

problems such as overfitting. One of the biggest differences when training for this dataset is the

reduced number of samples. If the same training procedure used for Jester was attempted for the

nvGesture, the problem of overfitting would be much more noticeable, since the train set can be easily

"memorized" by the model to get high accuracy on the train set, while not learning useful features for

the validation set.

For this transfer learning process, both the 2D and 3D CNN parameters were locked (im-

peding its parameters to change) only adjusting the final linear layers of the network. If the model

previously trained learnt useful features for detecting hand gestures, these CNN networks should

provide useful parameters for the newly adjusted linear layers to predict classes in the new dataset.

This dataset was experimented with the simpler model (RT3D_8F) and the best performing model

(RT3D_16F). Table 5.3 shows the result from the network when presenting only the gesture (not the

full sample) similarly to the conditions in the Jester dataset. Table 5.4 presents the results from the

gesture trying to predict the gesture from the full sample (a 10 seconds sample that contains portions

of "No Gesture"), compared to other state-of-the-art techniques. Note that this dataset contains depth

images, which can considerably increase the accuracy when used, however since this work only uses

RGB frames, the other results were omitted for comparison purposes.

Table 5.3 – Scores obtained in nvGesture’s validation set - Isolated gesture only

Technique top1 top3 top5 Model’s size
RT3D-8F 54.98 % 79.88 % 85.06 % 33MB

RT3D-16F-WIDE 69.92 % 86.51 % 91.7 % 117MB
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Table 5.4 – Scores obtained in nvGesture’s validation set - Full sample

Technique Input Accuracy Model’s size
RT3D-8F 8-frames 43.36 % 33MB

RT3D-16F-WIDE 16-frames 67.42 % 117MB
C3D [18] 16-frames 62.67 % N/A

ResNeXt-101 [18] 16-frames 66.40 % N/A
ResNeXt-101 [18] 32-frames 78.63 % 363MB
R3DCNN [27] 32-frames 74.10 % N/A

5.1.3 EgoGesture Dataset Validation

Similarly to the process established for the nvGesture dataset, this dataset had as a starting

point the model pre-trained on the Jester dataset. In a first moment the model was trained without

changes in the parameters of the CNN layers, and even though the Jester dataset has significant

differences when it comes to what the samples look like ,due to the different points of view from the

camera, the parameters learnt from the Jester dataset were effective to achieve an accuracy above 70%

for the RT3D_16F model.

After that, the trained process of the model continued by unlocking the parameters of the

CNN layers, and then further increasing the accuracy of the network to the values shown in Table 5.5.

It is worth noting that despite having more classes, the increased number of samples of this dataset

(when compared to nvGesture) allowed for better results in both offline and online results, possibly

due to the model not being affected with overfitting as much as the nvGesture dataset did and thus

benefiting from unlocking the CNN parameters.

Table 5.5 – Scores obtained in nvGesture’s validation set - Gesture only

Technique top1 top3 top5 Model’s size
RT3D_8F 82.72 92.85 % 95.19 33MB
RT3D_16F 86.09 94.43 % 96.36 117MB

The values for the validation test, comparing the techniques with other are shown in Table

5.6. In this test only the segments containing isolated gestures were tested. The column "Input" in

the table represents how many frames are used in the network to represent the gesture. Similarly to

nvGesture, techniques using depth frames were omitted from this table.
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Table 5.6 – Scores obtained in EgoGesture’s validation set - Segmented gestures

Technique Input Accuracy Model’s size
RT3D-8F 8-frames 82.72 % 33MB

RT3D-16F-WIDE 16-frames 86.09 % 117MB
VGG-16 [52] 16-frames 62.50 % N/A

VGG-16 + LSTM [52] 16-frames 74.70 % N/A
ResNeXt-101 [18] 16-frames 90.94 % N/A

C3D+LSTM+RSTTM [52] 16-frames 89.30 % N/A
ResNeXt-101 [18] 32-frames 93.75 % 363MB

5.2 Online Validation

To evaluate the network’s online performance, the nvGesture and EgoGesture datasets will

be used, since they contain samples which allow this type of test. In the nvGesture dataset, for example,

the samples are longer, contain periods in which the person in front of the camera is either performing

no gesture at all and simulates driving, or performing an unrelated action with one or more than one

person in the frame. A single gesture is performed for each sample, but in these tests, the network

has no information about how long the sample is or in which part of the video a gesture is being

performed. This allows to test how the Cth and the number of frames averaged (described in Section

4.4.2, impact on the online accuracy of the network.

In the EgoGesture dataset, there are multiple gestures per sample, in a different camera

angle for the previous dataset. This dataset closely best simulated the real-world scenarios which

would be seen in a real-time application, with longer samples (approaching the continuous nature of

the task) and multiple gestures being performed. In this dataset, the cooldown system proposed can

be evaluated (which was no the case for the nvGesture dataset), observing its capability to prevent

multiple computations of the same gesture without interfering in the following gestures performed.

The algorithm used to transform the results trained in an offline environment to an online operation

was described in Section 4.4.2.
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5.2.1 Calculating Accuracy for Online Operation

In contrast to offline operation in which there was a single label for a given sample and the

network’s objective was to simply predict the most likely label, during online operation there can be

multiple labels or no label at all for a given sample. For example, in the sample from the example in

Section 4.4.2, there was a single gesture being performed during the entirety of the sample’s duration.

The network is not hard-coded to yield a single prediction for those samples, instead, it can yield

multiple labels or no label at all. To describe the true label for that sample, let’s use the notion [1],

which represents an array of labels that are present in sequence for that given sample. Since there was

only a single "Gesture 1" in the sample ("No Gesture" or "Doing other things" is not considered in this

notion) the array [1] represents the true label for that sample. If, for exampĺe, the sample contained a

"Gesture 2", "Gesture 1", "Gesture 4" and "Gesture 3" in sequence, the correct label for that sample

would be [2,1,4,3]. Likewise, coming back to the original example of the sample which label is [1],

the network could yield no label for the sample, thus the predicted a label [] (an empty array). In

addition to that, the application could yield more than one label to that sample, [1,2] for example.

Supposing a true label of [1,2,3,4] and predicted label of [1,2,9,3,4] the question of how the accuracy

should be calculated is not trivial, resulting in multiple ways of implementing it. This section will

explain the accuracy was calculated for online operation in this dissertation.

In the paper [18], the authors suggest utilizing the Levenshtein Distance (LD) to calculate

the accuracy. The LD is a metric for measuring the distance between two sequences. It can be

interpreted that it measures the number of "mistakes" between the two. For the following examples,

let’s consider the sequence [1,2,3,4] as the true label for a given sample. The LD between the true

label sequence and the predicted sequence [1,2,9,3,4] is 1 (the "mistake" here would be the insertion

of a 9 if compared to the original). Similarly, the following sequences would also have a LD of 1:

[1,2,3] (missing one element), [1,2,3,5] (replacing one element with a different one), [1,2,3,4,5]

(assign an additional element). An example of a sequence with a LD of 2 would be: [1,2,4,3] (here,

swapping the 3 and 4 counts as missing both), [1,2,9,3,4,5] (adding two additional elements), [1,2]

(missing two elements). In order to transform the LD in a metric to measure accuracy (which should

be between 0 and 1) the distance is divided by the number of elements in the true label, and then

the resulted value is removed from 1 to result in the accuracy. Equation 5.1 shows the equation
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for accuracy (A), where LD(TS,PS) is the Levenshtein Distance between the true sequence (TS) and

predicted sequence (PS) and LenT L is the number of elements in the true sequence. Since there can

be a greater LD than the number of elements in the original sequence, and thus yielding a negative

number, the final accuracy value is set to 0 in these cases.

A = min(1 −
LD(TS,PS)

LenT L
,0) (5.1)

This section will show the results obtained in the nvGesture and EgoGesture dataset, as well

as the process utilized to choose the confidence threshold, the number of frames averaged and the

cooldown time, based on the final accuracy and delay obtained for different values experimented.

5.2.2 nvGesture Dataset

As mentioned in the introduction of the dataset, it contains longer samples if compared to the

Jester dataset, while still containing only a single label per sample. To find the accuracy for the online

operation for this dataset, a combination of values for Cth, N and T were experimented, observing the

results in the overall accuracy and the delay needed to yield a correct label. The number of frames for

cooldown T should not have an impact on the results since all the samples contain only one gesture.

As mentioned in the specification chapter, the label’s prediction can be yielded before the gesture’s

performance is over, resulting in a negative delay when compared to the end of the gesture.

During testing for both models RT3D_8F and RT3D_16F, the former did not present satis-

factory accuracy for the combination of the parameters mentioned. The model RT3D_8F obtained,

at best, and accuracy of 26% for a combination of 13 averaged frames and a threshold of 0.03. The

results presented in this section represents the results obtained for the model RT3D_16F.

To determine the best combination of the parameters mentioned before, it was experimented

with a range of parameters, trying to find an optimal point for the dataset. Figure 5.1 shows the

accuracy obtained for a combination of Cth (x-axis) and N (different lines). The T parameter was

fixed for the size of a full window that the model can analyze, which is 16 frames for the model. It is

possible to investigate that increasing the number of frames averaged, the correspondent optimalCth is

lower. Averaging more frames results in better accuracy, however with diminishing results for a large
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Figure 5.1 – Accuracy of online operation for the nvGesture dataset. Each line represents a different
number of averaged frames

enough N (the accuracy peaks for N = 13). It is expected as well that further increasing the number

of averaged frames (past the 17 shown in the graph) might hinder the network capability of detecting

gestures, because a gesture can be fully represented within those frames, and increasing the detection

window might blend data from other gestures being performed. For this test, further increasing N did

not change the values for accuracy and delay (making the results for N = 19 the same as N = 17),

likely due to the sample not being long enough or not containing multiple gestures to effectively make

a noticeable difference for this test.

On the other hand, one of the implications of increasing the number of averaged frames is

the increase in the delay to make the prediction. Figure 5.2 show the number of frames on average

in which the prediction occurred before the deadline (higher is better). This metric only represents

the delay when the gesture is correctly classified, and thus for lower accuracy points of the graph, the

sample size is considerably smaller. The points in each line of the graph represent the best accuracy for

each N , base on the values from Figure 5.1. There is a trade-off between accuracy and detection time

when changing N , which depending on the application might be needed to opt for a lower accuracy

to yield faster predictions. Note that even for large N in the graph, the system is still able to detect

the gesture before its completion .Since this data intended for a use at 16 frames per second, each
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Figure 5.2 – Number of frames in which the classification occurred before the deadline of online
operation for the nvGesture dataset. Each line represents a different number of averaged frames

frame represents 0.167s of time. Table 5.7 shows for each N tested, the Cth which resulted in the best

accuracy and the delay for each of these combinations (same points shown in Figure 5.2).

Table 5.7 – Best combinations of Cth for each N

N Cth Accuracy Frames before deadline Time before deadline
1 0.18 52.4 % 3.549 591 ms
3 0.16 52.4 % 3.094 515 ms
5 0.16 54.1 % 2.444 407 ms
7 0.14 56.0 % 1.948 324 ms
9 0.12 56.4 % 1.808 301 ms
11 0.1 56.6 % 1.864 310 ms
13 0.1 57.1 % 1.352 225 ms
15 0.08 57.1 % 1.661 276 ms
17 0.08 57.1 % 1.472 245 ms

5.2.3 EgoGesture Dataset

This dataset’s samples is the closely that resembles a scenario of online classification in

a real-time application due to it having the longest samples from the three datasets presented, and
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containing multiple gestures being performed. The process of training and evaluation for this dataset

will be the same used for the nvGesture dataset, just presented. The network was tested for a range of

N , Cth and T , to check the best performing parameters for this dataset.

Figure 5.3 – Online accuracy for the RT3D_8F model on the EgoGesture dataset. Each line represents
a different number of averaged frames

The accuracy for both network are shown in Figures 5.3 and 5.4. A pattern similar to what

was observed in the nvGesture dataset can be observed. There is an optimal point for a given number

of averaged frames. The results for the more complex model RT3D_16F did not improve much upon

the model RT3D_8F, even though it displayed a slightly higher accuracy during the offline tests.

For the delay calculation of this dataset, it was opted to only consider the first gesture of each

sample. This measure was adopted to isolate the delay itself, not depending on a correct prediction

of previous gestures. This time, for simplification purposes, the average delay per Cth was plotted

(instead of plotting multiple lines, one per different N). Figures 5.5 and 5.6 show the frames before

deadline, averaged for N = 1 to N = 11 for both the RT3D_8F and RT3D_16F networks. Note that

for the conversion of the delay in seconds, the acquisition rate (FPS) must be taken into consideration,

which is different between the networks.

Table 5.8 shows the best accuracy points for each N evaluated. It is possible to see that

for most of the points presented, the average prediction occurs after the deadline for a given gesture,
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Figure 5.4 – Online accuracy for the RT3D_16Fmodel on the EgoGesture dataset. Each line represents
a different number of averaged frames

Figure 5.5 – Online delay for the RT3D_8F model on the EgoGesture dataset. Results averaged for a
given confidence threshold

which was not the case for the nvGesture dataset. In these cases it is possible to opt for values of N

and Cth which would yield a negative delay, however with reduced accuracy.
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Figure 5.6 – Online delay for the RT3D_16F model on the EgoGesture dataset. Results averaged for
a given confidence threshold

5.3 Performance validation

To evaluate the performance of the proposed models, a test was elaborated to measure the

time needed to run a classification through the model 1000 times, that is, how much time was needed

to run a thousand windows of frames. In this test, a random tensor of shape identical to what the input

images for a given window of frames would have is input to the classification model of the network,

then the scores for each class are calculated, and the process is repeated in a loop. The time elapsed

was saved for each tested model. Also, the VRAM usage (video memory) was measured before and

during running the tests, not considering the tensor size used as an input to the model. The model

used for the test were all trained for the EgoGesture dataset. The hardware used was a PC, with an

i7-6700k processor and a GTX 1080TI GPU (11GB VRAM), running Ubuntu 18.10.

The proposed models RT3D_8F and RT3D_16F were tested in two runs, utilizing the

optimizations of data re-usage and not re-using data. This allows us to evaluate the performance gains

using the approach of inserting a 2DCNN in the network to do some of the spacial-feature detection.

The technique for online gesture classification presented in [18] was evaluated through the

same test to compare the proposed model with existing techniques in the literature. This technique
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Table 5.8 – Best combinations of Cth for each N

Model N Cth Accuracy Frames before deadline Time before deadline
RT3D_8F 1 0.5 0.545 -0.196 -32.7 ms
RT3D_8F 3 0.45 0.574 -1.164 -194 ms
RT3D_8F 5 0.35 0.583 0.293 48.8 ms
RT3D_8F 7 0.25 0.587 -0.575 -95.9 ms
RT3D_8F 9 0.2 0.584 -0.392 -65.4 ms
RT3D_8F 11 0.2 0.583 -0.066 -11.1 ms
RT3D_16F 1 0.16 0.592 -1.887 -125.7 ms
RT3D_16F 3 0.14 0.596 -1.316 -87.7 ms
RT3D_16F 5 0.14 0.604 -5.688 -379.2 ms
RT3D_16F 7 0.12 0.606 -4.033 -268.8 ms
RT3D_16F 9 0.1 0.618 -3.226 -215.1 ms
RT3D_16F 11 0.08 0.618 -2.617 -174.4 ms
RT3D_16F 13 0.08 0.626 -3.442 -229.4 ms

was chosen due to it having the same premise as the proposed model (i.e. online gesture classification)

and due to the author publicly providing the code and its trained model for the EgoGesture dataset,

making it possible to test its model in our proposed test.

Figure 5.7 – Number of computations per second performed on each model for different batch sizes.

Figure 5.7 and Table 5.9 show the number of computations of windows per second obtained

for each model in a different number of batch sizes. As observed, due to layers of hardware, drivers,

libraries used and others, the number of operations per second is not linear with the amount of data

processed (represented by the batch size). Running the tests with an increased batch size was opted to
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Table 5.9 – Number of computations per second performed on each model for different batch sizes

Batch size RT3D_8F RT3D_16F ResNeXt-101
1 739.24 225.08 31.76
2 670.45 138.90 24.47
4 538.11 74.28 16.26
8 349.18 38.52 9.07
16 195.21 19.54 1.98

Figure 5.8 – VRAM allocated during the tests for each model and batch size.

see how the techniques would perform in an environment in which the hardware is underused versus

one in which the hardware is close to its limitations. A batch size of 32 was not possible to run on

the models RT3D_16F and ResNeXt-101 due to VRAM limitations of the system used. The VRAM

usage for the tests is shown in Figure 5.8 and Table 5.10.

The results obtained in the tests show distinct levels of performance for each technique. The

RT3D_8F model was able to perform, on average, 6.88 times faster than the RT3D_16F model and

44.16 times faster than the ResNeXt-101 model, while using 16.31% and 23.61% of the VRAM usage,

respectively. When comparing the RT3D_16F model with the ResNeXt-101 model, the proposed

model presented a 6.28 faster time to process a given window of frames, on average, however utilizing

50% more VRAM.

It is important to mention that this test would have to be performed on specific hardware to

evaluate which model has a better performance. There are several layers of hardware and software
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Table 5.10 – VRAM allocated during the tests for each model and batch size

Batch size RT3D_8F RT3D_16F ResNeXt-101
1 133 MB 564 MB 447 MB
2 210 MB 1098 MB 851 MB
4 362 MB 3152 MB 1627 MB
8 681 MB 5184 MB 3230 MB
16 1319 MB 9274 MB 6494 MB

which might benefit one technique or the other, and thus these results serve as an estimate of the

complexity of the techniques, and should not be interpreted that in any given hardware the same

differences in performance would be measured the same.

The same test, comparing the optimized and unoptimized versions of models RT3D_8F

and RT3D_16F, i.e. not re-utilizing data from the 2DCNN output between cycles, was performed to

evaluate howmuch impact it had on the overall performance of themodels. Across the same conditions

of the test before, the optimized version of the model RT3D_8F performed 2.14 times faster than the

unoptimized version, and the optimized version of the model RT3D_16F performed 2.74 times faster

than the unoptimized version. Table 5.11 shows the values obtained in for each test.

Table 5.11 – Number of computations per second performed on each model for different batch sizes,
compared to its unoptimized version

Batch size Optimized? RT3D_16F RT3D_8F

1 No 103.823 526.499
Yes 225.085 739.243

2 No 57.330 346.042
Yes 138.904 670.457

4 No 22.655 218.519
Yes 74.279 538.114

8 No 12.267 126.965
Yes 38.524 349.183

16 No 6.348 64.439
Yes 19.536 195.211
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5.4 Discussion

In this section, we analyzed the results obtained with the proposed models in three different

datasets. The model utilizing flow frames (RT_FLOW) did not perform as expected. The use of a

lighter implementation of optical flow would still cause an overhead in the computing performance,

considering that the computation time of optical flow itself, even in its lighter implementations, is still

in the same realm of the models discussed. In preliminary testing, the calculation of the flow frames

by themselves, not considering the processing for the 2DCNN and following layers, took around 26ms

for a window of 8 RGB frames of size [96,96]. As a comparison, the model with the highest accuracy,

ResNeXt-101, took 31ms to process its entire score. Besides that, during our testing, it was not

observed any gain in accuracy performance when utilizing the flow frames in conjunction with the

RGB frames. One possible cause for that is that the utilized network for optical flow (PWC_Net)

was optimized for synthetic datasets, which have more consistent lighting, contours, shadows, etc.

The added difficulty of producing flow frames with real-word footage might have resulted in a noisier

result, not aggregating more information to the network in comparison to the already present RGB

frames. Because of the lack of improvement in comparison to the RT3D_16F model, it was opted to

discontinue testing with RT_FLOW.

In the Jester dataset, the RT_RGB-16F model obtained an accuracy 3.77% smaller than

the top-performing technique (MFF [19]), 92.65% compared to 96.28% accuracy, or almost twice as

likely (97.58% increase) to make an incorrect prediction. For the case of RT3D_8F, the accuracy was

obtained for the validation set, which if it was compared to the test set accuracy of the best accuracy

technique would result in a result 6.41% smaller, and 165.86%more likely to make a wrong prediction.

For the nvGesture dataset, the results were analyzed comparing techniques that utilize RGB

frames only. The offline results of the dataset for the RT3D_16F model are comparable to other

techniques that have a similar window size (16 frames). When compared to the overall best technique

(ResNeXt-101 [18]) it had an accuracy 14.25% smaller than the mentioned technique (52.45% more

likely to make an incorrect prediction). The less powerful RT3D_8F model, had an accuracy 55.15%

smaller than the previously mentioned technique, or 165.04% more likely to make a wrong prediction.
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In the EgoGesture dataset, the offline results considered techniques utilizing only RGB

frames. TheRT3D_16Fmodel obtained an accuracy of 86.09%, when compared to the best performing

technique analyzed (ResNeXt-101 [18]) it had a decrease of 8.17% in accuracy performance, making

it 122.56% more likely to make an incorrect prediction. The RT3D_8F model obtained a 82.72%

accuracy, a 11.76% reduction if compared to the same technique (176.48% more likely to make an

incorrect prediction).

When analyzing the online performance of the models, there are fewer techniques in the

literature to compare the results. The main paper analyzed was from [18], which proposed the

calculation of accuracy for online classification utilizing the Levenshtein distance. In their work, they

present the achieved their Levenshtein accuracy for both the nvGesture dataset and EgoGesture dataset,

however, the only value presented is for their best performing techniques, which in both cases utilizes

depth frames. The use of depth frames facilitates the task of gesture classification, increasing the

author’s accuracy from 93.75% to 94.03% on their best performing model for the EgoGesture dataset

and from 78.63% to 83.82% in their best performing model for the nvGesture dataset. Taking that into

account, the Levenshtein accuracy calculated for the ResNeXt-101model [18] in the nvGesture dataset

was 77.39% and for the EgoGesture dataset was 91.04%. The best Levenshtein accuracy obtained

in this dissertation for the nvGesture and EgoGesture dataset are respectively 57.10% (a decrease of

26.21%) and 62.60% (a decrease of 28.44%).

Overall, although the accuracy of the presented models does not directly compete with

state-of-the-art techniques, it is possible to consider that such models would be appropriate for use

in embedded systems. The reduce in computational cost observed in this section can represent the

possibility of being able to run this technique on a given hardware or not. In the cases where there are

fewer classes to distinguish from, therefore allowing for better accuracy, the lower computational cost

when compared to other techniques might make a good fit for the application in a given hardware.

The presented technique in this dissertation offer an option for applications running on less powerful

hardware, while still to achieve the best accuracy possible.

The existence of a dataset rich in sample size also showed to have a big impact on the models.

The nvGesture dataset, which had the fewest number of samples per class, ended up having an accuracy

lower than the other dataset trained by transfer learning, EgoGesture, which had a considerably higher

number of classes to distinguish from, and its model was able to achieve higher accuracy.

87



5.5 Threats to validity

In this section, we will discuss the threats to validity of the presented work, discussing the

hypothesis in which this work is based and how they can affect the final conclusions of the work.

One of the focus of this dissertation is to proposed a methodology for a Convolutional Neural

Network adequate for the use in embedded systems, i.e. with a smaller computing cost to performance

ratio than other available techniques. In our comparisons, there is a lack of techniques that proposed

models as simple as the one proposed in this dissertation. The main hypothesis here is that our model

offers something new to the literature, providing an network topology which benefits implementations

in simpler hardware. The main threat here, is the possibility that the existing models can be easily

adapted (e.g. by reducing the number of layers, diminishing the image size, etc.) to perform in a

similar level as our proposed model. Since these simpler models were not discussed in the original

papers, we decided that the results presented offer something new to the literature, approaching the

problem of gesture recognition from a embedded system point of view.
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6. CONCLUSION

In this dissertation, neural network techniques suitable for online gesture recognition in

embedded systems were studied. This study was limited the used of RGB frames only, in order to

avoid the need for additional equipment other than a camera for the capture of the footage. For such, it

was first reviewed the basics of neural networks and the different topologies developed with time (such

as CNNs) and then the state-of-the-art techniques for video classification, observing which techniques

were more present among the works, and which ones would be preliminarily viable in an embedded

system.

Out of the studied possibilities, it was chosen to experiment mainly with 3D convolutional

networks, which are part of other online classifications models. In addition to that, it was observed that

Optical Flow was commonly used in the top-performing action and gesture recognition techniques,

and a different model, utilizing flow frames, was also proposed. Due to the possibility of reusing data

with the inclusion of a 2DCNN, it was opted to introduce 2DCNN layers before the 3DCNN. These

layers are capable of extracting spatial features, while in between pooling layers reduce the size of the

tensor, allowing the following 3DCNN to be reduced in size. It was originally proposed three models

using this 2DCNN and 3DCNN: RT3D_8F utilizing a window size of 8 frames, RT3D_16F utilizing

16 frames with increased image size and RT_FLOWwhich used the same frame size as RT3D_8F, 16

frames and includes the use of flow frames in the model.

During our testings, the originally proposed model RT_FLOW did not perform as expected,

sharing a similar accuracy to its variant without the use of flow frames. The chosen implementation for

optical flow (PWC-Net) was trained to best perform on synthetic datasets (computer-generated videos),

and its computing cost is low, compared to other optical flow algorithms. The lack of accuracy gain

when utilizing the flow frames produced by the technique and the computing time overhead from the

generation of flow frames suggests that the use of optical flow in real-time online operation will depend

either on more powerful hardware or in the creation of low computational cost implementations of

optical flow for real-world footage.

On the other hand, the two other proposed models RT3D_8F and RT3D_16F presented an

offline classification accuracy in line with other tested techniques. While not directly competing for

the highest accuracy in any dataset, the achieved accuracy was still above 85% for both the EgoGesture
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and Jester datasets. For the nvGesture, due to the reduced samples to learn from, the accuracy obtained

was significantly smaller than the other two datasets (which contain a higher number of classes to

distinguish from).

The performance analysis, that is the time to compute a given model, shows the benefits of

the proposed technique. The presented models were able to perform over 6 times faster for the case

of the RT3D_16F model or over 44 times faster in the case of the RT3D_8F model to the compared

technique ResNeXt-101 [18] (which was also developed for real-time usage). While the accuracy

shown is significantly reduced when compared to other techniques in the literature, the reduced need

for computational performance to runs the model can make them suitable for lighter applications in

embedded systems.

In summary, in this dissertation, models for online gesture classification were shown, pre-

senting faster computing times while maintaining an accuracy comparable to other techniques present

in the literature. Some of the design choices for this project proved to be a good fit for the proposed

application in embedded systems, such as the data re-usage of the 2DCNN and the cooldown system,

which allowed a good performance in online operation while maintaining accuracy within the ex-

pected values. The area of online video classification using neural networks, especially for embedded

systems, is relatively unexplored if compared to other topics of machine learning. This dissertation

approached a new perspective on the usage of online gesture classification techniques by adapting it

to better perform in embedded systems and thus adding to the state-of-the-art for the field.
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APPENDIX A – JESTER DATASET SAMPLES

Figure APPENDIX A.1 – Samples from classes 0 to 8 from Jester’s dataset
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Figure APPENDIX A.2 – Samples from classes 9 to 17 from Jester’s dataset
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Figure APPENDIX A.3 – Samples from classes 18 to 26 from Jester’s dataset
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ATTACHMENT A – EgoGesture classes of hand gestures

Figure ATTACHMENTA.1 – Illustrations from the 83 classes of gestures contained in the EgoGesture
dataset

Source: [52]
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