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Abstract— Virtual platform frameworks have been extended
to allow earlier soft error analysis of more realistic multicore
systems (i.e., real software stacks and state-of-the-art ISAs). The
high observability and simulation performance of underlying
frameworks enable to generate and collect more error/failure-
related data, considering complex software stack configurations,
in a reasonable time. When dealing with sizeable failure-related
data sets obtained from multiple fault campaigns, it is essential
to filter out parameters (i.e., features) without a direct rela-
tionship with the system soft error analysis. In this regard,
this paper proposes the use of supervised and unsupervised
machine learning techniques, aiming to eliminate non-relevant
information as well as identify the correlation between fault
injection results and application and platform characteristics.
This novel approach provides engineers with appropriate means
to investigate new and more efficient fault mitigation techniques.
The underlying approach is validated with an extensive data set
gathered from more than 1.2 million fault injections, comprising
several benchmarks, a Linux OS and parallelization libraries
(e.g., MPI and OpenMP), as well as through a realistic automotive
case study.

Index Terms— Multicore systems, fault injection, soft error,
virtual platforms, machine learning techniques.

I. INTRODUCTION

HILE commercial multicore processors based on

10 nm process node are already available, processing
components manufactured in 5 nm are expected to be released
in the market by, approximately, the end of the decade. Such
processors are likely to be integrated into many electronic
computing systems from a diverse range of industrial sectors,
including medical, automotive, and high-performance com-
puting (HPC). The increasing number of internal elements
(e.g., cores, memory cells), coupled with the high clock
frequency operation of multicore processors is making the
aforementioned systems more vulnerable to radiation-induced
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soft errors [1]. The occurrence of soft errors can lead to
failures of critical parts of a system, which might ultimately
incur in financial or human life losses. Thus, assessing and
mitigating the occurrence of soft errors in such systems is key
to accomplish their reliable and efficient operation.

The increasing software and hardware complexity of such
systems imposes exploration challenges, including: (ch/) con-
duct a large number of fault injection campaigns within
a reasonable time; (ch2) provide engineers with detailed
observation of system’s behavior in the presence of faults;
and (ch3) identify relationships or associations between appli-
cation profiling and specific platform parameters in large data
sets resulting from the fault campaigns. Aiming to over-
come the challenges chl and ch2, researchers are incorpo-
rating fault injection capabilities into virtual platform (VP)
frameworks [2]-[8], enabling the detailed observation and
analysis of complex software stacks and multicore architec-
tures under the presence of faults at early design phases.

The main contribution of this paper relies on the exploration
of supervised and unsupervised machine learning (ML) tech-
niques that can be used to identify the correlation between fault
injection results and application and platform microarchitec-
tural characteristics. The other contributions of this work are
the following:

— Proposal of a completely automated soft error assessment
flow that includes simulation-based fault injection, iden-
tification of typical and critical soft errors, and in-depth
correlation analysis of detected soft errors and target
system architecture using ML techniques;

— Extensive multicore soft error evaluation by using real-
istic Linux kernel, instruction set architectures (ISAs)
and standard parallelization libraries, considering several
benchmarks;

— Validation of the proposed soft error assessment flow
through a realistic automotive case study.

The rest of this paper is organized as follows. Section II
presents related works in virtual platform fault injection sim-
ulators. Section III details two fault injection frameworks that
are employed in this study. Next, Section IV presents the
proposed soft error assessment flow along with the adopted
machine learning techniques. Section V explores the pro-
moted automated tool capability, revealing insights that can
be obtained at each exploration phase to improve system soft
error reliability. Following, Section VI shows the effectiveness
of our soft error assessment flow through a realistic automotive
case study. Finally, Section VII points out conclusions.
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TABLE 1
RELATED WORKS IN FAULT INJECTION FRAMEWORKS DEVELOPED ON THE BASIS OF VIRTUAL PLATFORMS (VPS)
Works Year Virtual Operating Number of Programming Numbler qf ‘Target Architec{ure Use of

Platforms Systems Benchmarks Model Fault Injections  Single-core Multicore ML
Hari et al. [2][3] 2014 Simics + GEMS OpenSolaris 12 Serial 3.2 %107 v
Geissler er al. [4] 2014 QEMU RTEMS 4 Serial 3.2 % 107 v
Kaliorakis et al. [5] 2015 MARSS + gem5 None 10 Serial 3.0 % 10° v
Tanikella er al. [6] 2016 gem5 None 10 Serial 3.3 % 10% v
Guan ef al. [7] 2016 gem5 gem5 (Syscall Mode) 7 Serial and MPI 1.4 % 10° v
Didehban et al. [8] 2016 gem5 None 11 Serial 7.2 %104 v

Khosrowjerdi ef al. [9] 2018 QEMU None 2 Serial 6.0 * 102 v v

This work 2018  OVPsim + gem5 Unmodified Linux 30 Serial, OpenMP and MPI 1.2 % 10° v v v

II. REVIEW OF FAULT INJECTION APPROACHES
USING VIRTUAL PLATFORMS

Virtual platforms simplify the development of fault injection
modules and the subsequent analysis due to their design
flexibility (e.g., several processor models available) and debug-
ging capabilities (e.g., GDB support). Table I summarizes
related works in virtual platform fault injection simula-
tors. With the exception of [7] that includes benchmarks
described in MPI, reviewed approaches neither consider par-
allel programming libraries nor multicore processors on their
experiments. Further, the majority of these works consider
either simple in-house (e.g., [4]) and bare metal applications
(e.g., [8]) or small set of benchmarks (e.g., [5], [6], [9]),
where only a specific ISA is considered. While the approaches
presented by Hari et al. [2], [3] propose a hybrid simulation
framework for SPARC core using Simics [10] and GEMS [11]
simulators, remaining works rely on a single virtual platform
simulator.

Machine Learning has been employed in different domains
to recognize patterns and predict how a given system would
react to unexpected circumstances. In the context of soft
error assessment, Khosrowjerdi er al. [9] use ML to reverse
engineer models of the system under evaluation, aiming to
reduce the total number of required fault injections. To validate
the ML-based pruning mechanism, QEMU was extended to
enable the injection of faults in two automotive applications.
While this approach focus on the reduction of total time to
complete the fault injection campaigns, our approach aims
at correlating large subsets of application profiles and archi-
tecture characteristics with fault injection results in order to
pinpoint the most relevant parameters/traces on the target
system. Vishnu et al. [12] evaluate the impact of multi-bit
memory errors, both permanent and transient, on HPC appli-
cations. This work considers eight different ML algorithms
(e.g., support vector machines, k-Nearest neighbors, three dis-
tinct decision trees), comparing their predictions (i.e., the error
probability) with the ground-truth (i.e., fault injection results).
In this work, training sets consist of fault injections targeting
the application data structures while executing on a supercom-
puter. Proposed fault injection and analysis process are tightly
coupled with the application, requiring an excellent under-
standing of its behavior and execution. ML techniques are also
employed to create fault propagation models in [13]. This work
considers the propagation of soft errors on large-scale MPI
applications executing on up to 1000 cores. To inject faults
and check for errors, this work introduces additional instruc-
tions in the application code using the LLVM Intermediate

Representation (IR). Further, the LLVM instrumentation tracks
the error propagation through several MPI process by mon-
itoring communication messages, load-store operations, and
function calls. This information is then applied to create
fault propagation models using ML techniques, such as linear
regression.

Another direction is the exploitation of compiler optimiza-
tions on application reliability. Ashraf er al. [14] exploit
the effects of compiler optimizations on the reliability
of HPC applications. Their results suggest that highly-
optimized code is generally more vulnerable than unopti-
mized code. However, they not proposed any tools. Unlike,
Narayanamurthy ef al. [15] use a genetic algorithm to select
the best optimization flag for a particular application. The
proposed tool correlates a large data set of information from
any source, related or not directly to the target application
execution, and filters the most significant parameters for a
given input. However, the paper specifies neither the compiler
nor the particular optimization flags used on the tool. Although
the evaluation of compiler parameters is not the main focus
of this work, this exploration validates our proposed soft error
assessment flow and shows engineers the advantage of having
appropriate means that are able to investigate new and more
efficient fault mitigation techniques.

Our contribution distinguishes from the previous works in
four main aspects:

— First, this is the first work to use ML techniques to
identify the correlation between fault injection results and
multicore multi-parameters (i.e., application and platform
characteristics), which is completely ignored in previous
works;

— Second, the multicore soft error analysis requires comple-
mentary modeling and simulation mechanisms to manage
other aspects such as resource sharing, memory alloca-
tion, and data dependencies. These important aspects are
not considered in previous work;

— Third, this work employs not only realistic soft stacks
including unmodified Linux kernel but also standard
parallelization libraries, considering up to 29 benchmarks
from both embedded and HPC domains. While reviewed
works typically report fault injection campaigns with
thousands of fault injections (e.g., [S], [7]), this work
addresses an extensive soft error evaluation with millions
of fault injections;

— Fourth, in addition to the 29 benchmarks, we also employ
a realistic automotive case study to demonstrate the
effectiveness of our proposed soft error assessment flow.
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Fig. 1. Fault injection campaign flow applicable to both virtual platforms,

gem5 and OVPsim.

III. ADOPTED VIRTUAL PLATFORM FAULT INJECTOR
FRAMEWORK INFRASTRUCTURES

The growing susceptibility of multicore systems to soft
errors necessarily calls for novel cost-effective tools to assess
the soft error resilience of underlying systems early in the
design phase. This paper employs two flexible fault injec-
tion (FI) frameworks, developed on the basis of two virtual
platforms: OVPsim-FIM [16], and gem5-FIM [17]. The main
difference between both FI frameworks is the simulation
performance. A single execution of OVPsim-FIM, which is
developed on top of the instruction-accurate OVPsim [18],
can achieve simulation performance of up to thousands MIPS.
In turn, event-driven simulators, such as the gem5 simu-
lator [19], can typically report best-case simulation perfor-
mances of up to 2-3 MIPS. The original gem5 distribution
is devoted to microarchitecture exploration, thus gem5-FIM
allows the user to inject faults in several components such
as processor pipeline, cache control registers, among oth-
ers. Both frameworks integrate a set of fault injection and
simulation techniques, allowing fast soft error susceptibility
exploration considering not only state-of-the-art multicore
processor architectures (e.g., big. LITTLE) but also different
ISAs (e.g., ARMv7, ARMvS). Both gem5-FIM and OVPsim-
FIM follow a four-phase fault injection flow described as
follows.

A. Workflow

Figure 1 shows the adopted four-phase fault injection flow.

In the first phase, Golden Execution, the target architecture
is simulated in the absence of faults to extract the reference
system behavior (i.e., the context of the registers and final
memory state), while phase two creates a fault target list.
In the third phase, each application behavior running under
fault injection is compared to the golden execution in order to
detect possible arising errors, including target system (e.g., soft
stack, processor model) misbehavior regarding the number of
executed instructions, register’s context, and memory state.
Lastly, phase four assembles all individual reports to create
a single database.

B. Fault Model

The developed fault injection framework emulates the
occurrence of single-bit-upsets (SBUs) by injecting one flipped
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bit in a single register or memory address during the execution
of a given soft stack. In our setup, SBUs target only storage
elements due to its higher susceptibility to radiation events
when compared with logic elements [20]. The fault injection
configuration (e.g., bit location, injection time) relies on a
random uniform function, which is a well-accepted fault
injection technique since it covers the majority of possible
faults on a system at a low computation cost. Fault injections
occur during the target application lifespan, i.e., the OS startup
is not subject to faults but includes OS system calls and
parallelization API subroutines arising during this period. This
approach allows identifying unexpected application execution
errors (e.g., segmentation fault), which correlate with adopted
OS components or API libraries.

C. Fault Classification

We adopted Cho et al. [21] classification, which categorizes
fault injection outcomes into five groups: Vanished, no fault
traces are left; Application Output Not Affected (ONA),
the resulting memory is not modified, however, one or more
remaining bits of the architectural state is incorrect; Appli-
cation Output Mismatch (OMM), the application terminates
without any error indication, and the resulting memory is
affected; Unexpected Termination (UT), the application termi-
nates abnormally with an error indication; and Hang, the appli-
cation does not finish requiring a preemptive removal.

D. Simulation Infrastructure

A fault injection campaign may comprise thousands of
simulations, demanding a significant computational effort,
which restricts the soft error analysis to small scenarios as
reported in Section II. Developed simulation infrastructure (SI)
includes a couple of features to boost up the fault injection
simulation: checkpoint and distributed simulation [16], [17].

1) Checkpoint: A fault injection requires unnecessary code
re-execution to provide the appropriated software context
(i.e., fault injection time). The checkpoint technique reduces
this redundant simulation by periodically collecting the plat-
form components context during a faultless execution. The
simulation infrastructure automatically calculates intervals
between checkpoints, creates the data containers, and restores
the appropriated one according to each fault injection time.

2) Distributed Simulation: This work extended the tradi-
tional fault injection flow (Figure 1) to take advantage of
the multiprocessing capabilities provided by a supercomputer
center, enabling users to conduct large fault campaigns and
investigations. The simulation flow, shown in Figure 2, man-
ages the creation, submission, and harvest of jobs (i.e., group
of simulations) without any particular user configuration.

The local fault injection flow, which comprises phases one
and two (Figure 1) is subdivided into four steps (A-D, blue
in Figure 2). First, the SI (A, in Figure 2) compiles the
application and submits a new job (B) with the golden execu-
tion (i.e., execution without faults). The golden execution (C)
is performed in a node designated by the HPC manager
system, and both the collected reference information (i.e., the
context of the registers and final memory state) and the
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fault list are saved (D, in Figure 2) in the distributed file
system (DFS). Steps (E-G) comprises the distributed fault
injection process (red) across hundreds of parallel executions.
Jobs responsible for the fault injection are submitted to the
scheduler queue (E, Figure 2). According to the system
resource availability, those jobs are independently assigned to
nodes (F). During each job initialization, the compressed file
(G) on step “D” is locally copied and extracted. The entire
fault injection and result analysis occur locally in each node.
All generated individual reports are later merged into a final
fault injection report.

Developed extension relies on commonly available HPC
tools, such as Torque [22], ensuring compatibility with most of
the available HPC environments. The distributed SI scalability
has been validated through several scenarios, some of which
with up to 1500 parallel simulations.

E. Fault Injection Overhead

The fault injection process does not change the target
application source, instead, the fault injector interrupts the
simulator a single time to change a single bit in the application
execution. The underlying interruption occurs a single time
during a simulation, having an unnoticeable impact on the
overall simulation time whenever compared to an unmodified
application execution (i.e., reference run).

Figure 3 shows the standard flow (top) and our soft error
assessment flow (bottom). The overhead of the fault injection
approach can be divided into two parts.

First, the overhead related to the increased simulation time.
This overhead can be discarded because the simulations may
have billions of instructions (e.g., VO application has up to
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250 billion instructions) and 3 instructions will not affect the
simulation time at all. Second, the addition of the ML analysis
time, which takes seconds to correlate all features. Considering
that the gem5 and OVPsim simulation times of VO application
are 36 hours and 1 hour, respectively, this overhead is also
marginal. Furthermore, the human analysis time required to
understand the effects of the fault injection is reduced because
our soft error assessment flow produces bespoke reports and
charts that help in this process.

Further, it is important to mention that the proposed
ML-based soft error correlation toolset was developed aiming
to enable the processing of large amount of inputs collected
from multiple sources, such as the adopted VP simulators. This
work used such simulators because we believe it is essential
to enable the execution of real software stacks considering,
at least, basic architecture characteristics (e.g., ISAs, etc)
when assessing the soft error reliability. However, other fault
injection approaches can also be used to generate the necessary
inputs to our toolset.

IV. PROPOSED MULTICORE SOFT ERROR ASSESSMENT
FLow USING MACHINE LEARNING TECHNIQUES

Figure 4 shows the traditional application soft error eval-
uation cycle (a, b, and e), where first, a software engi-
neer describes the target application (a). The second phase
(Figure 4b) requires a comprehensive soft error vulnerability
investigation through one or more fault campaigns. Using
this information, the software engineer may recommend mod-
ifications to the application, taking into account the target
system (e) requirements.

The high simulation performance of both OVPsim-FIM and
gem5-FIM allow users to generate and gather a significant
amount of error/failure-related data, considering complex soft-
ware stack configurations, as reported in Section III. The
high-volume and the great variety of collected data lead to
more reliable soft error analysis. However, the more data,
the more difficult and time-consuming is to identify relation-
ships or associations between fault injection campaign results
and platform parameters. Aiming to overcome this challenge,
we incorporated two additional steps (Figure 4c and d) to the
traditional soft error evaluation flow: (i) application profiling,
and (ii) soft error correlation analysis.

The application profiling (Figure 4c) facilitates the access
to raw microarchitectural information, enabling software engi-
neers to search for specific parameters of interest (e.g., number
of loads and stores) during initial explorations. In turn, in the
soft error correlation analysis phase, users can use machine
learning techniques (e.g., linear regression) to speed-up the
soft error evaluation process by pinpointing parameters with
the most substantial impact on the software stack depend-
ability. For this purpose, we developed a generic exploration
tool that relies on supervised and unsupervised techniques to
investigate correlations between fault injection results (i.e.,
Vanish, Hang, ONA, OMM, UT) and the application char-
acteristics (e.g., cache statistics, number of branches) without
the presence of faults (Figure 4d).

Machine learning algorithms can be categorized in three
groups: (i) Supervised, (ii) Unsupervised, and (iii) Reinforced
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Learning. The supervised learning aims to predict the effect
that one set of observations (i.e., input, features, attributes)
has on another dependent variable (i.e., output, label, class).
In this regard, supervised learning algorithms make predictions
based on a set of training examples using regression and clas-
sification techniques. A regression technique models the target
system using mathematical equations producing a continuous
value output (e.g., linear regression) to approximate the target
system behavior. In turn, classification algorithms are used to
divide a data set into smaller subsets by evaluating its attributes
(e.g., decision tree).

The unsupervised learning algorithms are used to search
for patterns on unlabeled datasets (i.e., without a dependent
variable output). While supervised learning correlates two
groups of observations, the unsupervised learning describes the
system features in more abstract levels of representations. For
instance, the K-means is a well-known example of an unsu-
pervised learning algorithm that enables to subdivide N obser-
vations into K clusters, where each observation belongs to the
cluster with the nearest mean. Reinforced learning algorithms
are employed to gain experience (i.e., knowledge) through a
series of trial-and-error training sessions, where a cost function
calculates reward or punishment values depending on its pre-
diction. By minimizing the target cost function, the reinforced
learning algorithm improves the system prediction accuracy
until reaching a pre-defined quality threshold. Our article
uses the first two types of techniques, as they provide the
mathematical support to analyze the inputs. To proceed to
reinforced learning algorithm requires a proactive framework,
which is intended as future work by the authors.

As a proof-of-concept, we used the microarchitectural infor-
mation provided by the gem5 simulator (e.g., memory usage,
application instruction composition) as input values. Note that
the proposed tool enables the adoption of any information
sources, such as memory profiling tools (e.g., valgrind) or
low-level architectural statistics (e.g., gate-level simulation).
The analysis tool was developed using Python, taking advan-
tage of available ML frameworks, in particular, the Scikit-
learn module [23]. Since its release in 2007, Scikit-learn
has become the most widely-used, general-purpose, open-
source machine learning module. Further, this work adopts
the pandas dataframe (i.e., two-dimensional size-mutable data
structure) [24], which provides a data structure designed for
large-scale explorations. Besides these two modules, several
other libraries were employed to construct the exploration flow,
such as matplotlib, numpy, scipy, multiprocessing.

........................................................................... -
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A. Proposed Soft Error Assessment Tool Execution Flow

Figure 5 shows the proposed soft error assessment tool flow,
which is organized in three main phases:

1) Phase 1 - Feature Acquisition and Data Homogenization:
The tool collects the input files and extracts the necessary
information (Figure 5a). This information is transformed into
two distinct dataframes (Figure 5b) containing the fault injec-
tion campaigns (FC), and the microarchitectural information
(i.e., gem5 Stats). Each dataframe line represents an individual
fault campaign scenario (e.g., varying the number of cores,
kernel, application) and columns represent the features. Fol-
lowing, the tool replaces all non-numerical (e.g., undefined,
infinity, none) by zeros, as numerical methods do not handle
it correctly.

2) Phase 2 - Unidimensional Feature Transformation and
Selection: In this phase, the tool creates and filters new
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features from the search space (i.e., all features) to improve
the tool performance (i.e., smaller feature dimension) and
accuracy (i.e., relevant information). First, the tool rearranges
the collected data to create features with higher quality
(i.e., knowledge content). For instance, the raw information
provided by the gem5 divides the number of float instruc-
tions per individual core (e.g., system.cpuQ.num_fp_insts, sys-
tem.cpul.num_fp_insts), and by merging them, it is possible
to establish processor behavior as a whole (Figure 5d). Most of
the raw data is described using nominal values (i.e., from zero
to billions), depending on the target parameter and the appli-
cation execution time. Due to this magnitude and discrepancy,
a direct comparison between applications may not result in an
evident relationship. To solve this problem, the tool normalizes
all parameters (e) by the application length (i.e., number of
instructions) in order to produce a relative value considering
each application length. Next, the data is resized to range
between 1 to 10 (f) to enable the comparison among distinct
features. Thus, the tool reduces the total number of features
(i.e., independently from the soft error) by eliminating the ones

with low variance (g).
3) Phase 3 - Multidimensional Feature Transformation and

Selection: Until this point, the exploration flow was restricted
to a single dimension, where only microarchitectural features
were considered. When considering the adopted soft error
classification (i.e., Vanish, Hang, ONA, OMM, UT), the inves-
tigation becomes a five-dimensional problem. In this context,
the tool performs five distinct investigations, one for each
error class alongside the selected features. First, the pro-
posed algorithm prunes the features from several thousand
to 50 using the Soft Error Score (Figure 5h). Underlying
score (see Section IV-B)) from 0 to 1 measures the feature
impact (e.g., number of branches) on the target error class
(e.g., Vanish, Hang). These outcomes are standardized in
values between 0 and 1 to remove the magnitude parameter

from the equation. Then, this reduced dataframe suffers two
transformations: (i) addition, and (j) multiplication. In this
regard, the tool adds and multiples the 50 columns in every
possible combination leading to a total of 5050 features.
Finally, the tool ranks the 50 most relevant features using
the soft error score (k), revealing multi-dimension correlations
between the microarchitectural parameters and fault injection
campaigns.

B. Soft Error Score

Microarchitectural information (i.e., features) comes in mul-
tiple ways and they represent a wide range of parameters
such as cache misses, number of float instructions, or virtual
memory page size. Each one has a different distribution,
for example, the virtual memory page size has few possible
constant values while the number of float instructions ranges
from zero to billions. Sometimes, parameters are constant for
one application while fluctuates in another benchmark execu-
tion. Figure 6 shows six common feature arrangements found
in the raw data from the gem5 microarchitectural statistics.
For example, Figure 6a displays a random value distribution
while Figures 6b and 6¢ exhibit two linear relationships with
the first being the stronger one. In turn, Figures 6d and 6e
display constant features (i.e., independent from the soft error).
Finally, Figure 6f demonstrates the average behavior of raw
features, mixing some linear behavior, outliers, and constant
values.

Applying one feature filtering algorithm does not provide
the target results (i.e., the microarchitectural features with
higher impact on the system soft error reliability). For instance,
the correlation coefficients perform poorly on noise dataset
(Figure 6f) where the relationships exist among other types of
data (e.g., constant values). The PCA can find the maximum
growth direction in complex features but it can result in
false-positives depending on the data distribution (Figure 6e).
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Fig. 7. The application profiling phase reveals common features that can be used to reduce the most frequent soft errors among similar applications. (a) MPI

applications. (b) OpenMP applications.

The regression model provides a more robust solution without
presenting a general solution. Further, applying multiple filters
in sequence results on a small dataset with a significant amount
of false-positive solutions.

To avoid false-positive results, this work proposes a filter
score (i.e., from O to 1) to measure the feature quality accord-
ing to the target soft error problem. This score results from
simultaneous execution of several algorithms, i.e., the PCA,
regression, and other techniques are computed in a single step.
These outcomes are standardized in values between 0 and 1 to
remove the parameter magnitude from the equation. The score
computes the PCA first component, the Pearson’s correlation
coefficient, variance, dispersion score, and linear regression.
Pearson’s is preferable due to its smaller sensibility to false-
positive linear relationships. Linear regression models with a
45° (from the origin) represent the optimal correlation between
two dependent variables, increasing or decreasing this angle
shows a weaker correlation.

The selection process computes the Soft Error Score for all
columns in the target dataframe. The tool ranks the features
by the score selecting the first N most significant values.
This technique provides both filtering and ranking in a single
technique, reducing the number of feature selection steps.

V. RESULTS

This section demonstrates the effectiveness of the proposed
soft error assessment flow based on ML techniques to detect
the most relevant microarchitectural parameters to the system
software stack dependability.

A. Experimental Setup

To properly evaluate the proposed soft error assess-
ment flow, this paper considers two different Linux ker-
nels (i.e., 4.3 or 3.13), and the NAS Parallel Benchmark
suite [25] counting with 29 distinct applications (i.e., 10 Serial,
10 OpenMP, and 9 MPI benchmarks). Each application has
distinct characteristics, some are CPU intensive while others
are memory-bounded. Further, the execution time of a single
simulation ranges from 300 million to 86 billion instructions.

Experiments were conducted considering an architectural level
simulator (i.e., gem5) to inject faults in general purpose
registers [17] because it is highly used by academics as
well as accepted in many industrial sectors. Configurations
including single, dual, quad, and octa-core ARM Cortex-A9
(ARMvV7 Architecture) and Cortex-A72 (ARMvS8) processors
model with 1GB of memory RAM, and two-level cache
memory configured as: L1 instruction and data 32kB 4-way
associative, and L2 512kB 8-way associative. Due to this high
number of configurations, we were able to evaluate more than
150 scenarios (1.2 million failure injections, which require
over than 1,050,000 simulation hours) considering not only
the architecture (e.g., number of cores), but also software
variations (e.g., kernel versions), among several others.

B. Application Profiling

This section presents a fault injection analysis similar
to those commonly exploited in the literature. Researchers
evaluate applications through their characteristics and present
simple results, considering few benchmarks/applications [4].
We here aim at conducting solid experiments in order to
create hypotheses and group applications that share common
behaviour patterns that might lead to similar soft error results.

First, we exploited the access to the raw information to
perform the profiling of both soft error results and the microar-
chitectural parameters (Figure 4c). The application profiling
phase takes place after the gem5 microarchitectural informa-
tion, collected from all fault injection campaigns, is retrieved
and cleaned by the machine learning tool (Figure 5c).

Note that this phase exposes: (i) the application characteris-
tics, such as CPU-bound or memory-bound trends, the number
of branches, and others; and (ii) the fault injection cam-
paigns results. Figure 7 compares the profiling of six NAS
benchmarks implemented in MPI and OpenMP. The gath-
ered information comprises the behavior of each benchmark
implementation as it executes in the gem5 ARM processor
model. This application profiling phase reveals trends that
may be useful to group applications according to their behav-
ior or removing outliers. The underlying profiling also reduces
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Fig. 8.

the number of future fault injection campaigns and enables
users to conduct bespoke investigations.

From the conducted parallel application profiling, i.e., MPI
(Figure 7a) and OpenMP (Figure 7b), it is possible to identify
that the benchmarks implemented in OpenMP present a more
massive branch concentration. OpenMP supports shared mem-
ory parallelism by executing code portions in parallel, usually
loops, using a fork-and-wait approach, which increases the
thread control complexity (i.e., more branches). On the other
hand, MPI applications consist of one or more independent
communication processes as denoted by the higher number of
function calls (e.g., sending and receiving messages). From
this initial exploration, it is possible to suggest two main
patterns: (hypothesis 1) the increase of the feature branches,
exposed by OpenMP leads to more occurrence of UT, Hang
and Vanish; and (hypothesis 2) memory-bound applications
(e.g., IS) present more ONA. Following, proposed ML tech-
niques are used to reveal more complex soft error patterns
considering both identified hypothesis.

C. Individual Feature Analysis

This section explores how a single feature (phase three,
the output from Figure 5h) impacts on the soft error reliability
of parallel applications. In this regard, the soft error assessment
flow is used to evaluate the number of branches and memory
transactions to provide solid results that may help to prove the
hypotheses found in Section V-B.

1) Branches: Control flow statements (e.g., if, else, while,
for) enable the creation of more complex algorithms, where
jump, branch, and function call instructions fulfill this role at
the assembly level. Any faults in such control flow instruc-
tions typically cause unrecoverable errors (e.g., segmentation
faults). Figure 8 displays the branch instruction impact on
the soft error reliability of the MPI (Figure 8a) and OpenMP
(Figure 8b) implementations of the NAS benchmarks.

Note that the NAS benchmarks include from 300 million to
87 billion. Thus, due to the high number of instructions, only

(b)

Branch instructions impact on the soft error classification targeting parallel applications. (a) MPI. (b) OpenMP.

a small fraction of the total system simulation is devoted to
execute the adopted Linux kernels (i.e., 4.3 or 3.13). Conse-
quently, direct faults injections in the Linux inner workings are
extremely rare (i.e., it accounts for less than 0.001%), resulting
in faithful picture of the injected faults in the applications
behaviour.

The hypothesis 1 states that the increase of branches exposed
by OpenMP leads to more occurrence of UT, Hang and
Vanishes. OpenMP relies on loop (i.e., for-while) paralleliza-
tions, which incurs in a greater branch presence than MPI.
Figure 8b shows that OpenMP presents a low soft error
score for branch instructions, which means that the hypothesis
created from these results are not conclusive.

Unlike the hypothesis 1, the Figure 8a shows that although
the number of branches in the MPI implementation of the
NAS benchmarks is lower, they have a direct influence on
the occurrence of Hang, UT, and OMM classes. Hang errors
arise due to severe control flow errors (e.g., incorrect iter-
ation counter), UT is an unexpected application termination
(e.g., wrong address calculation), and an OMM results from
an application finishing with an incorrect memory. Both Hang
and UT show a direct and positive correlation (as correctly
stated in hypothesis 1), while OMM a negative correlation
(as erroneously stated in hypothesis 1). Therefore, the exact
correlation is that the occurrence of Hang and UT increases
at the same time that the OMM reduces.

2) Memory Transactions: Memory transactions (e.g., loads
and stores) employ few registers (e.g., RO-3 and SP) to
perform address calculations, consequently, the same registers
are frequently reused. Although this feature apparently show
an increase in ONAs, results contradict hypothesis 2. As the
soft error score is not relevant, our proposed tool indicates that
the occurrence of faults is due to the application itself. For
example, the number of ONA in the IS benchmark is caused
by the high utilization of the ULA for integer computation.

Figure 9 shows the soft error results related to memory
instructions, where Vanish, OMM, and ONA are clustered
into a single group to investigate the UT and Hang incidence.
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Fig. 10. The proposed ML tool reveals that the num_cc_register_writes feature can improve the system reliability of Group A applications.

Increasing the number of load/store operations lead to a more
significant UT and Hang occurrence in MPI applications
(Figure 9a), making them more likely to not complete their
execution correctly due to the increased severity of the soft
errors. In contrast, the OpenMP-based applications exhibit no
direct impact of the number of load/stores in the UT/Hang
incidence (Figure 9b).

D. Individual Feature Analysis Considering Application
Profiling Similarities

This section expands the previous hypotheses by consider-
ing the influence of individual microarchitectural parameters
on the soft error reliability of MPI and OpenMP applications,
which share profiling similarities.

1) MPI: The applications LU, SP, and MG are combined into
Group A due to their high OMM incidence and low number
of Vanishes, making them appropriated candidates to improve
system reliability. Figure 10 shows the Group A behavior
considering the num_cc_register_writes parameter, which rep-
resents the number of writes on the conditional control reg-
ister. Results corroborate the previous analysis (hypothesis 1
Section V-B), which indicates a strong correlation between
the number of branches and the growing occurrence of Hang,
UT and Vanish. Figure 10 also shows that the ONA has no
direct relationship with this parameter, while it increases the
occurrence of Vanish, and reduces the frequency of OMM in
the applications of Group A.

The proposed assessment flow based on ML techniques
indicates the cache memory activity (i.e., the number of reads
and writes hits), impact on the Group A reliability. A higher
hit frequency on the cache memory results on a greater
number of Hang and Vanish while it decreases the OMM
incidence, as shown in Figure 11a. The relative soft error axis
(i.e., resized) exhibits only the correlation strength, masking
the feature impact concerning the real values. Figure 11b
shows the impact of using an identical parameter with nom-
inal values on both Hang and Vanish classifications. In this
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Fig. 11. The difference between (a) and (b) shows that some soft errors have
more influence than others.

Cache Hits

case, the same x-axis variation (feature) increases by 7% the
occurrence of Vanish while Hang fluctuates around 1%.

Therefore, the greater Vanish rate caused by the larger cache
activity benefits the system reliability, when considering the
Group A. However, the number of data cache memory hits
does not benefits all applications equally, e.g., the Group B
composed of BT and CG applications. The Group B originally
exhibits a high Vanish occurrence, and thus, this feature varia-
tion worsens the system reliability, as displayed in Figure 12.

2) OpenMP: The OpenMP and MPI parallelization libraries
impacts the application profiling as discussed in Section V-B.
However, applications with similar profiles might have sim-
ilar features, which are suitable for optimization. In this
sense, Figure 7 shows the OpenMP MG profile similarity
with Group A, which relies on the MPI standard. Figure 13
shows an analogous behavior of the MG application (OpenMP
standard) as the Group A (MPI standard), considering the data
cache feature.

As a result, the increase of this feature results in a greater
number of Vanish and, consequently, an improvement in the
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system reliability. Our tool also indicates other influential fea-
tures, e.g., the load instruction concentration in the application
impacts on its comportment under fault injection. For instance,
the MG and IS are affected in distinct manners as observable
in Figure 14. While the MG Vanish rate increases with the
number of loads, the IS has the opposite behavior. Note
that each application responds differently to the modifications
of this particular parameter, independently of the paralleliza-
tion library. Therefore, although the application parallelization
(MPI or OpenMP) affects the overall application behaviors, the
resilience to soft errors rely on the initial application profiling.
In this sense, our automated flow provides a flexible and robust
mean to reduce human analysis time, as shown in Figure 3.

E. Combined Feature Analysis

After exploring the impact of one single feature on the
software stack, this work investigates how the combination
of two features affects the system dependability. Note that
this is the first work that provides hints in such complex
scenario, demonstrating the effectiveness of the proposed
soft error assessment flow. It is worth mentioning that our
machine learning tool supports the correlation of more than
two features. However, it would be necessary to consider
other data sources (i.e., microarchitectural parameters) than

memory accesses have a direct impact on the soft error.

In this experiment, we observe that invalid references in
cache memory cause CPU stall, and consequently increase
the number of context switch, i.e., storing the state of a
process or of a thread in the memory, which might be restored
and executed later. If the bit-flip is injected into a register
that will be used later, the memory is considered dirty. Even
if the soft error is masked, the memory would remain dirty,
causing an increase in OMM. In this regard, our tool reveals
that the increase of valid references in both data and instruction
cache memories causes a reduction in OMM and an increase
in Vanish, i.e., the increase in valid references of each CPU’s
cache memory positively influences the reliability of Group A.

VI. CASE STUDY

Automotive and technology market leaders are invest-
ing heavily to make self-driven cars commercially available
by 2021. Such systems are integrating artificial intelligence,
complex algorithms and software stacks aiming to analyze
the real word, make decisions and perform actions without
human input. Among the required algorithms there is the
visual odometry (VO), which is used to determine the vehicle
position and orientation by analyzing a series of images.

For this case study, we selected the LIBVISO2 [26] visual
odometry library developed by the Karlsruhe Institute of
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Although individual feature analyses (a and b) may have unique benefits, combined feature analyses (c and d) reveal complex patterns that clarify

system behavior, increasing the soft error score and, consequently, the system reliability.
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Fig. 16. Selected visual odometry (VO) application. (a) Input Frame from KITTI Benchmark 11. (b) Input Frame from KITTI Benchmark 11. (c) VO application

output path using distinct virtual platforms.

Technology (KIT). To use it, the library and its dependencies
were compiled using the arm GCC cross-compiler with hard
float-pointing and single instruction, multiple data (SIMD)
flags enabled. Our LIBVISO2 setup uses the KITTI Vision
Benchmark Suite [27], which is composed of 22 stereo odom-
etry sequences captured from real-life vehicle trajectories.

This work uses the proposed soft error assessment flow, and
its machine learning tool to evaluate the soft error reliability of
a complex and real application, the KITTI Vision Benchmark
Suite. Benchmarks integrating KITTI Vision have a high
execution time. For instance, one single execution of KITTI
benchmark 11 with 920 frames (up to 250 billion instructions)
can take up to 36 hours with gem5-FIM, making unfeasible its
use for the soft error assessment (Figure 4b). For that reason,
we decide to use the microarchitectural information provide by
the gem5-FIM, while performing the fault injection campaigns
using the OVPsim-FIM, which requires less than one hour to
execute the same scenario.

To illustrate the adopted case study, Figure 16 shows
two input frames of the benchmark 11 input set from the
KITTI suite alongside the prediction path algorithm using two
virtual platforms. Figure 16c shows that the entire bench-
mark 11 traveled path produced by both OVPsim-FIM and
gem5-FIM is identical, which shows the consistency between
both simulators.

A. Visual Odometry Application Reliability

This section explores how compiler optimization flags
impact on the execution of the visual odometry application.
The initial exploration comprises four fault injection cam-
paigns targeting the benchmark 11 input set from the KITTI
suite, each one compiled with a different main optimization
flag (i.e., O0-3). Further, we have restricted the stereo odome-
try sequence to 100 out of the 920 frames to reduce simulation
time.
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Fig. 17.  Exploring distinct optimization flags using 100 frames of the
benchmark 11 from the KITTI Vision Benchmark Suite. (a) Fault injection.
(b) Application profiling.

Figure 17a shows the soft errors related to the fault injec-
tions in each optimization flag. Results show that the higher
the optimization flag, the less reliable the system becomes.
To complement these results, Figure 17b shows the application
profiling considering each optimization flag. The application
without any optimization flag (O0) has an execution 4.7x times
larger than any optimization flag (i.e., O1-3), which means a
reduction from 150 (i.e., O0) to 32 (i.e., optimized) billion
instructions respectively. This extended execution time results
in a more significant number of register operations (ALU).
The compiler optimization reduces the number of instructions
between control flow statements (e.g., if), which increases the
probability of Hang and UT, as also highlighted in Figure 17a.
Besides, when comparing applications with code optimizations
(i.e., O1-3), it is noticeable the growing number of Hang
occurrences due to the increasing modification in the loop-
based snippets. For example, Figure 17b shows the growing
number of branches with more aggressive GCC optimizations.

The visual odometry benchmark was chosen due to its real-
life applicability in self-driven cars, which enables a physical
representation of the system reliability (i.e., the traveled path).
In this evaluation, the vehicle travels around 70 meters after
processing 100 frames, revealing how compiler optimization
flags can affect the traveled path.

The “Error (A)”, shown in Figure 18, depicts the devia-
tion between the correct and predicted stop point for each
algorithm simulation under fault injection. The error reaches
up to 70%, where larger values are due to algorithm halts
(i.e., UT or Hang), making the car to stop a little bit far
from the correct point. Figure 18a exhibits the results con-
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Fig. 18. VO application traveled route using 100 frames of the benchmark 11.
(a) O0. (b) O1. (c) 02. (d) 03.

sidering no GCC optimization (O0). In this scenario, for
instance, 73.09% of the executions finished up to 1 meter away
from the destination point. In contrast, when using compiler
optimizations, the number of completed simulations closer
to the correct point decreases from 73.09% to 54.82%. The
“Error without UTs (B)”, also shown in Figure 18, represents
completed execution scenarios, where the algorithm evaluated
all frames. The error considering only completed executions
achieves up to 0.50m when compiled with optimizations while
the OO flag has no substantial deviation from the correct path,
i.e., only four executions with a difference of fewer than eight
centimeters.

B. Exploring Individual Optimization Flags

As identified in Section VI-B, the main optimization flags
(i.e., O0-3) affect the reliability of the visual odometry applica-
tion. In this scenario, the objective of this section is to explore
the individual GCC optimization flags that can potentially
reduce the occurrence of soft errors. The GCC compiler
has optimization flags enabled by default even when using
the argument “-O0”. The first fault campaign as depicted
in Figure 19a shows the benchmark 11 compiled without
any optimization flag under the influence of fault injections.
Between the OO flag and no optimization at all, the final
compiled code has not meaningful changes leading to almost
identical simulations (i.e., both application execute 150 billion
instructions). Figure 18a and Figure 19a display this similarity
considering both parameters (A and B).

Results shown in Figure 17 present a considerable reliability
degradation when compiled with any other main optimization
flags (i.e., O1-3). In turn, a notable speed reduction (i.e., 4.7x)
is achieved when compiled with the OO0 flag. As the most
significant effect occurs when transitioning from OO0 to Ol,
as presented in Figure 18, the next exploration investigates
how to improve the OO performance by adding individual
optimization flags.

The stereo odometry sequence heavenly depends on loops
to analyze the images, for this purpose, some unrolled loops
options have been added to its compilation (Figure 19b).
Results continue to show similar errors. Therefore, the next
experiment (Figure 19c¢) mimics the O3 option by using
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Fig. 19. Exploring the GCC optimization individual flags. (a) No optimization
flags. (b) OO0 plus unrolling loop. (c) Synthetic O3. (d) O3 plus unrolling loop.

individual optimization flags instead (e.g., -falign-jumps -
falign-loops -falign-labels -fcaller-saves -fcrossjumping). This
investigation aims to replicate the O3 effect on the code
without directly adding the “-O3” flag. Individual optimization
flags have minimal impact on the final system reliability and
performance as they have a minor effect on the compiler
behavior, as seen in the difference between Figure 18d and
Figure 19c. Therefore, primary optimization flags (e.g., O0-3)
are not just group alias, they have a direct impact on the
compiler algorithm. That means that GCC does not provide
full control of these optimizations, leaving the most relevant
options hardcoded in the compiler source code. For example,
the benchmark 11 without any optimization simulates 150 bil-
lion instructions while the O3 recreation requires 120 billion,
still four times longer than the default O3 flag.

Most of the existing software projects use O2 as standard
shipping optimization flag because a four times slowdown
is not acceptable. In the impossibility of improving the
software compiled with OO0, the last experiment attempts to
reduce the number of unexpected terminations when using
the O3 optimization flag. This fault campaign (Figure 19d)
uses aggressive loop and branch optimizations, given more
freedom to the compiler to allocate the instructions orders.
Results demonstrate the lack of support provided by GCC to
algorithm customization’s, as most of the code transformations
are locked to hardcoded arguments.

C. Complete Path Execution

After analyzing the impact of individual GCC flags on the
visual odometry application behavior, we extended this explo-
ration to the effects of the traveled path on the accumulated
error, aiming to reveal the real impact that the application suf-
fers under the presence of injected faults. This exploration uses
two input sets from the KITTTI suite, the benchmark 11 featur-
ing 920 frames and the benchmark 14 with 630 frames, and
both compiled with the O3 optimization flag.

Figure 20 shows the traveled path for each fault injection
scenario (A) with a zoom on the final stopping point (B).
The benchmark 11 follows a more straight path leading to
horizontal errors, i.e., the vehicle diverges either to the right
or to the left (Figure 20a). In contrast, the benchmark 14 after
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Fig. 20. VO application complete execution considering two distinct inputs.
(a) Benchmark 11 (920 frames). (b) Benchmark 14 (630 frames).

each curve the car leans towards the correct way (dashed
green line) as right and left accumulated errors attenuate each
other. However, the vertical error accumulates in a greater
magnitude, as shown in Figure 20b. Figure 20 also displays the
error from the correct stopping point considering every fault
injection (C) and only the ones with complete (i.e., neither
Hang or UT) application (D). Note how the number of
completed simulations (in red) remains at the same levels of
the reduced simulations (i.e., 100 frames), around 55% when
compiled with an identical GCC flag (i.e., O3).

VII. CONCLUSIONS

This paper described a novel soft error assessment flow that
enables software engineers to not only identify the occurrence
of soft errors in complex software stacks but also determine
the correlation between multicore platform microarchitectural
characteristics and detected soft errors using supervised and
unsupervised machine learning techniques. Proposed flow and
tools provide a step change in understanding multicore soft-
ware stacks behavior under the presence of faults at early
design phase.

The effectiveness of our soft error assessment flow was eval-
vated through an extensive data set gathered from more than
1.2 million fault injections, considering realistic and sophisti-
cated software stacks including Linux kernel and benchmarks
with up to 87 billion instructions. Aiming to demonstrate
the applicability of our proposal in a realistic environment,
we investigate the soft error reliability of a visual odom-
etry algorithm commonly used in self-driven cars. Results
show that the occurrence of soft errors affects the vehicle
travel.
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