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Abstract
Evacuation plans have been historically used as a safety measure for the construction of buildings. The existing crowd
simulators require fully modeled 3D environments and enough time to prepare and simulate scenarios, where the distribution
and behavior of the crowd needs to be controlled. In addition, its population, routes or even doors and passages may change,
so the 3D model and configurations have to be updated accordingly. This is a time-consuming task that commonly has to be
addressed within the crowd simulators. With that in mind, we present a novel approach to estimate the resulting data of a given
evacuation scenario without actually simulating it. For such, we divide the environment into smaller modular rooms with
different configurations, in a divide-and-conquer fashion. Next, we train an artificial neural network to estimate all required
data regarding the evacuation of a single room. After collecting the estimated data from each room, we develop a heuristic
capable of aggregating per-room information so the full environment can be properly evaluated. Our method presents an
average error of 5% when compared to evacuation time in a real-life environment. Our crowd estimator approach has several
advantages, such as not requiring to model the 3D environment, nor learning how to use and configure a crowd simulator,
which means any user can easily use it. Furthermore, the computational time to estimate evacuation data (inference time) is
virtually zero, which is much better even when compared to the best-case scenario in a real-time crowd simulator.

Keywords Crowd simulation · Crowd estimation · Neural networks

1 Introduction

As new buildings are designed and constructed by engineers
and architects, evacuation procedures to assure the needed
safety standards are a major concern. Evacuation drills are
usually used to analyze and evaluate predefined evacuation
plans, but despite presenting strong similarities with real-
world emergency scenarios [26], they still pose significant
ethical, practical, and financial challenges to be addressed
[12].
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Crowd simulation is an interesting tool for evaluating real-
world behavior of crowds in controlled scenarios. It can be
defined as the process of simulating the movement of large
amounts of agents, or crowds, in a previously defined envi-
ronment. The different ways in which crowds can behave
have been object of research for almost 30 years [25], includ-
ing a variety of fields such as architecture, computer graphics,
physics, robotics, safety engineering, training systems, psy-
chology, and sociology [25,30].

Regarding evacuation planning, crowd simulation can be
used to evaluate evacuation plans, given a parameterized
environment. For instance, Cassol et al. [3] employedCrowd-
Sim [2,10], which is a crowd simulator tested and validated in
real-world scenarios, to create and gather data from simula-
tions. They also employed CMA-ES [13,14], an evolutionary
algorithm that varies the population data so that different por-
tions of the crowd follow different routes.

Albeit simple, when considering all possible evacuation
routes an environment can have, a very large amount of
simulations have to be executed, growing exponentially as
more details are added to that environment. Even though
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simulations can run in a similar time needed for real-world
evacuation drills, it is still themost computationally demand-
ing step in such an evacuation planning approach.

Hence, this paper presents a method whose goal is to
estimate results of evacuation scenarios without the need of
actually doing simulations in a complex environment within
its run-time. For achieving that goal, we divide the environ-
ment to be analyzed into a set of smaller connected rooms.We
hypothesize that by estimating the evacuation data on each
room, we are capable of estimating the required information
for the environment as awhole. For estimating per-roomdata,
we make use of a machine learning approach, namely artifi-
cial neural networks (ANN), which are previously trained on
data collected from a number of simulation scenarios simu-
lated beforehand. Furthermore, we define a proper heuristic
to unify per-room data in complex environments that com-
prise a set of connected rooms. To the best of our knowledge,
this is the first work to make use of a hybrid machine learn-
ing and crowd simulation approach for the task of evacuation
planning in generic environments and to compare resultswith
real-life scenarios.

This paper is organized as follows. Section 2 presents
related work on crowd simulation and evacuation plan-
ning. Section 3 describes our new approach to estimating
parameters for evacuation plans based on machine learning.
Section 4 reports the results of a detailed experimental anal-
ysis for validating our new approach, whereas in Sect. 5 we
discuss our findings and point to future work directions.

2 Related work

The study and modeling of crowd traffic and their behavior,
as well as the environment and evacuation characteristics
is vital to the use of critical spaces [7,23,27,28]. We briefly
review some existing papers in areas related to the threemain
aspects of this paper: crowd simulation, evacuation planning,
and crowd learning. We are not exhaustive in our analy-
sis since the majority of them are not focused in the exact
same problemwe address on this work, i.e., estimating crowd
parameters instead of simulating it.

2.1 Crowd simulation

Several studies were proposed to elaborate ways of simulat-
ing crowds in egress scenarios.

SAFEgress (Social Agent For Egress) [5] is a force-based
approach that models evacuating pedestrians which are able
to make their actions according to their knowledge of the
environment and their interactions with the social groups
and neighboring crowds. MIMOSA:Mine Interior Model Of
Smoke andAction [20] is a specific application of agentmod-
eling within the context of a virtual underground coal mine,

with a fire and smoke propagation model, and a human phys-
iology and behavioral model. The approaches described in
[1,9,21] make use of cellular automata to reproduce pedes-
trian behavior and exit selection using a least-effort cellular
automaton algorithm, in which the motions and goals are
probabilistic.

Van Den Berg et al. [34] propose the method Optimal
Reciprocal Collision Avoidance (ORCA), which is used
for robots to avoid collisions with each other. The method
searches for the optimal velocity for each agent to move so
all agents move through the environment without colliding.
For that, it predicts the future positions of other agents and
prioritizes velocities that minimize the probability of them
colliding, ensuring that the agents adopt the velocities that
will result in the lowest number of collisions by the time it
performed the predictions.

Regarding evacuation planning, the work of Cassol et
al. [3] makes use of crowd simulation (CrowdSim) and
evolutionary strategy (CMA-ES) to search for the best config-
uration of routes for evacuation within a given environment.
Similarly, Garrett et al. [11] employ evolutionary compu-
tation methods to evolve the placements of exits and other
equipment in an effort to minimize the simulated evacuation
time of the environment occupants. The simulation is made
using an artificial potential fields model in which exits attract
agents and obstacles and other agents repel them.

2.2 Crowd learning

Tripathi et al. [32] recently surveyed techniques that have
been used in the context of crowd analysis and convolu-
tional neural networks. In particular, the crowd learning area
is heavily focused on the crowd counting problem, also called
density estimation. Chan et al. [4] create a privacy-preserving
system for estimating the size of inhomogeneous crowds in
a video. By segmenting the video and analyzing features
detected between frames and regions, the number of people
is estimated using Gaussian process regression. Similarly,
Fradi et al. [6] extract features from videos and use a Gaus-
sian symmetric kernel function to generate a crowd density
map, allowingmore specific locations of potentially crowded
areas.

Liu et al. [22] is the closest approach to our work. They
make use of artificial neural networks to learn the behavior of
simulated crowds with the objective of replacing simulation
with estimations, which is basically our same goal. How-
ever, the authors simulate the crowd on a fixed environment
(walls and routes) containing mobile parts whose disposi-
tion varies on each simulation. The position and rotation of
these mobiles parts are used as input to the neural network
to obtain the statistics of speed, number of collisions, and
traveling time of each agent for this environment and crowd
configuration.
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In this work, we propose amethodology for estimating the
evacuation of crowds in generic modular rooms using neural
networks. These rooms can be connected to form larger and
more complex environments, and we also propose heuristics
to estimate this environment using the data obtained from
estimating each particular room.

3 Proposed approach

In this section, we describe in details our proposed approach.
First, we present the development of the crowd simulator that
is employed to generate data for the learning process. Then,
we present the process that was used to validate that simula-
tor. Finally, we describe our per-room estimation strategy as
well as the heuristics to unify the estimated results.

3.1 Crowd simulator

To develop the crowd simulator, we make use of theUnity3D
game engine as a platform and implemented agents endowed
with the main inherent collective behaviors as referred to in
the literature: (i) goal seeking, (ii) collision avoidance, and
(iii) least-effort strategy behaviors [8,16–19,29].

A goal seeking agentmeans that the agentwillmove inside
the environment in order to reach a goal it is seeking. This
behavior is simple to implement, just by keeping a goal posi-
tion for each agent and moving the agent toward it.

When applying a least-effort strategy, the agent will move
in trajectories that require less effort, avoiding turns while
selecting the shortest paths. This behavior was implemented
using path finding over a NavMesh, a network of connected
3Dplaneswhich represents the navigable area. TheNavMesh
used was the native’s from Unity3D.

When applying a collision avoidance behavior, the agent
will move avoiding physical contact with obstacles and with
other agents. In order to do that, we implemented the ORCA
model [34]. The main goal of this method is to find the opti-
mal velocity of each agent so that it manages tomove through
the environment without colliding with obstacles or agents.
It corrects the course of their movements considering every
other agent’s velocity and position in a future time, reacting
preemptively and avoiding possible collisions between them.
We used as the optimization velocity forORCA the direction
each agent is following toward its goal on the NavMesh.

3.1.1 Model validation

For validating our crowd simulation, we compare our
approach with the original ORCA method. For doing so, we
recreated oneof theORCA’s showcases available at the devel-
oper’s Web site [33]. Some images of this showcase can be
seen in Fig. 1.

Fig. 1 Comparison between the ORCA’s showcase (left) and our sim-
ulation (right). A total of 41 agents are positioned to form the word
“RVO”, and then move down the screen to form the word “UNC” while
avoiding collisions with each other

One of the showcases was created to depict the agents’
behaviors using ORCA to avoid collision and its capacity to
move efficiently while looking natural to the human eye. We
recreated this showcase using solely visual information from
realORCAcases, andwithout knowing the agents parameters
(e.g., agents positions or speeds), so we expect similar results
from our model, though maybe not the same.

The showcase consists of 41 agents organized into three
groups, where the agents from each group are positioned
to form the letters of the word “RVO”. Then, they pro-
ceed to move down the screen to form the word “UNC”.
The group forming the letter “R” moves to form the letter
“N” at the end of the showcase, whereas the one forming
the letter “V” goes on to form the letter “C”. Similarly, the
one forming the letter “O” follows to form the letter “U”.
Easier movements could be made to complete this transfor-
mation; however, this specificmovement was chosen in order
to promote more potential collisions, thus requiring the use
of collision avoidance mechanisms, which is ideal for testing
ORCA. A comparison showing the showcase and our sim-
ulation as well as the movement pattern generated by both
simulators can be visualized in Fig. 1. In both cases, the
agents succeeded in moving and forming the other word, in
a quite similar way.

3.2 Estimation of rooms parameters based on ANNs

This section presents ourmodel to estimate crowddata result-
ing from the evacuation process instead of having to simulate
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it. We are interested on testing artificial neural networks as a
tool to estimate crowd parameters instead of generating them
through simulations. The overview of our method comprises
three phases: (i) performing several simulations in order to
generate the training dataset for the ANN (see Sect. 3.2.1);
(ii) ANN training and validation, as discussed in Sect. 3.2.2;
(iii) testing the learning methodology for rooms estimation
in complex environments (Sect. 3.3).

The room i parameters are described as follows:

– Widthi is the room width (m);
– Lengthi is the room length (m);
– esi is the exit size (m);
– fi is the input flow: agents per second that enter within

the room;
– Fi is the flow duration: duration in seconds defining the
period where agents enter the room;

– i pi is the initial population: number of agents which are
inside the room at the beginning of the simulation.

Next, the estimation proceeds by estimating the evacua-
tion total time (t ti ), in seconds, for the i th room. Details on
the estimation procedure is given in the following sections.

3.2.1 Dataset creation

To create a dataset of simulations that could be used to train
and test the learning algorithms, we automatize the process
of creating rooms. This process generates simulations based
on the input parameters, which are randomized for each sim-
ulation, and it collects data of the output parameters. Each
generated simulation comprises a rectangular room with a
single exit. In this paper, we use specifically the scope of
rectangular rooms to represent the walkable space in a cer-
tain room and single exits in the training dataset. We decided
to do so because if wewere to include all possible geometries
for rooms and all possible exit numbers, this would result in
a combinatorial explosion of environment possibilities to be
simulated.

Note that during inference timewecan test non-rectangular
rooms with more than one exit. For such, we have to approx-
imate the room by a rectangle, and if we want to consider
rooms with more than one exit, the user has to inform a sin-
gle exit whose size is the sumof the size of all available doors.
The room’s dimensions vary according to the roomwidth and
room length parameters, whereas the exit size varies accord-
ing to the exit size parameters.

Agents are placed in the room using the initial population,
input flow and flowduration parameters. The agents informed
in the initial population are those already in the room at the
beginning of the simulation. They are created and placed in a
squared spiral pattern, forming a diamond at the center of the
room as more agents are placed, to avoid agents overlapping

Fig. 2 Agents placed in a squared spiral pattern in a 6× 6 room in the
crowd simulator, numbered according to the order they are placed

each other. Figure 2 shows agents placed according to this
pattern. As the number of agents rises, the area of the dia-
mond increases. However, since their positions are restricted
by the size of the room, if no space is available to accom-
modate all agents that are created it may be inevitable that
some agents will start with overlapping positions. If this hap-
pens, agents will try to avoid collisions among themwhen the
simulation starts, eventually finding enough space to move
without colliding as other agents exit the room.

New n agents are created w.r.t to the flow information.
These agents are created at the entrance in the opposite direc-
tion of the exit in room i , considering a constant flow defined
as:

ni = fi × Fi , (1)

where fi is the input flow defined for room i , and Fi is the
flow duration for ri . Indeed, we consider that the input flow
in a certain room to be simulated is constant because we do
not have more detailed information considering that we are
only simulating a single room. If crowds are self-organized,
which is what happens when people have space and time to
adapt to the restricted physical space, their flow tend to be
constant (e.g., already organized in a previous room in the
environment hierarchy) [15,24].

Regarding the remaining parameters present the simula-
tion: the space each agent occupies is represented through a
cylinder with a radius of 0.3 m and it moves trying to main-
tain a max desired speed of 1.2 m/s. Both of those values are
extracted from the literature [31].

To generate the training and validation sets, the parame-
ters of the room were randomly defined within the intervals
specified in Table 1. We generate 18,000 rooms for train-
ing and 2000 for validation. The tests are presented later in
Sect. 4.
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Table 1 Intervals for each parameter in the dataset generation process

Parameter Min value Max value Value type

Room width (widthi ) 2.0 20.0 Float

Room length (lengthi ) 2.0 20.0 Float

Exit size (esi ) 0.9 5.0 Float

Input flow ( fi ) 1.0 10.0 Float

Flow duration (Fi ) 0.2 100.0 Float

Initial population i pi 0 99 Integer

Fig. 3 Hidden layer with 400 neurons, total evacuation time error per-
centage

3.2.2 Training and validation

We train an ANN to estimate the evacuation total time t ti .
The training processwas performedusing theStochasticGra-
dient Descent (SGD) optimization approach for 100 epochs
with a 10e−7 learning rate, stopping only when no more
reduction on the loss was observed in new epochs even when
reducing the learning rate. Once the t ti is estimated, the vali-
dation errors were measured using the absolute relative error
comparing the predicted value and the simulated value, here
considered as the ground truth. We measured the quality of
our estimations according to how many cases had less than
10% error.

We experiment with 1, 2, and 3 hidden layers with the 6
values of input from the dataset, 6 neurons on each layer and a
single output value: the evacuation total time estimated. From
those models, the one which achieved the best accuracy was
the one with the single hidden layer. Then we proceeded to
test several number of neurons on this layer. We tested with
2, 3, 6, 50, 200, 400 and 500 neurons on the hidden layer and
we got the best validation accuracy with 400 neurons. Then,
we proceeded to train the defined ANN stopping only when
no more reduction on the loss was observed in new epochs,
even when reducing the learning rate. The evacuation time in
the 2000 rooms estimated by a 400 neurons ANN resulted in
91.5% of the validation cases below 10% error, as illustrated
in Fig. 3.

The next section describes our heuristic capable of aggre-
gating per-room information in order to estimate complex
environments.

3.3 Environment estimation based on ANNs and
heuristics

As described in last section, we are now capable of estimat-
ing the time of evacuation for each room in the environment.
However, crowd evacuation methods are used in general
for more complex environments than a single room. There-
fore, 3D modeling is usually necessary in order to create
the environment to be simulated. Since we are proposing
crowd estimation instead of simulation, we propose to cre-
ate a simple environment based on a graph of rooms (i.e., an
environment graph where the connections among the rooms
are defined zas graph edges). We developed an environment
editor (see Sect. 3.3.1), where the user can easily create and
edit a graph representing an environment to be estimated.

Our proposal is to use ANNs to estimate the parame-
ters from each room (as discussed in the last section) and
then combine this data via empirically defined heuristics to
compute the global data for the entire environment. Environ-
ment e comprises N rooms r to be estimated. We estimate
the crowd parameters of each room ri using the ANN for
obtaining t ti . Therefore, we have two types of rooms within
an environment e: (i) rooms of type D, whose population
impacts another room, i.e., people from rDi goes to another
room; and (ii) rooms of type E (exit rooms), which are rooms
that lead the population to the output of the environment.
Moreover, those two types of rooms are mutually exclusive,
i.e., rooms D never lead to exits and rooms E never impact
any other room in e.

Figure 4 presents the overview of our estimation method.
Note that some parameters are input for the rooms structure.
For instance, rk (room without dependent rooms, on the left)
has the following input data:widthk , lengthk , esk (exit size)
and i pk (initial population). In addition, for this specific room
the input flow fk = 0 and flow duration Fk = 0 because no
agents arrive in such space coming from other rooms. These
are the input parameters for running the ANN and it results
in t tk (total time of simulation of rk). In addition, variables
g f etk (global first exit time) and f etk (local first exit time) are
computed using our heuristics (described later) and impact
the next room in the hierarchy. ri is a room with a dependent
room (k) and it is also a dependent room regarding room j .
Because ri has a dependent room, fi and Fi are no longer
0 and are impacted by rk data, as shown in Fig. 4. It means
that variables g f etk and f etk are used to compute fi and Fi ,
which are then used as input to the ANN together with the
remaining input parameters: Widthi , lengthi , esi and i pi
to estimate t ti . The same process happens for room j . On
the right side of the figure, we illustrate the simulation pro-
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Fig. 4 Overview of the estimation method. The environment graph shows the hierarchy of rooms to be considered and how they affect other rooms.
On the right, we have the same environment but modeled in 3D and simulated using our crowd simulation. In addition, the measured error is also
illustrated

cess that happens using the 3D environment, and finally the
measured error can evaluate the correctness of our estima-
tion process (Erre), where e is the simulated and estimated
environment.

A Heuristics to Estimate per-Room Data
The environment estimator loads the specified environ-

ment (using the editor presented in Sect. 3.3.1) and performs
the data estimation using the ANN for each room separately.
The ANN outputs the estimated total time (t t) for each room.
However, some rooms are dependent on others, i.e., a given
room rk (as illustrated in Fig. 4) is impacted by other rooms
(type D) whose population moves toward rk . This is the def-
inition of the set rDk of dependence rooms that impact rk .
That is why some rooms have to be estimated before others.
We deal with this problem by computing global and local-
time parameters in order to synchronize the rooms. First we
are going to present the execution flow for rooms that do not
have dependence (NDk = 0), i.e., the first rooms within the
environment graph.

1. Since nobody enters room k coming from another room
(as illustrated in Fig. 4), then the input flow fk = 0 and
the flow Duration Fk = 0.

2. Once all parameters for rk are set (widthk , lengthk , esk ,
i pk — those four coming from the Environment Editor
— and fk = 0 and Fk = 0), the estimation of rk can

happen normally. The neural network is loaded and the
total time is estimated (t tk).

3. In order to provide data regarding the agents that leave
rk and go to the next room, two other parameters are
computed, f etk and g f etk , as follows:

f etk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i pk = 0

lengthk
2

MaxSpd
, i pk > 0,

(2)

where f eti is the first exit time from rk , meaning the
time that the first agent exits that room, and i pk is the
number of agents initially created in room k. f eti = 0 if
there are no agents inside rk . Conversely, if i pk > 0, the
first agent to exit will not need to walk throughout all the
room length, so we consider half of the room length as
an average for all agents to walk and exit the room. The
next equation is computed afterward the ANN execution:

g f eti = f eti , (3)

where g f eti is the time the first agent exited the room
considering all rooms. For rooms without dependence, it
is exactly the value of f eti since they are those that “start”
the crowd movement in the estimation. Therefore, f eti
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and g f eti are used to propagate values to the following
rooms in the environment. In addition, pop is the final
population considered in a given room, i.e., pop = i p+
( f .F), and for rk without dependent rooms it is set as
popk = i pk .

For each roomwith NDi > 0 (see rooms i and j in Fig. 4),
weperform the following executionflow:first, if the roomhas
a dependence (rDi ) that was not yet estimated, the estimation
of this room is postponed until all dependents are estimated.

1. In order to estimate the population in ri , we need to
know the flow of people who enter in this room com-
ing from other rooms. In our model, those concepts are
represented through the following parameters: Fi (flow
duration defined in Eq. 4) and fi (input flow defined
in Eq. 5), which consider data coming from dependent
rooms (rDi ) as follows:

Fi = (max(g f etDi − f etDi + t tDi ))− min(g f etDi ),

(4)

fi =
∑NDi

i=1 (popDi .inDi )

Fi
, (5)

where NDi is the number of dependent rooms of i , inDi

is the percentage of agents from Di that move to ri , and
popDi is the population of rDi .

2. With the data from all dependents properly propagated
for room i , the neural network can estimate the total evac-
uation time of such room (t ti ) as detailed before.

3. Finally, in order to propagate the agents parameters to the
following rooms, parameters f eti and g f eti are com-
puted according to Eqs. 6 and 7 , respectively. Such
equations are different from Eqs. 2 and 3 because room
i has dependents, so pop is considered instead of i p.

f etk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, popk = 0

lengthk
2

MaxSpd
, popk > 0,

(6)

g f eti = f eti + min(g f etDi ). (7)

After we finish the estimation of a certain room ri , this
entire process is repeated until all N rooms in the environ-
ment are estimated. Note that these simple equations have
the unique goal of aggregating the flow of population pass-
ing through the rooms to compute the global time. The next
section presents how such information is aggregated and used
to estimate the entire environment.

Fig. 5 Environment editor main window, with the control panel and the
canvas regions. Arrows indicate the connections between rooms

B Aggregating per-room estimations

The last step of the environment estimation is to estimate
the crowd parameter for the entire environment based on
the per-rooms estimations. We consider the exit rooms data
(type E) to estimate the evacuation total time tte of a specific
environment e. Indeed, this is the greatest total evacuation
time of M existing exit rooms that represent the exits in the
environment, computed as:

t te = max(gitEe + t tEe), (8)

where Ee are the exit rooms of the environment e, and t te is
the obtained total time estimation using CrowdEst for envi-
ronment e.

In order to evaluate the precision of our estimation, we
compare t te with ste, the latter being the simulation time
obtained with our simulator as discussed in Sect. 4.

3.3.1 Environment editor

The Environment Editor is a simple graphical application to
allow users to easily create and edit environments to be used
for estimation. It consists of the main window divided into
two regions, the control panel and the canvas, as shown in
Fig. 5. The control panel provides a file menu with options to
save the current environment into a file, load an environment
from a file, and to clear the current environment. Also, it has
a list of available tools and a button to add a new room to the
current environment.

The editor allows for the following actions: (i) move a
room in the canvas in order to locate and organize it as the user
wants; (ii) create a connection fromone room to another, indi-
cating that the agents from the first room will move toward
the second one; and (iii) remove an existing room, together
with its connections.

It is also possible to select a room and check its param-
eters. In this case, a new window will appear, as in Fig. 6,
showing the room width, room length, exit size, and initial
population parameters along with the connections presented
in the selected room. The value of the parameters can be
modified by the user and the connections may be removed at
any time.
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Fig. 6 Window for configuring room parameters within the editor. It
shows the values of the parameters for a given elected room

4 Experimental results

This section presents the experimental results. Section 4.1
describes the results when simulating and estimating 20 full
scenarios with variable population distribution within the
rooms.Then,weproceedwith a practical usageof ourmethod

applying it in a real-life environment and comment about the
usability of our application with real users.

4.1 Evaluating environments with varied
populations

For the first set of scenarios to be tested, we create several
distinct environments to be estimated and simulated.Our goal
is to show the estimation errors when comparing our method
for estimation with the full simulation execution.

First, using the Environment Editor, we have manually
created 10 environments to be tested in our method using the
application illustrated in Fig. 5. These environments, illus-
trated in Fig. 7, comprise a set of consecutive rooms, each of
which with its own width, height, and exit sizes. In order to
simulate those environments, we used our simulator devel-
oped at Unity. Figure 8 shows an example of an environment
modeled using the Unity Engine (on the left) and using the
Environment Editor (on the right).

For each of those environments, we configured two sce-
narios, one in which the initial population is placed only in

Fig. 7 Ten scenarios modeled in the crowd simulator for the 20 cases for evaluating environments. In the first 10 cases, the population is in the first
rooms of the environments, while in the second set of simulation, the population is distributed along the rooms
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Fig. 8 Example of an environment case: five consecutive rooms with
different exit sizes. On the left: the environment at Unity. On the right:
the environment at the Environment Editor

the initial rooms of the environment (no dependents) and
move toward the exit (last room), and other where the same
number of agents is distributed throughout all rooms.

When analyzing the results, we note that the average errors
for the total evacuation time t t for scenarios Sim1 to Sim10 is
20.9%,while the average error for scenarios Sim1’ to Sim10’
is 12.6%. The reason why the environments in which people
are only placed in the initial rooms (Sim1 to Sim10) have the
largest errors is because crowd simulators can take benefit
from the self-organization of crowds. A population fixed in
the initial rooms of the environment organizes themselves in
lanes and other crowd structures from the beginning of the
simulation, and does not need to change anymore in most
of cases. CrowdEst, in turn, estimates each room separately
without benefiting from the crowd previous organization, so
we can say that the worst case when comparing crowd esti-
mation and simulation is when the simulation takes benefit
from the crowds’ previous organization (Sim1 to Sim10).

4.2 Testing a practical example

In order to test our method in a practical example, we use
the night club as described in [3]. We used the same 3D
environment as illustrated in Fig. 9 to define the environment
to be estimated using our editor and simulate it containing
240 agents, as described in [3].

The 3D environment has 3 floors and many rooms. There
are rooms that have more than one exit (which is a feature
that our method does not address), so we proceed by simply
summing the widths of the doors to be the exit size value of
the room and estimate such room using the ANN. Then, in
the heuristic step, we propagate the percentage of population
into their correct following rooms, since this information is
present in the scenario. This step considers that the crowd
is exiting by the doors at the same time and they finish at
the same time. Such a decision makes it possible to simu-
late the night club (and any other environment) using our
approach. Nevertheless, it can produce errors and should be
better addressed in future work. Figure 10 shows the graph

Fig. 9 Architecture of the nightclub used as base for simulation and
estimation

Fig. 10 Modeling of the SM night club in our editor

generated using the editor to model the night club (named
SM).

Table 2 shows the comparison of evacuation times tested
in the night club with several methods. On the left, we have
the evacuation time obtained in the real drill and simulated
usingCrowdSim (performedbyCassol et al. [3]).On the right
we have results obtained with our work, CrowdEst. Note
that our estimator presents an error of approximately +5%
error in comparison with the real-life experiment. Hence, our
simulation method achieves the lowest error when compared
with our own estimation method and Cassol’s simulator [3].

It is interesting to see that the previous work using Crowd-
Sim achieves −18%, and it has been used with experts to
guide the crowds in several real-life experiments, so the
experts consider such an error to be acceptable in real-life
scenarios. Each simulation/estimation have been executed
10 times and the average results are presented in Table 2.

In terms of advantages when using CrowdEst instead of
simulations, we present the following remarks:
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Table 2 Nightclub evacuation
time obtained using different
methods and comparison with
the real-life drill

Cassol et al. [3] Our work

Real drill Crowdsim CrowdEst OurSimul

Evac time 175 s 142 s 183 s 176 s

Relative error −18.85% +4.57% +0.57%

Compared with real drill

1. Regarding the modeling of the environment:
- 5–10 min was the time to model the night club in
CrowdEst once the user has the floor plan with the
detailed information needed from the environment;
- 12–16 h is the time for a skillful designer to model
the 3D environment, once s/he has the floor plan of the
environment.

2. Regarding the environment and population configura-
tion:
- The time to prepare a 3Dgeometry to be simulated using
a crowd simulator is a complex task. The user has to learn
how to operate a simulation software, define rooms to
walk, place people and groups, define escape routes. The
time to accomplish this task using CrowdSim (as defined
in [3]) to prepare the night club to be estimated can take
weeks, and this needs to be repeated for each new envi-
ronment to be simulated.
- Using CrowdEst, we define the population and routes
while we define the graph in the editor. Ten minutes was
the time to accomplish this task and the task presented in
item 1).

3. Regarding the computational time:
- The environment estimation is virtually instantaneous,
i.e., to estimate the ANN inference time takes less than
1 s (in CPU, since our method does not require a GPU).
- As described in [3], a full simulation containing 240
agents in the night club executing at 24 frames/second
takes around 3 min to evacuate the full environment.

As discussed in [3], we reinforce that if we want to simu-
late various distributions of people within the night club, our
method can also be used. We can easily define the amount
of people in the rooms, e.g., scripting it or using our edi-
tor, and instantaneously estimate the total evacuation time.
Indeed, considering the night club that has three bifurcations,
depending on the granularity used in the population distri-
bution (e.g., 10% in exit and 90% in the other) we can have
more than 1300 different plans to be executed. As mentioned
in [3], approximately 80 from the 1300 possible plans with
240 agents took about 4 h, and 1010 agents took approxi-
mately 30 h to simulate. By using CrowdEst, we can easily
and quickly find out the best evacuation plan considering
only the evacuation time, among the 1331 plans, which takes
approximately 22 mins of processing.

CrowdEst presents an error in comparison with real-life
drills, but so does any crowd simulator. The main question
is not really to achieve error = 0, considering that it is
impossible even when comparing two different real popula-
tions evacuating the same real-life environment. The main
intention is to obtain a realistic result not faraway from the
expected one. CrowdEst obtains a 5% error in the only avail-
able practical example, which is a very promising result. In
addition, if such results can be provided by a tool that can be
easily tested, we can imagine one application where safety
personnel can generate the environment graph, analyze the
estimations, and make available the files for the population
that is currently in the specific environment. Hence, people
can learn and be properly trained for events in an easy and
accurate way.

5 Final remarks

In this paper, we proposed a methodology for estimating the
total evacuation time for complex and generic environments
instead of simulating it. We used ANNs to train and esti-
mate data for individual rooms, considering their geometry
and population. Then, using such estimations, we propose
heuristics to estimate the full environment parameters such
as the total evacuation time. The approach we used to train
ANNs over individual rooms and then aggregating data using
simple heuristics seems quite promising, since we achieve an
error of approximately 5% when comparing CrowdEst esti-
mations with a real-life drill.

CrowdEst can save weeks (maybe months) of work when
compared to the simulation approaches.Webelieveour tool is
a further step in the direction to have all environments from
real-life estimated and tested. Recall that this work is not
about simulation, but estimation, so it explainswhy our paper
does not have any attached videos, as commonly expected in
crowd simulation research.

With respect to the limitations of the model: the training
dataset was created solely with per-room information, con-
taining only one entrance and one exit directly opposed to
the entrance, which may not always be the case in the envi-
ronments to be tested. We bypassed this problem increasing
the width of doors. One way to improve the versatility of the
model and to approach its usability for real cases is to add
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more parameters, which are important to define rooms such
as multiple doors and exits. Obstacles are an entire issue by
themselves, since there is a lot of information about them:
shapes, sizes, positions, orientations, etc, for each obstacle
present within the environment. In order to not lose toomuch
of the abstraction of the model, we suggest creating a “level
of obstruction” parameter for the rooms, with a value of 0
meaning the room is free of obstacles and can be traversed
without problems, and increasing values for improving the
obstacles difficulty on the movement of the agents. Defin-
ing this parameter would improve the similarity of the model
with reality and we think it is worth a research path of its
own.

As future work, wewant to test CrowdEst inmore real-life
environments, besides modeling obstacles and increasing the
number of input parameters for refining the ANN estimation.
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