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Abstract—This article proposes an adaptation from the model
of Bianco for fast-forwarding agents in crowd simulation, which
enables us to accurately fast forward agents in time. Besides being
able to jump from one position to another, agents are able to stay
inside their track, it means, the new position is calculated taking
into account the original global path the agent would follow,
if not being fast-forwarded. Obstacles and other agents around
are also taken into account when calculating the new position. In
addition, we included a personality aspect on agents, which affect
their behaviors and, also, be taken into account when jumping
to a future time and space. We conducted some experiments to
validate our model, which shows that it was able to indeed fast
forward agents from a position to another, in a coherent time,
sticking to a given global path while avoiding collisions. Finally,
we present a use case, showing that our method can fit inside a
”Fog of War” system.

Index Terms—crowd simulation, virtual agents, fast forward-
ing.

I. INTRODUCTION

Since the pioneer work proposed by Thalmann and

Musse [1], many other methods were proposed for crowd

simulation, each one with a significant contribution. There are

methods that deal with crowds from a microscopic point of

view [2], [3], as well methods that deal with a macroscopic

point of view [4], [5] and, even, methods which combine

both microscopic and macroscopic simulation strategies [6].

Others explored high dense crowds [2], [7], heterogeneous

behaviors [8], navigation control [9] and personality traits for

agents [10], [11].

Despite the great number of methods proposed for the most

varied range of subjects concerning crowd simulation, only

very few of them tackled the problem of fast-forwarding a

simulation or, in other words, instantly jumping agents from

a position A in time X to another position B in time Y, while

maintaining a coherent path and with a minimum error. Such

a feature is especially useful if performance is taken into

account. For example, if a simulation is fast-forwarded from

frame 200 to frame 300, this interval of 100 frames does not

need to be simulated, relieving computational resources. In

their work, Bianco et al. [12] proposed a method to estimate

the future position of agents in crowd simulations. A Pedes-

trian Dead Reckoning (PDR) method is used, evaluating the

prior positions, velocities, and goals of each agent. The final

positions are then estimated based on a global environment

complexity factor, that aims to impact the fast-forwarding

process, as well as the interaction among agents. Their model

was extended by Bianco et al. [13] to allow the inclusion of

events (e.g. adding an obstacle) during the jumping period.

In games, movement estimation of agents in virtual envi-

ronments is a common topic of research, especially regarding

computer-controlled units in Real-Time Strategy (RTS) games.

Due to ”Fog of War” systems (i.e. vision restricted to only the

player units), that estimation must be implemented considering

a partially observable environment. Hagelback and Johanso

[14] use potential fields to control a bot with imperfect

information (i.e. affected by the Fog of War) to explore

and navigate the environment. Cho et al. [15] explore the

effect of Fog of War system in predictions made by machine

learning algorithms. Another common approach includes giv-

ing perfect information about the environment to computer-

controlled units, allowing the movement estimation to deal

with obstacles and terrain deformation hidden by the Fog

of War. This approach can be combined with a fast forward

method, reducing the computational cost of units navigating

through the fog.

Although interesting, the method of Bianco et al. [12]

has space to improve. The global environment complexity

factor is too general, which means that the more complex the

environment, the more chances to have a high error rate and,

thus, agents jumping to positions far away from where they

should be. Therefore, in this work, we aim to adapt the model

of Bianco et al. [12] to make it more accurate. So, given an

initial and final time/frame, each agent is able to teleport from

its current position A to a future position B, following their

own path and time constraints. Thus, we are not only able

to teleport agents, but to avoid collision with obstacles and

maintain a coherent path based on the agent current position
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and its goal. Also, our agents can have personality traits, which

impact their behaviors and are, also, taken into account in the

fast-forwarding method. Finally, as a use case, we integrate our

adapted model with a Fog of War system, placing occluded

agents in a ”suspended” state until the estimated position is

reached or a visible area obstruct its path.

This paper is divided as follows: Section II presents the

related work regarding position estimation of agents in crowd

simulations and real-world pedestrians, along with methods

regarding crowd simulation optimizations during movement

prediction. Section III presents the methodology used for

integrating a path planning algorithm and personality traits of

agents within the fast-forwarding model, as well as how we

include personality traits to our agents. Section IV presents the

results achieved in the integration process and a use case of our

proposed method in a fog of war system. Section V presents

the final considerations and future work of our method.

II. RELATED WORK

Due to the increasing demands of simulated environments,

such as a higher number of agents and larger scenarios, several

methods have been presented to reduce the computational

cost of agent movement, collision detection, and collision

avoidance on crowd simulations. Pettre et al. [16] presented

a method where a level of simulation (LOS), similar to a

level of detail (LOD), is given to different sections of the

navigation mesh based on the camera viewpoint. Agents closer

to the camera are updated with higher frequency. Farther

away and occluded agents are given lower priority. Osborne

and Dickinson [17] presented a similar method for grouping

agents using a hierarchical level of detail (LOD). A group

can be defined as a set of agents of the same type, goal,

and nearby positions. The LOD of a group is defined based

on its distance to the camera. Guy et al. [18] proposed a

parallel method for local collision avoidance using the concept

of velocity obstacles. Each agent takes into consideration the

current velocity of nearby agents to create a set of cones, each

containing the possible directions that will cause a collision.

After that, the direction of each agent is adjusted seeking a

point not included inside the cones, which avoids collision

between them.

Different methods and navigation techniques to estimate

the position of real-life pedestrians, which were later adapted

for virtual agents, are presented in the literature. Beaure-

gard and Haas [19] used a pedestrian dead reckoning (PDR)

method combined with acceleration sensors to estimate indoor

positions. Taia et al. [20] combines a PDR technique with

A* path planning algorithm [21] to provide a more precise

approximation of pedestrian routes. Yi et al. [22] proposed

a method for estimating the travel time for pedestrians in

crowded scenes. Their model defines a group of regions of

interest (ROI) for pairings of both sources and destinations,

calculating the traffic flow and densities for each region.

Environmental elements and stationary persons are taken into

account as obstacles. Abnormal behaviors, such as wandering

pedestrians, can be identified based on the deviation from their

estimated travel time.

Bianco et al. [12] presented a method for estimating the fu-

ture individual position of virtual agents in crowd simulations.

Their work uses a PDR method to define the prior positions

of each agent, taking into consideration their goal and speed

at the frame where the jump occurs. Future positions are

adjusted based on a global environment complexity factor and

interaction with other agents. This model was later extended

by Bianco et al. [13] to allow the inclusion of events during

the time jump period. Events are defined as changes in the

environment (i.e. adding, moving of removing obstacles and

goals). Also, a metric for comparing crowds was presented,

taking into consideration the local densities of uniform regions

in the environment to define a global error estimation.

Differing from methods that focus on collision detection

optimization or levels of detail, we propose a method that

integrates the Pedestrian Dead Reckoning (PDR) position

estimation with a global path planning algorithm, allowing us

to simulate virtual agents that are aware of obstacles in the

environment, including during the fast-forwarding. We also

included personality traits in agents that affect their behavior

during the simulation, aiming to evaluate their impact on the

path planning algorithm and the fast forward process.

III. PROPOSED MODEL

Fig. 1. Comparison between the model presented by Bianco et al [15] (left)
and our proposed method (right). An agent is placed on the bottom-left corner
of the environment, aiming to reach its goal (triangle). The square represents
an obstacle obstructing the agent’s path. The position of the agent after the
fast forward is represented by a plus sign. Our method introduces a global
path planning algorithm, that adjusts the agent’s path based on obstructing
obstacles, in order to fast forward the agent position in time and space.

The main goal of this work is to adapt the model of Bianco

et al. [12] to make it more accurate, regarding the impact of

obstacles and motion trajectories. To do so, we propose to

remove the global environment complexity factor, that was

computed taking into account the global free space to move

in the environment. Instead, we control the jumping using a

navigation method. In other words, such a navigation method

would deliver the global path each agent should follow to reach

its goal. When the agent needs to jump in time, its new position

is calculated taking such a path into account. Also, we include

a personality factor in our agents, which should influence their

behavior and be taken into account when fast-forwarding the

simulation. Section III-A presents our method to fast forward

the simulation, while Section III-B presents our method to

127

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 17,2021 at 17:39:40 UTC from IEEE Xplore.  Restrictions apply. 



include personality on agents and how we deal with it when

fast-forwarding a simulation.

A. FF Method Adaptation

As mentioned before, we chose to adapt the model proposed

by Bianco et al. [12] to make agents instantly jump from

one position to another in time. In short, their method is

comprised of four main steps: IP (Interaction with People

factor), EC (Environment Complexity factor), PDR (Pedestrian

Dead Reckoning), and Repositioning in the space. IP step

is responsible for checking how the speeds of each agent

should be affected by the presence of nearby agents. EC

step is responsible for taking into account the environment

complexity (e.g. total area of obstacles) when estimating

new positions for the agents. PDR step represents the dead

reckoning process on the position estimation, i.e. to where

agents go only based on Physics. Finally, the Repositioning

step is responsible to reallocate agents in space, following their

estimated new positions, but avoiding obstacles and occupied

spaces. Their model uses the crowd simulation method known

as BioCrowds [23] and, thus, we also do.

We made some adaptations in the method proposed by

Bianco et al. [12]. First, their model relies on an Environment

Complexity factor (EC) to comply with the free region and

the presence of obstacles in the way. However, the area of an

obstacle is taken into consideration even when not obstructing

the path of an agent. We chose to remove such a factor from

the model. Instead, we made two alterations: the inclusion of

a navigation method, and the position estimation within the

defined path.

Biocrowds [23] is a crowd simulation model that aims to

control the local navigation of agents (i.e. define each agent’s

next position within a pre-defined radius). It can, therefore,

have problems to define such next position if an obstacle is

in the way. To solve this problem, we chose to use a global

navigation method alongside BioCrowds. We implemented the

method known as A*, proposed by Hart et al. [21], which

is a method to traverse a graph following the shortest path

available from an initial to a destiny position. This method also

considers obstacles, allowing agents the circumvent them. So,

we use A*, to calculate each agent path, and then we compute

the total magnitude of the jump in a straight line, as proposed

by Bianco et al. [12], to have a value of expected traveled

distance based on the speed and position of the agent. Then,

we simply project this distance value into the global path of the

agent, identifying the point with the same traveled distance.

As the A* method takes the obstacle into account, the future

position is guaranteed as a point out of any obstacle.

Figure 1 presents a comparison between the method present

by Bianco et al. [12] (left) and ours (right). The previous

method establishes a straight line between an agent’s position

and its goal (triangle). When the fast-forwarding is applied,

the agent is repositioned to a target point (plus sign). If this

estimated position is inside the area of an obstacle, Bianco et

al. [12] identify a nearby available space to place the agent.

The introduction of a global path planning algorithm allows

the identification of obstacles beforehand and removes the

possibility of placing an agent inside an obstacle.

Algorithm 1 presents our Fast Forward Adaptation (FFA).

For a given simulation, a stop-frame t and a target frame t+Δt
are defined, where t represents the frame in which the contin-

uous simulation is interrupted and t+Δt represents the frame

in which the simulation is resumed after the fast-forwarding.

The first step is to estimate the “future” position of an agent

(posit+Δt) using the PDR method, taking into consideration

its current position (posit), movement direction, speed and

objective (i.e. final goal). The future position is penalized by an

IP (Interaction with People) factor, that considers the presence

of other agents. We used the Weibull distribution [12]. The

magnitude of vector between posit+Δt − posit is projected in

agent i path, identifying the point in space with the same travel

distance (following the path). The agent is repositioned at that

point and its path planning is updated, removing sub-goals

that where “skipped” during the FFA and identifying the next

immediate step towards the final goal.

Algorithm 1: Fast Forward Adaptation

Data: Stop frame (t); Target frame (t+Δt);
Continuous Simulation stops at frame t;
for each agent i at frame t:
posit+Δt(x

i
t+Δt, y

i
t+Δt, z

i
t+Δt)← PDR(xit, y

i
t, z

i
t),

IP(xit+Δt, y
i
t+Δt, z

i
t+Δt)

Compute(|(posit+Δt − posit)|)
Repositioning(xit+Δt, y

i
t+Δt, z

i
t+Δt);

UpdatePathPlanning(i);
Resume Continuous Simulation from frame t+Δt;

B. Personality Traits

In order to include personality traits to our agents, we

chose the OCEAN (Openness, Conscientiousness, Extraver-

sion, Agreeableness, Neuroticism) psychological traits model,

proposed by Goldberg [24], once it is the most accepted model

to define the personality of a person.

It is important to understand each OCEAN factor individ-

ually, so we can define its influence on agents. Therefore,

we list the definition of each factor, in short: i) Openness

(O) = [0;1]: reflects the degree of curiosity, creativity and

a preference for novelty and variety; ii) Conscientiousness

(C) = [0;1]: reflects the tendency to be organized and de-

pendable; iii) Extraversion (E) = [0;1]: reflects the sociability

and talkativeness; iv)Agreeableness (A) = [0;1]: reflects the

tendency to be cooperative and compassionate with others;

and v) Neuroticism(N) = [0;1]: reflects the degree of emotional

stability.

Following the previous definition, we defined the influence

that such traits have on the behavior of our agents, during

the FFA method. To do so, we follow the method proposed

by Knob et al. [11] to create a relationship between OCEAN

traits and behaviors, as following defined:
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• Walking Speed [1,2]: defined as a function of Extraver-

sion (E), as follows: ψ = E+1, where ψ is the Walking

Speed and E is the Extraversion value;

• Leadership [0,1]: defined as a function of Extraversion

(E) and Neuroticism (N), as follows: ω = (W ∗ E) +
((1−W ).(1−N)), where ω is the Leadership, W is the

weight (defined as 0.5), N is the Neuroticism value and

E is the Extraversion value;

• Impatience [0,1]: defined as a function of Conscientious-

ness (C), Agreeableness (A) and Extraversion (E), as fol-

lows: β = (WE∗fE)+(WAC∗(1−A))+(WAC∗(1−C)),
where β is the Impatience, E is the Extraversion value,

C is the Conscientiousness value, A is the Agreeableness

value, WE is a weight (defined as 0.1), WAC is another

weight (defined as 0.45) and fE can assume two different

values: if E is higher or equal 0.5, it is calculated as

follows: fE = (2 ∗ E) − 1. Otherwise, it assumes the

value 0.

These behaviors (i.e. Walking Speed, Leadership, Impa-

tience) are used to define group features among agents. In

other words, such groups would present a default behavior

based on the features calculated by the OCEAN trait values.

Therefore, we define two group features:

• Cohesion (ζg) [0,3]: defines how much a group g tends to

stay together. The more cohesive the group is, the more

agents inside it tend to stay close to each other. At the

same time, the less cohesive the group is, the more spread

agents of such a group can become. It is calculated in

function of the Impatience behavior, as follows: ζg =
(1− β)× 3;

• Desired Speed (Ψg) [0,1.2]: defines the desired speed for

agents inside the group. It is calculated in function of the

Walking Speed behavior, as follows: Ψg = 1.2× (ψ−1).

Moreover, the Leadership behavior is associated with each

agent and defines a given agent that acts as a leader for

the other agents of the group. Such a decision is made as

follows: the Leadership value of each agent is tested against

a threshold (empirically defined as 0.9). If any agent is above

such threshold, it is chosen as the leader of the group. If

more than one agent surpasses the threshold, one of them

is randomly chosen. Finally, if no agent can surpass the

threshold, the group has no leader. Agents inside the group

follow the behavior of the leader if he is present. Thus, if a

strong leader is present, agents inside this group ignore their

features and assume the features of the leader. For example,

if the leader walks faster, agents of the group will also walk

faster.

In short, we link the OCEAN traits to group features which

can be easily taken into account for the FFA method. For

example, if an agent has a faster pace (defined by Extraversion

OCEAN trait), our fast-forwarding method makes this agent

”jump” a higher distance, when compared with agents with

a lower pace. It happens so because our method predicts the

next position of the agent taking into account, besides other

factors, the speed of the agent. Therefore, agents with higher

speed are going to jump farther than agents with lower speeds.

IV. RESULTS

This section presents the results achieved by our method.

For all tests, we performed five simulations of each case

and calculated the mean values of them. Then, errors were

computed as defined in Equation 1, as follows:

n∑

a=1

d(BCa
t+Δt, FFA

a
t+Δt)

n
, (1)

where BCa and FFAa represent the positions of agent a,

respectively in the simulation, without fast forward method,

and in our method, at frame t. d stands for Euclidean distance

and n is the total number of agents in the tested case. The error

is the average distance that represents the difference between

the continuous simulation and our method, in meters.

Section IV-A shows the accuracy of the fast forward method

in a obstacles-free environment, while Section IV-B shows

how our method behave when obstacles are present in the

environment. Section IV-C shows how our the personality

traits can affect FFA, and finally, Section IV-E shows a use

case for our model.

A. Our method: Fast Forward Adaptation (FFA)

We aim to evaluate if the FFA method is working as

intended, it means, agents should be able to jump from its

positions in time X to a future position in time Y, in the most

accurate way possible. To do so, we modeled two different

scenarios. First, a 30x30 (900m2) meters scenario with just

one goal. Two simulations were run, varying the number of

agents (1 agent and 5 agents). Second, a 30x30 meters scenario

with two goals. Again, two simulations were run: first, with

two groups of 5 agents each; second, with two groups of 10

agents each. Each group wants to reach a different goal (e.g.

group 1 wants to reach goal 1 and group 2 wants to reach goal

2). Table I shows all of these simulations. Also, for all simula-

tions, in both scenarios, we ran the same experiment with and

without the FFA method. The idea is to check if our model is

working as intended (i.e. calculating valid positions for agents

in the simulation, where valid positions can be understood

as positions nearby the position the agent would be in the

simulation without the fast forward method), independently of

the number of agents/groups in the simulation and the number

of goals present in the environment (the more goals, the more

are the chances of the path of the agents to intersect each

other). It is worth mentioning that during the execution of

our tests, we define that agents should be fast-forwarded from

frame 600 to frame 1000. We chose this interval because, in

the continuous simulation with two goals, it is the range of

time where agents from different groups cross/intersect each

other.

Table II presents the results of these simulations. The

columns Time, AvgSpeed (average speed), AvgAngVar (av-

erage variation of the agent’s direction along the path), and

AvgDist (average distance between agents) are relative of the

Continuous Simulation (i.e. without out FFA method). Time
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FFA is the total time that the simulations with our FFA method

took, while Error represents the relative error between the

positioning of the agents in the Continuous Simulation and

the FFA simulations.

TABLE I
SCENARIOS OF THE SIMULATIONS OF THE FFA METHOD. WE VARY THE

AMOUNT OF AGENTS, THE AMOUNT OF GROUPS AND THE AMOUNT OF

GOALS. TO COMPARE THE RESULTS, WE ALSO RUN THE FOUR SCENARIOS

WITHOUT OUR FFA METHOD (CONTINUOUS SIMULATION).

Simulation ID #Agents #Groups #Goals
1 1 1 1
2 5 1 1
3 10 2 2
4 20 2 2

TABLE II
RESULTS OF THE FFA METHOD SCENARIOS. THE COLUMNS TIME,
AVGSPEED, AVGANGVAR, AND AVGDIST ARE RELATIVE OF THE

CONTINUOUS SIMULATION (I.E. WITHOUT OUT FFA METHOD). TIME FFA
IS THE TOTAL TIME THAT THE SIMULATIONS WITH OUR FFA METHOD

TOOK, WHILE ERROR REPRESENTS THE RELATIVE ERROR BETWEEN THE

POSITIONING OF THE AGENTS IN THE CONTINUOUS SIMULATION AND

THE FFA SIMULATIONS.

Continuous Simulation

Sim
Time

(s)
AvgSpeed

(m/s)
AvgAngVar

(º)
AvgDist

(m)
Time FFA

(s)
Avg Error

(m)

1 8.26 1.49 3.24 - 6.77 1.85

2 13.73 1.37 19.75 0.41 11.32 1.96

3 15.53 1.13 2.64 0.54 12.03 1.17

4 24.84 1.26 16.98 0.44 19.56 1.20

As presented in Table II, it can be observed a difference

between the times of the simulations with and without the

FFA method. Continuous simulations presented higher values

of Time than simulations with the FFA method, it means, when

using the FFA method, simulations were able to finish faster.

It leads to the belief that the FFA method can, indeed, help

simulations to run faster by avoiding to simulate a defined

interval of frames/time. Besides that, the average error between

the positioning of agents in the Continuous Simulation and the

FFA method is lower than 2 meters for all cases. Such error

is calculated as an average displacement in the positioning of

all agents present in the simulation, when compared with a

continuous simulation. It means that in our 900m2 environ-

ment, agents presented, when fast forwarded, a displacement

in their positioning below 2 meters. This demonstrates that our

method is capable to reduce simulation time without needing

to compensate with a big loss in precision.

B. Fast Forward with Obstacles

In this section, we aim to evaluate how our fast forward

method behaves with the presence of obstacles in the environ-

ment. To do so, we modeled the same two scenarios presented

in Table I, but with one difference: we added three obstacles in

the environment. The environment setup is shown in Figure 2.

We expect that agents are able to jump following their own

paths (as defined by the path planning model, explained in

Section III-A) and avoiding collision with obstacles in such

path, as explained in Section III-A.

Fig. 2. Scenario used for the simulations presented in Table I. Obstacles
are represented by gray polygon. Goals are represented by flags. Agents are
initially place at the bottom-left corner. The agents inside the highlighted
circles aims for the goals highlighted in the same color. The goal highlighted
in orange was used for the simulations containing only one goal.

TABLE III
RESULTS OF SIMULATIONS WITH OBSTACLES. METRICS ARE THE SAME

AS PRESENTED IN TABLE II.

Continuous Simulation

Sim
Time

(s)

Avg
Speed
(m/s)

Avg
AngVar

(º)

Avg
Dist
(m)

Time FFA
(s)

Error
(m)

1 5.32 1.31 13.81 - 4.12 0.25
2 9.16 1.49 11.29 0.36 9.01 1.18
3 11.89 1.37 7.92 0.45 10.44 1.23
4 27.51 1.36 11.22 1.36 18.92 1.87

Table III shows the results achieved in the simulations with

obstacles. As it was already observed in Table II, continuous

simulations presented higher values of Time than simulations

with the FFA method. It shows that obstacles are having little

or no impact on the behavior of the FFA method. Moreover,

Error values were kept below 2 meters, as it was already

observed in Table II. It is another evidence that the FFA

method can deal with obstacles with little or no impact on

the path of the agents.

C. Fast Forward with Personality Traits

In this section, we aim to evaluate if the fast forward method

is being influenced by the personality of the agents. To do

so, we modeled the scenario of Simulation 3 presented in

Table I, with the three obstacles used in Section IV-B. We

ran four simulations with fast forward to check for personality

variations in groups and we add to our tests the difference data

(Diff) in relation to the FFA method with obstacles on the same

scenario of simulation, so that we can see the differences in

the positions of the agents in the simulations and demonstrate

the effect of personalities within the proposed model, as

presented in Table IV. In simulations 1 and 2, we tested the

Leadership behavior of the group, while in simulations 3 and
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4 we tested the Impatience behavior. OCEAN traits values

were defined following the behavior definitions explained in

Section III-B. For simulations 1 and 2, we expect that groups

with a strong leader (Simulation 1) are able to reach their goals

faster when compared with groups without a strong leader

(Simulation 2), because all agents of the group should follow

the leader. Also, since Extraversion OCEAN trait is important

to define the mean speed of the agents of a group, high

values of this trait reflect in higher velocities as seen in III-B.

For simulations 3 and 4, we expect that groups with higher

levels of Impatience (Simulation 3) present a more disordered

behavior when compared with groups with lower levels of

Impatience (Simulation 4). Besides that, we expect that groups

with high Impatience present slightly higher speeds.

TABLE IV
SCENARIOS FOR THE SIMULATIONS WITH PERSONALITY TRAITS. O, C, E,

A AND N REPRESENT THE FIVE TRAITS OF OCEAN.

Simulation O C E A N Test
1 0.5 0.5 0.8 0.5 0.8 Leadership
2 0.5 0.5 0.2 0.5 0.8 W/o Leadership
3 0.5 0.8 0.2 0.8 0.5 Impatient
4 0.5 0.2 0.8 0.2 0.5 Patient

Table V shows the total simulation times for all four

simulations. It is possible to notice that the total time of the

simulation with a high value of Leadership (Sim 1) is slighter

lower than the total time of the simulation with a low value

of Leadership (Sim 2). It seems to confirm what we expected:

agents inside a group with a strong leader tend to follow its

lead and walk at a quicker pace, arriving at their goals faster.

Moreover, it can be seen that the total time of the simulation

with a high value of Impatient (Sim 3) is greatly lower than the

total time of the simulation with a low value of Impatient (Sim

4). Although we did not expect to find so great of a difference,

it also seems to confirm what we expected: impatient agents

walked at a quicker pace than patient agents, trying to arrive

at their respective goals as soon as possible.

TABLE V
RESULTS OF THE SIMULATIONS WITH PERSONALITY TRAITS. METRICS

ARE THE SAME AS PRESENTED IN TABLE II, EXCEPT FOR DIFF, WHICH

REPRESENTS THE DIFFERENCE IN AGENTS’ POSITION BETWEEN THE

SIMULATIONS WITH ONLY THE FFA METHOD, AND SIMULATION WITH

THE FFA METHOD ALONG WITH PERSONALITY TRAITS.

Simulation with OCEAN

Sim
Time

(s)

Avg
Speed
(m/s)

Avg
AngVar

(º)

Avg
Dist
(m)

Time FFA
(s)

Diff
(m)

1 42.56 0.44 10.59 - 4.12 6.00
2 151.49 0.22 24.90 0.82 9.01 10.62
3 21.76 1.03 30.05 1.24 10.44 2.24
4 107.92 0.25 27.58 0.71 18.92 11.07

It is important to highlight that simulations 2 and 4 of

Table V takes more than double the execution time (i.e.

number of frames required for every agent achieve their goal)

of simulations 1 and 3 of the same table. In the case of

simulation 2, with the aim of the groups to not have a

strong leader it is necessary to lower the expressiveness of the

OCEAN status, in this case, 0.2 out of 1.0, simultaneously

this affects the walking speed characteristic of the agents

which influence their mean speed. This can be seen when we

compare simulation 1 with simulation 2, in the first agents

follow the velocity of it strong leader, this makes the agents

at this simulation twice as fast second one, as can been seen

in table V, therefore taking more time to reach each group

destination goal and increasing simulation time.

In the case of simulation 3 and 4, the degree of impatience

of a group determines its cohesion as a group. A high impa-

tience degree culminates in a low cohesion value (i. e a high

average distance between agents as seen in simulation 3). The

impatience of the agents makes them give more importance

for positions near its goal then close from its original group.

Furthermore, in order to simulate an impatient behavior, we

have to increase the expressiveness of the agents. Mutually,

this increases it’s walking speed, and hence increasing agents

mean velocity. Simulation 4 has a patience behavior, so

with more cohesion, which is visible because has the lowest

average distance between all tests, and less walking speed, also

detectable with a low average speed, this results in a more

simulation time for the same reasons as simulation 2. The

gaps in time between tests also present in the fast-forwarding

method, due to it be coherent with the influences of personality

behaviors. An example is that agent 0 in the simulation 1, with

a strong leader, in the moment of the fast forward is in the

mean position (6.62,4.32), while in simulation 2, without a

strong leader, the same agent, in the same frame, does the

fast forward and get the position (3.05,3.05). This coherence

demonstrates the efficiency of the fast forward method coexists

with the effects of personality behavior, through adapting the

fast forward for each personality.

D. Comparison with the state-of-the-art

In order to validate the accuracy of our model, we per-

formed a comparison with the model we based our work,

which means, the model proposed by Bianco et al. [12]. To

do so, we ran the experiments presented in [12] with a

similar setup, using a single environment of 40x23 meters

(920m2) containing the following obstacle configurations: no

obstacles; 2 obstacles with 109.71m2 total area; 7 obstacles

with 128.68m2 total area; and 4 obstacles with 582.22m2 total

area. Also, simulations were run with 8, 80, and 160 agents

in total.

Figure 3(a) presents the environment used in the 7-obstacle

configuration. Agents are initially placed in the horizontal

extremities, needing to cross the environment horizontally to

achieve their goals (flags). The same setup for agents and goals

were used in the simulations containing 2 and no obstacles.

Obstacles were intentionally placed in positions where they

would obstruct the direct path (i.e. straight line towards the

goal) of agents, converging different groups toward similar

areas. This setup creates a higher density of agents, especially

during moments where opposing groups intersect each other’s

paths. Figure 3(b) presents the environment for the simulation
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containing 4 obstacles, where the free space is highly reduced.

Also, agents are placed in four cardinal extremities of the

environment, aiming to reach the opposite extremity.

(a) Scenario containing 7 obstacles.

(b) Scenario containing 4 large obstacles.

Fig. 3. Scenarios used for comparison with the method presented by Bianco
et al. [12]. Obstacles are represented by gray rectangles. Goals are represented
by flags. In (b), the paths defined for each agent in highlighted in red lines.
White lines represent a connection between the center of an agent to their
auxins (as presented in the BioCrowds [23] model).

Similar to previous simulations, each scenario was executed

five times. Then, we calculate the relative error in position

(difference) for each agent, in meters, using the same definition

as presented by Bianco et al. [12]. The difference formula is

defined in Equation 2, as follows:

Difat→t+Δt =
d(BCa

t+Δt, FFA
a
t+Δt)

d(BCa
t , BC

a
t+Δt)

, (2)

where BCa is the position of agent a at a given frame of

the continuous simulation. FFAa
t+Δt represents the estimated

position of agent a at the target frame using our proposed

method. d stands for Euclidean distance. The main distinction

from Equation 1 is the inclusion of the distance between the

positions of an agent a at the stop frame and the target frame

of the simulation.

Following the definitions of Bianco et al. [12], the contin-

uous simulation in all scenarios where stopped at frame 200

(t = 200) and resumed at frame 400 (t + Δt = 400). The

4-obstacle setup is an exception due to its goal definition. In

this scenario, the values t = 200 and t + Δt = 370 were

used. The relative error in position (m) for a single execution

is defined by the average Dif of all agents in the simulation.

An average between the five executions is presented in Figure

4 in comparison with the results achieved by Bianco et al. [12].

It can be observed that our proposed FFA method achieved

a similar error in most scenarios, indicating that the precision

of position estimation is maintained with the integration of a

global path planning algorithm. The error increases according

to the number of agents in the simulation due to the local

movement of an agent being affected by nearby agents, making

it harder to correctly predict the future position in scenarios

with large intersecting groups. Our method maintained this

increasing error behavior in all scenarios, differing from

Bianco et al. [12] in the 7-obstacle setup with 8 and 80 agents.

We believe that due to the high number of obstacles in this

setup, our path planning algorithm was able to better identify

immediate obstructions in the agent’s routes, allowing a more

precise estimation when compared to Bianco et al. [12].

E. Use Case: Fog of War

As a use case, we integrated our method with a simple Fog

of War system. In this system, a “CPU Player” controls the

movement of a set of enemy units (i.e agents) in the environ-

ment. The “Human Player” (i.e. user) is then presented with a

scenario containing a set of obstacles. Also, the environment

is covered in fog, hiding enemy units from the user. The

user is also presented with a set of “watch towers” placed

in the environment, revealing areas in the fog. We simulated

the behavior of “CPU” controlled units using our proposed

method. The A* algorithm [21] was used to calculate the path

of a unit towards a selected goal, and the FFA model was

used to estimate the unit’s positions within the path at a set

of future frames.

The BioCrowds [23] model uses a grid of cells to represent

the space subdivision of the environment. Based on these cells,

we create a set of “fog cells” that cover the environment. Each

fog cell hides any enemy unit contained inside its area from

the user. Also, a subdivision value (s) was used to allow a fog

of higher density, therefore, each BioCrowd’s cell contained a

total of s2 fog cells. A fog cell contains a state that indicates

if it is inside the vision range of a “watch tower” or a dynamic

vision area. Watch towers represent stationary elements (e.g.

structures and building of the player) that provides vision of

a defined area and reveal a set of fog cells. Dynamic vision

areas represent any element that provides vision at different

moments of the simulation, also being able to move within

the environment (e.g player units). CPU units concealed by

the fog (i.e. inside a fog cell that is outside vision) are placed

in a “suspension” state, where no additional calculations are

required until this agent leaves such state.

Each fog cell belonging in the agent’s path receives a

callback that contains the estimated frame where the unit will

enter and leave the cell, along with the respective positions

at these frames. A callback is activated when the fog cell is

within the vision range and the current simulation frame is

within the estimated range. Whenever a callback is activated,

the agent leaves the suspension state and is placed back in the

environment within the limits of the fog cell. That position is
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Fig. 4. Comparison of relative error in position (m) between the model presented by Bianco et al. [12] and our proposed FFA method. Values presented are
an average between five executions. The value of a single execution is defined by the average Dif of all agents in the simulation, as defined by Equation 2.
The number of frames affected by the FFA for each scenario is described in Section IV-D.

defined using a interpolation between the minimum and maxi-

mum estimated position for that cell, taking into consideration

the frame of the activation. All remaining callbacks for that

agent are deactivated at that point. If the agent leaves vision, it

is possible to repeat the process, sending it to the suspension

state, and reactivating the callbacks. If the target frame (Δt)
of the FFA is reached without a callback activation, the agent

is placed at the final estimated position.

Figure 5(a) presents the setup for the environment, con-

taining 30 x 30 meters (900m2). An agent was placed at the

bottom of the scene, aiming to reach a goal (flag) at the top.

The path defined by the A* algorithm is highlighted in red,

connecting a set of cell centers towards the goal. Two “watch

towers” were placed near the corners of the obstacle: one

revealing a circular area; one revealing a square area. The

continuous simulation is interrupted at frame 100 (t = 100)

and the final position is predicted with target frame 3500

(t + Δt = 3500). Differing from our standard method, the

simulation continues from frame 100 onwards. The agent is

placed in a suspended state until the frame 3500 is reached or

a callback is activated.

In Figure 5(b), the agent is removed from the suspension

state due to a fog cell, that belongs to the path (i.e. contains

a callback), being in view-range. The agent is placed in an

estimated position for that cell at the current simulation frame,

which is around frame 1650 for that environment. At that

point, the agent returns to the continuous simulation until it

leaves the revealed area, when it enters into suspension state

again. In Figure 5(c), the “watch towers” are removed and no

dynamic vision areas are used. Therefore, all the environment

is concealed by the fog of war, and the agent suspension

state is not interrupted. In that scenario, the agent enters the

suspension state at frame 100 and leaves at frame 3500, close

to its goal.

V. FINAL CONSIDERATIONS

This work proposed an adaptation from the model of Bianco

for fast-forwarding agents in crowd simulation, which enables

us to accurately fast forward agents in time. The future

positions of the agents are calculated taking into account the

original global path the agent would follow, if not being fast-

forwarded. This way, obstacles and other agents around are

also taken into account when calculating the new position.

Besides that, we included a personality aspect on agents which

is taken into account when jumping to a future position.

We ran several tests with our model. The results achieved

show that our fast-forwarding method can be a valuable

asset for crowd simulation, especially in some given domains.

Most notable is the gain in time and resources: since the

interval of frames/time where agents are being fast-forwarded

does not need to be simulated, the simulation is faster and

computational resources can be relieved or spent in other tasks.

Also, we integrated our model with a Fog of War system,

showing an example of how our model could be allocated in

a game.

As for future work, there are several avenues to be followed.

We can modify our path planning method (i.e. A*) to consider

the number of agents in each cell present in the path of a given

agent. It could be used to avoid jams, where a great number

of agents become locked by each other. In this case, lanes

could be formed by the paths to avoid such jams. Also, in

the same way Bianco uses a complexity factor to ”punish” the

jumping in their method, we could use the complexity of the

path to ”punish” the jumping in our method. It would help

agents to avoid eventual deviation from their original routes

(for example, when recalculating their path after the jump).
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(a) Defined path before suspension.

(b) Suspension interrupted by a revealed
area.

(c) Suspension not interrupted.

Fig. 5. FFA integration with a Fog of War system. In (a), the defined path
of an agent is highlight int red. In (b), the suspension is interrupted due to
a “watch tower” revealing a segment of the path. The agent continues within
the path until he leaves vision, entering in another state of suspension. In
(c), the set of “watch towers” is removed, allowing the entire section to be
skipped. The agent is then positioned at the predicted point when the target
frame is reached.

To do both of the cited future works, D* algorithm could

be used instead of A*, since it allows dynamic weights for

each node of the path. Finally, in our model, we adopted the

group behavior from the work of Knob. Although, we did not

simulate the fast forward method for groups of agents. Such a

feature would allow us to fast forward entire groups of agents

(e.g. armies in a game), which would cost less computational

resources than to fast forward each agent separately.
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